Matematisk seminar Universitetet i Oslo No 7 - 1969

FORMAL EMBEDDING THEOREMS

OVER FINITE FIELDS

by

A. Holme

In [2], we proved a <u>formal embedding</u> theorem closely related to the classical result that a smooth projective variety over an infinite field k of dimension n can be embedded in \mathbb{P}^{2n+1}_{k} , (see f.inst. [5].)

Namely, let k be an infinite field, and $\underline{O} = k[[X_1, \dots, X_N]]/I = k[[5_1, \dots, 5_N]], \text{ and let } 0 \le h \le n = \dim(\underline{O}).$ For the definition of $\hat{O}^1_{O/k}$, see [13]. Further, put $\delta = \max\{rk_{k(x)}\hat{\Omega}^1_{O/k}(x) | x \in PN(\underline{O})\}$. PN(\underline{O}) denotes the open subscheme of Spec($\underline{0}$) obtained by deleting the closed point. Then there are $\,h\,+\,\delta\,$ linear combinations in $\,\xi_{1}^{},\ldots\xi_{N}^{}$, $\zeta_1, \dots, \zeta_{h+\delta}$ such that the inclusion $Q = k[[\zeta_1, \dots, \zeta_{h+\delta}]] \longrightarrow 0$ makes O to a finite Q-module and induces a morphism $f_h: PN(\underline{0}) \rightarrow PN(\underline{Q})$ for which $dimB(f_h) \le max\{-1, n-h-2\}$ and $dimC(f_h) \leq n-h-1$, where $B(f_h)$ denotes the (closed) set of points in $PN(\underline{0})$ at which f_h is ramified, and $C(f_h)$ is the (closed) set of points in $PN(\underline{Q})$ where f_h is not an isomorphism. (A morphism $f: X \rightarrow Y$ is said to be an isomorphism at у provided there exists an open subscheme U of Y containing y such that $f^{-1}(U) \rightarrow U$ is an isomorphism.)

In [2] we also proved a refinement of the above: If the non-smooth locus S(X) of $X = PN(\underline{0})$ is of dimension less than n, then δ may be replaced by $\delta' = \max\{n, \delta-1\}^{*}$

The aim of this note is to prove a weaker result for <u>finite</u> fields k. To be precise, we prove the theorems referred to above with "linear combinations" replaced by "polynomials".

^{*)} Chopping up s(X) according to the size of $\hat{\Omega}^1_{0/k}(x)$, one can push this refinement somewhat further, see [3].

The necessity of introducing polynomials (which may not, in general, even be assumed to be homogenous of the same degree) reflects the fact that over a finite field, the classical embedding theorem referred to above fails to be true, see for example [4]. This condition is not necessary, however, for the existence of some embedding $X \longrightarrow \mathbb{P}^{N-1}_{k}$, see [3].

So the aim of this note is to prove the following.

<u>Theorem.</u> Let k be a finite field of characteristic p, and let $\underline{O} = k[[X_1, \dots, X_N]]/I = k[[\xi_1, \dots, \xi_N]]$. With δ as before, and $0 \leq h \leq n = \dim(\underline{O})$, there exists δ +h polynomials $\zeta_1, \dots, \zeta_{\delta+h}$ in ξ_1, \dots, ξ_N with coefficients from k, such that the inclusion $\underline{Q} = k[[\zeta_1, \dots, \zeta_{\delta+h}]] \longrightarrow \underline{O}$ makes \underline{O} to a finite \underline{Q} -module and such that the canonical morphism $f_h: PN(\underline{O}) \rightarrow PN(\underline{Q})$ satisfies

 $\dim(B(f_h)) \le \max\{-1, n-h-2\}$

and

 $\dim(C(f_h)) \le n - h - 1$.

<u>Preof</u>: In order to apply the techniques of [2], we need the following

Lemma 1. Let x_1, \dots, x_h and y_1, \dots, y_t be points of $PN(\underline{0})$, and let V_i be a proper $k(x_i)$ -subspace of $\hat{\Omega}_{\underline{0}/k}^1(x_i)$ for all $i = 1, \dots, h$. Then there exists a polynomial ζ in ξ_1, \dots, ξ_N with coefficients from k, such that $\zeta \in \underline{m} = max(\underline{0})$,

(1.1) $\zeta \notin \underline{p}(x)$ for all $x \in \{x_1, \dots, x_h, y_1, \dots, y_t\}$ and

(1.2) $d\zeta(x_i) \notin V_i$ for all $i = 1, \dots, h$.

<u>Remark (1.3).</u> (i). Suppose that ζ' satisfies Lemma 1 for the points $x_1, \ldots, x_h, y_1, \ldots, y_{t-1}$, and the subspaces V_1, \ldots, V_h . Pick a polynomial ξ in ξ_1, \ldots, ξ_N , such that $\xi \in \underline{m} = \max(\underline{0})$ but $\xi \notin \underline{p}(y_t)$. (For example, we may take $\xi = \frac{\varepsilon}{10}$ for some i_0 .) Then there exists a finite set J_1 of positive integers such that if $m \notin J_1$, then $\zeta = \zeta' + \xi^{pm}$ satisfies Lemma 1 for the peints $x_1, \ldots, x_h, y_1, \ldots, y_t$ and the subspaces V_1, \ldots, V_h .

(ii). Assume that ζ' satisfies Lemma 1 for the points $x_1, \ldots, x_{h-1}, y_1, \ldots, y_t$ and the subspaces V_1, \ldots, V_{h-1} . Using (i) we may assume that $\zeta' \not\in p(x_h)$, if necessary by replacing ζ' by $\zeta' + (\xi_{i_1})^{m_1}$ for suitable i_1 and m_1 . Suppose that ζ' does not satisfy Lemma 1. Pick a polynomial ξ in ξ_1, \ldots, ξ_N with coefficients from k such that $\xi \in \underline{m}$ and $d\xi(x_h) \notin V_h$. (Again we can take $\xi = \xi_{i_0}$ for some i_0 .) Then there exists a finite set J_2 of positive integers such that if $m \notin J_2$ and $p \not\mid m$, then $\zeta = (\zeta')^m + \xi$ satisfies Lemma 1 for the points $x_1, \ldots, x_h, y_1, \ldots, y_t$ and the subspaces V_1, \ldots, V_h .

<u>Proof</u>. If h = 0, t = 1 or if h = 1, t = 0, the lemma is obvious. We proceed by induction on h+t, and it suffices to show (1.3).

To prove (i), let $x \in \{x_1, \ldots, x_h, y_1, \ldots, y_t\}$. If $5 \in \underline{p}(x)$ then $x \neq y_t$, so $\zeta = \zeta' + 5^{pm} \notin \underline{p}(x)$ for all m. If on the other hand $5 \notin \underline{p}(x)$, then there is at most one positive integer m such that $\zeta' + 5^{pm} \in \underline{p}(x)$: Indeed, suppose that $\zeta' + 5^{pm1}$ and $\zeta' + 5^{pm2}$ are in $\underline{p}(x)$ for $\underline{m}_1 > \underline{m}_2$. Then $5^{pm2}(5^{p(m_1-m_2)} - 1) \in \underline{p}(x)$, thus $\varepsilon \in \underline{p}(x)$ since $\varepsilon^{p(m_1-m_2)} - 1$ is a unit in $\underline{0}$, a contradiction. Since $d\zeta = d\zeta'$, we may take J_1 to be the set of all positive integers m such that $\zeta' + 5^{pm} \in \underline{p}(x)$ for some $x \in \{x_1, \ldots, x_h, y_1, \ldots, y_t\}$. To prove (ii), we note first that

(1.4) $(m_1(\zeta')^{m_1-1} - m_2(\zeta')^{m_2-1})(x_1) \neq 0$ for all i = 1, ..., h,

and all positive integers $m_1 > m_2$ such that $p \not \mid m_2$.

In fact, suppose that $m_1(\zeta')^{m_1-1} - m_2(\zeta')^{m_2-1} \in \underline{p}(x_1)$ for some i and some integers $m_1 > m_2$ where $p \not \mid m_2$. Then

$$(\zeta')^{m_2-1}(m_1(\zeta')^{m_1-m_2} - m_2) \in \underline{p}(x_1)$$
,

and since $\zeta' \notin \underline{p}(x_i)$, we get $m_1(\zeta')^{m_1-m_2} - m_2 \in \underline{p}(x_i)$, contradicting $p \not \mid m_2$.

By assumption $d\zeta'(x_i) \in V_h$. Thus for all m we get $d((\zeta')^m + \xi)(x_h) \notin V_h$. Moreover, if $d\xi(x_i) \in V_i$, then $d((\zeta')^m + \xi)(x_i) \notin V_i$ for all m not divisible by p. Finally if for some $i < h d\xi(x_i) \notin V_i$ then $d((\zeta')^m + \xi)(x_i) \in V_i$ for at most one positive integer m not divisible by p. If namely $m_1 > m_2$ are positive integers, not divisible by p, such that $d((\zeta')^{m_j} + \xi)(x_i) \in V_i$ for j = 1, 2, then $(m_1(\zeta')^{m_1-1} - m_2(\zeta')^{m_2-1})(x_i)(d\zeta'(x_i)) \in V_i$

which contradicts $d\zeta'(x_i) \notin V_i$, because of (1.4). Now the proof is complete once we show that there is a finite set J_2 of positive integers such that if $m \notin J_2$, then $(\zeta')^m + \xi \notin \underline{p}(x)$ for all $x \in \{x_1, \ldots, x_h, y_1, \ldots, y_t\}$. This is clear: If $\xi \in \underline{p}(x)$, then $(\zeta')^m + \xi \notin \underline{p}(x)$ for all m, and if $\xi \notin \underline{p}(x)$, then there is at most one integer m such that $(\zeta')^m + \xi \in \underline{p}(x)$. If namely this holds for the integers $m_1 > m_2$, then $(\zeta')^{m_2}((\zeta')^{m_1-m_2} - 1) \in \underline{p}(x)$, and hence $\zeta' \in \underline{p}(x)$, a contradiction.

This completes the proof of Lemma 1.

Next, we prove a modification of Proposition (1.2) in [2]: Let X_0, \ldots, X_p be any collection of closed irreducible subsets of $X = PN(\underline{0})$. For all $j \le p$ and all integers d, put

$$X_{j,d} = \{x \in X_j \mid rk_{k(x)} \hat{\Omega}_{0/k}^1(x) \ge d\}$$
.

We denote the irreducible components of $X_{j,d}$ by

$$Y_{s}, s \in I(j,d) = \{(j,d,1), \dots, (j,d,\gamma(j,d))\}.$$

Lemma 2. Let F_s be a closed subset of Y_s , and assume that the elements $\zeta_1, \dots, \zeta_{\lambda}$ in the maximal ideal <u>m</u> of <u>O</u> satisfy $rk_{k(x)}(\hat{\Omega}_{0/k}^{1}/(d\zeta_1, \dots, d\zeta_{\lambda}))(x) = d-\lambda$ for all $x \in Y_s - F_s$, for all j, d and $s \in I(j,d)$. Let m be an integer.

Moreover, let $x_1, \dots, x_h, y_1, \dots, y_t$ and V_1, \dots, V_h be as in Lemma 1.

Then there is a linear combination in ξ_1, \ldots, ξ_N with coefficients from k, $\zeta_{\lambda+1} = a_1 \xi_1 + \ldots + a_N \xi_N$ such that for all j, $d \ge \lambda + m$ and $s \in I(j,d)$, there exists a closed subset F'_s of Y_s , of codimension $\ge m$ in Y_s , such that $rk_{k(x)}(\hat{\Omega}_0^1/k/(d\zeta_1, \ldots, d\zeta_{\lambda+1}))(x) = d - (\lambda+1)$ for all $x \in Y_s - (F_s \cup F'_s)$, and such that the conclusion of Lemma 1 holds.

<u>Proof.</u> The proof follows closely that of Proposition (1.2) in [2], to which we shall make frequent references in the following.

First, for m = 0, the claim follows by Lemma 1 taking $F'_s = Y_s$ for all s. We proceed by induction on m. So assume m > 0 and that Lemma 2 holds for m-1.

We get a polynomial u_1 by the induction assumption, such that there exists a closed subset G_s of Y_s of codimension $\geq m-1$ for which (1.2.4) in the proof of Proposition (1.2)) holds for all $s \in I(j,d)$ where $\lambda + (m-1) \leq d$, in particular for $\lambda+m \leq d$. Moreover, in the present case we may also assume that u_1 satisfies the conclusion of Lemma 1 for the points $x_1, \ldots, x_h, y_1, \ldots, y_t$ and the subspaces V_1, \ldots, V_h . Define L_s and G'_s as in the proof of Proposition (1.2). G'_s is of codimension $\geq m-1$ in Y_s , and (2.1.4) holds if G_s is replaced by G'_s . Define $G_{s,1}, \dots, G_{s,r(s)}, y_{s,1}, \dots, y_{s,r(s)}$ A and V(x) as in the proof of Proposition (1.2).

We now apply the induction assumption to the elements $\zeta_1, \ldots, \zeta_{\lambda}$ and u_1 , the subsets $F_s \subseteq Y_s$ and to the points and subspaces $x_1, \ldots, x_h, y_s, 1, \ldots, y_s, r(s), y_1, \ldots, y_t, V_1, \ldots, V_h, V(y_{s,1}), \ldots, V(y_{s,r(s)})$ for all $s \in I(j,d)$ where $(\lambda+1) + (m-1) \leq d$. We get a polynomial u_2 in ξ_1, \ldots, ξ_N such that there exist closed subsets $H_s \subseteq Y_s$, of codimension $\geq m-1$ in Y_s , for which (1.2.7) holds, and such that

 $u_2 \notin \underline{p}(x)$ for all $x \in A \cup \{x_1, \dots, x_h, y_1, \dots, y_t\}$ (2.1) and

 $du_2(x) \notin V(x)$ for all $x \in A$, $du_2(x) \notin V_i$ for all i = 1, ..., h

We may assume that H_s is contained in the (closed) set of points x in Y_s for which $rk_{k(x)}(\hat{\Omega}_0^1/(d\zeta_1,...,d\zeta_\lambda,du_1,du_2))(x) \ge d-\lambda-1$.

Now define $H_{s,1}, \dots, H_{s,q(s)}, z_{s,1}, \dots, z_{s,q(s)}, B$ and V(x) as in the proof of Proposition (1.2). By remark (1.3), (i), we may assume that $u_2 \notin \underline{p}(x)$ for all

 $x \in A \cup B \cup \{x_1, \dots, x_h, y_1, \dots, y_t\}$. We prove:

There exists an integer M such that if $v = (u_1)^M + u_2$,

(2.2) then $v \notin \underline{p}(x)$ for all $x \in \{x_1, \dots, x_h, y_1, \dots, y_t\}$, and $dv(x_i) \notin V_i$ for all $i = 1, \dots, h$ and $dv(x) \notin V(x)$ for all $x \in A \cup B$.

In fact, by (2.1) we have $du_2(x) \notin V(x)$ for all $x \in A$ and $du_2(x_i) \in V_i$ for all i = 1, ..., h. Since u_1 satisfies (1.2.4) for G'_s and $z_{s,1}, ..., z_{s,q(s)}$ are not in $G'_s \cup F_s$, $du_1(x) \notin V(x)$ for all $x \in B$. Let $B' \subseteq B$ be the set of points in B such that $du_2(x) \in V(x)$ for all $x \in B'$. By Remark (1.3), (ii),

- 6 -

there is a finite set J(x) of positive integers for all $x \in B'$, such that if $m' \notin J(x)$ and m' is not divisible by p, then $d((u_2)^{m'}+u_1)(x_1) \notin V(y)$ for all y in $A \cup (B-B') \cup \{x\}, d((u_2)^{m'}+u_1)$ $\notin V_1$ for all i = 1, ..., h, and finally $(u_2)^{m'}+u_1 \notin p(y)$ for y in $A \cup B \cup \{x_1, ..., x_h, y_1, ..., y_t\}$. Pick M not divisible by p outside $\bigcup_{x \in B} J(x)$, and (2.2) follows.

Take $v = \zeta_{\lambda+1}$, and define $K_s, K_{s,1}, \dots, K_{s,p(s)}$ as in the proof of Proposition (1.2). To prove that $\zeta_{\lambda+1}$ and $F'_s = K_{s,1} \cup \dots \cup K_{s,p(s)}$ satisfies the conclusion of Lemma 2, it remains to show that F'_s is of codimension $\geq m$ in Y_s , i.e. that each $K_{s,i}$ is of codimension $\geq m$.

First, $K_s \subseteq F_s \cup H_s$: In fact, assume that $x \in K_s$ but $x \notin F_s$ and $x \notin H_s$. Then

$$\begin{aligned} \mathrm{rk}_{k(x)}(\hat{\Omega}_{0/k}^{1}/(\mathrm{d}\zeta_{1},\ldots,\mathrm{d}\zeta_{\lambda+1}))(x) &\geq d-\lambda \\ \mathrm{rk}_{k(x)}(\hat{\Omega}_{0/k}^{1}/(\mathrm{d}\zeta_{1},\ldots,\mathrm{d}\zeta_{\lambda}))(x) &= d-\lambda \\ \mathrm{rk}_{k(x)}(\hat{\Omega}_{0/k}^{1}/(\mathrm{d}\zeta_{1},\ldots,\mathrm{d}\zeta_{\lambda},\mathrm{d}u_{1},\mathrm{d}u_{2}))(x) &= d-\lambda-2, \end{aligned}$$

i.e., $d\zeta_1, \ldots, d\zeta_{\lambda}$, du_1 , du_2 are linearly independent at x, and $d\zeta_{\lambda+1}(x) = Mu_1(x)^{M-1}du_1(x) + du_2(x) \in (d\zeta_1(x), \ldots, d\zeta_{\lambda}(x))$, a contradiction. Thus $K_{s,i} \subseteq H_s$ for all s and i.

Now (2.2) shows that $\zeta_1, \dots, \zeta_{\lambda+1}$ satisfy (1.2.8), and the rest of the proof is identical to that of Proposition (1.2).

Lemma 3. There exist δ polynomials $\zeta_1, \ldots, \zeta_{\delta}$ in ζ_1, \ldots, ζ_N with coefficients from k, such that <u>0</u> is finite over the subring k[[$\zeta_1, \ldots, \zeta_{\delta}$]] and such that for all $j = 0, \ldots, p$ the closed subsets of X,

 $E(X_{j},\delta,i) = \{x \in X_{j} \mid rk_{k}(x)(\hat{\Omega}_{0}^{1}/k/(d\zeta_{1},\ldots,d\zeta_{\delta}))(x) \ge i\},$ are of dimension $\le \max\{\dim(X_{j}) - i, -1\}$ for all $i = 1,\ldots,\delta$. The proof of Lemma 3 is identical to that of Lemma (2.1.3) in [2], using Lemma 2 instead of the combination of Proposition (1.2) and Lemma (1.2.5).

Lemma 4. Assume that $\underline{O} = k[[\xi_1, \dots, \xi_N]]$ is finite over the subring $Q = k[[\zeta_1, \dots, \zeta_m]]$, where $\zeta_1, \dots, \zeta_m \in (\xi_1, \dots, \xi_N)\underline{O}$. Then $\underline{O} = \underline{Q} [\xi_1, \dots, \xi_N]$.

Moreover, let f : Spec($\underline{0}$) ----> Spec(\underline{Q}) be the induced morphism, and let p_1, \dots, p_a be points of $PN(\underline{0})$ such that

(4.1) $\begin{array}{l} k(p_i) \quad \text{is a (finite) separable extension of } k(f(p_i)) \\ \text{for all } i = 1, \dots, a. \end{array}$

Moreover, let x_1, \dots, x_h be points of $PN(\underline{0})$ and V_i be a proper subspace of $\hat{\Omega}_{\underline{0}/k}^1(x_i)$ for all $i = 1, \dots, h$. Then there exists a polynomial ζ in ξ_1, \dots, ξ_N and ζ_1, \dots, ζ_m which satisfies the following three conditions:

(4.1) $d\zeta(x_i) \notin V_i$ for all $i = 1, \dots, h$.

(4.2) The image of ζ in $k(p_i)$ generates $k(p_i)$ over $k(f(p_i))$ for all $i = 1, \dots, a$,

and

if f': Spec(\underline{O}) \longrightarrow Spec($\mathbb{Q}[\zeta]$) is the morphism (4.3) induced by the inclusion, then $f'^{-1}(f'(p_i)) = \{p_i\}$ for all $i = 1, \dots, a$.

<u>Proof.</u> $\underline{O} = Q[\xi_1, \dots, \xi_N]$ is obvious.

Let $P_{i,\alpha}$, $\alpha = 1, \ldots, \alpha(i)$ be the finite number of points in $PN(\underline{0})$ such that $f(P_{i,\alpha}) = f(p_i)$. Let $J \subseteq \{1, \ldots, s\}$ be a set of indicies such that $f(p_i) \neq f(p_j)$ if $i \neq j$ are indicies from J, and such that $\{f(p_i)\} \in J\} = \{f(p_i)\} i = 1, \ldots, s\}$.

For each i in J there is a finite, normal extension K_i of $k_i = k(f(p_i))$ such that for each $\alpha = 1, \dots, \alpha(i)$

there is at least one k_i -embedding $k(P_{i,\alpha}) \longrightarrow K_i$. We denote the finite number of such embeddings by

 $\pi(i,\alpha,\beta) : k(P_{i,\alpha}) \longrightarrow K_i, \beta = 1, \dots, \beta(i,\alpha).$ Let $\theta(i,\alpha,\beta) : \underline{0} \longrightarrow K_i$ be the composition of $\pi(i,\alpha,\beta)$ with the canonical $\sigma(i,\alpha) : \underline{0} \longrightarrow k(P_{i,\alpha})$. For $\alpha \neq \alpha'$, define a k-subspace of <u>m</u> by

$$W(i,\alpha,\alpha',\beta,\beta') = \{\lambda \in \underline{m} \mid \theta(i,\alpha,\beta)(\lambda) = \theta(i,\alpha',\beta')(\lambda) \}.$$

For all i, $\alpha \neq \alpha'$, β and β' , not all ξ_1, \ldots, ξ_N are in W(i, $\alpha, \alpha', \beta, \beta'$). In fact, choose $\lambda \in \underline{p}(P_{i,\alpha}), \lambda \not\in \underline{p}(P_{i,\alpha'})$. Then $\lambda = F(\xi_1, \ldots, \xi_N)$, where $F \in \underline{Q}[X_1, \ldots, X_N]$. Thus, if $\theta(F)$ denotes the polynomial over $k(P_{i,\alpha})$ whose coefficients are the images of the corresponding ones of F,

$$\begin{aligned} \theta(\lambda) &= \theta(F)(\theta(\xi_1), \dots, \theta(\xi_N)), \text{ where } \theta &= \theta(i, \alpha, \beta), \\ \theta'(\lambda) &= \theta'(F)(\theta'(\xi_1), \dots, \theta'(\xi_N)), \text{ where } \theta' &= \theta(i, \alpha', \beta'). \end{aligned}$$

Since θ and θ' coincide on \underline{Q} , $\rho(F) = \theta'(F)$. But $\theta(\lambda) \neq \theta'(\underline{\lambda})$, and therefore $\theta(\underline{z}_{i_0}) \neq \theta'(\underline{z}_{i_0})$ for some i_0 , i.e. $\underline{z}_{i_0} \notin W(i,\alpha,\alpha',\beta,\beta')$. We note that

(4.4) $\zeta \not\in \forall \forall W(i,\alpha,\alpha',\beta,\beta'), \text{ where}$ $\zeta \text{ satisfies (2.1.4.4)}$ the union is taken over all \Rightarrow for all j such that $f(p_j) = f(p_j).$

This is shown in the same way as (2.1.4,5) in the proof of Lemma (2.1.4) in [2].

Now put $\underline{q}(x) = \underline{p}(x) \cap k[\zeta_1, \dots, \zeta_m]$ and $L(x) = k[\zeta_1, \dots, \zeta_m]/q(x)$. Let $\{x_1, \dots, x_h, p_1, \dots, p_s\} = \{y_1, \dots, y_r\}$.

If $y_j = p_i$ for some i in J, let $W_{j,1}, \dots, W_{j,t(j)}$ be the collection of the subspace $W(i,\alpha,\alpha',\beta,\beta')$ of <u>m</u>. Denote the two homomorphisms which define $W_{j,t}$ by $\theta_{j,t}$ and

- 9 -

$$\theta'_{j,t} \cdot Put$$

$$F_{j}(X_{1}, \dots, X_{N}) = \frac{t(j)}{t=1} [X_{1}(\theta_{j,t}(\xi_{1}) - \theta'_{j,t}(\xi_{1})) + \dots + X_{N}(\theta_{j,t}(\xi_{N}) - \theta'_{j,t}(\xi_{N}))]$$

Since for all t = 1, ..., t(j) there is i_0 such that $\xi_{i_0} \notin W_{j,t}$, we conclude that $F_j(X_1, ..., X_N)$ is a non zero polynomial. Furthermore, the images $\overline{\xi}_1, ..., \overline{\xi}_N$ of $\xi_1, ..., \xi_N$ in $k(y_j)$ generate $k(y_j)$ over $k(f(y_j))$, so we get a non zero polynomial $G_j(X_1, ..., X_N) \in k(y_j)[X_1, ..., X_N]$ such that if $G_j(\alpha_1, ..., \alpha_N) \neq 0$ for some $\alpha_1, ..., \alpha_N$ in $k(y_j)$, then $\alpha_1 \overline{\xi}_1 + ... + \alpha_N \overline{\xi}_N$ generate $k(y_j)$ over $k(f(y_j))$. Now put $H_j = F_j G_j$.

The polynomials H_j are such that whenever a_1, \ldots, a_N are elements of \underline{Q} such that the images $\overline{a}_1, \ldots, \overline{a}_N$ in $k(f(y_j))$ satisfy $H_j(\overline{a}_1, \ldots, \overline{a}_N) \neq 0$, then (4.2) and (4.3) hold for $\zeta = a_1\xi_1 + \cdots + a_N\xi_N$: In fact, by the choice of G_j (4.2) holds, and since $\overline{a}_1\theta_{j,t}(\xi_1) + \cdots + \overline{a}_N\theta_{j,t}(\xi_N) \neq \overline{a}_1\theta'_{j,t}(\xi_1) + \cdots + \overline{a}_N\theta'_{j,t}(\xi_N)$ for all $t = 1, \ldots, t(j)$, we get $\theta_{j,t}(\zeta) \neq \theta'_{j,t}(\zeta)$ for all $t = 1, \ldots, t(j)$. Thus (4.3) follows by (4.4).

Now suppose that $y_j = x_i$ for some i. Then there is a non zero polynomial $H_j \in k(y_j)[X_1, \dots, X_N]$ such that if $\alpha_1, \dots, \alpha_N$ are elements of $k(y_j)$ for which $H_j(\alpha_1, \dots, \alpha_N) \neq 0$, then $\alpha_1 d\xi_1(y_j) + \dots + \alpha_N d\xi_N(y_j) \notin V_i$. Put $f_j(X_1, \dots, X_N) =$ $H_j((X_1)^p, \dots, (X_N)^p)$ for all $j = 1, \dots, r$. Since f_j is a non zero polynomial, the set A_j of all α in $L(y_j)$ for which $f_j(\alpha, X_2, \dots, X_N)$ is the zero polynomial is finite.

We show that there exists $a_1 \in k[\zeta_1, \dots, \zeta_m]$ such that for all j the image \overline{a}_1 of a_1 in $k(y_j)$ is not in A_j . Indeed, this follows once we show that $k[\zeta_1, \dots, \zeta_m]$ is not covered by a finite number of subsets of the form g+p, where $g \in k[\zeta_1, \dots, \zeta_m]$ and \underline{p} is a prime, properly contained in the maximal ideal $\underline{m}_0 = (\zeta_1, \dots, \zeta_m)k[\zeta_1, \dots, \zeta_m]$. Assume that
$$\begin{split} & \Bbbk[\zeta_1,\ldots,\zeta_m] = g_1 + \underline{p}_1) \cup \ldots \cup (g_a + \underline{p}_a). & \text{ In particular} \\ & \underline{m}_0 \subseteq (g_1 + \underline{p}_1) \cup \ldots \cup (g_a + \underline{p}_a). & \text{ Deleting some of the sets, we may} \\ & \text{assume that all } g_h + \underline{p}_h & \text{have at least one element in common with} \\ & \underline{m}_0, \text{ i.e. } g_h + f_h \in \underline{m}_0 & \text{for some } f_h \in \underline{p}_h & \text{ Thus } g_h \in \underline{m}_0 & \text{, and} \\ & \underline{m}_0 = (g_1 + \underline{p}_1) \cup \ldots \cup (g_a + \underline{p}_a). & \text{Choose } g \in \underline{m}_0 & \text{such that } g \in \underline{p}_1 \cup \ldots \cup \underline{p}_a. \\ & \text{Then } g^b - g_h \in \underline{p}_h & \text{for at most one integer } b. & \text{Thus choosing } b \\ & \text{large enough, we get } g^b \notin (g_1 + \underline{p}_1) \cup \ldots \cup (g_a + \underline{p}_a), \text{ a contradiction.} \end{split}$$

Repeating this, we get a_1, \ldots, a_N in $k[\zeta_1, \ldots, \zeta_m]$ such that $f_j(\overline{a}_1, \ldots, \overline{a}_N) \neq 0$ for all $j = 1, \ldots, r$.

Since $d[(a_1)^{p_{\xi_1}} + \dots + (a_N)^{p_{\xi_N}}] = (a_1)^{p_{d_{\xi_1}}} + \dots + (a_N)^{p_{d_{\xi_N}}},$ $\zeta = (a_1)^{p_{\xi_1}} + \dots + (a_N)^{p_{\xi_N}}$ gives what we want.

This completes the proof of Lemma 4.

Lemma 5. Let X_0, \dots, X_p be a collection of distinct closed irreducible subsets of $X = PN(\underline{0})$, including the irreducible components of X. Then for all integers $1 \le h \le n = \dim(0)$ there are δ +h polynomials $\zeta_1, \dots, \zeta_{\delta+h}$ with coefficients from k, such that if

 $f : PN(\underline{O}) \rightarrow PN(k[[\zeta_1, \dots, \zeta_{\delta+h}]])$

is the morphism induced from the inclusion, then $\dim(f^{-1}(C(f)) \cap X_j) \leq \dim(X_j) - h \quad \text{for all } j = 0, \dots, p, \text{ and the}$ closed subset $E_{i,j}$ of X_j consisting of the points x for which $\operatorname{rk}_{k(x)}(\hat{n}_{0/k}^{1}/(d\zeta_1, \dots, d\zeta_{\delta+1})(x)) \geq 1$, is of dimension $\subseteq \max \{\dim(X_j) - i - h, -1\}$ for all j and all $i = 1, \dots, \delta$.

<u>Preof.</u> The proof follows that of Proposition (2.1.8), of [2] using Lemma 3 instead of Lemma (2.1.3), using Lemma 2 instead of Proposition (1.2) and Lemma (1.2.5), and finally using Lemma 4 instead of Lemma (2.1.4).

Lemma 5 now immediately implies the theorem.

References.

- [1] Grothendieck, A., "Elementes de Geometric Algebrique", Publ. Math. de L'Institut des Hautes Etudes Scientifiques.
- [2] Holme, A., "Formal embedding and projection theorems". To appeare. Preprints available from Department of Mathematics, University of Oslo, Norway.
- [3] Holme, A., "On a general embedding theorem in formal geometry". Forthcoming.
- [4] Holme, A., "Embedding theorems for projective varieties over finite fields". Forthcoming.
- [5] Lluis, E.. "Sur l'immersion des varietes algebriques". Ann. of Math. 62 (1955) 120-127.
- [6] Serre,I.P. "Modules projectifs et espaces fibres a fibre vectorielle". Seminaire Dubreil-Puissot Faculté de Sciences de Paris (1957-58).