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ON THE BOHR TOPOLOGY IN AMENABLE TOPOLOGICAL GROUPS 

Magnus B. Landstad 

Introduction. 

In (1] E. M. Alfsen and P. Holm have characterized the Bohr 

compactification of a topological group (G,S() as the completion 

of G with respect to a group topology ~ (the Bohr topology) 

which is coarser than f.!', The purpose of this note is to prove 

that the general description of 
(;;o:-i 
~B can be simplified in amenable 

groups, i.e. groups admitting an invariant mean on the space of 

bounded left uniformly continuous functions. 

In Section 1 of the present paper the existence of the Bohr 

compactification and how it is obtained from the Bohr topology is 

shown. The treatment is close to that of Alfsen and Holm, Theorem 1 

is a slight improvement of Theorem 1 in [1], however. The main 

tool in Section 2 will be the upper and the lower mean value, and 

they are utilized in deriving elementary properties of invariant 

means. Subsets of an abelian group with positive upper or lower 

mean value have been characterized by F. Tomter, and his results are 

easily generalized to non-abelian groups. 

Section 3 is a review of some properties of positive definite 

functions developed by R. Godement. The result we shall need states 

that on the linear space spfu~ned by the positive definite functions 

we can define a convolution such that the convolution of two functions 

will be almost periodic. The last section is devoted to the descrip­

tion of the Bohr topology in amenable topological groups. Though 

stated in another way, our main result Theorem 5 has earlier been 

proved by E. F¢lner for abelian groups ( [3], Theorem 1, and [4]) and 

his ideas are used extensi~ely. 
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l. The Bohr compactification. 
r:;-'. 

From now on (G, .'J) will be some fixed topological group with 

identity e. If p is a continuous homomorphism of G into a 

(Hausdorff) compact group 6, the pair (p,6) is called the Bohr 

compactification of G if the following properties hold : 

A 

(a) p(G) is dense in G. 

(b) If ~ is any continuous homomorphism of G into a compact 
,. 

group H, then there is a continuous homomorphism ~ ': G + H 

such that ~ = ~ 'O p • 

Evidently, the Bohr compactification is unique up to an algebraic 

and topologic isomorphism. 

In [1] the existence of a Bohr compactification for a topo­

logical group (G,5') is obtained by showing that (G,~) admits 

a finest uniform structure ~~ satisfying 

(1.1) 

(1.2) 

(1.3) 

~ is totally bounded. 

qy is compatible with the group structure, i.e. the 

group operations are uniformly continuous. 

~ defines a topology on G coarser than ~. 

A 

In fact, we take G as the Hausdorff completion of G with respect 

to ?.b, 
A 

and p as the canonical injection of G into G. The group 

operations on p(G) are well defined, and by uniform continuity they 
,.. 

can be extended to the compact space G. It is now easy to check 

that (a) and (b) are satisfied. 
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Our next observation is that if a uniform structure 2u satis­

fies (1.2), then 1u is completely determined by the associated 

group topology on G. 

Lemma 1. Suppose 'lU is a uniform structure on G compatible with 

the group structure, and let ~ be the topology Z& induces on G. 

Then (G,5(') is a topological group whose left and right uniform 

structures both are equal to 2v. 

Proof. See [1] , Proposition 1. 

Hence it suffices to look for a finest group topology on G 

satisfying the analogues of (1.1), (1.2) and (1.3). 

Recall that a subset A of G is called left (right) rela-

tively dense if there is a finite set { al o o o a } in G such 
n ' ' n 

that G = 0 aiA (G = V Aai). If A is both left and right 
i=l i=l 

relatively dense, A is called relatively dense. The right uniform 

structure of a topological group is totally bounded if and only if 

the left uniform structure is, and this is the case if and only 1~ 

each neighbourhood of e is relatively dense. It is well known 

that in this case the left and the right uniform structures 

coincide. A proof of this fact is not so easily traced in the 

literature, so we include one for completeness. 

Lemma 2. If (G, ~') is a totally bounded topological group 

~l (~r) the left (right) uniform structure, then ~l = ~r' and 

the group operations are uniformly continuous. 

Proof. It is an easy established fact that the group operations 

are uniformly continuous if and only if ?.u1 = ?i.;r, and this is the 
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case if and only if G admits a fundamental system of neighbour­

hoods of e whose members V are all invariant in the sense that 

-1 x V x = V for every x in G. 

Let U be an arbitrary neighbourhood of e. Choose a 
n 

synnnetric neighbourhood v of e such that V3 cu. G = v a.V 
n i=l ~ 

for a 1 ' o o • ' an € G • Let v1 () -1 and let some = . aivai , v -1 
~=1 

w = X V1x. Then w is an invariant neighbourhood of e. If 
x£G 

y €. v 1 and X is arbitrary, we have xE. ai V for some i. Now 

so we u, 

and the lemma is proved. 

The problem of finding a finest uniform structure satisfying 

(1.1), (1.2) and (1.3) have now been reduced to find a finest group 

topology on G coarser than the original one such that each neighbour~ 

hood is relatively dense. We now show the existence of such a topo-

logy by an explicit characterization. 

Theorem 1. Every toplogical group (G,~) admits a finest group 

topology f'B satisfying 

(1.4) 

(1.5) 

<jB 

~B 

defines a totally bounded uniform structure. 

r 
is coarser than ':f • 

The left and the right uniform structures defined by ~B coincide, 

and this uniform structure is the finest satisfying (1.1), (1.2) 

and (1.3). 

The neighbourhood system of e associated with ~ consists 
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of those subsets V of G which admit a sequence ·{Vn} of sets 

such that 

(1.6) 

(1.7) 

Proof. 

and for n = 1,2,ooo 

Every Vn is a symmetric and relatively dense 

cl v -neighbourhood of e. 

Let ~ be the subsets V of G which admit a sequence 

satisfying (1.6) and (1.7). We will show that 0U is the neighbour-

hood system of e for some topological group structure on G. 

take 

( -1 
un+l 

hence 

If U, V E 1Y with corresponding sequences {Un} and {Vn}, 

w = u (I v and wn = unn vn. wn contains the set 

Un+l) n (Vn:~vn+Jl which is relatively dense ( [1), Proposition 3), 

W£?J'. 

If v E. ?Y, obviously v- 1 E. 0/J. Further V1 £?/' and v 1 2c v. 

If ve'?Y and a €. G, then we see that -1 1.f aVa €. by taking 

vn I = aV a -1 Thus 1Y defines topology ~B G, J • a group on n B 

is coarser than r:r and defines a totally bounded uniform structure. 

cr· 
Suppose ~· is another group topology on G satisfying (1.4) 

and (1.5). Every ~-neighbourhood V of e then admits a sequence 

{Vn} satisfying (1.6) and (1.7), so <fr'tc ~- By our previous 

remarks the uniform structure defined by ~ is the fin ~st satis­

fying (1.1), (1.2) and (1.3). 

The topology srB is called the Bohr topology on G, and the 

corresponding uniform structure is denoted r~. We have seen that 

the Bohr compactification is the Hausdorff completion of G with 

respect to ~B. 
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Let CB(G) be the set of continuous, bounded complex valued 

functions on G, and let CB(G) have the sup-norm-topology. The 

translates of a function on G is defined by 

fa(x) = f(xa) 

A function f in CB(G) is called almost periodic if the set 

{af :a €G} has compact closure in CB(G). We have the following 

important characterization of the almost periodic functions : 

Theorem 2. For a function f in CB(G) the following are 

equivalent 

(a) f is almost periodic. 

(b) f is 
()· 
~B-uniformly continuous. 

"' ... 
(c) There is a continuous function f on G such that 

.... ,. 
f = f 0 p. ((p,G) is the Bohr compactification of G). 

Proof. See [1] , Theorem 2. 

2. Invariant means and related subsets of the group. 

On BR(G) (= the bounded real valued functions on G) we 

define the right upper mean value M by 

The right lower mean value M is defined by M(f) =- M(-f). 
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Lemma 3. The right upper mean value M has the following 

properties 

(2.1) inf f(x) 2 M(f) < sup f(x) 
X(G xtG 

(2.2) M(A.f) = A.M(f) for ;.. > o. 

(2.3) M(fa) = M(f) for a ~ G. 

(2.4) M(f-fa) < 0 

(2.5) M ( f+ g) 2 M ( f) + M(g) if G is abelian. 

Proof. Only part (2.4) needs a proof. Take a1 = a, ak+l = ak•a. 

Then : 

<~llfll - n co 

This holds for any n, and (2.4) follows. 

If A is a subset of G and XA is its characteristic 

function, it is easy to see that A is right relatively dense if 

and only if M(XA) > 0. Sets with positive upper mean value have 

been studied by P. Tomter [8] in the abelian case, and we will 

transfer his ideas to arbitrary groups. 

Definition. A subset A of G is called left (right) relatively 

accumulating if there is a positive integer n0 such that for any 
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positive integer m, at least m+l of any mn +1 
0 

left (right) 

translates of A have a common, non-empty intersection. If A 

is left and right relatively accumulating, A is called relatively 

accumulating. 

Proposition 1. Let A be a subset of G. Then 

(a) if A is left relatively dense, then A is right 

relatively accumulating, 

(b) if A is right relatively accumulating, then A-lA is 

right relatively dense, 

(c) A is right relatively accumulating if and only if 

Proof. (a) 3 (b) and the "if"-part of (c) are proved essentially 

the same way as in [8], pp. 26-27. To prove the "only if"-part of 

(c), first note that for any f<S BR(G) 

N(f) 
1 n = inf{sup - E f(xa1 ) 

XE.G n i=l 
n.e: :Z } 

Now suppose A is right relatively accumulating with respect to the 

number n0 , and let at,ooa,an be arbitrary elements from G. Let 

m be the number satisfying mn 0 < n < (m+l)n • 
- 0 

Then n > mn +1, 
0 

and at least m+l of the sets -1 -1 Aa 1 , ••• ,Aa have a common non­
n 

empty intersection. Thus 

sup 1 ~ XA(xai) > m+l > ~ 
x~G n i=l n - no 

We conclude that M(XA) > ~ > 0. 
-no 



- 9 -

Remark. In connection with (a), note that a left relatively 

dense subset is not necessarily left relatively accumulating. An 

example of von Neumann can be used, take G to be the free group 

of two generators a and b, and let A be the set of elements 

beginning with a or -1 a when written as reduced words. G= AU aA, 

so A is left relatively dense. But A is not left relatively 

accumulating, for instance a1y two distinct members of the collec­

tion {A, bA,o~o,bnA} have empty intersection. 

Definition. Now let E be some linear space of complex valued 

functions on G which contains the constants and is closed under 

complex conjugation and right translations (i.e. f <:;A, a E.G => f e E). a 
A linear functional m on E is called a right invariant mean 

(RIM) if 

( 2. 6) m(f) = m(f) 

(2. 7) inf f(x) < m(f) < sup f(x) for any real valued f E.. E. 
xE.G x~G 

(2.8) m(fa) = m(f). 

(2.7) is equivalent to 

(2.9) m(l) = 1 and m(f) > 0 for f > o. 

Left invariant means are defined analogously, and if m is both 

left and right invariant, it is called an invariant mean. If m is 

a RIM, and if fE.E is real valued, we have m(f) = m(!:aifai) < 

suv !:aif(xa1 ) for any convex combination Eaifai of translates of 
xE.G 
f. Thus m(f) 2 M(f), and we can conclude that 
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(2.10) M(f) 2 m(f) 2 M(f). 

If M is subadditive on E' (=the real functions in E), 

the Hahn-Banach theorem implies the existence of a linear functional 

m satisfying m(f) .:_ M(f) for f€.E'. Applying (2.4) we find 

that m is a RIM on E', and m can uniquely be extended to a RIM 

on E. In particular the space of all complex valued functions on 

an abelian group will admit an invariant mean. 

Definition. A topological group G is called amenable if there is 

a RIM on ·ucB1(G) (= the left uniformly continuous bounded complex 

valued functions on G). 

This definition seems rather incidental, but for locally compact 

groups it is known that the existence of a RIM on the space of left 

and right uniformly continuous bounded functions implies the existence 
·oo 

of a RIM on L (G). Hence, for a locally compact group the existence 

of a RIM on any translation invariant linear space between these two 

spaces implies th~ existence of a RIM on any other space in between. 

The results in section 4 are valid not only for locally compact 

groups, and our choice of definition of amenability is motivated only 

by what is needed there. 

A RIM is usually not strictly positive on positive, non-zero 

continuous functions. This is the case if and only if G is totally 

bounded. 
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3. Positive definite functions. 

We shall give a survey of those properties of positive definite 

functions we shall need later on. For details we refer to [6] or [~ 

section (13.4), and we note that the listed properties do not depend 

on local compactness of the group. 

A continuous complex valued function ¢ on G is called positive 

definite if 

for any A € (C 
n and 

A positive definite function is bounded, and we denote by P(G) the 

linear subspace of CB(G) spanned by the positive definite functions. 

It is well known that a function ¢ is in P(G) if and only if there 

is a continuous unitary representation U of G on a Hilbert-space 

H, and vectors 

¢(x) = 

~, n ~ H such that 

<~, u n> 
X 

for all X E.G. 

This implies that P(G) is closed under translations. Since the 

product of two positive definite functions is positive definite, P(G) 

is an algebra under pointwise multiplication. P(G) contains the 

constants and is closed under complex conjugation and the operation 

defined as 
... 1 
f(x) = f(x- ) • 

Theorem 3. Over P(G) there is a unique invariant mean M. Its 

value on a positive definite function ¢ is given by 

n 
-1 

(3.1) M(¢) = inf{. 1;: .. ai aj" ¢(si sj) si E:.. G, ai > o, I:ai = lL 
i,j=l i 
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Proof. The for existence of M se [~, pp. 59-61. The unique-

ness can be proved by showing that a real valued function ¢ in 

P(G) satisfies M(¢) ~ M(¢) < ~(¢). Combined with (2.10) this 

shows that M is unique. 

The invariant mean M gives rise to a convolution over P(G). 

For ¢,1JJ E:P(G) we define the function ¢ * ljJ by 

$ * ljl(x) = ~ [<j(t)ljl(t- 1 x~ , 

with x an arbitrary fixed element of G, and t variable in G. 

Theorem 4. P(G) is closed under the convolution defined above, 

and ¢ * 1P is almost periodic for any ¢, ljJ in P (G) • 

Proof. Each function in P(G) is bounded and uniformly continuous, 

and hence will be continuous. Define an involution 

4 cp * w* = C¢+w)*C¢+w)*-ccp-l/J)*C¢-w/11 +iC¢+iw)*C¢+iw)* 

-iC¢-ilP)*C¢-iw)* 

by 

¢*$ * is positive definite for any ¢ E: P (G), and this proves the first 

part. For the proof that ¢*1P is almost periodic, see [6] , 
... ' Theoreme 15. 
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4. The Bohr topology in amenable topological groups. 

We are now going to show that the characterization of the 

Bohr neighbourhoods given':in Theorem 1 can be improved in amenable 

groups, in fact we shall prove that it suffices to have a finite 

chain of subsets of the sort described. 

The following fundamental construction is due to F¢lner <[~ ). 

Lemma 4. Let G be a topological group, V a neighbourhood of 

e, and E a subset of G. Suppose that (A) and (A'), or (B) 

and (B') of the following conditions are satisfied 

(A) The right upper mean value M is subadditive over the space 

of real valued functions in UCB1 (G). 

(A') E is right relatively accumulating. 

(B) There is a right invariant mean on UCB1 (G), i.e. G is 

amenable. 

(B') E is right relatively dense. 

In both cases t~ is a non-zero, almost periodic and 

positive definite function ljJ: G + [9, 1] such that 

l)J(e) > 0 and l)J(x) = 0 1:-( -1 -1 2 for x ~ V E EV) . 

Proof. There is a left uniformly continuous function j: G + [o ,1] 
with j(x) = 1 for x€,.E and j(x) = 0 for xtl:.EV. (This is 

proved in a way similar to the proof that a topological group is 

completely regular, see for instance [D ,(8.2)). 

If (A) is satisfied, the subadditivity of M implies (via 
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the Hahn-Banach-theorem) that there is a right invariant mean m on 

UCB1(G), and m can be chosen such that m(j) = M(j), (or any 

other number in the interval [M(j), M(j~, cf. the considerations 

done in connection with the definition of invariant means). Together 

with (At) this gives 

If (B) and (B') are satisfied, we have 

Hence in both cases we have a right invariant mean m on UCB1 (G) 

wit h m ( j ) > 0 • 

A function ¢ is defined by 

¢(x) = m(jxoj) = T~(tx)j(t~ • 
v 

The left uniform continuity of j implies that ¢ is continuous, 

and straight forward calculations show that ¢ is positive definite. 

"' ( ) > 0 f d "' ( ) 0 for x !'t V- 1 E- 1 EV. ~ x _ or any x, an ~ x = ~ If M is 

the invariant mean on P(G), we want to shm>~ that M(¢)·:.- 0. (Of 

course M( ¢) = m(¢)). To this end 'tiTe utilize the expression (3~1). 
n 

If {ai}~ are positive numbers with E ai = 1 and {s. }n are ele-
1 J. 1 

ments from G, then by the right invariance of m we find that 

E aiaj ¢(s1.-
1 sJ.) = ml-(E a.j(ts.)) 2J > (m[Ea.j(ts.)~) 2 

i . t J." J. J. t· J. J. ,J 

Thus M(¢) ~ m(j) 2 > 0. 

Now let ljJ{x) = ~ * $ (x) = ~ &(t)$(t- 1 xJ • We find that 1/! is 
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positive definite and almost periodic by Theorem 4. ~(x) ~ 0 for 

all x, and ~(x) = 0 for x ¢CV- 1 E- 1 EV) 2 • ~(e)= fvl(l¢1 2 ) ~ 

IM(¢)1 2 > o. 

Theorem 5 A. Let 

tion (A) in Lemma 4, 

(G, Vf) be a topological group satisfying condi­

&7' W a subset of G, and let v B be the Bohr 

topology on G. The following are equivalent: 

(i) '!,!] is a fl~-neighbourhood of e. 

(ii) There is a right relatively accumulating subset E of G 
(..... 1 1 

and a Y-neighbourhood v of e such that cv- E- EV) 2 c w. 

Theorem 5 B. Suppose (G,~) is an amenable topological group, 

(i.e. condition (B) of Lemma 4 is satisfied) and W a subset of G. 

The following are equivalent: 

(i) it! is a 5'B-neighbourhood of e. 

(ii) There is a right relatively dense subset E of G and 

a Y-neighbourhood if of e such that (V- 1 E- 1 EV) 2 C'ltJ. 

Proofs. If part (ii) is satisfied, in both cases there is an almost 

periodic function ~ with the properties in Lemma 4. Take 

W0 = {x€G: l~(x)- ~(e)l <~(e)}. 

By Theorem 2 

so W is a 

V! 0 is a YB-neighbourhood of 

" .... B-neighbourhood of e. 

e, W C (V- 1 E- 1 EV) 2 C.W, 
0 

If W is a ~-neighbourhood, there is by Theorem 1 a symmetric, 

relatively dense Y:neighbourhood V with V8 C W. Then take E = V, 

and E will also be relatively accumulating. 
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Theorem 5 B can be given in a weaker form which makes it 

clear that it is an improvement of Theorem 1. 

Corollary 1. If ( G, g') is an amenable topological group, then a 

subset W is a ~-neighbourhood of e if and only if there is a 

symmetric, relatively dense Y-neighbourhood V of e with V7 C \'1. 

Proof. The "only if"-part was proved in the last part of the 

previous proof. If V7 c W, take E = V and let U be a X"neigh­

bourhood of e satisfying uu- 1c V. Apply Theorem 5 B with E and 

U, end the conclusion follows from 

In abelian groups we can simplify even more, and since condi­

tion (A) always holds in this case, i<Ie have : 

Corollary 2. If (G,*~) is an abelian topological group, a subset 

W is a ~-neighbourhood of 0 if and only if there is a symmetric, 
&--' 

relatively accumulating .1' -neighbourhood U of 0 such that U5 C W. 

Proof. Again, the "only if"-part is obvious. Conversely, if U 

satisfies the condition, let V be a symmetric neighbourhood of 0 

with v~+c U, and take E = U in Theorem 5 A. 

If G is a discrete group, we may take V = {e} in Theorem 5 A~ 

In this case the conditions (A) and (B) of LeiT~a 4 are equivalent 

( [5 J Theorem 1) , and we have 
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Corollary 3. If G is an amenable discrete group, then a subset 

W is a ~-neighbourhood if and only if there is a right relatively 

accumulating subset E of G with E- 1 EE- 1EcW. 

For an amenable topological group let n be the minimal number 

such that Vn is a Bohr neighbourhood whenever V is a sy~~etric, 

relatively dense neighbourhood of e. We have seen that in general 

n ~ 7, n < 5 for abelian groups and n < 4 for discrete groups. 

A natural question is whether this number can be reduced for some 

special groups. The following example shows that in general we have 

n ):> 1. 

Take the discrete group of integers ~, and let V = {0, ±1, 

±3, ±5,•o•}, this set is symmetric and relatively dense. Since the 

characters on a group are almost periodic, the subset 

U ='{n€Z: lemri_ll < 1} = {0, ±2, ±4, ±6,•eo} 

is a Bohr neighbourhood of 0. U A V = {0}, thus V is not a Bohr 

neighbourhood. Hence for ~ we have 2 < n < 4. For the real 

numbers with the usual topology a similar argument shows that 

2 < n ~ 5. 

Another question naturally arises, if G is not amenable, 

will then such an n exist, or perhaps the finite chain characteri-

zation of the Bohr neighbourhoods (at least for locally compact 

groups) is equivalent to amenability; The answers to these questions 

are not known to the author. 
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