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Introduction. First we extend the notion of secant variety in-

troduced by E, ILluis in [6] for a projective variety embedded in
some (fixed) ZPE , to any quasi-projective morphism g: X - Y
(relative to a fixed Y-embedding i: X ~:P§), where Y is a

(not necessarily separated) quasi-compact scheme. Even the in-
troduction of reducible schemes, projective over a field k ,
makes it impossible to work with generic points in the classical
sense: Trivial examples show that the secant scheme may be larger
than the union of the secant varieties for each irreducible com-
ponent,

Even so, it turns out that the estimate for the dimension
of the secant variety given by Lluis in [6] holds also in the
general case: It's less than or equal to 2dim(X) + 1 - dim(Y) ,
cf. Theorem 2.

In the classical case one obtains a stratification of the
secant variety Sc(X) by letting SC(X)i denote the closure of
the union of all lines with i + 1 or more points in common with
X . In fact, if Gk(1,N) denotes the Grassmanian which parame-
trizes P1's in IPﬁ , let T c;@ﬁ X Gk(1,N) denote the inci-
dence correspondence, and let Si c Gk(1,N) be the closure of

the set of points which correspond to lines with i + 1 or more

points in common with X . Then

Sc(X); = pry(pr,”'(8,)NT)

gives what we want.

In general all Sc(X)i's may be equal, for example if X
is a linear subspace., On the other hand, if X 1s a smooth
curve, projective over the field K then Sc(X)1 = Sc(X)2 im-

plies that X is either a line, or in characteristic 2, a plane
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conic (f9]). Furthermore, it follows by a theorem of Lluis ([71])
that if Sc(X)1 = Sc(X), for a projective smooth variety X in

N (M = 2aim(X) + 1)
Pk /Where k 1s of characteristic zero, then X 1is contained

in some IPN£1 . It may be shown, using a theorem in [3],
that this holds in all characteristics, cf. [5].

The stratification of the secant variety for a projective
variety may be carried out analogously for a quawi-projective
morphism,

Finally, in the classical case one studies the subvarieties
Sc(X,q); , defined similarly to Sc(X); , but with P 's instead

of IP1'S. In (6] it is shown that

dim So(X,q)i < (q=-1)(N-q) + g + (i+1) dim(X) .

This construction may also be generalized, and a similar estimate
for the dimension holds,

One reason why we think this is interesting, is the following

If X dis a smooth, projective scheme over the infinite
field k , of dimension n , one can show that X may be embedded
in P§n+1 (ef. [6], [3] and [5].) If X is a variety and
n+1<mz<2n , then there is a projective variety Y CIP? , a
birational f: X - Y and a descending chain {Yi} i=1.n of
closed subsets in Y , such that for all y € Yi_1 - Yi , the
geometric number of points in f"1(y) is equal to i , see [7].
Moreover, dim(Yi) <n - i(m-n) . If m = 2n , one may choose f
such that the geometric number of points in f'1(y) is at most
2 , cf, [3].

From this classical point of view one may proceed in two

directions: One of them leads to formal embedding and projection
theorems, [3]. Here the link with the classical case is that

one applies the formal theory to the completion of the local ring

at the vertex of the affine come over a projective scheme. But



another problem is to look for simultaneous embeddings of families
of projective schemes, parametrized by some scheme Y : In other
words, given a projective morphism g: X - Y , find minimal N
such that there exists a Y-embedding i: X = P§ .

Furthermore, in this setting one should be able to prove a

"projection theorem" similar to what one has in the classical

case,

The secant scheme, For later reference we first list the follow-

ing well-known

—~
Proposition 1. Let x e:@ﬁ be a k-point, and let :mﬂ denote

the blowing up with center x , If pT4 and pr, are the pro-

jections, we have the commutative diagram
—~

N ¢ N N-1
:Ek > :Pk X IP Xk

N

(1) My i\\{éi; pro
Js / \
N N
N - N-1
k

Ir Py

such that

i) A\, is a P1—bundle.

ii) nX(x;1(y))9 x , and is a projective line defined over
k(y) .

iii) ¥y b—> nX(x;1(y)) establishes a bijection between the
k-points of IPN£1 and the :EL'S in IPg passing‘through

X Ll

Using this proposition, it is easily verified that for any
projective scheme X in IPi , the closure of the union of all

lines in :mﬁ passing through x € X and at least one more point



of X , is given by

Se(x,X) = m Oy (0 ()

where X denotes the blowing up of X with center x . More-
over, Sc(x,X) 2 C(x,X) , the tangential cone of X at x : 1In

fact, we may assume x = (1:0:..,:0) , where IEﬁ::Proj(kD(,uWXN]).
. . AN N1
Then m, and X, gives the canonical D+(XO) _/ﬂk P

mapping any cone with vertex x onto it's projectivisation.

Finally 1 (X,) is the projectivisation of C(x,X) , cf. [8],

page 319,
Now let D ©be the diagonal of IPE XIPX , and let
n
Z —2—>ZPE XIEX be the blowing up with center D . A 1is any

commutative ring with 1 . The basic construction is given by

the following:

Proposition 2. There exists a scheme T of finite type over A,

and morphisms A and f such that the following diagram is

commutative:
- %
D/ v \
L/
:mg X Ty S
/ ~,
m N A
A ]yL
Ef Ty

Moreover, if A is a field and x is an A-point of IPE 5

then the fiber of (2) via pr, 1is the diagram of Proposition 1.
Finally X and f are projective fiber bundles with

N-1

fibers and IP1 , respectively.

Proof. Write P) x Py = Proj(Alx; %, [0, j<u]) = Proj(alx®]) |

the grading being defined by XX € A;Xx]1 . Put U, = D+(Xi) ,




N N N .
then P, x P, = §:6IPA xU; , and Dy =DN(®, xU;) is the

N iarT /= .
closed subscheme of TP, x U; = Prog(A[Xj/XiI 3= 0,00, N10x g yeuny x0 1)
defined by
X, - Z3,%; , for all b A,
where Zij = ij/ii . If ms denotes the blowing up with center
Di , we get the diagrm

< 7. —HD(PAXU)

Z
P

v
IP

Now put ¥,y = X - 2z %X, for all b #Z1 . Then IEE x Us =
Proj(A[zib!b # i][yib[1>¥ i, x;]) . The center D, is given by

=0 for all b # i .

Tip
Hence 2.2 Proj(A[X. 0<a,b <N, b#il) = x PV xI]PN'1
ia 1b' i k k
is defined by X, Y., = XY, ~for a i, b #1i . The pro-
jection pry, induces a morphism Aj: Z; - U; X Pg_1 =T, . To

prove is that these morphisms may be pieced together to r:Z - T,
and that pry: U xZPg’ » U, may be pieced together to the
morphism f ., The rest of Proposition 2 is obvious.

We have T = Proj(klZ Y, gyeven¥y 5 q0Y5 59500055 )
define/

_ ! | _ .
and Tij = Prog(kLZi,1/Zi9j][Yi,b b £17) = Prog(Sigj) where
Z. . =X./X, . DNote that \T'(T., .) = Z.N3Z. = Z. .
i, J/ 5 0 T (Tlsa) “1r1ga gl’J where
gi,j = Proj(sisj) and 55,3 is obtained from Si,j by replasing

capital letters with small ones, The relations between Zi 1o
. b

and Zj,b s ngb which identifies éi 3 and gj’i sug-

9

Ii,b
gests how the isomorphisms

R ) L | L
1,3 1,3 i,i

should be defined. In fact, let 84 5 be induced by the
9
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isomorphisms
hl,J Sj,i - Sl,J
given by
Yo > 1y g - (Zi,b/zi,j)Yi,j for b £1i
Yj,i —> '(Yi,j/zi,j)
Zj,b e zi,b/zihj for b £ i
Zj,i  — Zi,j

It is easily verified that the morphisms hi 3 satisfy the
9

usual cocycle condition , so the schemes Ti may be glued to-

gether to a scheme T by means of the morphisms hi j
9
Since the diagrams
.. id > 4. .
—1l,J =Jds1

v/ 81 1 v/
T ESIER T.

i,] 3,1
are commutative, it follows that the morphisms xi may be glued

together to a morphism X . Finally, to show that the morphisms

fi may be glued together, we need to verify that the diagrams

T. . > -
14 Jsd

. . . . where f. . 1is the
1,] s 1 1,J

:P§-1 restriction of fi 5

are commutative. But fi i is the composition of the canonical
9

N .
- Spec(k[zi,1/z. 1) aiszProg(k[XO,...,XN]) .

morphisms T 1,3
9

i,

This completes the proof.




Let Y Dbe any quasi-compact scheme, and extend the base

in (2) with A =Z +to Y . We get the diagram

Ly
TT \ ./\\.Y
RSN
Ny
Y %Pl 7
(3) Yy “fy Y
jOe pr it
N"/“ /
Py Fy

Further, let g be a quasi-projective morphism, and let 1 be

a Y-embedding:

X —i> P)
(4) g ////
Y
4 N N I
Then X X YX is a subscheme of ZPY XZTY . Let X X YX denote
_ 1 N —

the closure in Zy of my (X xyX - DX/Y) where Dy ,y 1is the

diagonal. Finally, put
Sc(g,i) = pr1(hY—'(kY(X XYX)))
where the images are the scheme theoretic ones, 13, (9.5).

When no confusion can arise, we write Sc(g) . If Y = Spec(k)

where Lk is a field, we write Sc(X) instead of Sc(g) .

Theorem 2, i) For all y €Y , Sc(g)y = Sc(Xy) and the similar

relation holds for the geometric fibers

ii) dim(Sc(g) < 2dim(X) + 1-dim(Y) (provided Y is of

finite type over a field).

Proof. i) is clear by construction, ii) follows by the facts

that Qim(X x yX) = 2dim(X) - din(Y) and that Ay is a P - tundle .




Now let Gk(q,N) denote the Grassmanian which parametrizes

P in PN . Recall that G, (q,N) = Proj(k[T, . o<i_<N1/1),
k k 10,”0,1q — G
where K[Tios---,iq l0<i, <N] is graded by Ti €8y,

i= (iO,...,iq) , and I is the homogenous ideal generated by
the elements

q+1 1
T (=-1)" T, U . .
1=0 ) 119"091(1931 JO"?”Jl""’JqH

fOT all i1"ll’iq 9 jo,"‘?jq+1
(5)

T, - sign(c)Ts(

) for all permutations o

1

Tj for all j such that j_ = j, for some a#b

Now define T 1in the same way as S , but with k replaced

by Z . Put GY(q,N) = Proj(T) x Y « Then 1%t is clear by the
above that

and that a similar relation holds for the geometric fiber.

further, put

N N
P = I% X%ooa&%:gz X ZGZ(Q’N)

Proj(ZZ[Xos. S G Ti{ jbzo,,,,,N])

Jo Lsdg
= Proj(T%)
where T* 1is graded by
X . I..X- . T- G T':\"
0930 1edy L ( >1 ’
and where the X, . ...X., . T.'s satisfy the relations induced
053y 1,371

by (5). Assume from now on that 0 < i <q <N .

Finally, let Qz(i,q,N) be the closed subscheme of B,
defined by the ideal generated by the elements




for all O

I A

1 <1i and all O < ia g jb <N .

As before, put Py =B, x 5¥ and FY(i,q,N) = Qz(i,q,N)x%Y'.
Then it's clear that for all y € Y , rY(i,q,N)y = Tk(y)(i,q,N)
is the incidence correspondence in Pg(y> xn.xmﬂ(y) X Gk(y)(q,N):
a k(y)-point p is in Tk(y)(q,N) - if and only if the linear
subspace of IPE(y) which corresponds to pri+2(p) contains
pry(p),...,pr; 4(p) . (For a proof, see for instance [3], Propo-
sition (1.3).)

Now let g: X - Y be a gquasi-projective morphism (where as
before, it is understood that we fix a Y-embedding i ).

TLet U = Vx GY(q N) , where V c X Xyo o o Xy X denotes the

commpoement of the diagonals. .

Put Gy(g,q); = pry, ({0 NTy(1,9,N) . Then, for all y €Y,

(Gy(g,a);)y

points which correspond to PY's with i+1 or more points in

is the subset of Gk(y)(q,N) consisting of the

common with X_ .

y
Let
Iy(0,q,N)
% e
G (a, 1)

be the morphisms induced by the projections,

Then define

Sc(g,a); = p1(p2'1(GY(g,q))

Theorem 2., i) (Sc(g,q)i) = Sc(X J,q)i and similar for the
geometric fiber., Furthermore, if Y dis an irreducible scheme
of finite type over a field, and therc coxists o non enpty opcn sub-

1
set ¥ of Y such that for all y inX}, Xy®k(y)is not contained in
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Iiﬁ% in IT—)
ii) dim(GY(g,q)i) < (g-1)(N-q) + (i+1)dim(X) - i dim(Y)

Gt thim the foliowirs holds

IA

iii) dim(Sc(g,q)i) (g=1)(W-q) + q + (i+1)dim(X) - i daim(Y).

Proof, i) is immediate by the construction. For ii),we nay

aspume thet Y = Y'. Tt suffices to show that

dim(Uf\TY(i,q,N)) < (g=1i)(N-q) + (i+1)(dim(X) - dim(Y))

Moreover,

dim(U N I‘Y(i,q,l\T) = dim(U N I‘Y(i,q,l\T))

since Y dis of finite type over a field., PFinally, if y € Y

is a closed point, then

\
/

<

Uun TY(i9Q9N)y ®k( 1~<y) = Uy N I\m)(19Q9N)

= -_5-' ...— X =-‘ ®
where Uy Vy XET?)GET§)(q’N) and Uy c ny XXy(Xy Xy k(v))

denotes the complement of the diagonals, as before.

To complete the proof, it suffices to prove that
(5) dim(UyﬂPm)(i,q,N)) < (g-i)(N-q) + (i+1)dim(Xy)
Indeed, dim(Xy) > dim(X) - dim(Y) and equality holds for all y

in an open dense subset W, of Y. (C1],Iv (11.1.1) and (6.1.2).

Tormether with (5) thie inmplies

dim(Uyﬂl“m—y-)(i,q,N)) < (g-1)(N=-q) + (i+1)(dim(X)-dim(Y))

for all y € W1 . As before, there is an open dense subset W,

of Y such that for all y € W2 5

dim(UN Ty(i,q,N) dim(UN Ty(i,q,N) - dim(Y)

Hence taking y € W, n W, , we get
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dim(UNTy)(1,4,N))

dim(UrﬁrY(i,q,N)y) + dim(Y)

(q-1)(N-q) + (i+1)dim(X) - i dim(Y) .

I A

To prove (5), it suffices to show the following: There exists an

open dense subset W of ny...xfg , such that if

a = (ao,...,ai) € W dis a closed point, then
(6) dim(ny7T§T§)(isq,N)a) < (g-1)(N-q) .

For this, we let W be the subset of f;x...xi; defined by

_ N
Qngeoass € W <=> the linear subspace of TP
( 0’ 9 1) e in upnsp % m)

spanned by Bpgseees8y is of dimension 1

Clearly W is open and dense, and (6) follows by the well known

N
K 9

correspond to ZE%'S containing P , is closed, and isomorphic

to  Gp(a-i-1, N-i-1) which is of dimension

((q=i-1)+1) (W-i-1(q-i-1)) = (a-1)(W-a) (cf. [2]).

fact that if P c PN , then the set of points in G.(q,N) which
K K

iii) follows from ii) by means of the easily verified fact

that p, is a P%- bundle,
Q.EODO
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COTMECTION,

The first line on nage 10 should read as follows:

ne

any 109 )in IPFT?T , then the following holds:

s




