Matematisk Seminar Universitetet i Oslo

Nr. 8 November 1967

On the Dirichlet problem of the Choquet boundary

Summary

Bу

Erik M. Alfsen

The purpose of this summary is to sketch the proof of the following:

<u>Theorem</u>. <u>A continuous and bounded real (complex) valued</u> <u>function f on the Choquet boundary ∂X of a real(complex)</u> <u>sup-norm space L over a compact Hausdorff space X can be</u> <u>extended to a function in L if and only if</u>:

(i) There are no singular Shilov points for f,

(ii) <u>f is annihilated by every L-orthogonal</u> boundary measure.

Recall that X is the smallest <u>representing boundary</u> for L, i.e. the smallest subset Y of X for which there exists a \mathfrak{O} -field \mathcal{F} containing Y and all Baire sets, and a map $\mathbf{x} \stackrel{\bullet}{\to} \mu_{\mathbf{x}}$ of X into the probability measures on \mathcal{F} , such that for every \mathbf{x} X:

(1)
$$\mu_{\mathbf{x}}(\mathbf{Y}) = 1$$

(2) $\mathbf{a}(\mathbf{x}) = \int \mathbf{a} \, d \, \mu_{\mathbf{x}}$, all $\mathbf{a} \in \mathbf{L}$.

It appears that $\Im X$ is a natural set for prescribtion of boundary values.

When $Y = \partial X$, we may as well chose \mathcal{F} to be the σ -field \mathcal{F}_{σ} generated by ∂X and all Baire sets. A measure on \mathcal{F}_{σ} which vanishes on (∂X) , is called a <u>boundary measure</u>. A measure is said to be L-orthogonal if it annihilates all functions in L.

Recall that $\overline{\partial X}$ is the Shilov boundary for L. A point $\mathbf{x} \in \overline{\partial X}$ is said to be a singular Shilov point for a bounded real valued function f on $\overline{\partial X}$ if

(3) $\sup \{a(x) | a | \exists X \leq f\} < \inf \{b(x) | f \leq b | \exists X\},$

where a,b are in the space L_r of real parts of functions in L. Similarly x is singular for $f = f_1 + i f_2$ if it is singular for either f_1 or f_2 (or both). Note that a point $x \in \partial X$ is <u>non-singular</u> for every continuous and

bounded function f on ∂X , and that every point $x \in \overline{\partial X} \searrow X$ is <u>singular</u> for some continuous and bounded function f on ∂X . Clearly (i), (ii) are necessary conditions that f be

extendable to a function in L. If $\Im X$ is closed, then the condition (i) is automatically satisfied. In the general case it is non-redundant.

Example. Let $X = [0,1] v \{i\} v \{-i\}$, and consider

L = $\{ f \in C(X) | 2f(0) = f(i) + f(-i) \}$.

Here $\Im X = X \setminus \{0\}$, and there is (up to a constant factor) only one L-orthogonal measure on X, namely $\gamma = 2 \mathcal{E}_0 - \mathcal{E}_1 - \mathcal{E}_{-1}$. The function f which is identically zero on]0,1] and is 1 on i and -i, will be uniformly continuous on $\Im X$, but it is evidently not extendable to any function in L. Observe that 0 is in fact a singular Shilov point for f. The proof of sufficiency is based on a general "lifting" technique. Let $M(\overline{\Im X})$ be the Banach space of (real or complex) Baire measures on $\overline{\Im X}$ and define maps

as follows:

(4)
$$\psi(\mathbf{x})(\mathbf{a}) = \mathbf{a}(\mathbf{x})$$
, all $\mathbf{a} \in \mathbf{L}, \mathbf{x} \in \mathbf{X}$
(5) $\Im(\mu)(\mathbf{a}) = \int \mathbf{a} \, d\mu$, all $\mathbf{a} \in \mathbf{L}, \mu \in \mathbb{M}(\overline{\Im \mathbf{X}})$
(6) $\varphi(\mu) = \int \widetilde{\mathbf{f}} \, d\mu$, all $\mu \in \mathbb{M}(\overline{\Im \mathbf{X}})$,
 $\overline{\Im \mathbf{X}}$

where f is the continuity extension of f from $\Im X$ to $\Im \overline{X}$. (Note that (i) entails uniform continuity.)

Finally:

(7)
$$\mathcal{O}'(q) = \int f \, dm ,$$

 ∂X

where m is any probability boundary measure which <u>represents</u> the linear functional q, i.e. for which

(8)
$$q(a) = \int a dm$$
, all $a \in L$.

Note that (i) entails F_o -measurability of f , and that the definition of φ' is non-ambiguous by virtue of (ii).

Clearly ψ , φ , φ are continuous w.r. to the given topology of X and the w*-topologies on L* and M($\overline{\partial X}$). The w*-continuity of φ' is the crucial point. We shall derive it from the continuity of φ and φ after proving that the diagram is commutative. The proof of commutativity is based on certain norm- and order- preserving properties of the linear functionals on L. Specifically, L^* admits a Jordan-decomposition with bounds on the norms, and we shall have a general estimate

(9)
$$|\varphi'(\varphi(\mu))| \leq 2\sqrt{2} ||\mu|| \cdot ||f||$$
, $\mu \in \mathbb{M}(\overline{\partial X})$,

and a more special estimate

(10)
$$|\varphi'(\varphi(\mu)) - \varphi(\mu)| \leq \sum_{j,k=1}^{2} \int (b_j - a_j) d|\mu_k|$$
,

where $\mu \in \mathbb{M}(\overline{\partial X})$, $\mu = \mu_1 + i \mu_2$, $f = f_1 + i f_2$ and a_j, b_j are functions in L_r such that

(11) $a_j | \partial X \leq f_j \leq b_j | \partial X$, j = 1, 2.

The estimate (10) is useful if a_j, b_j can be found such that $b_j - a_j$ is small on the support of μ . In the sequel we shall approximate a given measure on $\overline{\partial X}$ by a sum of measures for which this is possible. The inequality (9) will take care of the remainder term.

Let $M(\overline{\Im X})$ and $\xi > 0$ be arbitrary. For every Baire subset B of $\overline{\Im X}$ we define $\Phi(B)$ to be the (possibly empty) set of all quadrouples $(a_1, b_1; a_2, b_2)$ from L_r satisfying (11) and

(12) $b_j | B - a_j | B \leq \mathcal{E}, \qquad j = 1, 2.$

At this point we invoke the requirement (i) in an essential way to construct a sequence $\{B^n\}$ of mutually disjoint Baire subsets of $\overline{\partial X}$ such that $\Phi(B^n) \neq \emptyset$ and $\{B^n\}$ cover $\overline{\partial X}$ up to α μ -null set. Then we can find sequences $\{a_j^n\}, \{b_j^n\}, j = 1, 2$, from L_r such that

- 4 -

(13)
$$a_j^n | \partial X \leq f_j \leq b_j^n | \partial X$$
, $j = 1, 2$,

(14)
$$b_{j}^{n} | B^{n} - a_{j}^{n} | B^{n} \leq \mathcal{E}$$
, $j = 1, 2$,

and

(15)
$$\mu = \sum_{n} \mu_{n},$$

where μ_n is the restriction of μ to B^n .

We shall not go into details concerning the inductive construction of the sequences, but we observe that by (10), (13) and (14), we shall have the following inequality for every n:

(16)
$$|\varphi'(\varphi(\mu_n)) - \varphi(\mu_n)| \leq \sum_{j,k=1}^{2} \int (b_j^n - a_j^n) d|\mu_k^n$$

 $\leq 4 \mathcal{E} |\mu|(B^n)$.

Now choose a natural number N such that

(17) $\sum_{n>N} |\mu|(B^n) < \mathcal{E},$

and define

· · · ·

$$\mu_{o} = \sum_{n > N} \mu_{n} \cdot$$

By (9) and (17):

$$\left| \varphi'(\varsigma(\mu)) - \varphi(\mu) \right| \leq \sum_{n=0}^{N} |\varphi'(\varsigma(\mu_n)) - \varphi(\mu_n)|$$

$$\leq 4(||f|| + ||\mu||)\varepsilon.$$

Since $\mathcal{E} > 0$ was arbitrary, this completes the proof that the diagram is commutative.

¢ '

. h . . .

1

÷ _ _ _

. <u>1...</u> .

To prove w^* -continuity of φ' , we consider a closed subset F of \mathbb{R} . We observe that φ maps the unit ball $\mathbb{M}_1(\overline{\Im X})$ onto the unit ball \mathbb{L}_1^* ; hence by commutativity:

$$\mathbb{L}_{1}^{*} \cap (\varphi')^{-1}(\mathbb{F}) = \mathcal{P}(\mathbb{M}_{1}(\overline{\mathfrak{D} \mathfrak{X}}) \cap \varphi^{-1}(\mathbb{F}))$$

By w*-continuity of φ and φ , and by w*-compactness of $\mathbb{M}_1(\overline{\Im X})$, the set $L_1^* \cap (\varphi')^{-1}(F)$ is closed. Hence $\varphi' | L_1^*$ is proved to be w*-continuous.

By the Theorem of Banach- Dieudonné (or Krein-Šmulyan), φ' is w*-continuous, and so there is an $\overline{f} \in L$ such that $\varphi'(q) = q(\overline{f})$ for every $q \in L^*$.

By definition

$$\overline{f}(\mathbf{x}) = \psi(\mathbf{x})(\overline{f}) = \varphi'(\psi(\mathbf{x})) = \int_{\partial \mathbf{X}} f \, \mathrm{dm} ,$$

where m is any boundary measure reprecenting $\psi(x)$. If $x \in \partial X$, then we may choose $m = \mathcal{E}_x$ to obtain $\overline{f}(x) = f(x)$. Hence $\overline{f} \in L$ is the desired extension of f.

Note that [2] contains a metrizable version of the above theorem in the "geometric" case (for affine real valued functions on a compact convex set). Note also that A. Lazar and E. Effros have proved that metrizability can be avoided in the case of a Choquet simplex [3],[4].

A complete proof of the theorem is given in [1].

References:

E. M. Alfsen, <u>On the Dirichlet problem of the Choquet</u> boundary. (To appear).

E. M. Alfsen, Boundary values for homomorphisms of compact convex sets. Math. Scand. 15 (1964), 97-110.

E. Effros, Structure in simplexes II (To appear).

A. Lazar, Private communication.