> A. Holme

In [2], we proved a formal embedding theorem closely related to the classical result that a smooth projective variety over an infinite field k of dimension n can be embedded in $\mathbb{P}_{k}^{2 n+1}$, (see f.inst. [5].)

Namely, let k be an infinite field, and
$\underline{0}=k\left[\left[X_{1}, \ldots, X_{N}\right]\right] / I=k\left[\left[\xi_{1}, \ldots, \varepsilon_{N}\right]\right]$, and let $0 \leq h \leq n=\operatorname{dim}(\underline{0})$. F or the definition of $\hat{O}^{1} 0 / \mathrm{k}$, see [13]. Further, put $\delta=\max \left\{r k_{k}(x) \hat{\Omega}^{1} \underline{0} / k(x) \mid x \in \operatorname{PN}(\underline{0})\right\} \quad r \operatorname{PN}(\underline{0})$ denotes the open subscheme of $\operatorname{spec}(\underline{0})$ obtained by deleting the closed point. Then there are $h+\delta$ linear combinations in $\xi_{1}, \ldots \xi_{\mathbb{N}}$, $\zeta_{1}, \ldots, \tau_{h+\delta}$ such that the inclusion $Q=k\left[\left[\zeta_{1}, \ldots \zeta_{h+\delta}\right]\right] \square_{\square}$ makes 0 to a finite Q-module and induces a morphism $f_{h}: \operatorname{PN}(\underline{0}) \rightarrow \operatorname{PN}(\underline{Q})$ for which $\operatorname{dimB}\left(f_{h}\right) \leq \max \{-1, n-h-2\}$ and $\operatorname{dimC}\left(f_{h}\right) \leq n-h-1$, where $B\left(f_{h}\right)$ denotes the (closed) set of points in $\operatorname{PN}(\underline{0})$ at which f_{h} is ramified, and $C\left(f_{h}\right)$ is the (closed) set of points in $\operatorname{PN}(Q)$ where f_{h} is not an isomorphism. (A morphism $f: X \rightarrow Y$ is said to be an isomorphism at y provided there exists an open subscheme U of Y containing y such that $f^{-1}(U) \rightarrow U$ is an isomorphism。)

In [2] we also proved a refinement of the above: If the non-smooth locus $S(X)$ of $X=\operatorname{PN}(\underline{0})$ is of dimension less than n, then δ may be replaced by $\left.\delta^{\prime}=\max \{n, \delta-1\}^{*}\right)$

The aim of this note is to prove a weaker result for finite fields k. To be precise, we prove the theorems referred to above with "linear combinations" replaced by "polynomials".
*) Chopping up $s(X)$ according to the size of $\hat{\Omega}^{1} 0 / k(x)$, one can push this refinement somewhat further, see [3].

The necessity of introducing polynomials (which may not, in general, even be assumed to be homogenous of the same degree) reflects the fact that over a finite field, the classical embedding theorem referred to above fails to be true, see for example [4]. This conditıon is not necessary, however, for the existence of some embedding $X \subset P_{k}^{N-1}$, see [3].

So the aim of this note is to prove the following.

Theorem。 Let k be a finite field of characteristic p, and let $\underline{0}=k\left[\left[X_{1}, \ldots, X_{N}\right]\right] / I=k\left[\left[\varepsilon_{1}, \ldots, \xi_{N}\right]\right]$. With δ as before, and $0 \leq h \leq n=\operatorname{dim}(\underline{O})$, there exists $\delta+h$ polynomials $\zeta_{1}, \ldots, \zeta_{\delta+h}$ in $\xi_{1}, \ldots, \xi_{\mathbb{N}}$ with coefficients from k, such that the inclusion $\underline{Q}=k\left[\left[\zeta_{1}, \ldots, \zeta_{\delta+h}\right]\right] \rightarrow \underline{0}$ makes $\underline{0}$ to a finite Q-module and such that the canonical morphism $f_{h}: \operatorname{PN}(\underline{0}) \rightarrow \operatorname{PN}(\underline{Q})$ satisfies

$$
\operatorname{dim}\left(B\left(f_{h}\right)\right) \leq \max \{-1, n-h-2\}
$$

and

$$
\operatorname{dim}\left(C\left(f_{h}\right)\right) \leq n-h-1 .
$$

Proof: In order to apply the techniques of [2], we need the following

Lemma 1. Let $x_{1}, \ldots x_{h}$ and y_{1}, \ldots, y_{t} be points of $\operatorname{PN}(\underline{0})$, and let V_{i} be a proper $k\left(x_{i}\right)$-subspace of $\hat{\Pi}_{\underline{0} / k}^{1}\left(x_{i}\right)$ for all $i=1, \ldots, h$. Then there exists a polynomial ζ in ξ_{1}, \ldots, ξ_{N} with coefficients from k, such that $\zeta \in \underline{m}=\max (\underline{0})$, (1.1) $\zeta \notin p(x)$ for all $x \in\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}\right\}$ and
(1.2) $d \zeta\left(x_{i}\right) \notin V_{i}$ for all $i=1, \ldots, h$.

Remark (1.3) (i). Suppose that ζ^{\prime} satisfies Lemma 1 for the points $x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t-1}$, and the subspaces $V_{1} \ldots, V_{h}$. Pick a polynomial ε in $\varepsilon_{1}, \ldots, \varepsilon_{N}$, such that $\varepsilon \in \underline{m}=\max (\underline{0})$ but $\xi \notin \underline{p}\left(y_{t}\right)$. (For example, we may take $\xi=\underline{i}_{i_{0}}$ for some $\left.i_{0}.\right)$ Then there exists a finite set J_{1} of positive integers such that if $m \notin J_{1}$, then $\zeta=\zeta^{\prime}+\xi^{p m}$ satisfies Lemma 1 for the prints $x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}$ and the subspaces V_{1}, \ldots, V_{h}. (ii). Assume that ζ^{\prime} satisfies Lemma 1 for the points $x_{1}, \ldots, x_{h-1}, y_{1}, \ldots, y_{t}$ and the subspaces V_{1}, \ldots, V_{h-1}. Using (i) we may assume that $\zeta^{\prime} \notin p\left(x_{h}\right)$, if necessary by replacing ζ^{\prime} by $\zeta^{\prime}+\left(\xi_{i_{1}}\right)^{m_{1}}$ for suitable i_{1} and m_{1}. Suppose that ζ^{\prime} does not satisfy Lemma 1. Pick a polynomial ε in $\varepsilon_{1}, \ldots,{ }^{5}{ }_{\mathrm{N}}$ with coefficierts from k such that $\xi \in \underline{m}$ and $d \xi\left(x_{h}\right) \notin V_{h}$. (Again we can take $\xi=\xi_{i_{0}}$ for some i_{o}.) Then there exists a finite set J_{2} of positive integers such that if $m \notin J_{2}$ and $\mathrm{p} X \mathrm{~m}$, then $\zeta=\left(\zeta^{\prime}\right)^{\mathrm{m}}+\xi$ satisfies Lemma 1 for the points $x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}$ and the subspaces V_{1}, \ldots, V_{h}.

Proof. If $h=0, t=1$ or if $h=1, t=0$, the lemma is obvious. We proceed by induction on $h+t$, and it suffices to show (1.3).

To prove (i), let $x \in\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}\right\}$. If
$\xi \in \underline{p}(x)$ then $x \neq y_{t}$, so $\zeta=\zeta^{\prime}+\varepsilon^{p m} \notin \underline{p}(x)$ for all m. If on the other hand $\xi \notin \underline{p}(x)$, then there is at most one positive integer m such that $\zeta^{\prime}+\xi^{p m} \in \underline{n}(x)$: Indeed, suppose that $\zeta^{\prime}+\xi^{p m_{1}}$ and $\zeta^{\prime}+\varepsilon^{p_{2}}$ are in $p(x)$ for $m_{1}>m_{2}$. Then $\varepsilon^{p m_{2}}\left(\xi^{p\left(m_{1}-m_{2}\right)}-1\right) \in \underline{p}(x)$, thus $\varepsilon \in \underline{p}(x)$ since $\varepsilon^{p\left(m_{1}-m_{2}\right)}-1$ is a unit in \underline{O}, a contradiction. Since $d \zeta=\alpha \zeta^{\prime}$, we may take J_{1} to be the set of all positive integers m such that $\zeta^{\prime}+\xi^{p m} \in \underline{p}(x)$ for some $x \in\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}\right\}$. To prove (ii), we note first that
(1.4) $\quad\left(m_{1}\left(\zeta^{\prime}\right)^{m_{1}-1}-m_{2}\left(\zeta^{\prime}\right)^{m_{2}-1}\right)\left(x_{i}\right) \neq 0$ for all $i=1, \ldots, h$,
and all positive integers $m_{1}>m_{2}$ such that $p X m_{2}$. In fact, suppose that $m_{1}\left(\zeta^{\prime}\right)^{m_{1}-1}-m_{2}\left(\zeta^{\prime}\right)^{m_{2}-1} \in \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)$ for some i and some integers $m_{1}>m_{2}$ where $p \nmid m_{2}$. Then

$$
\left(\zeta^{\prime}\right)^{m_{2}-1}\left(m_{1}\left(\zeta^{\prime}\right)^{m_{1}-m_{2}}-m_{2}\right) \in p\left(x_{i}\right),
$$

and since $\zeta^{\prime} \notin \underline{p}\left(x_{i}\right)$, we get $m_{1}\left(\zeta^{\prime}\right)^{m_{1}-m_{2}}-m_{2} \in p\left(x_{i}\right)$, contradicting $p \nmid m_{2}$ 。

By assumption $\alpha \zeta^{\prime}\left(x_{i}\right) \in V_{h}$. Thus for all m we get $d\left(\left(\zeta^{\prime}\right)^{m}+\xi\right)\left(x_{h}\right) \notin V_{h}$. Moreover, if $d \xi\left(x_{i}\right) \in V_{i}$, then $a\left(\left(\zeta^{\prime}\right)^{m}+\xi\right)\left(x_{i}\right) \notin V_{i}$ for all m not divisible by p. Finally if for some $i<h \operatorname{de}\left(x_{i}\right) \notin V_{i}$ then $\alpha\left(\left(\zeta^{\prime}\right)^{m}+g\right)\left(x_{i}\right) \in V_{i}$ for at most one positive integer m not divisible by p. If namely $m_{1}>m_{2}$ are positive integers, not divisible by p, such that

$$
\begin{aligned}
& a\left(\left(\zeta^{\prime}\right)^{m_{j}}+\xi\right)\left(x_{i}\right) \in v_{i} \text { for } j=1,2 \text {, then } \\
& \quad\left(m_{1}\left(\zeta^{\prime}\right)^{m_{1}-1}-m_{2}\left(\zeta^{\prime}\right)^{m_{2}-1}\right)\left(x_{i}\right)\left(a \zeta^{\prime}\left(x_{i}\right)\right) \in v_{i}
\end{aligned}
$$

which contradicts $\alpha \zeta^{\prime}\left(x_{i}\right) \notin V_{i}$, because of (1.4). Now the prof is complete once we show that there is a finite set J_{2} - f positive integers such that if $m \notin J_{2}$, then $\left(\zeta^{\prime}\right)^{m}+\xi \notin p(x)$ for all $x \in\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}\right\}$. This is clear: If $\xi \in \underline{p}(x)$, then $\left(\zeta^{\prime}\right)^{m}+\xi \notin \underline{p}(x)$ for all m, and if $\xi \notin \underline{p}(x)$, then there is at most one integer m such that $\left(\zeta^{\prime}\right)^{m}+\xi \in p(x)$. If namely this holds for the integers $m_{1}>m_{2}$, then $\left(\zeta^{\prime}\right)^{m_{2}}\left(\left(\zeta^{\prime}\right)^{m_{1}-m_{2}}-1\right) \in \mathrm{p}(\mathrm{x})$, and hence $\zeta^{\prime} \in \mathrm{p}(\mathrm{x})$, a contradiclion.

This completes the proof of Lemma 1.
Next, we prove a modification of Proposition (1.2)
in [2]: Let X_{0}, \ldots, X_{p} be any collection of closed ireducible subsets of $X=\operatorname{PN}(\underline{0})$. For all $j \leq p$ and all integers d, put

$$
X_{j, d}=\left\{x \in X_{j} \mid r k_{k(x)} \hat{\Omega}_{\underline{0} / k}^{1}(x) \geq d\right\}
$$

We denote the irreducible components of $X_{j, d}$ by

$$
Y_{s}, s \in I(j, \alpha)=\{(j, \alpha, 1), \ldots,(j, \alpha, \gamma(j, \alpha))\} .
$$

Lemma 2. Let F_{S} be a closed subset of Y_{S}, and assume that the elements $\zeta_{1}, \ldots, \zeta_{\lambda}$ in the maximal ideal \underline{m} of $\underline{0}$ satisfy $r k_{k(x)}\left(\hat{\Omega}_{\underline{0} / k}^{1} /\left(d \zeta_{1}, \ldots, d \zeta_{\lambda}\right)\right)(x)=d-\lambda$ for all $x \in Y_{S}-F_{S}$, for all j, d and $s \in I(j, d)$, Let m be an integer.

Moreover, let $x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}$ and $V_{1}, \ldots V_{h}$ be as in Lemma 1.

Then there is a linear combination in $\xi_{1}, \ldots,{ }^{5} \mathrm{~N}$ with coefficients from $k, \zeta_{\lambda+1}=a_{1} \varepsilon_{1}+\ldots+a_{N} \varepsilon_{N}$ such that for all $j, d \geq \lambda+m$ and $s \in I(j, d)$, there exists a closed subset F_{s}^{\prime} of Y_{s}, of codimension $\geq m$ in Y_{s}, such that $r k_{k(x)}\left(\underline{\Omega_{0}^{1} / k} /\left(d \zeta_{1}, \ldots, d \zeta_{\lambda+1}\right)\right)(x)=d-(\lambda+1)$ for all $x \in Y_{s}-\left(F_{S} \cup F_{S}^{\prime}\right)$, and such that the conclusion of Lemma 1 holds.

Proof. The proof follows closely that of Proposition (1.2) in [2], to which we shall make frequent references in the follewing. First, for $m=0$, the claim follows by Lemma 1 taking $F_{S}^{\prime}=Y_{S}$ for all s. We proceed by induction on m. So assume $m>0$ and that Lemma 2 holds for $m-1$.

We get a polynomial u_{1} by the induction assumption, such that there exists a closed subset G_{S} of Y_{S} of codimension $\geq m-1$ for which (1.2.4) in the proof of Proposition (1.2)) holds for all $s \in I(j, d)$ where $\lambda+(m-1) \leq d$, in particular for $\lambda+m \leq d$. Moreover, in the present case we may also assume that u_{1} satisfies the conclusion of Lemma 1 for the points $x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}$ and the subspaces V_{1}, \ldots, V_{h}.

Define $I_{\text {s }}$ and G_{S}^{\prime} as in the proof of Proposition (1.2). G_{S}^{\prime} is of codimension $\geq m-1$ in Y_{S}, and (2.1.4) holds if G_{S} is replaced by G_{s}^{\prime}. Define $G_{s, 1}, \ldots, G_{s, r(s)} V_{s, 1}, \ldots, y_{s, r(s)}$ A and $V(x)$ as in the proof of Proposition (1.2).

We now apply the induction assumption to the elements $\zeta_{1}, \ldots, \zeta_{\lambda}$ and u_{1}, the subsets $F_{S} \subseteq Y_{S}$ and to the points and subspaces $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{h}}, \mathrm{y}_{\mathrm{s}, \mathrm{i}}, \ldots, \mathrm{y}_{\mathrm{s}, \mathrm{r}(\mathrm{s})}, \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{t}}, \mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{h}}$, $V\left(y_{s, 1}\right), \ldots, V\left(y_{s, r(s)}\right)$ for all $s \in I(j, d)$ where $(\lambda+1)+(m-1)$ \leq d. We get a polynomial u_{2} in $\varepsilon_{1}, \ldots,{ }^{5} N$ such that there exist closed subsets $H_{S} \subseteq Y_{S}$, of codimension $\geq m-1$ in Y_{S}, for which (1.2.7) holds, and such that

$$
u_{2} \notin \underline{p}(x) \text { for all } x \in A リ\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}\right\}
$$

(2.1) and

$$
d u_{2}(x) \notin V(x) \text { for all } x \in A, d u_{2}(x) \notin V_{i} \text { for all }
$$

$$
i=1, \ldots, h
$$

We may assume that H_{S} is contained in the (closed) set of points x in Y_{s} for which $r k_{k(x)}\left(\hat{\Omega}_{0}^{1} / k /\left(d \zeta_{1}, \ldots, d \zeta_{\lambda}, d u_{1}, d u_{2}\right)\right)(x) \geq d-\lambda-1$. Now define $H_{s, 1}, \ldots, H_{s, q(s)}, z_{s, 1}, \ldots, z_{s, q(s)}, B$ and $V(x)$ as in the proof of Proposition (1.2). By remark (1.3); (i), we may assume that $u_{2} \notin p(x)$ for all $x \in A \cup B リ\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}\right\}$. We prove:

There exists an integer M such that if $v=\left(u_{1}\right)^{M}+u_{2}$, then $v \notin \underline{p}(x)$ for all $x \in\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots, y_{t}\right\}$, and $\operatorname{dv}\left(x_{i}\right) \notin V_{i}$ for all $i=1, \ldots, h$ and $d v(x) \notin V(x)$ for all $x \in A \cup B$.

In fact, by. (2.1) we have $d u_{2}(x) \notin V(x)$ for all $x \in A$ and $d u_{2}\left(x_{i}\right) \in V_{i}$ for all $i=1, \ldots, h$. Since u_{1} satisfies (1.2.4) for G_{S}^{\prime} and $z_{s, 1}, \ldots, z_{s, q}(s)$ are not in $G_{S}^{\prime} \cup F_{S}, d u_{1}(x) \notin V(x)$ for all $x \in B$. Let $B^{\prime} \subseteq B$ be the set of points in B such that $d u_{2}(x) \in V(x)$ for all $x \in B^{\prime}$. By Remark (1.3), (ii),
there is a finite set $J(x)$ of positive integers for all $x \in B^{\prime}$, such that if $m^{\prime} \notin J(x)$ and m^{\prime} is not divisible by p, then $\alpha\left(\left(u_{2}\right)^{m^{\prime}}+u_{1}\right)\left(x_{i}\right) \notin V(y)$ for all y in $A \cup\left(B-B^{\prime}\right) \cup\{x\}, a\left(\left(u_{2}\right)^{m^{\prime}}+u_{1}\right)$ $\notin V_{i}$ for all $i=1, \ldots, h$, and finally $\left(u_{2}\right)^{m^{\prime}}+u_{1} \notin p(y)$ for y in $A リ B リ\left\{x_{1}, \ldots, x_{h}, y_{1}, \ldots y_{t}\right\}$. Pick M not divisible by p outside $\bigcup_{x \in B}, J(x)$, and (2.2) follows.

$$
\text { Take } v=S_{\lambda+1} \text {, and define } K_{s}, K_{s, 1}, \ldots, K_{S, p}(s) \text { as in }
$$ the proof of Proposition (1.2). To prove that $\zeta_{\lambda+1}$ and $F_{s}^{\prime}=K_{s, 1} U \ldots U K_{s, p}(s)$ satisfies the conclusion of Lemma 2, it remains to show that F_{S}^{\prime} is of codimension $\geq m$ in Y_{S}, i.e. that each $K_{s, i}$ is of codimension $\geq m$.

First, $K_{S} \subseteq F_{S} \cup H_{S}$: In fact, assume that $x \in K_{S}$ but $x \notin F_{S}$ and $x \notin H_{S}$. Then

$$
\begin{aligned}
& r k_{k(x)}\left(\hat{\Omega}_{\underline{0} / k}^{1} /\left(d \zeta_{1}, \ldots, d \zeta_{\lambda+1}\right)\right)(x) \geq d-\lambda \\
& r k_{k(x)}\left(\hat{\Omega}_{\underline{0} / k}^{1} /\left(d \zeta_{1}, \ldots, d \zeta_{\lambda}\right)\right)(x)=d-\lambda \\
& r k_{k(x)}\left(\hat{\Omega}_{\underline{0}}^{1} / k /\left(d \zeta_{1}, \ldots, d \zeta_{\lambda}, d u_{1}, d u_{2}\right)\right)(x)=d-\lambda-2,
\end{aligned}
$$

i.e., $d \zeta_{1}, \ldots, d \zeta_{\lambda}, d u_{1}, d u_{2}$ are linearly independent at x, and $d \zeta_{\lambda+1}(x)=M u_{1}(x)^{M-1} d u_{1}(x)+d u_{2}(x) \in\left(d \zeta_{1}(x), \ldots, d \zeta_{\lambda}(x)\right), a$ contradiction. Thus $K_{S, i} \subseteq H_{S}$ for all s and i.

Now (2.2) shows that $\zeta_{1}, \ldots, \zeta_{\lambda+1}$ satisfy (1.2.8), and the rest of the proof is identical to that of Proposition (1.2).

Lemma 3. There exist δ polynomials $\zeta_{1}, \ldots, \zeta_{\delta}$ in $\zeta_{1}, \ldots, \zeta_{\mathbb{N}}$ with coefficients from k, such that \underline{O} is finite over the subring $k\left[\left[\zeta_{1}, \ldots, \zeta_{\delta}\right]\right]$ and such that for all $j=0, \ldots, p$ the closed subsets of X,

$$
E\left(X_{j}, \delta, i\right)=\left\{x \in X_{j} \mid r k_{k(x)}\left(\hat{\Omega}_{\underline{O}}^{1} / k /\left(d \zeta_{1}, \ldots, d \zeta_{\delta}\right)\right)(x) \geq i\right\}
$$

are of dimension $\leq \max \left\{\operatorname{dim}\left(X_{j}\right)-i,-1\right\}$ for all $i=1, \ldots, \delta$.

The proof of Lemma 3 is identical to that of Lemma (2.1.3) in [2], using Lemma 2 instead of the combination of Proposition (1.2) and Lemma (1.2.5).

Lemma 4. Assume that $\underline{0}=k\left[\left[\varepsilon_{1}, \ldots, \xi_{N}\right]\right]$ is finite over the subring $Q=k\left[\left[\zeta_{1}, \ldots \zeta_{m}\right]\right]$, where $\zeta_{1}, \ldots, \zeta_{m} \in\left(\varepsilon_{1}, \ldots, \xi_{N}\right) \underline{0}$. Then $\underline{0}=\underline{Q}\left[\xi_{1}, \ldots, \xi_{N}\right]$.

Moreover, let $f: \operatorname{Spec}(\underline{0}) \longrightarrow \operatorname{Spec}(\underline{Q})$ be the induced morphism, and let p_{1}, \ldots, p_{a} be points of $\operatorname{PN}(\underline{0})$ such that
$k\left(p_{i}\right)$ is a (finite) separable extension of $k\left(f\left(p_{i}\right)\right)$
for all $i=1, \ldots, a$.
Moreover, let x_{1}, \ldots, x_{h} be points of $\operatorname{PN}(\underline{0})$ and V_{i} be a proper subspace of $\hat{\Omega}_{0 / k}^{1}\left(x_{i}\right)$ for all $i=1, \ldots, h$.

Then there exists a polynomial ζ in $\xi_{1}, \ldots . \xi_{\mathbb{N}}$ and $\zeta_{1}, \ldots, \zeta_{\mathrm{m}}$ which satisfies the following three conditions:
(4.1) $\quad d \zeta\left(x_{i}\right) \notin V_{i}$ for all $i=1, \ldots, h$.

The image of ζ in $k\left(p_{i}\right)$ generates $k\left(p_{i}\right)$ over
$k\left(f\left(p_{i}\right)\right)$ for all $i=1, \ldots, a$,
and
if $f^{\prime}: \operatorname{Spec}(\underline{0}) \longrightarrow \operatorname{Spec}(Q[\zeta])$ is the morphism
(4.3) induced by the inclusion, then $f^{\prime-1}\left(f^{\prime}\left(p_{i}\right)\right)=\left\{p_{i}\right\}$
for all $i=1, \ldots, a_{0}$

Proof. $\underline{0}=Q\left[\varepsilon_{1}, \ldots, \varepsilon_{N}\right]$ is obvious.
Let $P_{i, \alpha}, \alpha=1, \ldots, \alpha(i)$ be the finite number of points in $\operatorname{PN}(\underline{0})$ such that $f\left(P_{i, \alpha}\right)=f\left(p_{i}\right)$. Let $J \subseteq\{1, \ldots, s\}$ be a set of indicies such that $f\left(p_{i}\right) \neq f\left(p_{j}\right)$ if ifj are indicies from J, and such that $\left\{f\left(p_{i}\right) \mid i \in J\right\}=\left\{f\left(p_{i}\right) \mid i=1, \ldots, s\right\}$.

For each i in J there is a finite, normal extension K_{i} of $k_{i}=k\left(f\left(p_{i}\right)\right)$ such that for each $\alpha=1, \ldots, a(i)$
there is at least one k_{i}-embedding $k\left(P_{i, \Omega}\right) \longrightarrow K_{i}$. We denote the finite number of such embeddings by

$$
\pi(i, \alpha, \beta): k\left(P_{i, \alpha}\right) \longrightarrow K_{i}, \beta=1, \ldots, \beta(i, \alpha) .
$$

Let $\theta(i, \alpha, \beta): \underline{0} \longrightarrow K_{i}$ be the composition of $\pi(i, \alpha, \beta)$ with the canonical $\sigma(i, \alpha): \underline{O} \longrightarrow k\left(P_{i, \alpha}\right)$. For $\alpha \neq \alpha^{\prime}$, define a k-subspace of \underline{m} by

$$
W\left(i, \alpha, \alpha^{\prime}, \beta, \theta^{\prime}\right)=\left\{\lambda \in \underline{m} \mid \theta(i, \alpha, \beta)(\lambda)=\theta\left(i, \alpha^{\prime}, \beta^{\prime}\right)(\lambda)\right\} .
$$

$$
\text { For all i, } \alpha \neq \alpha^{\prime}, \beta \text { and } \beta^{\prime} \text {, not all } \varepsilon_{1}, \ldots, \xi_{\mathbb{N}} \text { are }
$$ in $W\left(i, \alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right)$. In fact, choose $\lambda \in p\left(P_{i, \alpha}\right), \lambda \notin p\left(P_{i, \alpha},\right)^{\prime}$. Then $\lambda=F\left(\xi_{1}, \ldots, \xi_{N}\right)$, where $F \in Q\left[X_{1}, \ldots, X_{N}\right]$. Thus, if $\theta(F)$ denotes the polynomial over $k\left(P_{i, x}\right)$ whose coefficients are the images of the corresponding ones of F,

$$
\begin{aligned}
& \theta(\lambda)=\theta(F)\left(\theta\left(\xi_{1}\right), \ldots, \theta\left(\xi_{\mathbb{N}}\right)\right) \text {, where } \theta=\theta(i, \Omega, \beta), \\
& \theta^{\prime}(\lambda)=\theta^{\prime}(F)\left(\theta^{\prime}\left(\xi_{1}\right), \ldots, \theta^{\prime}\left(\xi_{\mathbb{N}}\right)\right), \text { where } \theta^{\prime}=\theta\left(i, \alpha^{\prime}, \beta^{\prime}\right) .
\end{aligned}
$$

Since θ and θ^{\prime} coincide on $Q, \quad \rho(F)=\theta^{\prime}(F)$. But $\theta(\lambda) \neq \theta^{\prime}(\lambda)$, and therefore $\theta\left(\varepsilon_{i_{0}}\right) \neq \theta^{\prime}\left(\xi_{i_{0}}\right)$ for some i_{0}, i.e. $\xi_{i_{0}} \notin W\left(i, x, \alpha^{\prime}, \beta, \beta^{\prime}\right)$. We note that

$$
\left[\begin{array}{l}
5 \notin \cup W\left(i, \alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right) \text {, where } \tag{4.4}\\
\text { the union is taken over all } \\
\alpha \neq a^{\prime}, \beta \text { and } \beta^{\prime} .
\end{array} \Rightarrow\left[\begin{array}{l}
5 \text { satisfies (2.1.4.4) } \\
\text { for all } j \text { such that } \\
f\left(p_{j}\right)=f\left(p_{i}\right) .
\end{array}\right]\right.
$$

This is shown in the same way as (2.1.4.5) in the proof of Lemma (2.1.4) in [2].

Now put $q(x)=p(x) \cap k\left[\zeta_{1}, \ldots, \zeta_{m}\right]$ and $L(x)=$ $k\left[\zeta_{1}, \ldots, \zeta_{m}\right] / q(x)$. Let $\left\{x_{1}, \ldots, x_{h}, p_{1}, \ldots, p_{s}\right\}=\left\{y_{1}, \ldots, y_{r}\right\}$.

If $y_{j}=p_{i}$ for some i in J, let $W_{j, 1}, \ldots, W_{j, t}(j)$
be the collection of the subspace $W\left(i, \alpha, \alpha^{\prime}, \beta, \beta^{\prime}\right)$ of \underline{m}. Denote the two homomorphisms which define $W_{j, t}$ by $\theta_{j, t}$ and
$\theta_{j, t}{ }_{j}$ Put
$F_{j}\left(X_{1}, \ldots, X_{N}\right)=\prod_{t=1}^{t(j)}\left[X_{1}\left(\theta_{j, t}\left(\xi_{1}\right)-\theta_{j, t}^{\prime}\left(\xi_{1}\right)\right)+\ldots+X_{N}\left(\theta_{j, t}\left(\xi_{N T}\right)-\theta_{j, t}^{\prime}\left(\xi_{N}\right)\right)\right]$
Since for all $t=1, \ldots, t(j)$ there is i_{o} such that $\xi_{i_{0}} \notin W_{j, t}$, we conclude that $F_{j}\left(X_{1}, \ldots, X_{N}\right)$ is a non zero polynomial. Furthermore, the images $\bar{\xi}_{1, \ldots, \bar{F}_{\mathbb{N}}}$ of $\xi_{1}, \ldots, \bar{\xi}_{N}$ in $k\left(y_{j}\right)$ generate $k\left(y_{j}\right)$ over $k\left(f\left(y_{j}\right)\right)$, so we get a non zero polynomial $G_{j}\left(X_{1}, \ldots, X_{N}\right) \in k\left(y_{j}\right)\left[X_{1}, \ldots, X_{N}\right]$ such that if $G_{j}\left(\alpha_{1}, \ldots, \alpha_{N}\right) \neq 0$ for some $x_{1}, \ldots, \alpha_{N}$ in $k\left(y_{j}\right)$, then $\alpha_{1} \bar{\xi}_{1}+\ldots+\alpha_{N} \bar{\xi}_{N}$ generate $k\left(y_{j}\right)$ over $k\left(f\left(y_{j}\right)\right)$. Now put $H_{j}=F_{j} G_{j}$.

The polynomials H_{j} are such that whenever a_{1}, \ldots, a_{N} are elements of \underline{Q} such that the images $\bar{a}_{1}, \ldots, \bar{a}_{\mathbb{N}}$ in $k\left(f\left(y_{j}\right)\right)$ satisfy $H_{j}\left(\bar{a}_{1}, \ldots, \bar{a}_{N}\right) \neq 0$, then (4.2) and (4.3) hold for $\zeta=a_{1} \xi_{1}+\ldots+a_{I J} \xi_{N}$: In fact, by the choice of $G_{j}(4.2)$ holds, and since $\bar{a}_{1} \theta_{j, t}\left(\xi_{1}\right)+\ldots+\bar{a}_{N} \theta_{j, t}\left(\varepsilon_{N}\right) \neq \bar{a}_{1} \theta_{j, t}^{\prime}\left(\xi_{1}\right)+\ldots+\bar{a}_{N} \theta_{j, t}^{\prime}\left(\xi_{N}\right)$ for all $t=1, \ldots, t(j)$, we get $\theta_{j, t}(\zeta) \neq \theta_{j, t}^{\prime}(\zeta)$ for all $t=1, \ldots, t(j)$. Thus $(4,3)$ follows by (4.4).

Now suppose that $y_{j}=x_{i}$ for some i. Then there is a non zero polynomial $H_{j} \in k\left(y_{j}\right)\left[X_{1}, \ldots, X_{N}\right]$ auch that if $\alpha_{1}, \ldots \alpha_{N}$ are elements of $k\left(y_{j}\right)$ for which $H_{j}\left(\kappa_{1}, \ldots, \alpha_{\mathbb{N}}\right) \neq 0$, then $\alpha_{1} d \xi_{1}\left(y_{j}\right)+\ldots+\alpha_{N} d \xi_{N}\left(y_{j}\right) \notin V_{i}$. Put $f_{j}\left(X_{1}, \ldots, X_{N}\right)=$ $H_{j}\left(\left(X_{1}\right)^{p}, \ldots,\left(X_{\mathbb{N}}\right)^{p}\right)$ for all $j=1, \ldots, r$. Since f_{j} is a non zero polynomial, the set A_{j} of all α in $L\left(y_{j}\right)$ for which $f_{j}\left(\alpha, X_{2}, \ldots, X_{N}\right)$ is the zero polynomial is finite.

We show that there exists $a_{1} \in k\left[\zeta_{1}, \ldots, \zeta_{m}\right]$ such that for all j the image \bar{a}_{1} of a_{1} in $k\left(y_{j}\right)$ is not in A_{j}. Indeed, this follows once we show that $k\left[\zeta_{1}, \ldots, \zeta_{m}\right]$ is not covered by a finite number of subsets of the form $g+p$, where $g \in k\left[\zeta_{1}, \ldots, \zeta_{m}\right]$ and \underline{p} is a prime, properly contained in the maximal ideal $\underline{m}_{0}=\left(\zeta_{1}, \ldots, \zeta_{m}\right) k\left[\zeta_{1}, \ldots, \zeta_{m}\right]$. Assume that
$\left.k\left[S_{1}, \ldots, \zeta_{m}\right]=g_{1}+\underline{p}_{1}\right) \cup \ldots{ }^{\prime}{ }^{\prime}\left(g_{a}+\underline{p}_{a}\right)$. In particular
$\underline{m}_{0} \subseteq\left(g_{1}+\underline{p}_{1}\right) \cup \ldots \cup\left(g_{a}+\underline{p}_{a}\right)$. Deleting some of the sets, we may assume that all $g_{h}+\underline{p}_{h}$ have at least one element in common with \underline{m}_{0}, i.e. $g_{h}+f_{h} \in \underline{m}_{0}$ for some $f_{h} \in \underline{p}_{h}$. Thus $g_{h} \in \underline{m}_{0}$, and $\underline{m}_{0}=\left(g_{1}+\underline{p}_{1}\right) \cup \ldots J\left(g_{a}+\underline{p}_{a}\right)$. Choose $g \in \underline{m}_{0}$ such that $g \in \underline{p}_{1} \cup \ldots \cup p_{a}$. Then $g^{b}-g_{h} \in \underline{p}_{h}$ for at most one integer b. Thus choosing b large enough, we get $g^{b} \notin\left(g_{1}+\underline{p}_{1}\right) \cup \ldots 1 J\left(g_{a}+\underline{p}_{a}\right)$, a contradiction. Repeating this, we get a_{1}, \ldots, a_{N} in $k\left[\zeta_{1}, \ldots, \zeta_{m}\right]$ such that $f_{j}\left(\bar{a}_{1}, \ldots, \bar{a}_{\mathbb{N}}\right) \neq 0$ for all $j=1, \ldots, r$. Since $\quad d\left[\left(a_{1}\right)^{p} \varepsilon_{1}+\ldots+\left(a_{N}\right)^{p} \varepsilon_{N}\right]=\left(a_{1}\right)^{p} d \xi_{1}+\ldots+\left(a_{N}\right)^{p} d \xi_{N}$, $\zeta=\left(a_{1}\right)^{p} \bar{\xi}_{1}+\ldots+\left(a_{N}\right)^{p} \xi_{N}$ gives what we want. This completes the proof of Lemma 4.

Lemma 5. Let X_{0}, \ldots, X_{p} be a collection of distinct closed irreducible subsets of $X=\operatorname{PN}(\underline{0})$, including the irreducible components of X. Then for all integers $1 \leq h \leq n=\operatorname{dim}(0)$ there are $\delta+h$ polynomials $\zeta_{1}, \ldots, \zeta_{\delta+h}$ with coefficients from k, such that if

$$
f: \operatorname{PN}(\underline{0}) \rightarrow \operatorname{PN}\left(k\left[\left[\zeta_{1}, \ldots, \zeta_{\delta+h}\right]\right]\right)
$$

is the morphism induced from the inclusion, then $\operatorname{dim}\left(f^{-1}(C(f)) \cap X_{j}\right) \leq \operatorname{dim}\left(X_{j}\right)-h$ for all $j=0, \ldots, p$, and the closed subset $E_{i, j}$ of X_{j} consisting of the points x for which $\operatorname{rk}_{k(x)}\left(\hat{\cap}_{\underline{/} / k}^{1} /\left(d \zeta_{1}, \ldots, d \zeta_{\delta+1}\right)(x)\right) \geq i$, is of dimension $\subseteq \max \left\{\operatorname{dim}\left(X_{j}\right)-i-h,-1\right\}$ for all j and all $i=1, \ldots, \delta$ 。

Proof. The proof follows that of Proposition (2.1.8), of [2] using Lemma 3 instead of Lemma (2.1.3), using Lemma 2 instead of Proposition (1.2) and Lemma (1.2.5), and finally using Lemma 4 instead of Lemma (2.1.4).

Lemma 5 now immediately implies the theorem.

References.

「1] Grothendieck, A., "Blementes de Geometric Algebrique", Publ. Math. de L'Institut des Hautes Etudes Scientifiques.
[2] Holme, A., "Formal embed.ding and projection theorems". To appeare. Preprints available from Department of Mathematics, University of Oslo, Norway.
[3] Holme, A., "On a general embedding theorem in formal geometry". Porthcoming.
[4] Holme, A., "Embedding theorems for projective varieties over finite fields". Forthcoming.
[5] Lluis, E.. "Sur l'immersion des varietes algebriques". Ann. of Math. 62 (1955) 120-127.
[6] Serre,I.P. "Modules projectifs et espaces fibres a fibre vectorielle". Seminaire Dubreil-Puissot Faculté de Sciences de Paris (1957-58).

