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In [2]~ we proved a _:formal embeddin,g theorem closely 

related to the classical result that a smooth projective variety 

over an infinite field k of dimension n can be embedded in 

P2n+ 1 (see f.inst. [ 5 ].) k 1 

Namely, let k be an infinite field 9 and 

0 = k[Cx 1 ~c·•,XN]]/I = k[[s 1 , ••• 9 SN]], and let 0 ~ 3- ~ n = dim(O). 
For the definition of 01 Q/k 9 see [13]. 

"'1 ~ Further, put 6 = maxfrkk(x)O Q/k(x)\x E PN(O)}. PN(Q) denotes 

the open subscheme of Spec(O) obtained by deleting the closed 

point. Then there are h + 6 linear combinations in s1 , ••• ~J 

(: 1 , ••• ,r h+ 6 such that the inclusion Q = k[ [( 1 9 • •• c h+ 6 ]] C-> 0 

makes 0 to a finite Q-module and induces a morphism 

fh: PN(Q) ~ PN(Q) for which dimB(fh) ~ max[-1, n-h-2} and 

dimC(fh) ~ n-h-1~ where B(fh) denotes the (closed) set of points 

in PN(O) at which fh is ramified, and C(fh) is the (closed) 

set of points in PN(Q) where fh is not an isomorphism. 

(A morphism f: X~ Y is said to be an isomorphism at y provi-

ded there exists an open subscheme U of Y containing y such 

that f-1(u)- U is an isomorphism.) 

In [2] we also proved a refinement of the above: If the 

non-smooth locus S(X) of X = PN(O) is of dimension less than 

n~ then 6 may be replaced by 6' = max[n 1 6-11*) 

The aim of this note is to prove a weaker result for 

finite fields k. To be precise, we prove the theorems referred 

to above with 11 linear combinations" replaced by "polynomials". 

*) Chopping up s(X) according to the size of "1 0 O/k(x) ~ one 

can push this refinement somewhat further, see [3] . 
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The necessity of introducing polynomials (which may not, 

in general, even be assumed to be homogenous of the same degree) 

reflects the fact that over a finite field, the classical embed-

ding theorem referred to above fails to be true, see for example 

[4]. This condi~lon is not necessary, however, 

for the existence of some embedding X C->~N- 1 see [3]. k 9 

So the aim of this note is to prove the following. 

Theorem. Let k be a finite field of characteristic p , and 

let o = k[Cx1 , ••• ,XNl]/I = k[[s 1 , ••• ,sNJJ. With o as before, 

and 0 < h ~ n = dim(Q), there exists 6+h polynomials 

C1 , ••• , C8+h in ~ 1 , ••• , sN with coefficients from k such 

that the inclusion Q = k[[C 1 , ••• , Co+h]] --> 0 makes 0 to a 

finite Q-module and such that the canonical morphism 

fh: PN(Q) - PN(Q) satisfies 

dim(B ( fh)) < max[ -1 , n-h-2} 

and 

dim(C(fh)) ~ n - h- 1 . 

Preof: In order to apply the techniques of [2], we need the 

following 

Lemma 1 . Let x1 ' 0 •• xh and y 1 ' • 0 0 ' Yt be points of PN(O) 

and let v. l be a proper k(x. )-subspace l of "1 
00/k(xi) for all 

, 

i = 1 ' • 0 • ' 
h. Then there exists a polynomial c in s 1 , • 0 • ' c;N 

with coefficients from k such that C E m = max(O) 

( 1 • 1 ) C t .I!. ( X ) f 0 r a 11 X E t X 1 , • o o , Xh 7 Y 1 ?" • • , Y t } 

and 

( 1 • 2) dC(x.)% V. for all i = 1, ••• , h. 
l l 
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Remark ~1.3)- ( . \ 
ljo Suppose that C satisfies Lemma 1 for 

the points x 1 , ••• , xh, y 1 , ••• , Yt_1 , and the subspaces v 1 ••• ,Vh. 

Pick a polynomial E in ~ 1 , ••• , F,N such that s Em= max(O) 

but r; fl. J2(Yt). (For example, we may take s = !'" for some 
-io 

i 0. ) Then there exists a finite set J1 of positive integers 

m% J 1 
I sPm such that if 

' 
then c = ' + satisfies Lemma 1 for 

the p~ints x 1 , ••• , xh' y 1 , ••• , Yt and the subspaces v 1 , ••• , Vh. 

(ii). Assume that C satisfies Lemma 1 for the points 

y 1 , ••• , Yt and the subspaces v 1 , ••• ,vh_1 • Using 

(i) we may assume that 
I 

C fl. p(xh)' if necessary by replacing 
1 m1 

by c + ( si ) for sui table 
1 

I c and Suppose that 

does not satisfy Lemma 1. Pick a polynomial E in ~ 1 , ••• , SN 

with coefficients from k such that e E m and ds(xh) fl. Vh . 

(Again we can take s = r;. for some i 0 .) Then there exists 
lo 

' 

a finite set J 2 of positive integers such that if m fl. J 2 and 

p ~ m, then C = (C 1 )m+s satisfies Lemma 1 for the points 

I 

Pr~of. If h = 0, t = 1 or if h = 1, t = 0, the lemma is obvious. 

We proceed by induction on h+t , and it suffices to show (1 .3). 

To prove (i), let x E Prv ... , xh' y1' •• ., Yt}. If 
I pm s E ~(x) then x I Yt , so C = C + ;- fl. ~(x) for all m 

If on the other hand s fl. £(x) , then there is at most one posi-
I 

tive integer m such that C + Epm E £(x): 
1 pm1 1 pm2 C + e; · and C + E are in _£(x) for 

=. pm2 ( ~ p (in 1-m2) 
~ ~ - 1) E £(X) , thus f E £(X) 

Indeed, suppose that 

m1 > m2 • Then 
p(m1-m2) 

since E - 1 

' is a unit in 0 , a contradiction. Since dC = dC , we may take 

J 1 to be the set of all positive integers m such that 

r 1 + ~=" pm E n ( X ) f E f , '"' .., • or s orne x . x 1 , ••• , xh , Y 1 , • • •, Y t J • 

To prove (ii), we note first that 

m -1 
(1.4) (m1 (c') 1 
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and all positive integers m1 > m2 such 

, m1-1 
In fact, suppose that m1 (~ ) 

that p % m2 • 

, m2-1 
- m2 (C ) E ~(xi) 

for some i and some integers m1 > m2 where p X m2 • Then 

, m2-1 I m1-m2 
(C ) (m1 (C ) - m2 ) E ~(xi) , 

and since C ~ E(xi), we get 

contradicting p % m2 ~ 
I 

By assumption dC (xi) E Vh • IJ.'hus for all m we get 

d((C 1 )m+ s)(xh) ~Vh. I'1creover, if dE:(xi) E Vi, then 

d( (C 1 )m + ~)(x.) i V. f.~r all 
l l 

if for some i < h dE(x.) ~ V. 
l l 

m not divisible by p. Finally 

then d((C 1 )m + E:)(xi) E Vi for 

at most one positive integer m not divisible by p. If namely 

m1 > m2 are positive integers, not divisible by p , such that 

I m. 
d((C) J + E:)(xi) E Vi for j = 1, 2, then 

, m1-1 1 m2-1 1 

(m1 (G ) - m2 (C ) )(xi)(dC (xi)) E Vi 

which contradicts 
I 

dC (x.) ~ V. , because af (1.4). 
l l 

Now the 

pro~f is complete once we show that there is a finite set J 2 

ef positive integers such that if m ~ J 2 , then (C 1 )m+ ~ %.J2(x) 

for all x E [x1 ,"."' xh' y 1 , ••• , Ytl. This is clear: If 

~ E ~(x) , then (C 1 )m + ~ ~ .J2(X) for all m , and if S ~ ~(x), 

then there is at most one integer m such that 
lm 

(C ) + s E .J2(x)~ 

If namely this holds for the integers 

(c')m2((C 1 )m1-m2 - 1)E 12 (x), and hence 
I 

C E .J2(x) , a contradic-

tion. 

This completes the proof of Lemma 1. 

Next, we prove a modification of Proposition (1.2) 

in [ 2 ]: Let x0 , ••• , XP be any collection of closed irre-

ducible subsets of X= PN(O). 

d, put 

For all . < J - p and all integers 
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d} • 

We denote the irreducible components of by 

Y s , s E I ( j ~ d) = ( ( j , d, 1 ) , ~ •• , ( j ,d, y ( j , d) ) } • 

Lemma 2. Let Fs be a closed subset of ys ' 
and assume that 

the elements '1 ' ••• ' CA. in the maximal ideal m of 0 satisfy 

... 1 I 
rkk(x)(OO/k (dC1, ••• , dCA.))(x) = d-A. for all X E y - F s s 

for all j, d and s E I(j,d)~ Let m be an integer. 

Moreover, let x 1 , ••• , xh' y 1 ,~ •• , Yt and v1 ,~·· Vh 

be as in Lemma 1. 

Then there is a linear combination in s1 , ••• , sN with 

coefficients from k r - a E ~ + a ~ such that for all ' "'A.+1 - 1 1 - • • • N N 

' j, d ~ A.+m and s E I(j,d), there exists a closed subset Fs 

of Ys' of codimension > m in Ys , such that 

. "1 
rkk(x)(OO/k/(dC 1 ,u., dCA.+ 1 ))(x) =d-. (A.+1) for all xEYs-(FsUF~), 

and such that the conclusion of Lemma 1 holds. 

Proo1.. The proof follows closely that of Proposition (1.2) in 

[2], to which we shall make frequent references in the following. 

First, for m = 0, the claim follows by Lemma 1 taking 
I 

Fs = Ys for all s. We proceed by induction on m. So assume 

m > 0 and that Lemma 2 holds for m-1e 

We get a polynomial u 1 by the induction assumption, 

such that there exists a closed subset G s of codimen-

sian~ m-1 for which (1.2.4) in the proof of Proposition (1.2)) 

holds for all s E I(j,d) where A.+ (m-1) ~ d, in particular 

for A.+m ~ d. Moreover, in the present case we may also assume 

that u 1 satisfies the conclusion of Lemma 1 for the points 

x 1 , ••• , xh' y 1 , ••• , Yt and the subspaces v1 , ••• , Vh. 
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I 

Define 1 8 and Gs as in the proof of Proposition (1.2). 

is of codimension ~ m-1 in Ys' and (2.1.4) holds if G s 
I 

is replaced by Gs. Define Gs, 1 ,..q Gs,r(s)' Ys,1 , ••• ,ys,r(s)' 

A and V(x) as in the proof of Proposition (1.2). 

We now apply the induction assumption to the elements 

and u1 , the subsets F c Y s - s and to the points and 

subspace s x 1 ' • • " 'xh' y s ' 'i ' • • • 'y s 'r ( s) ' y 1 ' • • • 'y t ' V 1 ' • • • ' V h' 

V(ys,1), ••• , V(ys,r(s)) for all s E I(j,d) where ()..+1)+ (m-1) 

.::s d. We get a polynomial u2 in e:1, ••• , E:N such that there 

exist closed subsets Hs S Ys' ef codimension > m-1 in ys ' 
for which ( 1 • 2.7) holds, and such that 

u2 ~n(x) forall xEAIJ [x1 , ••• ,xh,y1' ••• ,yt} 

(2.1) and 

du2 (x) f V(x) for all x E A, du2 (x) ~ Vi for all 

We may assume that H is contained in the (closed) set of points s 

x in Ys for which rkk( X) ( o.Wk/ ( dC 1 ' •.• , dCA 'du1 'du2)) (X )2:.d-).. -1 • 

Now define Hs, 1 , ••• , Hs,q_(s)' zs, 1 , ••• , zs,q(s)' B 

and V(x) as in the proof of Proposition (1.2). By remark (1~3h 

(i), we may assume that u2 ~].(X) for all 

x E A U B 'J [ x1 , ••• , xh, y 1 , ••• , y t 1 • We prove: 

( 2. 2) 

In fact, 

du2(xi) 
I 

for Gs 

for all 

There exists an integer M such that if 

then v f ~(x) for all x E fx1 , ••• ,xh' y1 , ••• ,yt} ,and 

dv(x.)% V. for all i = 1, ••• ,h and dv(x) d V(x) 1 1 r-
for all x E A U B. 

by ( 2. 1 ) we have du2(x) % V(x) for all X E A and 

E V. for 
l 

all i = 1, ••• ,h. Since u, satisfies (1.2.4) 

' and z s,1'"""'zs,q(s) are not in G u F du1 (x) ~ V(x) s s' 
X E B. Let B'c B be the set of points in B such 

that du2 (x) E V(x) 
I 

for all x E B • By Remark (1,3), (ii), 
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there is a finite set J(x) 
I 

of positive integers for all x E B 

' such that if m ¢ J(x) and 
I 

m is not divisible by p, then 
I 

d((u2 )m +u1 )(xi)t/V(y) 
I I 

for all y in A U (B-B ) U [ x}, d((~)m +u1 ) 
I 

¢ v. 
l 

for all i = 1, ••• ,h, and finally (u2 )m + u 1 ¢ £(Y) for 

y in A 'J B U [ x 1 , ••• , xh, 

p outside l.J 1 J (x), and 
xE:B 

Pick M 

(2.2) follows. 

not divisible by 

Take v = (A+ 1 , and define Ks' Ks, 1 1 ••• , Ks,p(s) as in 

the proof of Proposition (1.2). To prove that CA+ 1 and 
I 

Fs = Ks, 1 U • .., U Ks,p(s) satisfies the conclusion of Lemma 2, 
I 

it remains to show that Fs is of codimension ~ m in Ys' i.e. 

that each is of codimension ~ m. 

First, Ks ~ Fs U Hs: In fact, assume that x E Ks but 

x ¢ Fs and x ¢ Hs. Then 

''1 I rkk(x)(OQ/k (dC 1 , ••• ,dCA+ 1 ))(x) > d-A 

= d-A 

i.e., d( 1 , ••• ,d(A, du1 , du2 are linearly independent at x, and 

d(A+ 1 (x) = Mu1 (x)M- 1du1 (x) + du2 (x) E (dC 1 (x), ••• ;d(A(x)), a 

contradiction. Thus K . c H for all s and i. s,l - s 

Now (2.2) shows that c1 , ••• ,CA+ 1 satisfy (1.2.8), and 

the rest of the proof is identical to that of Proposition (1.2). 

Lemma 3. There exist o polynomials C1 , ••• , C0 in C1 , ••• ,(N 

with coefficients from k, such that 0 is finite over the 

subring k[[C 1 , ••• ,C 0 ]] and such that for all j = o, ... ,p the 

closed subsets of 

are of dimension 

X ' 

~ max{dim(X.) - i, -1} 
J 

for all 
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The proof of Lemma 3 is identical to that of Lemma 

(2.1.3) in [2], using Lemma 2 instead of the combination of 

Proposition (1.2) and Lemma (1.2.5). 

Lemma 4..:. Assume that Q = k[[r: 1 , ••• ,sN]] is finite over the 

subring Q = k[[C 1 , •• ~Cm]J, where C1 , •• o,Cm E (r: 1 , ••• ,~N)O. 

Then 0 = g [s 1, •. c,sNJ. 

Moreover, let f : Spec(O) ---> Spec(Q) be the induced 

morphism, and let p1 , •• ,,pa be points of PN(Q) such that 

( 4. 1 ) 
k(pi) is a (finite) separable extension of k(f(pi)) 

for all i = 1 , ••• 1 a. 

r1oreover, let be points of PN(O) and v. 
l 

be a proper subspace of 

x 1 , ••• , xh 

"1 
OQ/k(xi) for all i = 1 P •• , h. 

Then there exists a polynomial s in s1 ,.o.,SN and 

c1 , ••• ,Cm which satisfies the following three conditions: 

dC (x.) ;t v. for all i = 1, ••• ,h. 
l l 

(4.2) 
The image of c in k(pi) generates k( p.) over 

l 

k(f(p. )) for all i = 1, ••• ,a, 
l 

and 
I 

if f : Spec(O) --> Spec(Q[C]) is the morphism 

(4.3) induced by the inclusion, then f 1
- 1 (f 1 (p. )) = [p.} 

l l 

for all i = 1 , ••• 9 2.. 

Proof. 0 = Q[s 1 , ••• ,EN] is obvious. 

Let P. ,a.=1, •• .,rt.(i) 
l 'C(, 

be the finite number of 

points in PN(O) such that f(P. ) = f(p.). Let J .s;; [1, •.• ,s} 
l,Ct l 

be a set of indicies such that f(pi) I f(pj) if i I j are 

indicies from J, and such that [f(p.)\iE J}= [f(p.)li= 1, ••• ,s}. 
l l 

For each i in J there is a finite, normal extension 

of k. = k(f(p.)) 
l l 

such that for each a= 1, ••• ,a(i) 
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there is at least one ki-embedding k(Pi,~) ---> Ki. We denote 

the finite number of such embeddings by 

n(i,r.t,S): k(Pi,~) --> Ki, S = 1, ••• ,S(i,a.). 

Let 8(i,a.,S) : 0 ---> K. be the composition of n(i,a,B) with 
l 

the canonical a(i,~) 0 -> k(P. ). 
l 'l'l 

I 

For ~ I ~ , define a 

k-subspace of m by 

I I I I 

W(i,~,~ ,13,S ) = [A.E I!! l 8(i,a.,S)(A.) = 8(i,a~ ~s )(A.)}. 

~ I 
I I 

For all i, a ' s and s ' 
not all E: 1 ' • • • ' sN are 

I ' )._ ~J2(Pi,a')• in W(i,t:t,~ ,s,s ) .. In fact, choose A.E.£(P. ), l,a. 
Then A. = F ( s 1 ' • • • '~N) ' where F E .9_ [ x1 , ••• , XN] • Thus, if 8(F) 

denotes the polynomial over k(P. ) whose coefficients are the 
l,'l 

images of the corresponding ones of F, 

8(A.) = 8(F)(8(s 1 ),e •• ,G(EN)), where 8 = 8(i,~,S), 

f I I I I f I 

8 (A ) = 8 (F) ( 8 ( s 1 ) , • H 'e ( SN) ) ' where e = 8 ( i 'I'Y, '8 ) • 

I 
Sin c e 9 and 8 coin c i d. e on Q , f:l ( F ) = 8 1 ( F ) • But 8 ( A. ) I 8' C?J, 

and therefore 8 ( E;. ) I 8'( s. ) for some 
lo lo 

i0 , i.e. 

We note that 

~- I I 

where -l { satisfies 
---: 

C f 'J W ( i , a , a , S , 13 ) , (2.1.fl-.4i I 

f the union 
\ l 

(4.4) is taken 
;~ 

j such thaj over alll-- for all 

~ I 
! 

I fl ' 13 and 13 • ! f(p.)= f( p-). 
~ I J l 

This is shown in the same way as (2.1.4.5) in the proof of 

Lemma (2.1.4) in [2]. 

Now put ~(x) = J2(x)n k[C 1 , ••• ,cmJ and L(x) = 

k[C 1 , ••• ,Cm]/q(x). Let f x1 ' • • • 'xh' p1, ••• ,ps} = [y1, ••• ,yr1. 

If y. = pi for some i in J, let w. ,, ••• ,w. t(') 
J J ' J ' J I I 

be the collection of the subspace W(i,a.,ry 's '13 ) of !!!:· 

Denote the two homomorphisms which define by 8 . t 
J ' 

and 
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t 

8 . t. Put 
J ' 

Since for all t = 1, ••• ,t(j) there is i 0 such that 

~i % wj,t' we conclude thet Fj(X1 , ••• ,XN) is a non zero poly-
a 

nomial. Furthermore, the images ~ 1 , ••• :~N of s1 , ••• ,sN in k(yj) 

generate k(yj) over k(f(yj)), so we get a non zero polynomial 

G j ( X 1 , ••• , XN ) E k ( y j )[ X 1' eo ., XN] such that if G j ( a. 1 , ••• , r:r. N ) I 0 

for some ~ 1 , ••• ,aN in k(yj), then a 1s1 + ••• + ~NSN generate 

k(yJ.) over k(f(yJ.)). Now put H.= F.G .• 
J J J 

The polynomials H. 
J 

are such that whenever 

elements of .9. such that the images in k(f(y.)) 
J 

satisfy H.(a1 , ••• ,aN) I o, then (4.2) and (4.3) hold for 
J • 1 

+ ••• + aNsN: In fact, by the choice of Gj (4.2) holds, 

and since a 1 e j ' t ( s 1 ) + ••• + ~~ j ' t ( ~ N ) I a 1 8 ; ' t ( s 1 ) + ••• + ~ e I j ' t ( s N ) 

' t = 1, ••• ,t(j), we get ej,t(C) I ej,t(C) for all for all 

t = 1 , ••• , t ( j) • Thus ( 4., 3) follows by ( 4. 4) • 

Now suppose that y. = x. for some i. Then there is a 
J l 

non zero polynomial H j E k( y j) [X1 , ••• , XN] such that if cx. 1? ••• a.N 

are elements of k(yj) for which Hj(~ 1 , ••• ,cx.N) I 0, then 

cx. 1ds 1(yj) + ••• + aNdsN(yj)% Vi. Put fj(X1 , ••• ,XN) = 

Hj((X1)P, ••• ,(XN)P) for all j = 1~ ••• ,r. Since fj is a non 

zero polynomial, the set A. 
J 

of all a in for which 

We show that there exists a1 E k[(1, ••• ,(m] such that 

for all j the image a1 of a1 in k(yj) is not in {\ 
.J_-)_ j • 

Indeed, this follows once we show that k[(1, ••• ,(m] is not 

covered. by a finite number of subsets of the form g+.£ , where 

g E k[C 1 , ••• ,Cm] and. .12. is a prime, properly contained in the 

maximal ideal ~0 = (C 1 , ••• ,Cm)k[C 1 , ••• ,Cml • .b.ssume that 
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k[ C 1 , ••• , Cm] = g1 +..£1 )U ••• IJ ( ga +J2a). In particular 

,!!! 0 S ( g 1 +.£1 )!J ~ •• U ( ga +.:ea). Deleting some of the sets, we may 

assume that all gh+..£h have at least one element in common with 

m i.e. gh+fh E m for some -o' -o fh E .£h • Thus gh E m 
' 

and -o 
m = (g1+.£1 )U • • .U (ga+.£a) • Choose -o g E m such -o that g E .£1 U •.• U .£a• 

Then b for at most integer b. Thus choosing b g -gh E .£h one 

large enough, we get gb ¢ (g 1 +.£ 1 )U~ •• !J(ga+J2a), a contradiction. 

Repeating this, we get a 1 , ••• ,aN in k[C 1 , ••• ,(m] such 

that fj('a1 , ••• ,aN) f. 0 for all j = 1, ••• ,r. 

Since d[(a 1 )Pr: 1 +" •• + (aN)Pc:N] = (a1 )Pds 1 + ••• + (aN)PdsN' 

C = (a1 )Ps 1 + ••• + (aN)PsN gives what we want. 

This completes the proof of Lemma 4. 

Lemma .2~ Let X 9 •••• X be a collection of distinct closed 
0 ' p 

irreducible subsets of X= PN(O), including the irreducible 

components of X. Then for all integers 1 < h ~ n = dim(O) 

there are 5+h polynomials c1 , ••• ,c 5+h with coefficients from 

k, such that if 

is the morphism induced from the inclusion, then 

dim(f- 1(C(f)) n Xj) < dim(Xj) - h for all j = O, ••• ,p, and the 

closed subset E. . of X. consisting of the points x for 
l' J J 

" 1 • 
which rkk(x)(oQ/k/(dC 1 , ••• ,dC 0+1 )(x)) ~. 1 is of dimension 

S max [dim(X.)-i-h, -1} for all j and all i = 1, ••• ,5. 
J 

Preof. The proof follows that of Proposition (2.1 .B), of~]using 

Lemma 3 instead of Lemma (2.1.3), using Lemma 2 instead of 

Proposition (1.2) and Lemma (1.2.5), and finally using Lemma 4 

instead of Lemma (2.1.4). 

Lenrna 5 now immediately implies the theorem. 
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