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1. Introdu;tiggi

The aim of this note is to improve some results due to
Alfsen ([}1 p.453). ile shall assume that the reader is familiar
with this paper, in particular with the definition on pp.442;453.
We shall improve Alfsen's form of the Lebesgue-Radon-Nikodym
Theorem as follows. Alfsen represents valuations of L by%
elements in a space &£, (S,F;m) and each element x of Li is

~J

represented by elements Hx. and Kx of ¥ in such a way that

(1) ‘S f,dm £ v(x) 55' f,dm
Hy Ky
Moreover; he proves that this result is optimal in the sense
that it can not subsist for any larger H, or any smaller Kx'
We shall represent each element x in L by an element
h, in 58, (s,#,m) which yields an exact Lebesgue-Radon-Nikodym-
Theorem with an equation of the form

(2) v(x) =S h, £, dm.



2. Definitions.

Let L e a fixed modular lattice with a least element gf
and a greatest element e. Consider the set V of valuations
on L which satisfy v(g) = 0. Let L' bLe the set of pro-
jectivity-invariant additive interval-functions on L. The
f6rmula/ﬂ¢(x,y) = v(y)-v(x) (as well as the formula

)L@ﬁ,x) = v(x)) establishes a 1-1-correspondence between the

sets V and L'. e shall in this paper mainly deal with
interval ‘unctions. Given an interval function /M‘Q L'y we shall
also use jﬁr to denote the corresponding valuation in Vj; i.e.
/L(x) is an abbreviation for’u,ké,x). Then the equation

Jx,y) =pdy)px)  is also valid.

Let L® denote the greatest directed vector-subspace of L'

By using a Riemann-Darboux integration process we may define the
lattice operation within L* by v and A . 1In this way, L*
becomes a'complete vector lattice. (See 1 p.447). Since L has
both a least element and a greatest element, L* consiéts of
those /‘vkeL' which are of bounded variations. Let/& €V L* and
let /u,é 0.

Let,GtSpD be the closed ideal generated by /uf. Then
A%gu) is an (L-)space with respect to the norm

N(W) = WV (Fre) = (VVO)he)-(» AO)(de)

and M is a weak order unit forAﬂLyu}.



Let BQ“O be the greatest subspace Of;&b&#) for which

is a strong unit iie.

B :fvt@nﬁ(unﬁev ‘ “{‘“’}

Letaﬂ (s,F,m) be the Kakutani-representation of the
(L-)space Aﬁqu, defined on pi445 and p.452 in £1j.¢3Let each
Véﬂgf&) be represented by f,& .‘f,l(S,?;m). Then the mapping
YV —>f, of miy)into &61(5,35m) has the property that gb(z) = 1
for every z €5S. Let fz 9y mean that {s]s € S & f(:) =
g(sl&) = 0y (i.e. f =g almost everywhere). Then the mapping
V— fy satisfies the condition K »

fJH‘Z',‘ = fv+f’5‘

If vy eEﬂ/Q then f,, € luKS,gﬂm) and we may choose the mapping
V- fy such that

- (3) £ = £, +f,

VT

for every m’,T’GEN}O- This follows from the fact that there
exists a mapping @ of 4.(5,%,m) into iuﬂs,gjm), satisfying

the following conditions. (See [2] and references mentioned

therein.)
I (o(f)a f
II fzg=p (f) =R

Ay

See mote ow paqe |9,



III P1) =1

va £20=30(f) 20

v P(af+bg) = ap(f)+bp(g)
VI P(fg) = g(f)plq).

H

The equation (3) is satisfied if we choose the mapping
Y — £, such that f£, =(Cl(fv).
Let ¢) be the mapping of & 1(S,d',m) onto ARJ}D ‘satisfyinc

the following two conditions.

1y
«Q

2. PlE) =qlg)e=>1

For some f,g¢ Jﬂl(S,QZm) we have that fge ﬁiT(S,gim) (where
(fg)(z) = f(z)g(z), for all z e S).
Hence we may define the product YT for some V,7 e (W)

as follows

P(g £.) if f,f € &, (5,%n)

[l

VT AU
undefined if £y £, ¢ L, (s,%n).

Let Y € 444 . Then the product MV is always defined anc
AV =V, since f,.(z) = 1 for every z € S. woreover, if

T € B(.) then the product ¥V 1is defined for all V& ZU(0).

{

We shall write Vv 2 fory¥ . Let “Jﬂb(},w) be defined as follows,



N e ={vlve odp) and Y2 is defined’:

It is easy to verify that if ¥,7e g and if t is a real
numper, then |Vi,- v-t’y"y/"t y YV WrTE fﬁa;ﬂr and

0% Ze/&d/l-). Moreover, ify £y,€7 and if v, T € Vo),
then 7}1é;ViEZ];IT. Moreover, B(}w < szﬁZT. Hence viZZ{ﬁj‘ is

e -
a vector lattice and VALA(JX) becomes a Hilbert space if we define

scalar product Ve T  as follows
Vo = (VD) (@re).

The L,y-norm of ¥ is then L/;:\; =i vl

3. The Lebesqgue-Radon-Nikodym Theorem.

Let w be a mapping of %f,'»ﬁ'/(/w—)x L into the real numbers

as follows.

(4) w(,x) = (W-1) 2@, %)% (x,e).

———— ey oy

We shall say that T € U/ﬁ’/(}-b) is the representative of

x€ L 1if the following two conditions are satisfied for every

Ve g,
(%) w(¥,x) > w(¥,x)

w(l,x) ==V =T.

i

(6) w(yyx)




Given x € L we shall denote the representative of x by
LA

representativé of x. We shall first prove that T X exists for

if there exists any. fo is undefined if there exists no

every x € L, and that 0¢7% % M. (Lemma 4 and Lemma 7.) Then

the following theorem is easily obtained.

Theorem 1. Let L be a modular lattice with a least element ¢
and a greatest element e; and let M be a fixed positive
element of L®. Then to each x € L there corresponds & unique

?Tx éle, such that the following conditions are satisfied for

P2
every VY& L7,

A7) 0 éfﬁx < W
(B) YV €V AN= wlv,x) > wlt,,x)
(9) (V EVAQ) 8 wyx) = w(® ,x)) = V=1,

Assuming theorem 1 we may define a representative hx of
X in dﬁ ,m as follows. Let T = T, rTepresent x in

‘1/4ﬁ§'}v » then h = £t is the representative of x in
361(8,5€m). Then we obtain the following_theorem from Theorem 1,

Theorem 2. Let L be a modular lattice with least element 95
and greatest element e, and let f&‘ be a fixed positive element

of L%, 1fye LY

and Y are absolutely continuous with



respect to/L;, then for every x¢€ L
(11) Vv (x) = jhxfydm.

It is convenient to prove some Lemmas in order to prove

Theorem 1, and we also need some new definitions. Let

1(x) = inf(w(¥yx)), where A = UAZ&M).
VEA \

Lemma 1. Let ¥,V, € W(,LL,); YV # 0 and let x& L. Then
. [
there exists ]}Oé pﬂM(yJ and a real number t  such that the

following four conditions are satisfied for every real number t.

(12) Vo, =Vt Y

(13) w(y1+t7,x) 2 w(Y ,x)

Proof. Let t be a real number. Since

Wl +tY,x) = (1Y, 1)) 2@, x)+ (U + 1) % x )
we easily obtain

W ttYsx) = V(e ) +2t (WY ($re) Viyx) Jrw(y,x) .



Hence
L, +tv,x) = 2097 e)+ () ($ye) V()

and
2
——'—‘W('V,]'"tv,x = 2)} ¢,e
dt
since ) # 0.

Her.ce there exists a real number t such that
tgvqu,e)+ (PV1)(¢%8)4V(¢,X) = 0. By choosing ¥ _ =Q/1Tt67 we
have that (12) and (13) in Lemma 1 are satisfied.

If we replace )/1 by v o We obtain

2 r

(16) W(VO+tV9X) =t '3}2(9"5” )+2 ‘?79 Vﬁpsﬁ)) (Voax)

But

WVt x) = wl (e vty )Y,x) = wiy ,x)
which 1s not possible for every t wunless
(17) (VW) (fre)-vp,x) = 0

This proves (714) in Lemma 1. Finally we obtain (15) by

eguation (16¢) and (17). This completes the proof of Lemma 1.



Lemma 2. Let V& \}/6"0‘(},&), and let x €y, when x,y€ L.

>}

(18) | [ (x,y) éﬁ.l.'(x,Y)"yz(x',»Y) .

Proof. Since e =1’2; it is sufficient to prove that

(19) [V G| £ V06 y) 92 (6 y)

Since x <y, we have }L(x,y) > 0 and QJZ(X,Y) >0,

Hence (19) is equivalent to
2 2 N
(20) /bb(x,y)y (x,y)-P(x,y))° 20
Let t be a real number. Then

(21) e y) =V 206 y)+2t) (6, y) ey,

since }L'V=)/ and)k)rb =l“/.

Moreover,

(22) (+) (x,7))% = @0x,y)rtplx,v))°

= 0 (x, ) 206, y s ¥ )2 (R, y)) 2

Hence
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(23) o Gy 706 y)-/0x, 1) -

Pe(x ,Y"V+t}0 XyY) +tf0(x,y))2 >

Since )ﬁ XYy (]/+t}1) X,¥) 2 0 and (’U+t’i«)(x,y) =0

for some value of t. This completes the proof of Lemma 2.

Lemma_3. Let € be a real number * 0. Suppose

W, yx)-L(x) 4&  and wl,,x)-1(x) $E. Then O,-¥,)%(¢,e) ¢
4, and |V, Y| @,e) = 2Vlge) €

' (Recall 1(x) = inf(w( V,x)).)

oof. Let Y =V2-' 1» and choose 'VO and t, such‘that

Lemma 1 is satisfied. Then we have the following equations

I~
N

(24) 0% wl¥ _,x)-1(x)

o vv(’)/1,x)—l(x) ¢E

(259) 0« W(’g‘./o,x)—l(x) LS w(v2,x)-l(x) £e
Ly (13) since ‘)/2 ='b’1+'l«’ .

ioreover, Y 4 =V +(-t W and®y 5, =¥ +(1-t ).

Hence

[FaY

(26) 0 £ why,,x)-1(x) & wl¥_,x)-1{x)+t2V° (P,e) €

(27) . 0 £ wl,x)-1(x) £ wlyg,x)-1(x)+(1-t )9 (g,e) ££,

0

by (24), (25) and (15).

Hence
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0 51,2(;5 e) £¢ and 0 % (1-to)2~u2¢,e) £e .

Since elthet tz 2 21: or (1-t N2 s

(Y,=v,) )2(pye) =V Zip,e) € 4E.
Hence 1’1/2-’)/1‘ (Cf-’,e) < 2V}A(¢,e)-£‘ by lemma 2. This

, we have that

completes the proof of Lemma 3.

Lemma_ 4. Let x& L. Then ’C'x is defined, i.e. there exists
al € v;/mfﬂ‘ such that (5) and (6) are satisfied for every

Y eV .

Proof . et x€& L. Choose an infinite sequence ')/1 ,723’)/3,.. .

’)’ié V—m such that limnw(vn,x) = 1(x).

Then there exists a€ € m_(_,j,)— such that lim Y =T »
and limr}ii =’C’2 by Iemma 3. Then w(T,x) = 1(x). Hence the
inequality (5) is satisfied for every Ve Vm— Suppose now
that wl/,x) = wlf,x) = 1(x), then ('C'—)/)zé,e) = 0 by Lemma 3.
Hence © =7 . This shows that condition (6) is satisfied. This

completes the proof of Lemma 4.

Lemma 5. LetYeE VE(}M and let x € L. Then

(28) Y (x) = (VE)@se)

proof. Let T, =¥y in Lemma 1. Then V,=V; and t,=0.

Hence we obtain (28) by applying equation (14).




Proof. Let 3/1 and 1)2 be the Jordan decomposition of

’ty-?%'(g ioeo

X

T,Ty = V4= Y 2 0, V, >0, V,AY, = o.

Then we have

since V¥, = O.
Hence V2(fhe) = 0 i.e. Y, =0 and T T, =V, =o0.

This completes the proof of Lemma ¢.

Lemma 7. Z% = O,'?; =H- and O £ t; €M for every x & L.
Proof. ([\&-0)2@,@‘5}*"02(@,@) = 0.
Hence Z;f = 0. In the same way

(> (Bye) 4 (e e) = .

. = S £ 5y £ o, we L, ¢ c
Hence te /.1/ Since ¢ X ey we have that Z@r Tx Ie
by Lemma 6. This completes the proof of Lemma 7.

We shall now complete the proof of Theorem 1. Theorem 1
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follows from Lemma 4 and Lemma 7 except for equation 45 i.e. it

remains to prove

YV D) =0T) (@)
in the case in which Y € .4(Y/), but'l/¢. V—ﬁ—i—(ﬁ)-‘
Assume first that VY = 0. Then'UZ.X is defined since
04T €M, and
VE /0'(/(}}1) &=HY= sup (VA n)J—)

(see [1] p.448). Let & be a positive number. Then

(29) 0 < (V-(VAnp)(@ye) <€
and
(30) 'V/\)Ln (,x) <€

for some n. But O éfx €h and (V-(V A np) =

Hence

0 € (T, (V-tWA npd))(gye) € W(V—(V/\ n}l)))({,ﬁ,e)
LV -(YAan)) (g,e) €.

But (VA n/u)é V'é’(/(/;z,)'. Hence

0 & (T V-V A o)) (gye) = T V) ;rS (T VA ) (re)
= <TXV)(¢99)‘(’V/\ n}L; ¢7x <
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Hence by (30) we have

0 £ (T)(re) i) £E

This completes the proof of Theorem 1.

Ibggrem 3. The mapping x —¥ Lx of L into L* satisfies

the following eguation.

B T Ty T
E_zzgpi-
VT -L . ) dre) = VT el o @he)
=V (@, x)-V(@x A y) =V (xA y,x) =V(y,x v y)
= 0T YT (re) = VT, -T,) D).
Hence
VO G vy+fy>(¢>,e> =0

By setting V=T +C -T , -T

v 5% Ay Ex vy we obtain

(T TG g =T vy ) Bre) = 0

This completes the proof of Theorem 3.
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Theorem 4. The mapping x—» hX of L into i51(8,3:m)

§atisfies the following equation. N

(32) h +h, = h ++h

Proof. Since 0 = T; < f#’ and 0O = Z; = rv we have that

d oy D 1 v 4
?x”q’g/\y ’Txvy € u(//’)- Hence Theorem 4 follows from

Theorem 3 and from the fact that the mapping VY —> fy is defined

in such a way that

Vo Teblp) ==>1,, . = £+f .

Theorem 5. Let L be a modular lattice with least element gé
and greatest element e. Then there exist a space (S,3§m) and
two mappings x —%»h_ and V-— f, such that the following

conditions are satisfied.

I x —» h, is a mapping of L into &i@(s,gzm)

1I f is a 1-1 mapping of L® Jnto ‘ja(s,fﬂm).
III h,=0,h =1,0¢h 1 forall xe L.

v Y(x) = hxﬁvdm for every x& L and® & L®

V hx+hy = hxr\y+_-hxVy .

* —
Vi L s lsowmonice kg g0 ) ‘ . T A,
e L (5Fm) Qn\\{lrm rasppmd V> k)
We shall sketch a proof. By using Zorn's Lemma it is easy
to prove that there exists & supset K of L* satisfying the

following three conditions.

wai) />QQ_IwMVLL o Ftwgu 14,
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/,q,e K == }J.)O

2. /“"16 KipMy,e K &_,,w1 #,.ué):é/uﬂ\zwz =0

3. (Ve l¥ &9 > 0) = there exists a M € K such that

M AV %O,

Let
K ={}’1~1 le 1}

in such a way that }U"cx, #}/L(a, if o #‘3 and o, B€I. Let

9) € L*. Then there exist mappings V- '),éC for every v & 1
such that Y & ,&Z«(lua) and |} (W- w!A Mo = 0. Moreover,
Yy = 0 except for a countable subset I, of I. It is easy
to prove that

(33) Yo o= 2

del

e

Let the space (SoL,Vo”,m‘L) be the Kakutani-representation of

A f), o€ 1. Let §,N S = if o $B,%,@p€ I. Let

s= LJS,
el
F={zix €sa Wx)(xns, < E)}

mX) = 2_ maL(X ns,).

Moreover, for every Y € L® and o€ I, there corresponds a

s N
representative fv,d’ i
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Note that our notation is somewhat different from
that used by Alfseﬁjﬁdentifies functions which are egnal aslmost
everywhere in the space !iq(s,i?} m), and we do not. We shall
use the notaticn L1(S,jr, m) to denote the quotient space ‘
obtained from 5ﬂ1(s,§?, m) by identifying functions which
are equal almost everywhere.

Strictly speaking, we should have used L1(S)?: m)
to denote the Kakutani-representation.
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