Matematisk Seminar Universitetet i Oslo Nr. 3 May 1967

Modular Lattices and the Lebesque-Radon-Nikodym Theorem

by

Stål Aanderaa

Modular Lattices and the Lebesque-

Radon-Nikodym theorem.

By

STÅL AANDERAA.

1. Introduction

The aim of this note is to improve some results due to Alfsen ([1] p.453). We shall assume that the reader is familiar with this paper, in particular with the definition on pp.442-453. We shall improve Alfsen's form of the Lebesgue-Radon-Nikodym Theorem as follows. Alfsen represents valuations of L by elements in a space \mathscr{L}_{i} (S, \mathfrak{F}_{i} m) and each element x of L is represented by elements H_{x} and K_{x} of $\widetilde{\mathfrak{F}}$ in such a way that

(1)
$$\int_{H_{x}} f_{v} dm \neq v(x) \neq \int_{K_{x}} f_{v} dm$$

Moreover, he proves that this result is optimal in the sense that it can not subsist for any larger H_x or any smaller K_x .

We shall represent each element x in L by an element h_x in \mathcal{L} , (S, \mathcal{F} ,m) which yields an exact Lebesgue-Radon-Nikodym-Theorem with an equation of the form

(2)
$$v(x) = \int h_x f_v dm$$
.

2. Definitions.

Let L be a fixed modular lattice with a least element \emptyset and a greatest element e. Consider the set V of valuations on L which satisfy $v(\emptyset) = 0$. Let L' be the set of projectivity-invariant additive interval-functions on L. The formula $\mathcal{M}(x,y) = v(y)-v(x)$ (as well as the formula $\mathcal{M}(\emptyset,x) = v(x)$) establishes a 1-1-correspondence between the sets V and L'. We shall in this paper mainly deal with interval functions. Given an interval function $\mathcal{M} \in L'$, we shall also use \mathcal{M} to denote the corresponding valuation in V; i.e. $\mathcal{M}(x)$ is an abbreviation for $\mathcal{M}(\emptyset,x)$. Then the equation $\mathcal{M}(x,y) = \mathcal{H}(y)-\mathcal{M}(x)$ is also valid.

Let L^* denote the greatest directed vector-subspace of L' By using a Riemann-Darboux integration process we may define the lattice operation within L^* by v and Λ . In this way, L^* becomes a complete vector lattice. (See 1 p.447). Since L has both a least element and a greatest element, L^* consists of those $\mathcal{M} \in L'$ which are of bounded variations. Let $\mathcal{M} \in L^*$ and let $\mathcal{M} \stackrel{>}{=} 0$.

Let $\mathcal{OL}(\mu)$ be the closed ideal generated by μ . Then $\mathcal{OL}(\mu)$ is an (L-)space with respect to the norm

 $N(\boldsymbol{\nu}) = |\boldsymbol{\nu}| (\boldsymbol{\phi}, e) = (\boldsymbol{\nu} \vee 0) (\boldsymbol{\phi}, e) - (\boldsymbol{\nu} \wedge 0) (\boldsymbol{\phi}, e)$

and μ is a weak order unit for $\mathcal{OC}(\mu)$.

1

- 2 -

Let $B(\mu)$ be the greatest subspace of $\rho c(\mu)$ for which is a strong unit i.e.

$$B(\mu) = \{\nu | (\exists n) (-n) \neq \nu \leq n \mu \}$$

Let $\mathcal{L}_{1}(S, \overline{F}, m)$ be the Kakutani-representation of the (L-)space $\mathcal{M}(\mu)$, defined on p.445 and p.452 in [1].⁴) Let each $\mathcal{V} \in \mathcal{M}(\mu)$ be represented by $f_{\mathcal{V}} \in \mathcal{L}_{1}(S, \overline{F}, m)$. Then the mapping $\mathcal{V} \to f_{\mathcal{V}}$ of $\mathcal{M}(\mu)$ into $\mathcal{L}_{1}(S, \overline{F}, m)$ has the property that $f_{\mathcal{U}}(z) = 1$ for every $z \in S$. Let $f \equiv g$, mean that $m(\{s \mid s \in S \& f(s) = g(s)\}) = 0$, (i.e. f = g almost everywhere). Then the mapping $\mathcal{V} \to f_{\mathcal{V}}$ satisfies the condition

$$f_{\gamma+z} = f_{\gamma} + f_{\tau}$$

If $\gamma \in B(\mu)$ then $f_{\gamma} \in \mathbf{L}_{\omega}(S,\mathcal{F},m)$ and we may choose the mapping $\mathcal{V} \rightarrow f_{\gamma}$ such that

 $f_{\gamma+\gamma} = f_{\gamma} + f_{\gamma}$

for every $\nu, \tau \in B(\mu)$. This follows from the fact that there exists a mapping ρ of $\mathbf{f}_{\infty}(S,\mathcal{F},m)$ into $\mathbf{f}_{\infty}(S,\mathcal{F},m)$, satisfying the following conditions. (See [2] and references mentioned therein.)

(f) Ξ f Ι

II $f \equiv g \Longrightarrow \rho(f) = \rho(g)$

1) See note on page 18.

III
$$\rho(1) = 1$$

IV $f \ge 0 \Longrightarrow \rho(f) \ge 0$

$$V \qquad P(af+bg) = a\rho(f)+b\rho(g)$$

VI $\rho(fg) = \rho(f)\rho(g)$.

The equation (3) is satisfied if we choose the mapping $\gamma \rightarrow f_{\gamma}$ such that $f_{\gamma} = O(f_{\gamma})$.

Let φ be the mapping of $\mathcal{L}_1(S, \mathcal{F}, \mathfrak{m})$ onto $\mathscr{M}(\mu)$ satisfying the following two conditions.

1.
$$\varphi(\mathbf{f}_{\gamma}) = \gamma$$

2. $\varphi(\mathbf{f}) = \varphi(\mathbf{g}) < \Longrightarrow \mathbf{f} \equiv \mathbf{g}.$

For some $f,g \in \mathcal{L}_1(S,\mathcal{F},m)$ we have that $fg \in \mathcal{L}_1(S,\mathcal{F},m)$ (where (fg)(z) = f(z)g(z), for all $z \in S$).

Hence we may define the product \mathcal{VT} for some $\mathcal{V}, \mathcal{T} \in \mathcal{X}(\mu)$ as follows

$$\boldsymbol{\nu}_{\boldsymbol{\mathcal{T}}} = \begin{cases} \boldsymbol{\varphi}(\mathbf{f}_{\boldsymbol{\gamma}} \mathbf{f}_{\boldsymbol{\gamma}}) & \text{if } \mathbf{f}_{\boldsymbol{\gamma}} \mathbf{f}_{\boldsymbol{\gamma}} \in \mathscr{L}_{1}(\mathbf{S}, \mathcal{F}, \mathbf{m}) \\ & \text{undefined if } \mathbf{f}_{\boldsymbol{\gamma}} \mathbf{f}_{\boldsymbol{\gamma}} \notin \mathcal{L}_{1}(\mathbf{S}, \mathcal{F}, \mathbf{m}). \end{cases}$$

Let $\mathcal{Y} \in \mathcal{M}(\mathcal{M})$. Then the product $\mu \mathcal{V}$ is always defined and $\mu \mathcal{V} = \mathcal{V}$, since $f_{\mu}(z) = 1$ for every $z \in S$. Moreover, if $\mathcal{T} \in B(\mu)$ then the product $\mathcal{T}\mathcal{V}$ is defined for all $\mathcal{V} \in \mathcal{M}(\mu)$. We shall write \mathcal{V}^2 for $\mathcal{V}\mathcal{V}$. Let $\sqrt{\mathcal{M}(\mu)}$ be defined as follows.

$$\nabla \mathcal{H}(\mu) = \{ \mathcal{V} \mid \mathcal{V} \in \mathcal{H}(\mu) \text{ and } \mathcal{V}^2 \text{ is defined} \}.$$

It is easy to verify that if $\gamma, \gamma \in V\mathcal{M}(\mu)$ and if t is a real number, then $|\gamma|, -\gamma t \gamma, \gamma \lambda \gamma, \gamma + \gamma \in V\mathcal{M}(\mu)$ and $\gamma \in \mathcal{M}(\mu)$. Moreover, if $\gamma \in \gamma_1 \in \gamma$ and if $\gamma, \gamma \in V\mathcal{M}(\mu)$, then $\gamma_1 \in V\mathcal{M}(\mu)$. Moreover, $B(\mu) \subseteq V\mathcal{M}(\mu)$. Hence $V\mathcal{M}(\mu)$ is a vector lattice and $V\mathcal{M}(\mu)$ becomes a Hilbert space if we define scalar product $\gamma \circ \gamma$ as follows

$$\mathcal{V} \circ \mathcal{T} = (\mathcal{V} \mathcal{T})(\phi, \mathbf{e}).$$

The L₂-norm of γ is then $\sqrt{\gamma_{\circ}\nu} = \sqrt{\gamma^2(\phi,e)}$.

3. The Lebesgue-Radon-Nikodym Theorem.

Let w be a mapping of $\sqrt{\mathcal{M}(\mu)} \times L$ into the real numbers as follows.

(4)
$$w(\nu, x) = (\mu - \nu)^2 (\phi, x) + \nu^2 (x, e).$$

We shall say that $\widetilde{\iota} \in V\mathcal{M}(\mu)$ is the <u>representative</u> of $x \in L$ if the following two conditions are satisfied for every $\mathcal{V} \in V\mathcal{M}(\mu)$.

(5)
$$w(\gamma, x) \ge w(\tau, x)$$

(6)
$$w(\mathcal{V}, \mathbf{x}) = w(\mathcal{T}, \mathbf{x}) \Longrightarrow \mathcal{V} = \mathcal{V}.$$

Given $x \in L$ we shall denote the representative of x by \mathfrak{T}_x , if there exists any. \mathfrak{T}_x is undefined if there exists no representative of x. We shall first prove that \mathfrak{T}_x exists for every $x \in L$, and that $0 \leq \mathfrak{T}_x \leq \mathcal{W}$. (Lemma 4 and Lemma 7.) Then the following theorem is easily obtained.

<u>Theorem 1</u>. Let L be a modular lattice with a least element ϕ and a greatest element e, and let μ be a fixed positive element of L^{\times} . Then to each $x \in L$ there corresponds a unique $\mathcal{T}_{x} \in L^{\times}$, such that the following conditions are satisfied for every $\gamma \in L^{\times}$.

- $7(7) \qquad 0 \leq \mathcal{C}_{x} \leq \mu$
- (B) $\mathcal{V} \in \sqrt{\mathcal{M}(\mu)} \Longrightarrow w(\mathcal{V}, \mathbf{x}) \ge w(\mathcal{T}_{\mathbf{x}}, \mathbf{x})$

(9)
$$(\mathcal{V} \in \mathcal{V} \mathcal{M}(\mu) \otimes w(\mathcal{V}, x) = w(\mathcal{C}_{x}, x)) \Longrightarrow \mathcal{V} = \mathcal{C}_{x}$$

(10)
$$\mathcal{V}(x) = (\chi_{\chi} \mathcal{V})(e).$$

Assuming theorem 1 we may define a representative h_x of x in $\mathcal{L}_1(S, \mathcal{F}, m)$ as follows. Let $\mathcal{T} = \mathcal{T}_x$ represent x in $\mathcal{VM}(\mathcal{W})$, then $h_x = f_x$ is the representative of x in $\mathcal{L}_1(S, \mathcal{F}, m)$. Then we obtain the following theorem from Theorem 1.

<u>Theorem 2</u>. Let L be a modular lattice with least element ϕ and greatest element e, and let μ be a fixed positive element of L^{*}. If $\gamma \in L^*$ and γ are absolutely continuous with

- 6 -

respect to μ , then for every $x \in L$

(11)
$$\mathcal{V}(\mathbf{x}) = \int \mathbf{h}_{\mathbf{x}} \mathbf{f}_{\mathbf{y}} d\mathbf{m}.$$

It is convenient to prove some Lemmas in order to prove Theorem 1, and we also need some new definitions. Let $l(x) = \inf(w(\gamma, x))$, where $A = \sqrt{\mathcal{M}(\mu)}$.

<u>Lemma 1</u>. Let $\mathcal{V}, \mathcal{V}_1 \in \mathcal{VII}(\mu)$, $\mathcal{V} \neq 0$ and let $x \in L$. Then there exists $\mathcal{V}_0 \in \mathcal{VII}(\mu)$ and a real number t_0 such that the following four conditions are satisfied for every real number t.

(12)
$$\gamma_{o} = \gamma_{1} + t_{o} \gamma$$

(13)
$$w(\boldsymbol{\gamma}_1 + t\boldsymbol{\gamma}, x) \geq w(\boldsymbol{\gamma}_0, x)$$

(14)
$$\gamma(\phi, \mathbf{x}) = (\gamma \gamma_0)(\phi, \mathbf{e})$$

(15)
$$w(\mathcal{V}_{o}+t\mathcal{V},x) = t^{2}\mathcal{V}^{2}(\phi,e)+w(\mathcal{V}_{o},x)$$

Proof. Let t be a real number. Since

$$w(v_1 + tv, x) = (\mu - \nu_1 - tv)^2 (\phi, x) + (\nu_1 + tv)^2 (x, e)$$

we easily obtain

$$w(\boldsymbol{\gamma}_1 + t\boldsymbol{\gamma}, \mathbf{x}) = t^2 \boldsymbol{\gamma}^2(\boldsymbol{\phi}, \mathbf{e}) + 2t((\boldsymbol{\gamma}\boldsymbol{\gamma}_1)(\boldsymbol{\phi}, \mathbf{e}) - \boldsymbol{\gamma}(\boldsymbol{\phi}, \mathbf{x})) + w(\boldsymbol{\gamma}_1, \mathbf{x}).$$

- 8 -

Hence

$$\frac{d}{dt}w(\gamma_1 + t\gamma, x) = 2(t\gamma^2(\phi, e) + ((\gamma_1)(\phi, e) - \gamma(\phi, x))$$

and

$$\frac{d^2}{dt^2}w(\gamma_1 + t\gamma, x) = 2\gamma^2(\phi, e) > 0$$

since $\gamma \neq 0$.

Hence there exists a real number t_o such that $t_o \gamma^2(\phi, e) + (\gamma \gamma_1)(\phi, e) - \gamma(\phi, x) = 0$. By choosing $\gamma_o = \gamma_1 + t_o \gamma$ we have that (12) and (13) in Lemma 1 are satisfied.

If we replace ${\mathcal Y}_1$ by ${\mathcal Y}_o$ we obtain

(16)
$$w(\gamma_0 + t\gamma, x) = t^2 \gamma^2(\phi, e) + 2t((\gamma\gamma_0)(\phi, e) - \gamma(\phi, x)) + w(\gamma_0, x)$$

But

$$w(\mathcal{Y}_{O} + t\mathcal{Y}, x) = w(\mathcal{Y}_{1} + (t_{O} + t_{1})\mathcal{Y}, x) \ge w(\mathcal{Y}_{O}, x)$$

which is not possible for every t unless

(17)
$$(\gamma \gamma)(\phi, e) - \gamma(\phi, x) = 0$$

This proves (14) in Lemma 1. Finally we obtain (15) by equation (16) and (17). This completes the proof of Lemma 1.

(18) Let
$$\mathcal{V} \in \mathcal{V} (\mathcal{M})$$
, and let $x \leq y$, when $x, y \in L$.

<u>Proof</u>. Since $|\nu|^2 = \nu^2$, it is sufficient to prove that

(19)
$$|\nu(x,y)| \leq \sqrt{\mu(x,y)} \cdot \nu^2(x,y)$$

Since $x \leq y$, we have $\mu(x,y) \geq 0$ and $\nu^2(x,y) \geq 0$. Hence (19) is equivalent to

(20)
$$\mathcal{M}(\mathbf{x},\mathbf{y})\mathcal{Y}^{2}(\mathbf{x},\mathbf{y}) - (\mathcal{Y}(\mathbf{x},\mathbf{y}))^{2} \geq 0$$

Let t be a real number. Then

(21)
$$(\mathcal{V}+t\mu)^2(x,y) = \mathcal{V}^2(x,y)+2t\mathcal{V}(x,y)+t^2\mu(x,y),$$

since $\mu\mathcal{V} = \mathcal{V}$ and $\mu\mathcal{H} = \mu$.

Moreover,

.

(22)
$$((y+t\mu)(x,y))^2 = (y(x,y)+t\mu(x,y))^2$$

= $(y(x,y))^2 + 2ty(x,y)\mu(x,y) + t^2(\mu(x,y))^2$.

Hence

(23)
$$\mathcal{W}(x,y)\mathcal{V}^{2}(x,y) - (\mathcal{V}(x,y))^{2} =$$

 $\mathcal{W}(x,y)(\mathcal{V}+t\mathcal{W}^{2}(x,y) - (\mathcal{O}+t\mathcal{W})(x,y))^{2} \ge 0,$

Since $\mu(x,y)(y+t\mu)^2(x,y) \ge 0$ and $(y+t\mu)(x,y) = 0$ for some value of t. This completes the proof of Lemma 2.

Lemma 3. Let ε be a real number ≥ 0 . Suppose $w(\nu_1, x) - l(x) \leq \varepsilon$ and $w(\nu_2, x) - l(x) \leq \varepsilon$. Then $(\nu_2 - \nu_1)^2 (\phi, e) \leq 4\varepsilon$, and $|\nu_2 - \nu_1| (\phi, e) \leq 2\sqrt{\mu(\phi, e) \varepsilon}$. (Recall $l(x) = inf(w(\nu, x))$.)

<u>Proof</u>. Let $\mathcal{V} = \mathcal{V}_2 - \mathcal{V}_1$, and choose \mathcal{V}_0 and t_0 such that Lemma 1 is satisfied. Then we have the following equations

(24)
$$0 \leq w(\boldsymbol{\gamma}_0, \mathbf{x}) - l(\mathbf{x}) \leq w(\boldsymbol{\gamma}_1, \mathbf{x}) - l(\mathbf{x}) \leq \varepsilon$$

(25)
$$0 \leq w(y_0, x) - 1(x) \leq w(y_2, x) - 1(x) \leq \varepsilon$$

by (13) since
$$\boldsymbol{\mathcal{V}}_2 = \boldsymbol{\mathcal{V}}_1 + \boldsymbol{\mathcal{V}}$$
.
Moreover, $\boldsymbol{\mathcal{V}}_1 = \boldsymbol{\mathcal{V}}_0 + (-t_0)\boldsymbol{\mathcal{V}}$ and $\boldsymbol{\mathcal{V}}_2 = \boldsymbol{\mathcal{V}}_0 + (1-t_0)\boldsymbol{\mathcal{V}}$.
Hence

(26)
$$0 \leq w(y_0, x) - l(x) \leq w(y_0, x) - l(x) + t_0^2 \gamma^2(\phi, e) \leq \varepsilon$$

(27)
$$0 \leq w(\gamma_0, x) - 1(x) \leq w(\gamma_0, x) - 1(x) + (1 - t_0)^2 \gamma^2(\phi, e) \leq \xi$$
,

by (24), (25) and (15).

Hence

$$0 \leq t_0^2 \gamma^2(\phi, e) \leq \varepsilon$$
 and $0 \leq (1-t_0)^2 \gamma^2(\phi, e) \leq \varepsilon$.

Since either $t_0^2 \stackrel{*}{=} \frac{1}{4}$ or $(1-t_0)^2 \stackrel{*}{=} \frac{1}{4}$, we have that $(\nu_2 - \nu_1)^2 (\phi, e) = \nu^2 (\phi, e) \stackrel{\epsilon}{=} 4 \mathcal{E}$. Hence $|\nu_2 - \nu_1| (\phi, e) \stackrel{\epsilon}{=} 2 \sqrt{\mu(\phi, e) \cdot \mathcal{E}}$ by lemma 2. This completes the proof of Lemma 3.

<u>Lemma 4</u>. Let $x \in L$. Then \mathcal{T}_{x} is defined, i.e. there exists a $\mathcal{T} \in V \longrightarrow \mathcal{M}(\mu)$ such that (5) and (6) are satisfied for every $\mathcal{Y} \in V \longrightarrow \mathcal{M}(\mu)$.

<u>Proof</u>. Let $x \in L$. Choose an infinite sequence $\mathcal{V}_1, \mathcal{V}_2, \mathcal{V}_3, \dots, \mathcal{V}_i \in \sqrt{\alpha(\mu)}$ such that $\lim_n w(\mathcal{V}_n, x) = 1(x)$.

Then there exists a $\mathcal{T} \in \sqrt{\mathcal{M}(\mu)}$ such that $\lim_{n} \nu_{n} = \mathcal{T}$, and $\lim_{n} \gamma_{n}^{2} = \mathcal{T}^{2}$ by Lemma 3. Then $w(\mathcal{T}, x) = l(x)$. Hence the inequality (5) is satisfied for every $\mathcal{V} \in \sqrt{\mathcal{M}(\mu)}$. Suppose now that $w(\mathcal{V}, x) = w(\mathcal{T}, x) = l(x)$, then $(\mathcal{T} - \mathcal{V})^{2}(\mathcal{T}, e) = 0$ by Lemma 3. Hence $\mathcal{T} = \mathcal{V}$. This shows that condition (6) is satisfied. This completes the proof of Lemma 4.

Lemma 5. Let $\mathcal{V} \in \mathcal{V} \in \mathcal{M}(\mu)$ and let $x \in L$. Then

(28)
$$\gamma(\phi, x) = (\gamma \zeta_x)(\phi, e)$$

<u>Proof</u>. Let $\mathcal{T}_x = \mathcal{V}_1$ in Lemma 1. Then $\mathcal{V}_0 = \mathcal{V}_1$ and $t_0 = 0$. Hence we obtain (28) by applying equation (14).

Lemma 6. Let
$$x \leq y$$
, then $\overline{\mathcal{L}}_x \leq \overline{\mathcal{L}}_y$.

<u>Proof.</u> Let γ_1 and γ_2 be the Jordan decomposition of \mathfrak{T}_y - \mathfrak{T}_x , i.e.

$$\mathcal{T}_{y} - \mathcal{T}_{x} = \mathcal{V}_{1} - \mathcal{V}_{2}, \ \mathcal{V}_{1} \ge 0, \ \mathcal{V}_{2} \ge 0, \ \mathcal{V}_{1} \wedge \mathcal{V}_{2} = 0.$$

Then we have

$$0 \leq \mathcal{V}_{2}(\mathbf{x}, \mathbf{y}) = \mathcal{V}_{2}(\phi, \mathbf{y}) - \mathcal{V}_{2}(\phi, \mathbf{x}) = (\mathcal{T}_{\mathbf{y}}\mathcal{V}_{2})(\phi, \mathbf{e}) - (\mathcal{T}_{\mathbf{x}}\mathcal{V}_{2})(\phi, \mathbf{e})$$
$$= ((\mathcal{T}_{\mathbf{y}} - \mathcal{T}_{\mathbf{x}})\mathcal{V}_{2})(\phi, \mathbf{e}) = ((\mathcal{V}_{1} - \mathcal{V}_{2})\mathcal{V}_{2}(\phi, \mathbf{e})) = -\mathcal{V}_{2}^{2}(\phi, \mathbf{e}) \leq 0,$$

since $\mathcal{V}_1 \mathcal{V}_2 = 0$. Hence $\mathcal{V}_2^2(\phi, e) = 0$ i.e. $\mathcal{V}_2 = 0$ and $\mathcal{T}_y - \mathcal{T}_x = \mathcal{V}_1 \ge 0$. This completes the proof of Lemma 6.

Lemma 7.
$$\mathcal{T}_{\phi} = 0, \mathcal{T}_{e} = \mu$$
 and $0 \leq \mathcal{T}_{x} \leq \mu$ for every $x \in L$.

<u>Proof</u>. $(\mu - 0)^2 (\phi, \phi) + 0^2 (\phi, e) = 0$. Hence $\mathcal{T}_{\phi} = 0$. In the same way

$$(\mu - \mu)^2 (\phi, e) + \mu^2 (e, e) = 0.$$

Hence $\mathcal{T}_e = \mu$. Since $\phi \leq x \leq e$, we have that $\mathcal{T}_{\phi} \leq \mathcal{T}_x \leq \mathcal{T}_e$ by Lemma 6. This completes the proof of Lemma 7.

We shall now complete the proof of Theorem 1. Theorem 1

follows from Lemma 4 and Lemma 7 except for equation 4; i.e. it remains to prove

$$\mathcal{V}(\phi, \mathbf{x}) = (\mathcal{V}\mathcal{T}_{\mathbf{x}})(\phi, \mathbf{e})$$

in the case in which $\mathcal{V} \in \mathcal{M}(\mathcal{V})$, but $\mathcal{V} \notin \mathcal{V} = \mathcal{M}(\mu)$.

Assume first that $\mathcal{V} \geq 0$. Then \mathcal{VT}_x is defined since $0 \leq \mathcal{T}_x \leq \mu$, and

$$\mathcal{V} \in \mathcal{M}(\mu) \iff \mathcal{V} = \sup_{n} (\mathcal{V} \land n\mu)$$

(see [1] p.448). Let \mathcal{E} be a positive number. Then

(29)
$$0 \neq (\mathcal{V} - (\mathcal{V} \wedge n \boldsymbol{\mu}))(\boldsymbol{\phi}, e) \neq \varepsilon$$

and

(30)
$$0 \leq (\mathcal{V} - (\mathcal{V} \wedge \mu n))(\phi, x) \leq \varepsilon$$

for some n. But $0 \leq \mathcal{T}_{x} \leq \mu$ and $(\mathcal{V} - (\mathcal{V} \land n\mu)) \geq 0$. Hence

$$0 \leq (\mathcal{T}_{x}(\mathcal{V}-(\mathcal{V} \land n \boldsymbol{\mu})))(\boldsymbol{\phi}, e) \leq (\boldsymbol{\mu}(\mathcal{V}-(\mathcal{V} \land n \boldsymbol{\mu})))(\boldsymbol{\phi}, e) \\ \leq (\mathcal{V}-(\mathcal{V} \land n \boldsymbol{\mu}))(\boldsymbol{\phi}, e) \leq \varepsilon.$$

But $(\mathbf{V} \wedge n \boldsymbol{\mu}) \in V \overline{\partial \mathcal{U}(\boldsymbol{\mu})}$. Hence

 $0 \leftarrow (\mathcal{T}_{x}(\mathcal{V} - (\mathcal{V} \land n\mu)))(\phi, e) = (\mathcal{T}_{x}\mathcal{V})(\phi, e) - (\mathcal{T}_{x}(\mathcal{V} \land n\mu))(\phi, e)$ $= (\mathcal{T}_{x}\mathcal{V})(\phi, e) - (\mathcal{V} \land n\mu)(\phi, x) \leftarrow \varepsilon.$

Hence by (30) we have

$$0 \leq (\mathcal{T}_{x} \mathcal{Y})(\phi, e) - \mathcal{Y}(\phi, x) \leq \xi$$

This completes the proof of Theorem 1.

<u>Theorem 3</u>. The mapping $x \rightarrow \widehat{L}_{x}$ of L into L^X satisfies the following equation.

(31)
$$\mathcal{T}_{x^{+}}\mathcal{T}_{y} = \mathcal{T}_{(x \wedge y)} + \mathcal{T}_{(x \vee y)}$$

<u>Proof</u>.

$$(\mathcal{V}(\mathcal{T}_{x} - \mathcal{T}_{x \wedge y}^{-}))(\phi, e) = (\mathcal{V}\mathcal{T}_{x})(\phi, e) - \mathcal{V}\mathcal{T}_{x \wedge y}^{-}(\phi, e)$$

$$= \mathcal{V}(\phi, x) - \mathcal{V}(\phi, x \wedge y) = \mathcal{V}(x \wedge y, x) = \mathcal{V}(y, x \vee y)$$

$$= (\mathcal{V}\mathcal{T}_{x \vee y}^{-} - \mathcal{V}\mathcal{T}_{y}^{-})(\phi, e) = (\mathcal{V}(\mathcal{T}_{x \vee y}^{-} - \mathcal{T}_{y}^{-}))(\phi, e).$$

Hence

$$\mathcal{V} (\mathcal{T}_{x} - \mathcal{T}_{x \wedge y} - \mathcal{T}_{x \vee y} + \mathcal{T}_{y})(\phi, e) = 0$$

By setting $\mathcal{V} = \mathcal{T}_x + \mathcal{T}_y - \mathcal{T}_x \wedge y - \mathcal{T}_x \vee y$ we obtain

$$(\mathcal{T}_{x}+\mathcal{T}_{y}-\mathcal{T}_{x})^{2}(\phi,e) = 0$$

This completes the proof of Theorem 3.

<u>Theorem 4</u>. The mapping $x \rightarrow h_x$ of L into $\mathcal{L}_1(S, \mathcal{F}, m)$ satisfies the following equation.

$$h_{x} + h_{y} = h_{x \wedge y} + h_{x \vee y}$$

<u>Proof</u>. Since $0 \in \mathcal{T}_{x} \in \mathcal{M}$ and $0 \in \mathcal{T}_{y} \in \mathcal{M}$ we have that $\mathcal{T}_{x}, \mathcal{T}_{y}, \mathcal{T}_{x\Lambda y}, \mathcal{T}_{x\vee y} \in B(\mathcal{M})$. Hence Theorem 4 follows from Theorem 3 and from the fact that the mapping $\mathcal{V} \longrightarrow f_{\mathcal{V}}$ is defined in such a way that

$$\mathcal{V}, \mathcal{T} \in \mathbb{B}(\mu) \Longrightarrow f_{\mathcal{V}+\mathcal{T}} = f_{\mathcal{V}} + f_{\mathcal{T}}.$$

<u>Theorem 5</u>. Let L be a modular lattice with least element ϕ and greatest element e. Then there exist a space (S, \mathcal{F} ,m) and two mappings $x \longrightarrow h_x$ and $\mathcal{V} \longrightarrow f_{\mathcal{V}}$ such that the following conditions are satisfied.

I $x \rightarrow h_x$ is a mapping of L into $\mathcal{L}_{\infty}(S, \mathcal{F}, m)$ II f is a 1-1 mapping of L^* into $\mathcal{L}_1(S, \mathcal{F}, m)$. III $h_{\mathcal{P}} = 0$, $h_e = 1$, $0 \leq h_x \leq 1$ for all $x \in L$. IV $\mathcal{V}(x) = \int h_x f_y dm$ for every $x \in L$ and $\mathcal{V} \in L^*$ V $h_x + h_y = h_{x \wedge y} + h_{x \vee y}$. VI L^* is isomorfic to $L_1(S, \mathcal{F}, m)$ by the mapping $\mathcal{V} \rightarrow f_y$. We shall sketch a proof. By using Zorn's Lemma it is easy to prove that there exists a subset K of L^* satisfying the following three conditions. 1) see Mode on Page 18.

1.
$$\mu \in K \Longrightarrow \mu > 0$$

2. $(\mu_1 \in K \otimes \mu_2 \in K \otimes \mu_1 \neq \mu_2) \Longrightarrow \mu_1 \land \mu_2 = 0$
3. $(\mathcal{V} \in L^* \otimes \mathcal{V} > 0) \Longrightarrow$ there exists a $\mu \in K$ such that $\mu \land \mathcal{V} \neq 0$.

Let

$$K = \{ \mathcal{H}_{\mathcal{X}} \mid \alpha \in I \}$$

in such a way that $\mu_{\alpha} \neq \mu_{\beta}$ if $\alpha \neq \beta$ and α , $\beta \in I$. Let $\gamma \in L^{\times}$. Then there exist mappings $\gamma \rightarrow \gamma_{\alpha}$ for every $\alpha \in I$ such that $\gamma \in \mathcal{M}(\mu_{\alpha})$ and $|(\gamma - \gamma_{\alpha})| \wedge \mu_{\alpha} = 0$. Moreover, $\gamma_{\alpha} = 0$ except for a countable subset I_{γ} of I. It is easy to prove that

$$(33) \qquad \qquad \mathcal{V} = \sum_{\alpha \in \mathbf{I}} \mathcal{V}_{\alpha}.$$

Let the space $(S_{\alpha}, \mathcal{T}_{\alpha}, \mathfrak{m}_{\alpha})$ be the Kakutani-representation of $\mathcal{N}(\mu_{\alpha}), \alpha \in I$. Let $S_{\alpha} \cap S_{\beta} = \emptyset$ if $\alpha \neq \beta, \alpha, \beta \in I$. Let

$$S = \bigcup_{\alpha \in I} S_{\alpha}$$

$$\mathcal{F} = \left\{ X | X \leq S \leq (\forall \alpha) (X \land S_{\alpha} \in \mathcal{F}_{\alpha}) \right\}$$

$$m(X) = \sum_{\alpha \in I} m_{\alpha} (X \land S_{\alpha}).$$

Moreover, for every $\gamma \in L^*$ and $\alpha \in I$, there corresponds a representative $f_{\gamma,\alpha}$ in

Note that our notation is somewhat different from that used by Alfsen identifies functions which are egnal almost everywhere in the space $\mathcal{L}_1(S,\mathcal{F}, m)$, and we do not. We shall use the notation $L_1(S,\mathcal{F}, m)$ to denote the quotient space obtained from $\mathcal{L}_1(S,\mathcal{F}, m)$ by identifying functions which are equal almost everywhere.

Strictly speaking, we should have used $L_1(S,\mathcal{F}, m)$ to denote the Kakutani-representation.

References.

- [1] Alfsen, E.M. Order Theoretic Foundations of Integration. Math.Annalen, vol.149, pp.419-461, (1963).
- [2] Alfsen, E.M. The Optimal Lebesgue-Radon Inequality. Bull.Am.Math.Soc., Vol.68, pp.230-233, (1962).
- [3] Ionescu Tulcea, C. On the Lifting Property and Disintegration of Measures. Bull.Am.Math.Soc., Vol.71, pp.829-842. (1965)