Matematisk Seminar	No 2
Universitetet i Oslo	March 1968

ON THE SINGULAR POINTS OF ALGEBRAIC CURVES

Knut Lage Sundet

1. Introduction. An algebraic curve C, say, of order n is given by an equation $F\left(x_{1}, x_{2}, x_{3}\right)=0$ where $F\left(x_{1}, x_{2}, x_{3}\right)$ is a homogeneous polynomial of degree n in the homogeneous coordinates x_{1}, x_{2} and x_{3} of points in a plane.

A point P, say, whose coordinates satisfy the equations

$$
\frac{\frac{r-1}{F}}{\partial x_{1} \partial x_{2}^{I} \partial x_{3}} m^{\prime}=0
$$

where $k+1+m=r-1, k, I, m \leqslant r-1$ is said to be a singular point of multiplicity r. (r is the highest possible number).

The number of different points of intersection between C and a straight line is in general n. If the straight line passes through P, however, P has to be counted at least r times if the total number of intersections should be n. To estimate the exact number of intersections at P between C and another algebraic curve passing through P, we may use the development of Puiseaux

$$
y=a x+a_{1} x^{\frac{v+v}{v}}+a_{2} x^{\frac{v+v^{i}+v^{i i}}{v}}+\ldots+a_{s} x^{\frac{v+v^{\prime}+\ldots+v^{\prime}(s)}{v}+\ldots}
$$

Another way is to use the concept of neighbour points which vill be treated here. The neighbour points are introduced by means of quadratic transformations and are very important for birational geometry (a geometry treating properties of algebraic curves which are invariant under birational transformations or cremona transformations). As some properties of the
cremona transformations will be used a short note on them will be given
2. A note on the cremona transformations. Consider three homogeneous polynomials of the same decree n $\left(x_{1}, x_{2}, x_{3}\right)$, $Y_{2}\left(x_{1}, x_{2}, x_{3}\right)$ and $Y_{3}\left(x_{1}, x_{2}, x_{3}\right)$ where x_{1}, x_{2}, and x_{3} are homogeneous coordinates for points in a plane, 0 . The relations

$$
\begin{aligned}
& x_{1}^{\prime}=\hat{y}_{1}\left(x_{1}, x_{2}, x_{3}\right) \\
& x_{2}^{\prime}=\psi_{2}\left(x_{1}, x_{2}, x_{3}\right) \\
& x_{3}^{\prime}=\hat{F}_{3}\left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

establish a transformation from σ to a new plane, $\sigma^{\frac{1}{2}}$ in which the homogeneous coordinates are $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$. Points of exception in σ are those making all the $\varphi_{i}\left(x_{1}, x_{2}, x_{3}\right)(i=1,2,3)$ zero. These are named the fundamental points or, briefly, F-points. The F-points are the base-points in the net

$$
\begin{equation*}
\lambda_{1} Y_{1}+\lambda_{2} \varphi_{2}+\lambda_{3} \varphi_{3}=0 \tag{2}
\end{equation*}
$$

It may be assumed that this net is irreducible and that the curves φ_{1}, ψ_{2} and ψ_{3} are linearly independent.

A straight line, $\alpha_{1} x_{1}^{\prime}+\alpha_{2} x_{2}^{\prime}+\alpha_{3} x_{3}^{\prime}=0$, say, in oriwill by the inverse transformation be mapped into the curve

$$
\alpha_{1} \varphi_{1}+\alpha_{2} \dot{\varphi}_{2}+\alpha_{3} \varphi_{3}=0
$$

which is a member of the net (2) . A second straight line in 5^{11}

$$
\beta_{1} x_{1}^{\prime}+\beta_{2} x_{2}^{\prime}+\beta_{3} x_{3}^{\prime}=0
$$

will in the similar manner be mapped into a second curve

$$
\beta_{1} \varphi_{1}+\beta_{2} \varphi_{2}+\beta_{3} \varphi_{3}=0
$$

in the net (2) in O. A point P^{\prime} of intersection between
the two straight lines in σ^{\prime} will then be transformed by the inverse transformation \mathbb{T}^{-1} of T into the points of intersections between the two curves in (2). If then the least number of intersections between two curves in the net (2) absorbed at the F-points is $n^{2}-1$, the point P^{\prime} will in general be mapped by T^{-1} into one point P only. The transformation is then one to one and is named a cremona transformation.

The reasoning breaks down if any two curves in (2) passing through P have a fixes part in common. The locus of such points is called the collection of fundamental lines of T or breifly the f-lines.
3. On the neighbourpoints. Concider an algebraic plane curve denoted by C, of order n having a point P as a singular point of multiplicity r and a quadratic transformation, T, say, having P as a fundamental point and whose fundamental lines through P do not coincide with any of the tangents of C at P. Let the transformed curve of C by T be denoted by C_{1}, the inverse transformation of T by \mathbb{T}^{-1} and the fundamental line of T^{-1} answering to P by P. Let $P_{1}, P_{2}, \ldots, P_{i}$ be the points of intersection between C_{1} and p different from the F-points of T^{-1}. If $P_{t}(t=1,2 \ldots, i)$ are points of multiplicities r_{t}, the curve C is said to have points of multiplicities r_{t} in the first neighoourhood of P. By using a new quadratic-transformation \mathbb{T}_{q}, having one of these points P_{q}, say, as F-point and having no f-lines coinciding with tangents to C_{1} in P_{q}, C_{1} may be transformed into a new curve C_{2} meeting the f-line p_{q} of the inverse transformation \mathbb{T}_{q}^{-1} answering to P_{q} in the points $P_{q, 1}, P_{q, 2}, \ldots$ different from the F-points of $\mathbb{T}_{\mathrm{q}}^{-1}$. If the multiplicities of $P_{q_{1}, 1}, P_{q_{, 2}}, \ldots$ are $r_{q_{1}, 1}, r_{q_{2}, 2}, \ldots$ respectively by c_{2}, the
curve C is said to have points of multiplicities $r_{q, s}(s=1.2, \ldots)$ in the second neighbourhood of P. As one of the points $P_{q, 1}, P_{q, 2}, \ldots$ may be situated on the transformed line of p it is to be noticed that a point may be both in the first and second neighbourhood of P. Again a new q-transformation $T_{q, S}(s=1,2, \ldots)$ may be used having $P_{q, s}$ as F-point and with no f-lines coinciding with any of the tangents to C_{2} in $P_{q, s}$. By $T_{q, s} C_{2}$ is mapped into a new curve C_{3}. If C_{3} meets the f-line $p_{q, s}$ of the inverse transformation $T_{q, s}^{-1}$ in the points $P_{q, s, 1}, P_{q, s, 2}, \ldots$ different from the F-points of $\mathrm{T}_{\mathrm{q}, \mathrm{s}}^{-1}$ having the multiplicities $r_{q, s, 1}, r_{q, s, 2}, \ldots$, these points are said to be in the third neighbourhood of P. Thus we may continue. After the series $T_{, ~} \mathbb{T}_{q}, \mathbb{T}_{q, s}, \ldots, \mathbb{T}_{q}$, where $T_{q, s, \ldots, 1, k}$ is a q-transformation having the point $P_{q, s, \ldots, 1, k}$ situated on the f-line $p_{q, s, \ldots, 1}$ as F-point, the curve C is transformed successively into the curves $C_{1}, C_{2}, \ldots, C_{t-1}, C_{t}$. If C_{t} meet the f-line $p_{q, s, \ldots, 1, k}$ of $T^{-1} q_{q, s, \ldots, 1, k}$ answering to $P_{q, s, \ldots, 1, k}$ in the points $P_{q, s, \ldots, 1, k, 1}$ $P_{q, s, \ldots, 1, k, 2} \ldots$ different from the \mathbb{F}-points of $T_{q, s, \ldots, 1, k}^{-1}$ these points are said to be in the neighbourhood of order t of P.

The handy concept of the neighbour points is as well known due to \mathbb{M}. Noether The connection between the concept of the neighbourpoints and the development of Puiseaux is treated in the books [1] and [2] of Eneriques and Chisini and Van der Waerden. 0. Zariski has in [3] treated the singular points by means of modern algebra. The worls of Zariski has been carried on and generalized by Northeott [4] and Hironaka [5]. We have also works of Pierre Samuel on the matter [6]. The simplest description of the singular points, at least by plane algebraic
curves, is by means of the neighbourpoints. A problem arising in this method is whether we get another description by changing the series of q-transformations. Professor Aubert has pointed out to me that the rwoof of the invariance of this descriptoin is not regarded as obvious and a simple and elementary proof seems to be lacking. The aim of this paper is to give a such proof. The proof is independent of the development of Puiseaxu and belongs strictly to the berational geometry. It is interesting, therefore, not only in connection with algebra.

The proof may be carried out by means of induction. Consider therefore the points in the first neighbourhood of a point P_{0} having the multiplicity r on an algebraic curve C_{0} in a plane ${ }^{\text {. }}$ By a q-transformation $T_{0,1}$, say, having P_{0} as F-point but with no f-lines coinciding with tangents of C_{0} in P_{0}, the curve C_{0} is transformed into the curve $C_{1,1}$ in the plane $\quad 1,1$. Let the f-line of $\mathrm{T}_{\mathrm{O}, 1}^{-1}$ answering to the point P_{0} be denoted by $A_{1,1} B_{1,1}$ where $A_{1,1}$ and $B_{1,1}$ are the F -points. The distinct points of intersection between $\mathrm{C}_{1,1}$ and this line differont from $A_{1,1}$ and $B_{1,1}$ may be denoted by $P_{1,1}^{1}, P_{1,2}^{1}, P_{1,3}^{1}, \ldots$ and their multiplicities by $r_{1,1}^{1}, r_{1,2}^{1}$ $r_{1,3}, \ldots$, respectivily.

Let another q-transformation having P_{0} as a F-point but with no f-lines coinciaing with the tangents to C_{0} at P_{0}, be denoted by $T_{0,2}$. It may at first be assumed that no f-points of $T_{0,2}$ are situated on any f-lines of $T_{0,1}$. The curve C_{0} is mapped by $T_{0,2}$ into a curve $C_{1,2}$ situated in a plane P1,2 The f-line of $\mathrm{T}_{0,2}^{-1}$ answering to P_{0} may be denoted by $A_{1,2} B_{1,2}$ mere $A_{1,2}$ and $B_{1,2}$ are the F-points. The distran ond and between this line and $C_{1,2}$ which are difionen B -points may be denoted by $P_{1,1}^{2}, P_{1,2}^{2}, P_{1,3}^{2}, \ldots$
and their multiplicities by $r_{1,1}^{2}, r_{1,2}^{2}, r_{1,3}^{2}, \ldots, r e s p e c t i v e l y$. It will at first be proved that the lines $A_{1,2} B_{1,2}$ and $A_{1,1} B_{1,1}$ are corresponding lines in a cremonatransformation. Consider therefore the transformation S_{i}^{-1} established between the points in $\rho_{1,2}$ and $\rho_{1,1}$ by the transformations $T_{0,2}^{-1}$ and $T_{0,1}$ put together, in that order. S_{1}^{-1} is a cremonatransformation. The F-points of the inverse transformation S_{1} are therefore the base-points of the net of curves which are the transforms of the straight lines in $\rho_{1,2}$. Now, these lines are transformed by $\mathrm{T}_{0,2}^{-1}$ into conics in g having P_{0} as basepoint, but not the other F-point of $T_{0,1}$. This system of conics is therefore transformed by $T_{0,1}$ into a system $\left(\boldsymbol{\varphi}_{1}\right)$ of curves of order 3 in the plane $P_{1,1}$ where the third F-point, $D_{1,1}$ say, of $T_{0,1}^{-1}$ is a basepoint of multiplicity 2 . The two other F-points $A_{1,1}$ and $B_{1,1}$ will be base-points of multiplicity 1 . This net defines, then, the cremonatransformation S_{1}. In similar manner it is seen that the transformation S_{1}^{-1} is defined by a net $\left(\psi_{1}^{1}\right)$ having $A_{1,2}$ and $B_{1,2}$ as base-points of multiplicity 1 , the third F-point $D_{1,2}$ say, of $\mathrm{T}_{0,2}^{-1}$ as base-point of multiplicity 2 and the two transformed F-points distinct from P_{0} of $T_{0,1}$ by $T_{0,2}$ as base-points of multiplicity 1 .

The straight line $A_{1,1} B_{1,1}$ has one point of intersection with the curves in (ψ_{1}) different from the F-points of S_{1}. Points on this line will therefore be transfomed into a straight line in $\rho_{1,2}$. In order to find which line, we may consider a point on this line different from the F-points and not situated on the f-lines of S_{1}^{-1}. Such a point, not situated on $A_{1}, 2^{B_{1}}, 2$ will be mapped by $T_{0,2}^{-1}$ into a point in ρ different from the \mathbb{F}-point and the f-lines of $T_{0,1}$. By $T_{0,1}$ it will therefore
be transformed into a point not situated on $A_{1,1} B_{1,1}$. The only possible line is then $A_{1,2} B_{1,2}$ as $A_{1,2} D_{1,2}$ and $B_{1,2} D_{1,2}$ are f-lines of S_{1}^{-1}. The straight line $A_{1,1} B_{1,1}$ is then transformed into the line $A_{1,2} B_{1,2}$ in $f_{1,2}$. Also, as the curve $C_{1,1}$ is transformed into the curve $C_{1,2}$, the points $P_{1,1}^{1}, P_{1,2,}^{1}, \ldots$ are trensformed into the points $P_{1,1}^{2}, p_{1,2}^{2}, \ldots$. If not, some of the first mentioned points also are situated on a f-line of S_{1}. Because of the restriction on the f-lines through P_{0} this is not the case, however. As corresponding points in a cremonatransformations have equal multiplicities on corresponding curves the integers $r_{1,1}^{1}, r_{1,2}^{1}, r_{1,3}^{1}, \ldots$ are equal to the integers $r_{1,1}^{2}, r_{1,2}^{2}, r_{1,3}^{2}, \ldots$ respectively if the latter are arranged in a certain order.

If the two q-transformations $\mathrm{I}_{0,1}$ and $T_{0,2}$ have F-points situated on the other f-lines, the equality of the multiplicities and the cremonian relation between the distinct points of intersection appearing on the f-lines answering to P_{0} when using $T_{0,1}$ and $T_{0,2}$ may be seen in this way:

Let T denote a q-transfermation having P_{0} as F-point but no other on the f-lines of $T_{0,1}$ or $T_{0,2}$. From the preceding it is known that the statement is true when using the transformations $T_{0,1}$ and T and also when using $T_{0,2}$ and T, The statement is therefore also true when using $T_{0,1}$ and $T_{0,2}$ as two cremonatransformations put togeher is a new one.

To prove the general case, consider the two series of q-transformations with distinct F-points $T_{0, i}, T_{1, i}, \ldots$, $\mathbb{T}_{t-1 . i}(i=1,2)$ mapping C_{o} into the series of curves $C_{1, i}, C_{2, i}, \cdots, C_{t, i}$ in the different planes $f_{1, i}, f_{2, i}, \ldots$, $\int_{t, i}$ respectively. $T_{s, i}$ has a F-point $P_{s, i}$ which is a
point of intersection between $A_{s, i} B_{S, i}$ and $C_{s-1}{ }^{\prime}{ }_{i} \cdot A_{s . i} B_{s, i}$ is the f-line of $T_{s-1, i}^{-1}$ answering to the point $P_{s-1, i}$. If $A_{S, i}$ and $B_{S, i}$ are F-points of $T_{S-1, i}^{-1}, P_{S, i}$ are supposed to be different from these points. The third F-point of $T_{S-1, i}^{-1}$ may be denoted by $D_{S, i}$. The f-lines of $T_{S, i}$ are not supposed to coinside with any of the tangents to $C_{s, i}$ in $P_{s, i}$.

Suppose now that $P_{s, 1}$ and $P_{s, 2}(s=1,2, \ldots, t-1)$ are corresponding points in cremonatransformations T_{S} defined by a net $\left(\psi_{s}^{\prime}\right)$ between the planes $S_{s, 1}$ and $\rho_{s, 2}$ mapping $C_{s, 1}$ into $C_{s, 2}$. In this case we are going to prove that the distinct points of intersection between $A_{t, 1} B_{t, 1}$ and $C_{t, 1}$ and between $A_{t, 2} B_{t, 2}$ and $C_{t, 2}$ are corresponding points in a new cremonatransformation mapping $C_{t, 1}$ into $C_{t, 2}$.

Consider the transformation $\mathrm{T}_{\mathrm{t}}^{-1}$ obtained by putting $T_{t-1,2}^{-1}, T_{t-1}^{-1}$ and $T_{t-1,1}$ together. T_{t}^{-1} is a cromonatransformation and it is therefore possible to find its order by considering a general straight line in $\rho_{t, 1}$. This line is by $\mathbb{T}_{t-1,1}^{-1}$ mapped into a conic passing through $P_{t-1,1}$, and the two other P-points of $T_{t-1,1}$. If the order of T_{t-1} is denoted by n_{t-1} and the multiplicities of $\left(\psi_{t-1}^{\prime}\right)$ at the F-points of $T_{t-1,1}$ different from $P_{t-1,1}$ by a_{t-1} and b_{t-1}, the conic is by T_{t-1} transformed into a curve K of order $2 n_{t-1}-a_{t-1}-b_{t-1}=n_{k}$ This curve is passing through $P_{t-1,2}$. If the multiplicities of K by the two F-points of $\mathbb{T}_{t-1,2}$ different from $P_{t-1,2}$ are denoted by t_{1} and t_{2}, K is by $T_{t-1,2}$ transformed into a curve f_{t}^{2} of order $n_{t}=2 n_{k}-t_{1}-t_{2}-1$. The multiplicity of the curve at $A_{t, 2}$ will be $n_{k}-1-t_{1}$ and at $B_{t, 2}$ the multiplicity will be $n_{k}-1-t_{2}$. The net $\left(\varphi_{t}^{2}\right)$ of momaraic curves defining \mathbb{T}_{t}^{-1} has then the same order ε s $\left(p^{2}\right)$ nd $\therefore, 2$
and $B_{t, 2}$ are base-points (I-points of the transformation) of multiplicities $n_{k}-1-t_{1}$ and $n_{k}-1-t_{2}$. The curves in ($\left.\hat{c}_{t}^{2}\right)$ will therefore intersect the line $A_{t, 2^{D}}{ }_{t, 2}$ in one point different from the base-points of $\left(\varphi_{t}^{2}\right)$. Hence $A_{t, 2} B_{t, 2}$ cannot be a f-line in T_{t}^{-1} and according to the usual ruels of cremonatransformations it will be mapped into a straight line in $\int_{t, 1}$. In the same manner it is seen that T_{t} is defined by a net (φ_{t}^{1}) where the curves intersect the line $A_{t, 1} B_{t, 1}$ in one point different from the base-points. $A_{t, 1}{ }_{t, 1}$ is therefore mapped into a straight line. To find which line, assume that this line is different from $A_{t, 2} B_{t, 2}$. Such a line will have a point not situated on $A_{t, 2} B_{t, 2}$ or on any f-lines of \mathbb{T}_{t}^{-1}. From following this point through the transformations $T_{t-1,2}^{-1}, T_{t-1}^{1-1}$ and $T_{t-1,1}$ it is seen, however, that this point is transformed by T_{t}^{-1} into a point not situated on $A_{t, 1} B_{t, 1}$. As $A_{t, 2} D_{t, 2}$ and $B_{t, 2} D_{t, 2}$ are f-lines of T_{t}^{-1} if $t_{1}=t_{2}=0$ it.follows thet $A_{t, 1} B_{t, 1}$ is transformed into $A_{t, 2} B_{t, 2}$. As also $C_{t, 1}$ and $C_{t, 2}$ are corresponding curvesin the same transformation, it follows that the points of intersection between $A_{t, 1} B_{t, 1}$ and $C_{t, 1}$ correspond to those between $A_{t, 2} B_{t, 2}$ and $C_{t, 2}, A_{t, 1}, A_{t, 2} ; B_{t, 1}$ and $B_{t, 2}$ are excluded. The points have also then the same multiplicities and our statement is proved. If t_{1} and t_{2} are different from zero the same conclusion follows by inserting an auxiliary q - transformation.

References

1 F. Enriques e O. Chisini: Teoria geometrica delle equaziono e delle funziono algebriche. Vol II, libro quarto, Bologna

2 B. I. Van der Waerden: Einführung in die algebraische geometrie, Berlin 1939

3 O. Zariski: Polynomial ideals defined by infinitely near base points Amer. J. Math. Bd. 60 (1938)

4 Northcott, D.G.: Journal of Iondon Math Soc 301955
5 Hironaka: Mem. of the college of Sc , Kyoto, Serie A XXX 1957
6 Samuel, Pierre: La notion de multiplicite en algebre et en geometrie algebrique. Th. Sc. Math. Paris 1949. Serie A 2397. No. 3269

