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In [2], we proved a formal embedding theorem closely

related to the classical result that a smooth projective variety

over an infinite field k of dimension n can be embedded in

2n+1

Py

(see f.inst. [ 517.)

Namely, let k ©be an infinite field, and

0 = k[[X“;..,X 11/1 = k[[,1,..., 1], and let 0 < h < n = dim(0).
1 For the definition of A s see [13],

Further, put 6 = maxf{rk Q (x)|x € PN(0)} Y PN(Q) denotes

k(x)" 0/k

the open subscheme of Spec(Q) obtained by deleting the closed

point. Then there are h + & 1linear combinations in §1""§N 9

Cqseess(yys sSuch that the inclusion Q = k[lc,,...c, (11C—>0

makes O to a finite Q-module and induces a morphism

f,: PN(Q) = PN(Q) for which dimB(fh) < max{-1, n-h-2} and

0’
dimC(fh) < n-h-1, where B(fh) denotes the (closed) set of points

in PN(Q) at which f is ramified, and C(fh) is the (closed)

h
set of points in PN(Q) where fy, 1s not an isomorphism.

(A morphism f: X - Y is said to be an isomorphism at y provi-
ded there exists an open subscheme U of Y containing ¥y such
that f—1(U) - U is an isomorphism.)

In [2] we also proved a refinement of the above: If the
non-smooth locus S(X) of X = PN(0) 1is of dimension less than
n, then & may be replaced by &' = max{n, 6-1}*)

The aim of this note is to prove a weaker result for

finite fields k. To be precise, we prove the theorems referred

to above with "linear combinations" replaced by "polynomials".

*) Chopping up  s(X) according to the size of §1O/k(x) , one

can push this refinement somewhat further, see [3] .



The necessity of introducing polynomials (which may not,
in general, even be assumed to be homogenous of the same degree)
reflects the fact that over a finite field, the classical embed-

ding theorem referred to above fails to be true, see for example

(4], This condition 1s not necessary, however,
for the existence of some embedding XLC?>]§N£1, see [3].

So the aim of this note is to prove the following.

Theorem., Let k ©be a finite field of characteristic p , and

and 0 £ h £ n = dim(Q), there exists ©8+h polynomials

Cireeny €6+h in Eq54.., §N with coefficients from k , such

that the inclusion Q = k[[¢,,..., C6+h]] —> 0 makes O to a
finite g—module and such that the canonical morphism

f. : PN(Q) - PN(Q) satisfies

h

dim(B(fh)) < max{-1, n-h-2}
and
dim(C(fh)) £n-h-1

Preof: In order to apply the techniques of [2], we need the

following

Lemma 1. TLet X4;... X, and yq,..., y, be points of PN(O)
~1

and let V., be a proper k(Xi)—subspaoe of Og/k(xi) for all

i=150eey he Then there exists a polynomial ¢ in 51,..., iN

with ceefficients from k , such that ¢ € m = max(Q) ,

(1.1) ¢ £ p(x) for all x € {Xyyeeey Xpy Fygeees Vil
and

(1.2) dg(xi);cfvi for all i = 1,400, h .
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1
Remark (1.3). (i). Suppose that ¢ satisfies Lemma 1 for

the points Xqgeoes Xpy Jyoeees Vi q s and the subspaces V1.H,Vh.
Pick a polynomial £ in &,,..., &y , such that € € m = max(0)

but & Zag(yt). (For example, we may take & = %,  for some
0

io.) Then there exists a finite set J1 of positive integers
such that if m £ J, , then ( = ¢'+ P gatisfies Lemma 1 for
the peints X4,..., Xy Tyseees Ty and the subspaces V1,..., Vh.
(ii). Assume that Q' satisfies Lemma 1 for the points
Xpgeney Xy g9 Tqseees Ty and the subspaces V1,..Q,Vh_1. Using
(i) we may assume that Q' 4 p(xh), if necessary by replacing
g' by C'+ (f;'i1)m1 for suitable i, and my . Suppose that Q'
does not satisfy Lemma 1. Pick a polynomial & in E&,,..., %N
with coefficients from k such that & € m and aB(x,) £ Vy .

(Again we can take € = @i for some io.) Then there exists
o}

a finite set J2 of positive integers such that if m £ J2 and
!
P X m , then (¢ = (¢ )m+€ satisfies Lemma 1 for the points

Xyseney Xy Fqseesy Ty and the subspaces V1,..., Vh .

Preof. If h = 0, t 1T or if h =1, t = O, the lemma is obvious.
We proceed by induction on h+t , and it suffices to show (1.3).
To prove (1), let X € fqyeuuy Xyy Vyseeey Vil If
E € p(x) then x # Yy » S0 C = ¢!y b0 £ p(x) for all m .
If on the other hand & £ p(x) , then there is at most one posi-
tive integer m such that C'+ gPm ¢ p(x): 1Indeed, suppose that
¢+ Eme and Q'+-Epm2 are in p(x) for my > m, . Then
Epmz(gp(m1—m2) - 1) € p(x) , thus F € p(x) since Ep(m1—m2)_ 1
is a2 unit in QO , a contradiction., Since d4¢ = dg', we may take
J1 to be the set of all positive integers m such that
€'+ gP ¢ p(x) for some x € {X1,..., Xy y1,...9yt} .
To prove (ii), we note first that

1

Iy ' m2—1
(1.4) (m (¢ ) - my(¢ ) )(x;) #0 for 2ll i = 1,..4,h,
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and all positive integers m, > m, such that »p X m, .

y my=1 ' m2—1
In fact, suppose that m1(g ) - m2(g ) € E(Xi)

for some 1 and some integers m, > m, where ©p X m, . Then

m,-1 ¢ M-

(€')° (m(¢) ' ?-my) € plx;),

) 1 ] Hl.] -mz
and since ¢ ¢ p(x;), we get my (€ )

- m, € p(x;) ,
contradicting p [ m, .
By assumption dC'(Xi) €V, . Thus for all m we get

!
a((c )™ + g)(x,) £ V, . Moreover, if df(x;) € V. , then

!
a((¢ )™ + E)(Xi) Z V. far all m not divisible by p. Finally
if for some i < h dE(Xi) 4 V, then d((g')m + 5)(Xi) €V, for

at most one positive integer m net divisible by p. If namely

m, > m, are positive integers, not divisible by p , such that

acey 3, e)(x;) €V, for j =1, 2, then
' m1—1 R ,

(m (¢ 1 o my(e) ) (x)ac’ (x)) € v,
which contradicts dg'(xi) 4 V., , because of (1.4). DNow the
proef is complete once we show that there is g finite set J2
of positive integers such that if m & Jo , then (gq)m+ E £p(x)
for all x € {X;5cea, Xy s Fqreees yt}. This is clear: If
g € p(x) , then (Q')m + & & p(x) for all m , and if £ & p(x),
then there is at most one integer m such that (g')m + E € B(X),
If namely this holds for the integers my > My, then

) '
- 1€ p(x), and hence ¢ € p(x) , a contradic-

(e 2eeh
tion.

This completes the proof of Lemma 1,

Next, we prove a modification of Proposition (1.2)

in [27]: TLet Xyseees X be any collection of closed irre-

D
ducible subsets of X = PN(0O). For all j < p and all integers

d, put




Xy g = (xex; | rkk(x)ﬁé/k(x) > 4} .

We denote the irreducible components of Xj a by
b4

Y, s € I(j,d) = {(J,8,1),.00,(3d,v(J,a))}.

Lemma 2, Let FS be a closed subset of YS , and assume that

the elements (q,..., §, in the maximal ideal m of 0 satisfy
A1
rkk(x)(ﬂg/k/(dg1’--°s dCx))(X) = d-\ for all x € Y - TF_,

for a1l1 j, & and s € I(j,d), Let m Dbe an integer.
Moreover, let Xyseeos Xpy Fysnees Ty and V1,o.. Vh
be as in Lemma 1,
Then there is a linear combination in E4,..., €y Wwith
coefficients from k, CK+1 = 3151 +e.ot agfy such that for all
j, d 2 A+m and s € I(j,4), there exists a closed subset F;

of Y of codimension > m in YS , such that

s?
Tl (5§ (g i/ (875 eeny 68, 1)) (x) = = (W#1) for all x €Y (R UFL),

and such that the conclusion of Lemma 1 holds.

Proof. The proof follows closely that of Proposition (1.2) in
(2], to which we shall make frequent references in the follewing.

First, for m = O, the claim follows by Lemma 1 taking
F; = YS for all s. We proceed by induction on m. So assume
m > 0 and that Lemma 2 holds for m-1.

We get a polynomial uy by the induction assumption,
such that there exists a closed subset GS of YS of codimen-
sion 2 m~1 for which (1.2.4) in the proof of Proposition (1.2))
holds for all s € I(j,d) where X + (m-1) £ d, in particular
for A4m £ d. Moreover, in the present case we may also assume

that u, satisfies the conclusion of Lemma 1 for the points

Xqseeey Xyy Yyseees Vi and the subspaces V1,..., Vh .
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1
Define L and GS as in the proof of Proposition (1.2).

)

0

G; is of codimension > m-1 in YS, and (2.1.4) holds if GS

1
18 I‘eplaced by G’S. Deflne GS,1,’..’ GS,I'(S)' yS,1""’yS,I‘(s)'
A and V(x) as in the proof of Proposition (1.2).

We now apply the induction assumption to the elements

and Uy the subsets F_ <= Y and to the points and

C1’ouo, g)\ s = s

subspaces KpseensXys ys,i""’ys,r(s)’ VyseoesTyo V1,..., Vh’
V(ys,1),..., V(ys,r(s)) for all s € I(j,d) where (A+1)+ (m-1)
< d. We get a polynomial wu, in E&,,..., By such that there

exist closed subsets HS c YS, of codimension > m-1 in YS ’

for which (1.2.7) holds, and such that

Us £ p(x) for all x € Al {X1,..., Xyy Fqseees yt}
(2.1) and

du2(x) Z V(x) for all x € A, duz(x) 4 v, for all

i = 1,-ocyh
We may assume that Hg is contained in the (closed) set of points
. . Al

x in Y, for which rkk(X)(Qg/k/(dg1,.u,dgx,du1,duz))(X)Zd—X—1.

Now define Hs,1""’ Hs,q(s)’ Zs,1""’ Zs,q(s)’ B
and V(x) as in the proof of Proposition (1.2). By remark (1.3y
(i), we may assume that Uy £ p(x) for all
Xx €AU BY {x1,...,Xh, y1,...,yt1. We prove:

There exists an integer M such that if v = (u1)M4-u2,

(2.2) then v ¢ p(x) for all x € {Xy5000sxy, Yqseees¥i)sand
dv(xi) 4 V, forall 1i=1,...,h and dv(x) £ V(x)

for all x € A U B.

In fact, by (2.1) we have duz(x) € V(x) for all x € A and

du2(Xi) €V, forall i=1,...,h, Since u, satisfies (1.2.4)
!
fOI‘ GS al’ld ZS,.],eutyZS,q(S)

for all x € B, Let B S B be the set of points in B such

1
are not in G U F, du1(x)£'V(X)

1
that du,(x) € V(x) for all x € B . By Remark (1,3), (ii),
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there is a finite set J(x) of positive integers for all XEiB',
!

such that if m £ J(x) and m is not divisible by p, then

d((uz)m'+u1)6%)€'V(y) for all y in A u(B-B')[J{X},d«ugff+u1)
& V., for all i =1,...,h, and finally (uz)m'+ Uy £ p(y) for
yin AU BUY {X,e.00,%, Yyseeeyi}s Pick M not divisible by

|
p outside t¢)|J(X), and (2,2) follows.
X€B

Take v = §x+1, and define KS, K gesey K as in

S,y s',p(s)

the proof of Proposition (1.2). To prove that Ck+1 and

B =KS,1U eeos J K

s satisfies the conclusion of Lemma 2,

s,p(s) '
it remains to show that FS is of codimension 2 m in YS, i.e.
that each KS i is of codimension > m.
9
First, Ks c FS J HS: In fact, assume that x € Ks but

x £ F, and x 4 H . Then

Ty () (30 /(8 150580, 1)) () 2 an
vy () (0 4 /(8C 1500086 )) (x) = a-r

A1 _ N
rkk(X)(Qg/k/(d€1’°°'9d5x9du1,du2))(X) = d-1-2,
i.e., d€1,..o,dék, du1, du, are linearly independent at x, and

acy , 4 (x) = Mu () Nau, (x) + duy(x) € (ag,(x),...,d¢ (%)), 2

C H for all s and 1.

contradiction. Thus Ks,i S Hy

Now (2,2) shows that CpseeesCy,q satisfy (1.2.8), and
the rest of the proof ig identical to that of Proposition (1.2).

Lemma 3., There exist 8 polynomials §1,..., Cg 1in C1,...,€N
with coefficients from k, such that 0O 1is finite over the
subring k[[C1,...,€6]] and such that for all j = O,...,p the

closed subsets of X ,

B(X,,8,1)

are of dimension < maX{dim(Xj) - i, =1} for all i = 15440508,

{XGEXj ‘ rkk(X>(§§/k/(dg1""’dgﬁ))(x) > i},
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The proof of Lemma 3 is identical to that of Lemma
(2.1.3) in [2], using Lemma 2 instead of the combination of

Proposition (1.2) and Lemma (1.2.5).

Lemma 4, Assume that O = k[[51,...,§N]] is finite over the
SU.bI'il’lg Q = k[[g1y-oacm]], where €1,ooo’€m € (51!"'951\')')9 .
Then 9 = Q [51’.‘¢,EN].

Moreover, let f : Spec(Q) —> Spec(Q) be the induced

morphism, and let pq;.e.,0, Dbe points of PN(O) such that

( ) k(pi) is a (finite) separable extension of k(f(pi))
4.1
for all 1 = T,e4c05 @
Moreover, let X, ,...,X, Dbe points of PN(O) and vy
Al : .
be a proper subspace of QQ/k(Xi) for all i = 15,0050,
Then there exists a polynomial (¢ in 51,.¢.,§N and

€1""’€m which satisfies the following three conditions:
(4.1) dg(xi) & v, for all i =1,...,h.

The image of ¢ in k(p.) generates k(p.) over
i i
(4.2)
k(f(pi)) fOI’ all j_ = 1,.-.,&,

and
ir £ Spec(0) —> Spec(Ql¢]) is the morphism

(4,3) induced by the inclusion, then f'—1(f'(pi)) = {pi}

fOI‘ all i: 19.#.98«0

Proof, O = Q[E1,...,EN] is obvious.
Let Pi’a, @ = T,00e, n(i) Dbe the finite number of
points in PN(Q) such that f(Piya) = f(py). Let J < {1,.,8]
be a set of indicies such that £(p;) # f(pj) if i # j are
indicies from J, and such that {f(p;)li€ J}= {£(p)li= TyeoesSh
For each i in J there is a finite, normal extension

K; of ky = k(f(pi)) such that for each a = l,...,a(i)
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there is at least one k,-embedding k(Pi a) —> K,. We denote
4

the finite number of such embeddings by

m(i,n,B) : k(Pi,a) —> Kiy B = Ty.ee58(i,a).
Let 8(i,2,8) : 0 —>'K, be the composition of m(i,a,8) with
the canonical o(i,a) ¢ Q0 —> k(Pi q). For a # a', define a
,

k-subspace of m by
1
W(i,0,0 ,8,2 ) = (x€m!6(i,a,8)(n) = 8(i,a ,8 )(W)1.

!
For 211 i, o # a , B and B', not all 51,...,§N are
1 ]
in WwW(i,x,a ,8,8 ). In fact, choose XE-E(Pi,a)’ A ¢£KP1’Q')-
Then X\ = F(§1,.,.,EN), where P € 8[X1""’XN]' Thus, if 6(F)
denotes the polynomial over k(Pi m) whose coefficients are the
H

images of the corresponding ones of F,

8(v\) = 9(F)(6(§1),e..,9(EN)), where § = G(i,%,B),

1 ! J

3°(0) = 8 (B)(8 (8y)y0ee,8 (By)), where 6 = 8(i,n ,8 ).

!

Since 8 and & coincide on Q, °(F) =8'(F). But 6(A)# 0'Q)

and therefore 8(&, )#6(g, ) for some i, i.e. & £ W(i,1,a,8,8)
(0] (4]

0
We note that

i}

CFUW(i,0,0 ,B,8 ), where | le satisfies (2.1.§.4§~

(4.4) the union is taken over alli:f‘for all j such that

t 1 :
& 0 , B and B . 5 Lf(pj>: f(pi)°

—_—

PR——

This is shown in the same way as (2.1.4,5) in the proof of
Lemma (2.1.4) in [27.
Now put g(x) = p(x)n k[§1,...,Cm1 and L(x) =
k[€19--°9Cm]/Q(X)- Let {X19-~°,Xh9 p19--09ps} = {Y1,°'°’yr1-
If yj = Py for some i in J, let Wj,1""’wj,t(j)

1 1
be the collection of the subspace W(i,x,» ,8,8 ) of m.

Denote the two homomorphisms which define Wj % by ej + and
9 9
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i, Put .
t(3) '
{ T . !
FJ(X'] geee ’XN) = -t_—_‘i] [X1 (eJ,t(g'])—eJ,'t(gJI»)“—' . .+:Xi.\T(ej,t( gﬂ)—ea,t(E‘N))]
Since for all t = 1,...,t(j) there is i, such that
Eio 4 Wj,t’ we conclude that Fj(X1""’XN) is a non zero poly-
nomial. Furthermore, the images €, ,EN of B yeee,By in k(yj)

sese)
generate k(yj) over k(f(yj)), so we get a non zero polynomial
Gj(x1,...,XN) Ek(yj)[X1,...,XN] such that if Gj(a1,...,aN)740
for some i,ee0,0y in k(yj), then a1f1 touet “NEN generate
k(yj) over k(f(yj)). Now put Hj = FjGj'

The polynomials Hj are such that whenever Bq9eecydy are
elements of Q such that the images 51,...,§N in k(f(yj))
satisfy Hj(§1?f"’aN) # 0, then (4.2) and (4.3) hold for
¢ = ay8, +..0+ apBy: In fact, by the choice of Gj (4.2) holds,
and since B8y (5 )+, B8 ((F)AT0) ((8)ve a0 5 ((50)
for all = 1,...,%(3), we get 0, .(C) # esyt(g) for all
t = 1,000,t(j). Thus (4,%) follows by (4.4).

Now suppose that yj = X3 ‘for some 1. Then there is a
non zero polynomial Hj € k(yj)[X1,...,XN] such that if qqjeeely
are elements of k(yj) for which Hj(m1,...,aN) # 0, then
a1d§1(yj) Faoot aNdEN(yj) 4 V.. Put fj(X1,...,XN) =
Hj((X1)p,..,,(XN)p) for all j = 1,...,r. Since fj is a non
zero polynomial, the set Aj of all a in L(yj) for which
fj(m,XZ,...,XN) is the zero polynomial is finite.

We show that there exists ay € k[Cy,...,C ] such that
for 2ll j the image 51 of a, in k(yj) is not in Aj.
Indeed, this follows once we show that k[Q1,...,Cm] is not
covered by a finite number of subsets of the form g+p , where
g € k[g1,...,§m] and p 1is a prime, properly contained in the

meximal ideal m_ = (C1,...,Qm)k[§1,...,cm]. Lssume that

0
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k[C1,...,Cm] = g1+g1)U..JJ(ga+ga). In particular
n, S (gqtpy)J...U(g +p,). Deleting some of the sets, we may
assume that all g, +p, have at least one element in common with

my, i.e. gy +f, € n, for some f,€ p . Thus g, €m , and

O’
n, = (gy+pyM...U(g,+p,). Choose g € m  such that gé€p,U..Up,
Then gb-gh € By for at most one integer ©b. Thus choosing b
large enough, we get gb 4 (g4+pq)U..U (g +p,), & contradiction.

Repeating this, we get aq,...,ay in k[g1,...,cm] such
that fj(§1,...,§ﬁ) #0 for all j = 1,...,r.

Since d[(a1)pE1 Foeat (aN)pEN]= (a1)pd§1 Foeat (aN)pdiN,
¢ = (a1)p€1 tooot (aN)pEN gives what we want.,

This completes the proof of Lemma 4.

Lemmg 5. Let Xo,...,Xp be a collection of distinct closed

irreducible subsets of X

PN(Q), including the irreducible
components of X. Then for all integers 1 £ h < n = dim(0)
there are 06+h polynomials €1”"’C6+h with coefficients from

k, such that if
. - r
£ PN(Q) = PN(([LC 5000y Cq,,00)

is the morphism induced from the inclusion, then
dim(f—1(C(f)) N Xj) < dim(Xj) - h for all J = 0,es.,p0, and the
closed subset Ei 3 of Xj consisting of the points x for
?
. ~1 / : . . .
which rkk(x)(og/k/(d§1,...,dg5+1)(x)) > 1 , is of dimension

C max {dim(Xj)—i—h, -1} for all j and all i = T,...,0.

Preof. The proof follows that of Proposition (2.1.8), of 2Jusing
Lemma 3 instead of Lemma (2.1.%), using Lemma 2 instead of
Proposition (1.2) and Lemma (1.2.5), and finally using Lemma 4
instead of Lemma (2.1.4).

Lemma 5 now immediately implies the theorem.
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