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Introduction.

In [1] E. M. Alfsen and P. Holm have characterized the Bohr
compactification of a topological group (Gﬁ?} as the completion
of G with respect to a group topology 9; (the Bohr topology)
which is coarser than 37, The purpose of this note is to prove
that the general description of Ezé can be simplified in amenable

groups, i.e. groups admitting an invariant mean on the space of

bounded left uniformly continuous functions.

In Section 1 of the present paper the existence of the Bohr
compactification and how it is obtained from the Bohr topology is
shown. The treatment is close to that of Alfsen and Holm, Theorem 1
is a slight improvement of Theorem 1 in [i], however. The main
tool in Section 2 will be the upper and the lower mean value, and
they are utilized in deriving elementary properties of invariant
means. Subsets of an abelian group with positive upper or lower
mean value have been characterized by F. Tomter, and his results are

easily generalized to non-abelian groups.

Section 3 is a review of some properties of positive definite
functions developed by R. Godement. The result we shall need states
that on the linear space spanned by the positive definite functions
we can define a convolution such that the convolution of two functions
will be almost periodic. The last section is devoted to the descrip-
tion of the Bohr topology in amenable topological groups. Though
stated in another way, our main result Theorem 5 has earlier been
proved by E. Fglner for abelian groups ([}], Theorem 1, and [4]) and

his ideas are used extensively.



1. The Bohr compactification.

From now on (G,573 will be some fixed topological group with

identity e. If p 1s a continuous homomorphism of G 1into a
(Hausdorff) compact group &, the pair (p,é) is called the Bohr
compactification of G 1if the following properties hold :

A
(a) p(G) 4is dense in G.
(b) If £ 1is any continuous homomorphism of G 1into a compact

A
group H, then there is a continuous homomorphism £&': G + H

such that & = g'op.

Evidently, the Bohr compactification is unique up to an algebraic

and topologic isomorphism.

In [i] the exlstence of a Bohr compactification for a topo-
logical group (G,7 ) is obtained by showing that U},53 admits

a finest uniform structure & satisfying :

(1.1) W is totally bounded.

(1.2) W is compatible with the group structure, i1.e. the
group operations are uniformly continuous.

(1.3) W defines a topology on G coarser than fr'

A
In fact, we take G as the Hausdorff completion of G with respect
A
to Z&, and p as the canonical injection of G into G. The group
operations on p(G) are well defined, and by uniform continuity they
Lad

can be extended to the compact space G. It is now easy to check

that (a) and (b) are satisfied.
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Our next observation is that if a uniform structure Z& satis-~-
fies (1.2), then W 1is completely determined by the associated

group topology on G.

Lemma 1. Suppo se W 4is a uniform structure on G compatible with
the group structure, and let 77 be the topology Z& induces on G.
Then (G;rﬂ) is a topological group whose left and right uniform

structures both are equal to w.

Proof. See [i], Proposition 1.
Hence it suffices to look for a finest group topology on G

satisfying the analogues of (1.1), (1.2) and (1.3).

Recall that a subset A of G is called left (right) rela-

tively dense if there is a finite set {a1,°~°,an} in G such

that G = 1{-}1 ah (G = {_1) Aa;). If A 1is both left and right
relatively aense, A isi;;lled relatively dense. The right uniform
structure of a topological group is tectally bounded if and only if
the left uniform structure is, and this 1s the case if and only 1f
each neighbourhood of e is relatively dense. It 1s well known
that in this case the left and the right uniform structures
coincide. A proof of this fact is not so easily traced in the

literature, so we include one for completeness.

Lemma 2. If (G, ') is a totally bounded topological group
W, (W.) the left (right) uniform structure, then %. = Y _, and
1 r 1 r

the group operations are uniformly continuous.

Proof. It is an easy established fact that the group operations

are uniformly continuous if and only if Q%_==&%, and this is the



case if and only if G admits a fundamental system of neighbour-

hoods of e whose members V are all invariant in the sense that

1

XV x ~ =V for every x in G.

Let U be an arbitrary neighbourhood of e. Choose a

n
symmetric neighbourhood V of e such that V< U. G = |/ aiV
n i=1
for some a1,°°~,ane:G. Let Vi = 0 aiVai'l, and let
i=1
W= k) x'lle. Then W is an invariant neighbourhood of e. If
xX€G

y€V, and x 1s arbitrary, we have xe,aiv for some i. Now
- - -1
X 1yx €(aiV) l(e'..:.LVa_,L )aiV = V3¢ U, so WcU,

and the lemma is proved.

The problem of finding a finest uniform structure satisfying
(1.1), (1.2) and (1.3) have now been reduced to find a finest group
topology on G coarser than the original one such that each heighbour—
hood is relatively dense. We now show the existence of such a topo-

logy by an explicit characterization.

Theorem 1. Every toplogical group (G,Sr) admits a finest group

topology E?JB satisfying

(1.4) EFB defines a totally bounded uniform structure.
(1.5) TB 1s coarser than J .

The left and the right uniform structures defined by 375 coincide,
and this uniform structure is the finest satisfying (1.1), (1.2)

and (1.3).

The nelghbourhood system of e associated with 9. consists

o]



of those subsets V of G which admit a sequence '{Vn} of sets

such that
(1.6) VCV and V,,JCV  for n = 1,2,ce
(1.7 Every V, 1is a symmetric and relatively dense

Er:neighbourhood of e.

Proof. Let '@V be the subsets V of G which admit a sequence
satisfying (1.6) and (1.7). We will show that 2* is the neighbour-

hood system of e for some topological group structure on G.

If U, VE 7?7 with corresponding sequences {Un} and {Vn},
take W = UAV and wn = Unﬁ Vn' Wn contains the set
(Up7q Upep)N (V517 ) which is relatively dense ([1], Proposition 3),
hence W€ .
If VE7 obviously V™ '€?”. Further V,€2" and Vv, % V.
If VE? and a€G, then we see that avVa '€ by taking
rJ

v,'= aVna"l. Thus 7~ defines a group topology ff;} on G, ‘/B

is coarser than 9H and defines a totally bounded uniform structure.

Suppose ﬁﬁ is another group topology on G satisfying (1.4)

and (1.5). Every 77—neighbourhood V of e then admits a sequence

R

{Vn} satisfying (1.6) and (1.7), so J'C q.. By our previous

los]

remarks the uniform structure defined by 57% is the fin:st satis=-
fying (1.1), (1.2) and (1.3).
The topology EVé is called the Bohr topology on G, and the

corresponding uniform structure is denoted ’&é. We have seen that

the Bohr compactification is the Hausdorff completion of G with

respect to QUB.



Let CB(G) be the set of continuous, bounded complex valued
functions on G, and let CB(G) have the sup-norm-topology. The
translates of a function on G 1s defined by

S f(x) = f(a™'x) £, (x) = f(xa)

A function f in CB(G) 1is called almost periodic if the set

{af :a €G} has compact closure in CB(G). We have the following

important characterization of the almost periodic functions

Theorem 2. For a function f in CB(G) the following are

equivalent

(a) £ 1s almost periodic.
(b) f is QOB-uniformly continuous.
(¢) There is a continuous function f on G such that

A A
f = fop. ((p,G) is the Bohr compactification of G).

Proof. See [l], Theorem 2.

2. Invariant means and related subsets of the group.

On BR(G) (= the bounded real valued functions on G) we

define the right upper mean value M by

M(f) = inf{sup z aif(xai) : a;€G, 0y >0, T oa, = 1}.
X€G 1 i

The right lower mean value M is defined by M(f) = - M(-f).



Lemma 3. The right upper mean value M has the following

properties
(2.1) inf f{x) < M(f) < sup f(x)
X€G Xe@
(2.2) M(Af) = AM(f) for A > 0.
(2.3) E(fa) = M(f) for a € G.
(2.4) M(f-f_ ) <O
(2.5) M(f+g) < M(£) + NM(g) if G is abelian.

Proof. Only part (2.4) needs a proof. Take a; = a, 841 = B2

Then :
M(f-f_) < sup 1 g (f-f_)(xa,) = sup 1‘-(f(xa )=-f(xa_,.))
8" ~xee P1z1 @ 1T g B ' n+l
2

This holds for any n, anad (2.4) follows.

If A 1is a subset of G and XA is its characteristic
function, it is easy to see that A 1is right relatively dense if
and only if M(XA) > 0, Sets with positive upper mean value have
been studied by P. Tomter [&] in the abelian case, and we will

transfer his ideas to arbitrary groups.

Definition. A subset A of G 1is called left (right) relatively

accumulating if there is a positive integer n, such that for any




positive integer m, at least mt+l of any mn +1 left (right)
translates of A have a common, non-empty intersection. If A
is left and right relatively accumulating, A 1is called relatively

accumulating.

Proposition 1. ILet A Dbe a subset of G. Then

(2) if A 1is left relatively dense, then A 1is right

relatively accumulating,

(b) if A 1is right relatively accumulating, then A_lA is

right relatively dense,

(¢) A 1is right relatively accumulating if and only if

M(XA) > 0.

Proof. (a), (b) and the "if"-part of (c) are proved essentially
the same way as in [8], pp.26-27. To prove the "only if"-part of

(¢), first note that for any f & BR(G)

M(f) = inf{sup % .g f(xa;) : a;€G, neZ }
xeG i=1
Now suppose A is right relatively accumulating with respect to the
number n,, and let ar,°°°,a, be arbitrary elements from G. Let
m be the number satisfying mn_ <n < (m+l)no. Then n > mno+1,
and at least m+l of the sets Aa{l,-o-,Aagl have a common non-

empty intersection. Thus
n

1 m+1 1
sup = I X (xa,) > —= > —
xeG M i=1 B 7 T TP

We conclude that M(X,) > ﬁL > 0.

o



Remark. In connection with (a), note that a left relatively

dense subset is not necessarily left relatively accumulating. An
example of von Neumann can be used, take G to be the free group
of two generators a and b, and let A Dbe the set of elements

! when written as reduced words. G= Ay al,

beginning with a or a”
so A 1is left relatively dense. But A 1is not left relatively
accumulating, for instance a1y two distinct members of the collec-

tion {A, bA,°°°,bnA} have empty intersection.

Definition. Now let E be some linear space of complex valued

functions on G which contains the constants and 1s closed under
complex conjugation and right translations (i.e. f€A, a£G => fa-f;E).

A linear functional m on E is called a right invariant mean

(RIM) 1if

(2.6) m(f) = m(f)

(2.7) inf £(x) < m(f) < sup £(x) for any real valued f €E.
xX<G Xe@

(2.8) m(fa) = m(f).
(2.7) is equivalent to

(2.9) m(l) =1 and m(f) >0 for f > 0.

—

Left invariant means are defined analogously, and if m is both
left and right invariént, it is called an invariant mean. If m is
a RIM, and if f€E 1s real valued, we have m(f) = m(Zaifai) <
Sup Zaif(xai) for any convex combination Logfag of translates of

X€G
f. Thus m(f) < M(f), and we can conclude that



(2.10) M(f) < m(f) < M(f).

If M is subadditive on E' (= the real functions in E),
the Hahn-Banach theorem implies the existence of a linear functional
m satisfying m(f) S M(f) for feEE'. Applying (2.4) we find
that m dis 2 RIM on E', and m can uniquely be extended to a RIM
on E. In particular the space of all complex valued functions on

an abelian group will admit an invariant mean.

Definition. A topological group G 1is called amenable if there is

a RIM on 'UCBl(G) (= the left uniformly continuous bounded complex

valued functions on G).

This definition seems rather incidental, but for locally compact
groups it is known that the existence of a RIM on the space of left
and right uniformly continuous bounded functions implies the existence
of a RIM on L (G). Hence, for a locally compact group the existence
of a RIM on any translation invariant linear space between these two
spaces implies the existence of a RIM on any other space in between.
The results in section 4 are valid nct only for locally compact
groups, and our choice of definltion of amenability is motivated onlyg

by what is needed there.

A RIM is usually not strictly positive on positive, non-zero
continuous functions. This is the case if and only if G 1is totally

bounded.
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3. Positive definite functions.

We shall give a survey of those properties of positive definite

functions we shall need later on. For details we refer to [6] or [2]

section (13.4), and we note that the listed properties do not depend

on local compactness of the group.

A continuous complex valued function ¢ on G is called positive

definite if
- -1
ifjkiAJ¢(yJ yi) > 0 for any A1, » MEC and
yI’OOO, y’nﬁG.

A positive definite function is bounded, and we denote by P(G) the
linear subspace of CB(G) spanned by the positive definite functions.
It is well known that a function ¢ 1is in P(G) if and only if there
is a continuous unitary representation U of G on a Hilbert-space

H, and vectors E,n€H such that
¢(x) = <g, U n> for all x€&€G.

This implies that P(G) dis closed under translations. Since the
product of two positive definite functions 1s positive definite, P(G)
is an algebra under pointwise multiplication. P(G) contains the

constants and is closed under complex conjugation and the operation

defined as f(x) = £(x™Y).

Thecrem 3. Over P(G) there is a unique invariant mean M. Its

value on a positive definite function ¢ 1s given by

n

(3.1) M(4) = inf{ X . aja, ¢(s£1sj) P51 €06, 8y > 0, Iay 1}.

i,j=1
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Proof. The for existence of M se [6], pp. 59-61. The unique-
ness can be proved by showing that a real valued functlon ¢ in

P(G) satisfies M(¢) < M(¢) < M(¢). Combined with (2.10) this

shows that M 1is unique.

The invariant mean M gives rise to a convolution over P(G).

For ¢, €P(G) we define the function ¢ * by
6% V() = I [dt)w(t’lx)] ,

with x anarbitrary fixed element of G, and t wvariable in G.

Theorem 4. P(G) 4is closed under the convolution defined above,

and ¢* ¢ is almost periodic for any ¢,y in P(G).

Proof. Each function in P(G) is bounded and uniformly continuous,
and hence ¢ % ¢y will be continucus. Define an involution * by

6*(x) = ¢(x~), tken
Box y* = (orp)*(o+1) T (6-0) % (0-3)*+1 6 +1y) ¥ (o+iv)*
~1(¢-19)%(o-19)*

*
WEde] is positive definite for any ¢ €P(G), and this proves the first
part. For the proocf that o%Y is almost periodic, see [6],

Théoreme 15.
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i, The Bohr teopology in amenable topological groups.

We are now going to show that the characterization of the

Bohr neighbourhoods givenin Theorem 1 can be improved in amenable
groups, in fact we shall prove that it suffices to have a finite

chain of subsets of the sort described.

The following fundamental construction is due to Fglner ([3])°

Lemma 4. Let G be a topological group, V a neighbourhood of
e, and E a subset of G. Suppose that (A) and (A'), or (B)

and (B') of the following conditions are satisfied :

(4) The right upper mean value M 1s subadditive over the space

of real valued functions in UCBl(G).
(A') E dis right relatively accumulating.

(B) There is a right invariant mean on UCBl(G), i.e. G is

amenable.
(B') E 4is right relatively dense.

In both cases there is a non-zero, almost periodic and

positive definite function ¢: G » [0,1] such that

w(e) >0 and ¥(x) =0  for x &V ET'EV)Z.
Proof. There is a left uniformly continuous function Jj: G ~» [Q,ﬂ
with j(x) =1 for x€E and j(x) = 0 for x4&EV. (This is

proved in a way similar to the proof that a topological group is

completely regular, see for instance [f],(8.2)).

If (A) is satlsfied, the subadditivity of M implies (via
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the Hahn-Banach-theorem) that there is a right invariant mean m on
UCBl(G), and m can be chosen such that m(j) = M(j), (or any
other number in the interval [ﬁ(j), M(jﬂ , cf. the considerations
done in connection with the definition of invariant means). Together

with (A') this gives

m(j) = NM(J) > M(XE) > 0.
If (B) and (B') are satisfied, we have

m(3) > M(3) > M(Xp) > O,

Hence in both cases we have a right invariant mean m on UCBl(G)

with m(j) > 0.

A function ¢ 1is defined by

¢(x) = m(j °3) = gr_l‘;‘](tx)J(t)] .

The left uniform continuity of J implies that ¢ 1s continuous,
and straight forward calculations show that ¢ 1s positive definite.
¢(x) > 0 for any x, and ¢(x) = 0 for xqiv_lE'lEV. If M is

the invariant mean on P(G), we want to show that M(¢)» 0. (Of
course M(¢) = m(¢)). To this end we utilize the expression (3.1).
If {ai}? are positive numbers with g a; =1 and {si}? are ele-

1
ments from G, then by the right invariance of m we find that

?{(i aij(tsi))z] (?[Zaij(tsii])z

| v

-1
Y a,a, ¢(s, s.)
1,5 +9 71

m(j)?2.

Thus M(¢) > m(j)? > 0.

Now let ¢(x) =¢ * ¢ (%) NIF(t)¢(t'1x£]. We find that ¢ is
t
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positive definite and almost periodic by Theorem 4. ¢(x) > 0 for
all x, and ¢(x) = 0 for x &(V'ET'EV)Z.  w(e) = M(|¢]?) >

IM(¢)|* > 0.

Theorem 5 A. Let (G, 73 be a topological group satisfying condi-

tion (A) in Lemma 4, W a subset of G, and let StB be the Bohr
topology on G. The following are equivalent:
(1) W 1is a gg-neighbourhood of e.

(i1) There is a right relatively accumulating subset E of G

and a j—neighbourhood V of e such that (VT'E™'EV)2%< W.

Theorem 5 B. Suppose (G,J ) is an amenable topological group,

(i.e. condition (B) of Lemma 4 is satisfied) and W a subset of G.

The following are equivalent:

(1) W is a ﬁré-neighbourhood of e.
(1i) There 1s a right relatively dense subset E of G and

a J-neighbourhood V of e such that (V 'ET'EV)2c V.

Proofs. If part (ii) is satisfiled, in both cases there is an almost
periodic function ¢ with the properties in Lemma 4. Take

Wy = {x€C6: |v(x) - vle)| < w(e)}.

By Theorem 2 W, 1is a f7%—neighbourhood of e, WO<Z(V'1E"1EV)2CZW,

so W is a 3;-neighbourhood of e.
If W is a g;-neighbourhood, there 1s by Theorem 1 a symmetric,

relatively dense 5ineighbourhood V with V®<W. Then take E = V,

and E will also be relatively accumulating.
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Theorem 5 B can be given in a weaker form which makes it

clear that it is an improvement of Theorem 1.

Corollary 1. If (G,ﬁr) is an amenable topological group, then a

subset W 1s a 9;-neighbourhood of e 1if and only if there is a

symmetric, relatively dense J-neighbourhood V of e with ViCH,

Proof. The "only if"-part was proved in the last part of the

[
previous proof., If V’CW, take E =V and let U be a J-neigh-
bourhood of e satlsfying v e v. Apply Theorem 5 B with E and

U, end the conclusion follows from

(U ETED) *c UT BT RVE T BUC VS W,

In abelian groups we can simplify even more, and since condi-

tion (A) always holds in this case, we have

Corollary 2. Ifr (G,§73 is an abelian topological group, a subset

W is a ﬁ;

relatively accumulating -neighbourhood U of 0 such that USCW.

-neighbourhood of 0 1f and only if there is a symmetric,

Proof, Again, the "only if"-part isobvious. Conversely, if U
satisfies the condition, let V be a symmetric neighbourhood of O

with V*CU, and take E = U in Theorem 5 A.

If ¢ is a discrete group, we may take V = {e} 1in Theorem 5 A,
In this case the conditions (A) and (B) of Lemma 4 are equivalent

({5] Theorem 1), and we have
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Corollary 3. If G is an amenable discrete group, then a subset

W is a 3;-neighbourhood if and only if there 1s a right relatively

accumulating subset E of G with E~'EE"!EcV.

For an amenable topological group let n be the minimal number
such that V" is a Bohr neighbourhood whenever V 1is a symmetric,
relatively dense neighbourhood of e. We have seen that in general
n<7, n<5 for abelian groups and n < L  for discrete groups.

A natural question is whether this number can be reduced for some
speclal groups. The following example shows that in general we have
n*>1,

Take the discrete group of integers Z, and let V = {0, %1,
+3, 5,90} this set is symmetric and relatively dense. Since the

characters on a group are almost perlodic, the subset
U=(neZ: |"™ 1] < 1} = {0, 22, U, 26,000}

is a Bohr neighbourhood of 0. U V = {0}, thus V 1is nct a Bohr
neilghbourhood. Hence for Z we have 2 < n < 4, For the real
numbers with the usual topology a similar argument shows that
2 <n<5,

Another question naturally arises, 1if G 1s not amenable,
will then such an n exist, or perhaps the finite chain characteri-
zation of the Bohr neighbourhoods (at least for locally compact
groups) 1is equivalent to amenability. The answers to these questions

are not known to the author.
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