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Modular Lattices and.the Lebesgue-

R9don-Nikodym theorem. 

By 

SIAL AANDERAA. 

The ai~ or thls hdte ls to improve some results due to 

Alfsen ( Q) p .453). Ne shall assume that the reader is fam+liar 

with this paper, in particular with the definition on pp.442-453. 

We shall improve Alfsen's form of the Lebesgue-Radon-Nikodyrn 

Theorem as follows. Alfsen represents valuations of L by 

elements in a space ct, (S,.1;m) and each element x of L is 

represented by elements 

( 1 ) 

H 
X 

and K 
X 

-v 
of 'I' in such a way that 

Moreover, he proves that this result is optimal in the sense 

that it can not subsist for any larger H 
X 

or any smAller K . 
X 

We shall represent each element x in L by an element 

hx in ,£, (s,J~rn) which yields an exact Lebesgue-Radon-N~kodym

Theorem with an equation of the form 

(2) 
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2. Definitions. 

Let L be a fixed modular lattice with a least element }5 
and a greatest element e• Consider the set V of valuations 

on L which satisfy v (¢} = 0. Let L' te the set of 'pro

jectivity-invariant additive interval-functions on L. The 

formula ft(x,y) = v(y)-v(x) (as well as the formula 

~~,x) = v{x)) establishes a 1-1-correspondence between the 

sets V and L 1 • ~e shall in this paper mainly deal with 

interval cunctions. Given an interval function ~~ L', 

also use /~ to denote the corresponding valuation in V; 

f(x) is an abbreviation for ,lL (¢,x). Then the equation 

)A-( x , y ) = )Jv( y ) -jL{ x ) is a 1 so v a 1 i d • 

we shall 
l 
1 .• e. 

Let * L denote the greatest directed vector-subspace of L' 

By using a Riemann-Darboux integration process we may de.fine the 

lpttice operation within L* by v and 1\ . In this ~ay, L* 

b~comes a complete vector lattice. (See 1 p.447). Since .L has 

both a least element and a greatest element, L* consi$tS of 

those )'J..-€. L' 

let jk ~ o. 

which are of bounded variations. Let~ € L* and 

Let ,.Ot.. (}A be the closed ideal generated by )L·. Then 

.IX~ is an ( L-) space with respect to the norm 

N ( lJ) = !Yl ()15, e) = ( ')) V 0) (¢,e)- (JJ A 0) (¢,e) 

and 1u. is a weak order unit for,cG.yut. 



- 3 -

Let B (/·L) be the greatest subspace of j(lv~ for which 

is a strong unit i•e· 

Let~ 1 (s,1",m) be the Kakuteni-representation of the 

(L-)spate ~' defined dn pa445 and p.452 in L1j.1}Let each 

V E ,.,dt~F be tepresented by fv ~ ~ ( S, J;m). Then the mapping 

')) -7f)) of ptftf') into ~1 (s~.:T,m) h~s the property that f;t-~z) = 1 

for every z ~ s. Let f 3f g, mean that m({s.ls E S & f(~) = 

g(s)j) = o, (i.e. f = g almost everywhere). Then the mapping 

'V-4 fl' satisfies the condition 

If y ~ B YJ then fy c !L00( S ,J', m) and we rna y choose the mapping 

y~ fy such that 

(3) 

for every ')), r € B(_p.J. This follows from the fact that there 

exists a mapping p of ;;LC(I(s,d";m) into ;t;(s,T,m), satipfying 

the following conditions. (See [2] and references mentioned 

therein.) 

I fJ (f) ~ f 

iJ 5 .1 / . ee. '\t\o1:.e 
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~II p ( 1 ) = 1 

IV f ~ 0 ::::::=) (0( f) '? 0 

V p(af+bg) = ap(f)+bp{g) 

VI p ( f g) = p ( f )(b( g) • 

The equation (3) is satisfied if we choose the mapping 

1' -7 f1} such that f ... ~ = p ( fv) • 

Let <f be the mapping of£ 1 (s,3)m) onto AX(jA satisfying 

the followin~ two conditions. 

1. cf < fv) =r ·v 

2. C{J (f) =Cf(g)~::=)f =g. 

For some f,gE £..i(s,.sr;m) we have that fgE .~ 1 (s,J",m) (where 

(fg)(z) = f(z)g(z), for all z ~ s}. 

Hence we may define the product V't' for some 11,z:-E,..£t.(.W 

as follows 

f c(i(f}lf't) if 

-L undefined if 

Let 1) e: t~CA4. Then the product ~V is always defined anc 

p .. /l) = '}), since fu.. ( z) = 1 for every z € S. Moreover, if 

't E. B (,14..-) then the product "CV is defined for all ")) E: P'V(JJ.-1-·. 
I 

We shall write Y 2 for'Jl'Y. Let "f'";(it.(iu,.) be defined as follows, 
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It is easy to verify that if 1), t: G:. V~(~ ' ahd if t is .a real 
' ,---.,--, 

number, then IV 1,- Vt'V,VA't, -vv't',v'+ t"E 1/.U.j-4 and 

11 L. E/d}4. Moreover, if V ~'))' 1 ~ 't' and if ··v, '1: E. YJ .Vv~J.L)', 

then 'V 1((£ V pt;.)..,~). Moreover, B (jJ,.,) S. v;?iXjiS. Hence Y _.QV~J is 

a vector lattice and V~v~' becomes a Hilbert space if we define 

scalar product '))e 7:: as follows 

The L""' -norm of V is then Li)lo v' 
' 

,-:-:z A-. 
= V 1) (.,... , e ) • 

3. The Lebesgue-Radon-Nikodym Theorem. 

Let w be a mapping of 1[/~v~)>< L into the real numbers 

as follows. 

( 4) 

We shall say that r ~ U...tt-(jl.1' is the representative of 

xE L if the following two conditions are satisfied for every 

v E.\!~~). 

(5) W ( V ' X ) ~ W (t' , X ) 

(6) W ("))'X) = W (z;', X) - ';:; ')) = 't'. 
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Given x € L we shall denote the representative of x by 

~ x' if ther~ exists any. tx is undefined if there exists no 

representative of x. We shall first prove that "C x exists for 

every X E I..., and that O~"t' ~f'!· X . 
(Lemma 4 and Lemma 7.) Then 

the following theorem is easily obtained. 

l.h§orem 1. Let L be a modular lattice with a least element¢ 

and a greatest element e, and let ~ be a fixed positive 

element of L*. Then to each x e L there corresponds a unique 

tx E r...*, such that the followin~ conditions are satisfied for 

every 11 E L *·. 

,i( 7 ) 0 of ~ X ~ ~ 

( 9) (J) ~ v~(J.L) & w(')l,x) 
I 

::: W ( t' X ' X ) ) ~_;) '"}) ::: 1: X ... 

( 1 0 ) v ( X ) = (Z' X)}) { 9 ) • 

Assuming theorem 1 we may define a representative hx of 

~ in £ 1 (s,$,m) 

1( A/v()Jll, then hx 

as f olloyvs. Let 1:: F t' x :r:epre sent 

= f~ is the representative of x 

X in 

in 

i£ 1 (s,J:;m). Then we obtain the following theorem from Theorem 1 • 

Th~m 2. Let L be a modular lattice with least element ¢ 
and greatest element e, and let fA/ be a fixed positive element 

of r...*. If 'Y E. L* and 11 a.re absolutely continuous with 



- 7 -

respect to~, then for every x E; L 

It is convenient to prove some Lemmas in order to prove 

Theorem 1, and we also need some new definitions. Let 

l(x) = inf(w(Y,x)), where A = V~~). 
'lJe.A 

Lemma 1. .Let 'V ,V1 E; v;t/(.,(1/L); ')I f: 0 and let x E L. Then 

\ 
' 

r _.__._"":'""'l 

there exists V E y ft(p.;J and a real number t 0 such that the 
0 I 

following four conditions are satisfied for every real number t. 

( 12) y =')J1+t v 
0 0 

( 13) 

( 14) 

( 15) 

Let t be a real number. Since 

we easily obtain 
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Hence 

and 

9ince )J t 0. 

Her.ce there exists a real number t 0 such that 

t 0'V 2 (¢,e)+ (iV1 ) ('fJ,e)-'V(~,x) = 0. By choosing')) 0 =l/1 tt~V we 

~ave that (12) and (13) in Lemma 1 are satisfied. 

( 1 6) 

But 

If we replace j) 1 by "I we obtain 
0 

which is not possible for every t unless 

( 1 7 ) 

This proves (14) in Lemma 1. Finally we obtain (15) by 

equation (10) and (17). This completes the proof of Lemma 1. 
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Lemma 2. Let 'Y€ ~(~"', and let x ~ y, when x,y E. L. 

( 18) 

Proof. Since J Vf 2 =1J 2.' it is sufficient to prove that 

(19) 
' ' ; . ·-· 111 (x,y)J J ~}J--(x~y) ·~(x,y) 

Since x ~ y, we have jk(x,y) ~ 0 and :ll 2 (x,y) ~ 0. 

Hence (19) is equivalent to 

( 20 ) ~ ( X , y )'})2 ( X , y ) - (7) ( X , y ) ) 2 ~ 0 

Let t be a real number. Then 

(21) OJ+tP,) 2 {x,y) =)) 2 (x,y)+2t'V(x,y)+t2jL(x,y), 

since p:v = ).) and jL J' =f" . 

Moreover, 

(22) 
2 . 2 

( (l)+tf'){ X, y) ) = ~(X, y )+t)l-( X, y) ) 

,, 2 2 
= (l) (x,y) )«:.+2tl/(x,y~x,y)+t ~(x,y)) • 

Hence 
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~23) 
2 2 fJ.J (x,y)V (x,y)-{i/(x,y)) = 

p .. (x,y) (1)+tjl), 2 (x,y) -( f;)/+tft(x,y) )2 ~ o, 

Since !-"(x,y)W+tp1 2 (x,y) ~ 0 and (iJ+tf)(x,y) = 0 

for some value of· t. Thi·s completes the proof of Lemma. 2. 

Lemma.._J. Let E be a real number ~ 0. Suppose 

vy ( ')/ 1 , x ) -1 ( :X ) ~ £... and w (V 2 , x ) -1 ( X ) ~ t . Then 

4£ , and J V 2 ·-111 I '4 , e ) .:; 2 "Vp.i tf, e) E.- • 

(Recall l(x) = inf( w( V ~x)).) 

Lemma 1 is satisfied. Then we have the following equations 

by (13) since V 2 =V 1+V. 

/11\oreover, ')) 1 =1.' 0 +(-t 0 ))1 and?) 2 =V 0 +(1-t 0 )v. 
Hence 

(26) 

by (24), (25) and ( 15). 

Hence 
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and 

Since eithet t~ ~ ~ or (1-t~) 2 ~~>we have that 

('Y 2 -1'1 ) 2 '4>, e ) =V 2 (¢;> , e ) ~ 4 C . 
Hence J'l/2 -)' 1/ (cp,e) -t: 2Vr-~-..,j:>~,e-)-·E--::- by lemma 2. This 

completes the proof of Lemma 3. 

Lemma 4. Let x€ L. Than ?: x is defined, i.e. there exists 

a t"E V,a.~ such that (5) and (6) are satisfied for every 

>' € V,~Jt.~. 

Proof • Let x € L. Choose an infinite sequence ')) 1 ,")J 2 , ')13 , • • •, 

....----
)) i lE tf ~)b) such that 1 i mn w (')In , x ) = 1 ( x ) • 

Then there exists aL e '( #;~, such that limnVn = "t , 

and limJI~ ='t' 2 by lemma 3. Then w("'C,x) = l(x). Hence the 

inequality (5) is satisfied for every VE Y/lt(~. Suppo$e now 

that w(V,x) = w{X,x) = l(x), then ('f:-')1) 2 tf,e) = 0 by Lemma 3. 

Hence t' =,; . This shows that condition ( 6) is satisf ieQ.. This 

completes the proof of Lemma 4. 

Lemma 5. Let VE •{/{lt(jk) 1 and let x E L. Then 

(28) 

Let "T = V L. X 1 
in Lt;;mma 1. Then V 0 =Y1 and t 0 = 0. 

Hence we obtain (28) by applying equation (14). 
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Lemma 6. ---- Let L 
X - y, th..=on - <y 

(._ X - y• 

Let 1) 1 and 1) 2 be the Jordan decomposition Qf 

Then we have 

0 ~ •y 2 ( X, y) = V 2 (cp, )l)-j/2 (cj;, X) = (t y)}2 ) (¢,e) -tTX ~) (cp, e) 

= ( cry-t"x)V2 ) (q),e) == ( (JJ1-)J2 )V2 (¢,e)) = -V~(¢,e) ~ o, 

since "\) 1 t/2 == 0 • 

Hence V ~(q\e) == 0 i.e. V , .. , == 0 and 7: -7: == 11 ;;;. 0. 
L L Y X 1 

This completes the proof of Lemma (. 

Lemma 7 • z; - o, Te = f- and 0 ~ rx ~ JL· for every X c:::~. L. 

.P.!.Q_gf. (f-l-0) 2 (¢,rp)+02 (p,e) = 0. 

Hence "C q1 == 0. In the:: same way 

2 , 2 
~-~~) (<p,e )+fl.; ( e ,e) == 0. 

Hence L e = ~· Since ¢ f: X f e' we have that ·rq) f r X f:. r e 

by Lemma G. This completes the proof of Lemma 7. 

We shall now complete the proof of Theorem 1. Theorem 1 
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follows from Lemma 4 and L~mma 7 except for equation 4; i.e. it 

remains to prove 

')) ((/:>,x)=(V~.) (cjJ,e) 

in the case in which V e pt(j)), but Yf V ffi(j.L) ·• 

Assume first that 1) ~ 0. Then'Vrx is defined since 

0 ~ 7: x ~ )» , and 

1i E ~(~ <=> ")) = sup (1) 1\ nLL-) I n I . 

(see [1] p.448). Let E. be a positive number. Then 

(29) 0 ~ ('})-(111\ n_f) )(¢,e) ~E. 

and 

(30) 

for some n. But 0 ~ rx ~)J-- and ('V-(V 1\ n~) ~ o. 

Hence 

0 ~ (fx(V-('V 1\ n(-11)) (¢,e)~ ~(V-()1/\ njM) Hcp,e) 

< l v - ( v 1\ 11 !..l)) (04 e) ~ E. 
- I I ; 

But (11 A n~ € V'ttyJ...) ·• Hence 

0 .f-· ([x()J-()11\ n~))(rj;,e) = ([x)/)(rjJ,e)-(rx(Y/\ nj-1--))(f,e) 

= crx V)(rj:; 'e ) - (y 1\ nr)(¢' X ) ~ €.. . 
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Hence by (30) we have 

This completes the proof of Theorem 1 . 

.-.-
theorem 3a The mapping 

the following equation. 

X-) L 
X 

of L into LK satisfies 

r + r = c: ( ) + r.( ... i .) • 
X y X Ay X ~ y 

!Proof. 
~·-

Hence 

This completes the proof of Theorem 3. 
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Theorem 4. 
~·--

The mapping x--;.. hx of L into ;£ 1 ( S, .r; m) 

$atisfies the following equation. 

(32) h +h - h + h x y xf\ y xvy 

,ErogJ. Since 0 ~ Tx ~ f" and 0 ~ ry .£:. ;» we have that 

1 'r T ,Txv y E' B (u~ . Hence Theorem 4 follows from rx' y' x/\y r· 

Theorem 3 and from the fact that the mapping I) -7 f)l is defined 

in such a way that 

f +f . v 't 

Theorem 5. Let T ...... be a modular lattice with least element ¢ 
and greatest element e. Then there exist a space ( S ,3'; m) and 

two mappings X-) h 
X 

and ")) ----7 f 
')) such that the following 

conditions are satisfied. 

I is a mapping of L into L (s,:f,m) 
01;, 

II f is a. 1 - 1 mapping of L * into .;£1 ( S , J', m ) • 

III h ~ 0 h = 1, 0 ~ h 
~ ' e x 

< for all X~ L. 

IV 1) (x) = S hxf'l)dm for every x E L and""\) E=~ L * 

h +h = h + -h v 

VI 

X y Xf\ y . X\IY 

C iS . i ~ o YYl o Jv J i <'- Av L l ( 5 1 CJ, WI) 0 -· ~\;....L f'\1\1\_(,1..\'\Vv~ ~ 'Y ·~ i .1) 
~ -o~ ~ vY 

We shall sketch a proof. By using Zorn's L~mma it is easy 

to prove that there exists a subset K of 

following three conditions. 

1) hfJ..CL- .f\vr{..e.. 0\A. f'-tt~ \ <6 • 

* L satisfying the 
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1. foE K :;:) f->0 

2 • ~1 E K C)·J/2 E K t/U-;1 4= lJ'2) :::::> f-'1 "f-'2 = 0 

3. (1)EL* &V:> 0) )there exists a ~€ K such that 

f--AV\ o. 

Let 

K ={fl-c-~ i o<..E I } 

in such a way that fo.._. +)A'(}; if OC.. + p and CJ... , (3 E I. Le c 

?) E L *. Thsn there exist mappings "))---7 '))o<.. for every !f.... E:. I 

such that l,.~ 6 £1,(/J.,.J and ! (1)- 1bJ I A ~cJ- = 0. Moreover, 

V~ = 0 except for a countable subset IV of I. It is easy 

to prove that 

(33) y = L 1J. 
rJ!E I 0<. 

Let the space be the Kakutani-representation of 

2" = {X I X ~ s &. (V<X) ( X fl SO(. € ~ ~ 

m(X) = L mQ(. (X 11 Set). 
oe.e:I 

Moreover, for every j) E L* and d.- € I, there corresponds a 

representative fiJ in 
,~ 
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Note that our notation is somewhat different from 
He 

that used by Alfsen~Aidentifies functions which are egnal e.lmost 

everywhere in the space !,1 ( S, ,'T, m)? and we do not. We shall 

use the notaticn L1 ( S, f, m) to denote the quotient space . 

obtained from ~1 ( S, :q;, m) by identifying functions which 

are equal almost everywhere. 

Strictly speaking, we should have used L1(s;T, m) 

to denote the Kakuta.ni--representation. 
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