By

Erik M. Alfsen

The purpose of this summary is to sketch the proof of the following:

Theorem. A continuous and bounded real (complex) valued function f on the Choquet boundary $\partial \mathrm{X}$ of a seal (complex) sup-norm space I over a compact Hausdorff space X can be extended to a function in I if and only if:
(i) There are no singular Shilov points for f, (ii) f is annihilated by every I-orthogonal boundary measure.

Recall that X is the smallest representing boundary for L, i.e. the smallest subset Y of X for which there exists a σ-field \mathcal{F} containing Y and all Baire sets, and a map $x \leadsto \mu_{x}$ of X into the probability measures on \mathcal{F}, such that for every x X :
(1) $\quad \mu_{\mathrm{x}}(\mathrm{Y})=1$
(2) $a(x)=\int a d \mu_{x}$, all $a \in L$.

It appears that ∂X is a natural set for prescribtion of boundary values.

When $Y=\partial X$, we may as well chose \mathcal{F} to be the σ-field F_{0} generated by ∂x and all Baire sets. A measure on F_{0} which vanishes on $G \partial X$, is called a boundary measure. A measure is said to be L-orthogonal if it annihilates all functions in I.

Recall that $\overline{\partial \bar{X}}$ is the Shilov boundary for L. A point $x \in \overline{\partial \bar{X}}$ is said to be a singular Shilov point for a bounded real valued function f on ∂X if
(3) $\sup \{a(x)|a| \partial x \leqq f\}<\inf \{b(x)|f \leqq b| \partial x\}$,
where a, b are in the space L_{r} of real parts of functions in I. Similarly x is singular for $f=f_{1}+i f_{2}$ if it is singular for either f_{1} or f_{2} (or both). Note that a point $x \in \partial X$ is non-singular for every continuous and bounded function f on ∂X, and that every point $x \in \overline{\partial \bar{X}} \backslash X$ is singtilar for some continuous and bounded function f on ∂X. Clearly (i), (ii) are necessary conditions that f be extendable to a function in I. If ∂X is closed, then the condition (i) is automatically satisfied. In the general case it is non-redundant.

Example. Let $X=[0,1] \cup\{i\} u\{-i\}$, and consider

$$
I=\{f \in C(X) \mid 2 f(0)=f(i)+f(-i)\} .
$$

Here $\partial \mathrm{X}=\mathrm{X} \backslash\{0\}$, and there is (up to a constant factor) only one L-orthogonal measure on X, namely $Y=2 \varepsilon_{0}-\varepsilon_{i}-\varepsilon_{-i}$. The function f which is identically zero on $] 0,1]$ and is 1 on i and $-i$, will be uniformly continuous on ∂X, but it is evidently not extendable to any function in L. Observe that 0 is in fact a singular Shilov point for f.

The proof of sufficiency is based on a general "lifting" technique. Let $M(\overline{\partial X})$ be the Banach space of (real or complex) Baire measures on $\overline{\partial \bar{X}}$ and define maps

as follows:
(4) $\quad \underset{y}{ }(x)(a)=a(x)$,
all $a \in I, x \in X$
(6) $\quad \varphi(\mu)=\int_{\bar{\partial} \bar{X}} \widetilde{f} d \mu$.
all $a \in I, \mu \in M(\overline{\partial \bar{X}})$
all $\mu \in \mathbb{M}(\overline{\partial \bar{X}})$,
where f is the continuity extension of f from ∂X to $\overline{\partial \bar{X}}$. (Note that (i) entails uniform continuity.)

Finally:

$$
\begin{equation*}
\phi^{\prime}(q)=\int_{\partial X} f d m, \tag{7}
\end{equation*}
$$

where m is any probability boundary measure which represents the linear functional q, i.e. for which
(8) $q(a)=\int_{\partial X} a d m$, all $a \in I$.

Note that (i) entails F_{o}-measurability of f, and that the definition of ϱ^{\prime} is non-ambiguous by virtue of (ii). Clearly $\mathscr{l}, \rho, \infty$ are continuous w.r. to the given topology of X and the W^{*}-topologies on L^{*} and $M(\bar{\partial} \bar{X})$. The w^{*}-continuity of φ^{\prime} is the crucial point. We shall derive it from the continuity of Φ and ρ after proving that the diagram is commutative.

The proof of commutativity is based on certain norm- and order- preserving properties of the linear functionals on I. Specifically, L^{*} admits a Jordan-decomposition with bounds on the norms, and we shall have a general estimate

$$
\begin{equation*}
\left|\varphi^{\prime}(\rho(\mu))\right| \leq 2 \sqrt{2}\|\mu\| \cdot\| \pm\|, \quad \mu \in \mathbb{M}(\overline{\partial \bar{X}}) \tag{9}
\end{equation*}
$$

and a more special estimate

$$
\begin{equation*}
\left|\varphi_{i}^{\prime}(\rho(\mu))-\varphi(\mu)\right| \leqq \sum_{j, k=1}^{2} \int_{\frac{1}{\partial X}}\left(b_{j}-a_{j}\right) d\left|\mu_{k}\right| \tag{10}
\end{equation*}
$$

where $\mu \in M(\overline{\partial \bar{X}}), \quad \mu=\mu_{1}+i \mu_{2}, \quad f=f_{1}+i f_{2}$ and a_{j}, b_{j} are functions in I_{r} such that

$$
\begin{equation*}
a_{j}\left|\partial X \leqq f_{j} \leqq b_{j}\right| \partial X \tag{11}
\end{equation*}
$$

$$
j=1,2
$$

The estimate (10) is useful if a_{j}, b_{j} can be found such that $b_{j}-a_{j}$ is small on the support of μ. In the sequel we shall approximate a given measure on $\overline{\partial \bar{X}}$ by a sum of measures for which this is possible. The inequality (9) will take care of the remainder term.

Let $M(\overline{\partial X})$ and $\varepsilon>0$ be arbitrary. For every Baire subset B of $\overline{\partial \bar{X}}$ we define $\Phi(B)$ to be the (possibly empty) set of all quadrouples $\left(a_{1}, b_{1} ; a_{2}, b_{2}\right)$ from I_{r} satisfying (11) and

$$
\begin{equation*}
\mathrm{b}_{j}\left|B-\mathrm{a}_{j}\right| B \leqq \varepsilon, \tag{12}
\end{equation*}
$$

$$
j=1,2 .
$$

At this point we invoke the requirement (i) in an essential way to construct a sequence $\left\{B^{n}\right\}$ of mutually disjoint Baire subsets of $\overline{\partial \bar{X}}$ such that $\Phi\left(B^{n}\right) \stackrel{\prime}{\neq} \varnothing$ and $\left\{B^{n}\right\}$ cover $\overline{\partial X}$ up to a $\mu-n u l l$ set. Then we can find sequences $\left\{a_{j}^{n}\right\},\left\{b_{j}^{n}\right\}$, $j=1,2$, from I_{r} such that
(13) $\quad a_{j}^{n}\left|\partial x \leqq f_{j} \leqq b_{j}^{n}\right| \partial x$,
$j=1,2$,
(14) $\quad b_{j}^{n}\left|B^{n}-a_{j}^{n}\right| B^{n} \leqq \mathcal{E}$, $j=1,2$,
and

$$
\begin{equation*}
\mu=\sum_{n} \mu_{n}, \tag{15}
\end{equation*}
$$

where μ_{n} is the restriction of μ to B^{n}.
We shall not go into details concerning the inductive construction of the sequences, but we observe that by (10), (13) and (14), we shall have the following inequality for every n :

$$
\begin{align*}
\left|\varphi^{\prime}\left(\rho\left(\mu_{n}\right)\right)-\varphi\left(\mu_{n}\right)\right| & \leqq \sum_{j, k=1}^{2} \int\left(b_{j}^{n}-a_{j}^{n}\right) d\left|\mu_{k}^{n}\right| \tag{16}\\
& \leqq 4 \varepsilon|\mu|\left(B^{n}\right) .
\end{align*}
$$

Now choose a natural number \mathbb{N} such that

$$
\begin{equation*}
\sum_{n>N}|\mu|\left(B^{n}\right)<\varepsilon, \tag{17}
\end{equation*}
$$

and define

$$
\mu_{0}=\sum_{n>N} \mu_{\mathrm{n}} .
$$

By (9) and (17):

$$
\begin{aligned}
\left|\varphi^{\prime}(\rho(\mu))-\varphi(\mu)\right| & \leqq \sum_{n=0}^{N}\left|\varphi^{\prime}\left(\rho\left(\mu_{n}\right)\right)-\varphi\left(\mu_{n}\right)\right| \\
& \leqq 4(\|f\|+\|\mu\|) \varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, this completes the proof that the diagram is commutative.

To prove w^{*}-continuity of φ^{\prime}, we consider a closed subset F of \mathbb{R}. We observe that ρ maps the unit ball $M_{1}(\overline{\partial \bar{X}})$ onto the unit ball L_{1}^{*}; hence by commutativity:

$$
L_{1}^{*} \cap\left(\varphi_{1}^{\prime}\right)^{-1}(F)=\rho\left(M_{1}(\overline{\partial \bar{X}}) \cap \varphi^{-1}(F)\right)
$$

By w^{*}-continuity of ρ and ρ, and by w^{*}-compactness of $M_{1}(\overline{\partial \bar{X}})$, the set $L_{1}^{*} \cap\left(\varphi^{\prime}\right)^{-1}(F)$ is closed. Hence $\varphi_{1}^{\prime} \mid I_{1}^{*}$ is proved to be w^{*}-continuous.

By the Theorem of Banach- Dieudonne (or Krein- Šmulyan), φ^{\prime} is w^{*}-continuous, and so there is an $\bar{f} \in I$ such that $\rho^{\prime}(q)=q(\bar{f})$ for every $q \in I^{*}$.

By definition

$$
\left.\bar{f}(x)=\psi(x)(\bar{f})=\varphi_{i}^{\prime}(\psi)(x)\right)=\int_{\partial x} f d m
$$

where m is any boundary measure reprecenting (x). If $x \in \partial X$, then we may choose $m=\mathcal{E}_{x}$ to obtain $\bar{f}(x)=f(x)$. Hence $\bar{f} \in I$ is the desired extension of f.

Note that [2] contains a metrizable version of the above theorem in the "geometric" case (for affine real valued functions on a compact convex set). Note also that A. Lazar and E. Afros have proved that metrizability can be avoided in the case of a Choquet simplex [3],[4].

A complete proof of the theorem is given in [1].

References:

E. M. Alfsen; on the Dirichlet problem of the Choduet boundary. (To appear).
E. M. Alfsen, Boundary values for homomorphtsme of compact convex sets: Math Scand. 15 (1964), 97-110.
E. Effros, Structure in simplexes II (To appear).
A. Lazar, Private communication.

