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The purpose of the present paper is to present some
results on the facial structure of a compact conwex subset K of
a locally convex Hausdorff space, relating faces of K +to
order ideals of the Archimedean ordered vectorspace .A(K) of
continuous affine functions on K.

Chapter 1 contains the necessary background material
from the theory of Archimedean ordered vectorspaces and their
duals, which is the natural non-commutative (or "non-lattice")
generalization of Kakutani's theory of L- and M-spaces. The
results stated in this chapter, go back to R.V. Kadison ((12)),
((13)), ((14)), F.F. Bonsall ((3)), D.A. Edwards ((6)), A.J.

Ellis ((11)), and others. They are included for reference pur-
poses and imply no claim at originality.

The essential results of the present paper are stated
in Theorems 2-6 of Chapters 2, 3. Here the central concept is:
that of a strongly Archimedean face which is a strengthening of the
concept of an Archimedean face as defined by E. Stdrmer ((17)).

It is shown that one may assign to every Archimedean face F a
numerical invariant Q€& [ﬂ,mo] s the characteristic of F, which
is finite iff P is strongly Archimedean (Theorem 3), and Which
occurs as the best possible bound on the norms in various contexts
related to the extension problem for affine functions and the
representation problem for signed boundary measures (Theorems

4, 6)., In particular it is proved that for Archimedean faces

the "extension property" implies the "bouwredextension property"
(Remark following Theorem 5).

Chapter 4 contains applications and examples. 4pplying
some recent results of D.A. Edwards ((7)), ((8)) and A. lazar
((15)), we show that every closed face of a Choquet simplex is
strongly Archimedean with characteristic 1. It is also shown by
application of results of E.Effros ((9)), ((10)) and E. Stormer
((17)) that a closed face of the state space of a C*»algebra is
Archimedean iff it is invariant, in which case it is strongly
Archimedean with characteristic 1. It is easily verified that
every Archimedean face of a finite dimensional convex compact set
is strongly Archimedean., In the infinite dimensional case there
may exist faces which are Archimedean but not strongly Archimedean.
A somewhat technical example to this effect is given at the end
of Chapter 4.
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1. Preliminaries oﬁ‘oﬁder unit spaces
and their duals

We shall use the term ordered vectorspace +to mean

(partially) ordered vectorspace over the reals. A linear map
¢): A —> A' Dbetween ordered vectorspace is said to be an order

homomorphism if

(1.1) D) = Pa)*.

A 1-1 order homomorphism is an order isomorphism.

Clearly {1.1) implies positivity of (i), but the reverse impli-

cation is inexact. (Note that the above definition of an order

homomorphism is less restrictive than that of ((17)), in which the

kernel N = qb"1(0) is required to be positively generated,

ie. N=nt o)

A linear subspace J of an ordered vectorspace A

an order ideal if it is "order convex" in the sence of

(1.2) a,b€J; CEA; asC<b => CEd.
Let N Dbe a linear subspace of an ordered vector-
space A. Now it is well known (and easily verified) that the

canonical image Qb(A+) of AT in A/N is a proper cone (i.e.

a

is

a cone without straight lines) iff N is an order ideal. Hence in

this case A/N is an ordered vectorspace in the quotient ordering

defined by
(1.3) (a/mM* = pah),
and Qb is an order homomorphism of A onto A/N.

An arbitrary positive linear map qj t A —> A
between ordered vectorspaces can be decomosed as ¥J==§b'ogb were
95 is the canonical order homomorphism of A onto A/qb—1(o),
and qb' is a 1-1 positive linear map from A/g&_1(o) into
A', Here Q} is an order homomorphism iff gb' is an order

isomorphism.
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The order ideal generated by a positive element a

of an ordered vectorspace A, is seen to be the set.

ot .
(1.4)  J{a) ={v | Jack" ? nasb< oal.
An element eEff' is said to be an order unit if

J(e) = A, or in other words if every DbEA 1is bounded above by

we for some & Z 0.

An ordered vectorspace is said to be Archimedean

if the negative elements a€A are the only ones for which
{oCa lOCETP+} has an upper bound.

It is easily verified that an ordered vectorspace
A with an order unit e is Archimedean iff

(1.5) a< pe for all (5>o@a§o.

Note that 4A/J may be non-Archimedean even if A
is Archimedean. In fact let A ©be the 3-dimensional Euclidean
space with an Archimedean ordering defined by a cone At possess—
ing a base K which is a 2-dimensional convex body with a non-
exposed extreme point x. (For example, K may be the conyex
hull of a plane disk and some point in the plane of the disk).
If J 1is the 1-dimensional space spanned by x, then J 1is
seen to be an order ideal for which A/J is order isomorphic to
“?2 with lexicographic ordering. Hence A/J is non-Archimedean

in this case.

Proposition 1. An Archimedean ordered vectorspace

A with order unit e admite a norm

(1.6) Na”=:ﬂﬁ{k2wﬂ —Aegaﬁ)ﬁ},

satisfying

(1.7) -jalleg a s lall e.
Proof. The relation &a < &* e where = -
G‘==inf‘{l) a</ el , Tollows by an easy application of (1.5).
This result and its dual yield (1.7), and now it is straight-

forward to verify the norm-properties of [af .
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Henceforth we shall use the term order unit space,

and the notation (A,e), to denote an Archimedean ordered vector-
space A with a distinguished order unit e, regardéd. as a
normed vectorspace in the order unit norm (1.6). We observe that
if B 1is a vectorswbspace of A and eegB, then (B,e) is an
order unit space in the induced ordering and norm.

Proposition 2. Iet s (4A,e) = (A',e') be a

linear map between order unit space§,which maps e dinto e'.

Then f is positive iff ¢ is bounded with |W|l= 1.

Proof. 1) By the definition of the norm, positivily
of Ll')' implies “KP“ = 1, o
2) Assume ||Ull = 1, and consider an elemeht
aeh’. Without lack of generality we assume ual{S‘I, i.e. |
O<a<e. Hence also 0<e - a<e, and se !f e—x!léh This gives
HKTU(e-a)“ < 1.
By the definition of the norm, \_‘I(e—a)é (;f(e'),

and so (’l)(a)ZO, g.e.d.

Corollary . Let (b : (A,e)—>(4A',e') be a J-1 linear map

between order unit space§,which maps e into e'., Then

Lb‘ is an order isomprphism iff (b is an isometry.
Proof. Assume (without lack of generality) that

TIU is onto, and apply Proposiim 2 to U and t,b'“'.

Remark: A positive linear map g/)’ : (4,e) —> (A',e")
with 1{)’(6) = e', may be an order homomorphism, or in other
words the induced map O A/c'b‘-1(0) —> A' may be an order
isomorphism, even if ('b-' is no isometry, since the quotient
norm of A4/ L}I;“'(O) need not be an order unit norm. Necessary

and sufficient conditions for this will be given in the sequel.
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Corollary 2+ A linear functional p on an order

unit space (4,e) is positive iff P is bounded and |Jpll = p(e).

Prosf: Application of Proposition 2 with

= p(e)”'p.

A linear functional p on an order unit space (4,e)

is a state if it is positive and if p(e) = 1, or equivalently if
(1.8) p(e) = Jpf = 1.

The set of states is seen to be a w¥*-compact

convex subset of 4*. It will be termed the state space of A4,

and it will be denoted by S(4). The extreme points of  S(4):

are called extreme states (or "pure states").

Proposition 3. If (A,e) is an order unit space

and B is a linear subspace containing e, then every state on

(B,e) can be extended to a state on (4,e).

Proof. Clearly e 1is an interior point of A+,
and so the theorem on extension of positive linear functionals

can be applied.

Proposition 4. Let (4A,e) be an order unit space

[-e,e) . Then the unit ball of A* is

Il

with unit ball A,

given by
(1.9) (&%), = cony (8(4) U - 8(4)),
and for ae A we shall have
(1.10) |all = sup {ip(a)i | pES(A)}
and
(1.11) a20<=p(a)> 0 for all peS(4).

Proof. We define M={a| a<elt, L={a|-— ega},
and we claim that the polar sets are given by

(1.12) M° = cony (0}us(4)), L° = cony ({O}u-s(a)).
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et qgM°. To prove g to be positive, we
assume a=X0. Then o©o.a€M, and hence «qg(a) < 1, for all
>0, It follows that q(a)=<0, and so & 18 positive.
Clearly q(e)<1, and so q& comw (OJuS(4)). The reverse
implication is trivial, and the corresponding verifications for
L are similar to those for M.

Now (1.9) follows, since

(%) =4,°= (MnL)° = conv (MU I°)= conv (S(4) U-5(4))

The equality (1.10) follows by the Hahn . Banach
Theorem.

To prove (1.11), we first observe that M is closed.
In fact if a €M, then

inf {x=0laswael=1+8, p>0,
and it is easily verified that
{v1 Ja-b < £ }nu = .

It a’éO, then e—ag_"-—lM, and so there is a qEMO

such that q(e-a)> 1. Thus
a(a) < q(e) -1 = 0.
By (1.12) q is a positive linear functional, and

the non-trivial part of (1.11) follows.

Let (A4,e) be an order unit space and X some

locally compact Hausdorff space. We shall use the term functional

representation of (A,e) over X +to denote an isometric, order

isomorphism §© of A onto a point-separating subspace of

CR(X) such that ¢(e) =1. (Note that the specifications of

© are redundant by Cor.1 to Prop. 2). A functional representa-
tion (¢ ,X) of (4,e) will be said to be larger than another
functional representation (67,Y) of (A,e) if there exists a
hom€omorphism ® of Y into X such that & = Pre 9 » P* being

the conjugate map of Cp (X) inte CR(Y).
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Let (Q,X) be a functional representation of (4,e);
and assume for a moment that Y 1is a closed subspace of X
with canonical injection @: Y—>X, and such that Y is a

max-boundary for Q(4), iie.

(1.13) fal = sup \tpa] (q)l, all a&A.
QeY

In this case the restriction map
#ﬁ : Cq (x) ——9>CR (Y), is an isfmetry of © (4) into CR(Y)
which maps the constant 1 on X +to the constant 1 on Y.
Hence ( @*09, Y) is a functional representation of (4,e),

which we shall call the restriction of (9o, X) to Y.

Theorem 1. Every order unit space (A,e) admits

a largest functional representation (©, S(A)), where

c(a) =28 and

(1.14) 2(p) = p(a), for all aE4d, pEs(a).

The representing function space Q(A) consists

of all restrictions to S(4) of w*-continuous linear functi-

onals on A%*, and it comprizes all W -continuous affine

functions on  S(A) iff A4 is complete (in order unit norm).

Also (4,e) admits a smallest functional representation,

namely the restriction of (€, S(4)) to the dosure of the set

of extreme states.

Proof. 1) By Proposition 4, (@, S(4)) is a
functional representation of (A,e}, and it follows from an
elementary theorem on weakly continuous linear functionals on
a dual space that p(4) consists of all S(A)-restrictions of
w¥*-continuous linear functionals on A%¥.

The state space S(4) is located on a hyperplane
off the origin of 4*, Hence ©(4) is also equal to the set
of all S(A)-restrictions of w*continuous affine functions on

A*, and this set is known to be uniformly dense in the (uniformly
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closed) space of all w¥-continuous affine functions on

S(4) (cf. e.g. ((16, Ch.4)) ). By the isometry of o , o(4)

is equal to the space of all w¥*-continuous affine functions on
S(a) iff 4 is complete.

The closure of the set of extreme states, i.e. the

set 0, S(4), is a max-boundary for the space of w¥*-continuous
affine functions on A4* (by virtue of the Krein Milman Theorem),
and so (9, S(4)) admits a restriction to O, S(4). |
2) To prove maximality and minimality, we consider
an arbitrary functional representation (&,Y) of (A,e). Te
every point q&Y, we assign a state E =<?(q) defined by
(1.15) i(a) = [ea] ().
By the continuity of the functions ©”’a, the mép
D: Y —> S(A) is continuous. By assumption, 67(A) separates

the points of Y, and so q) is 1-1. Hence c; is an hom€omorph«

ism of Y onto S(4).

By (1.15)
sup ]a cC(q))l = sup ’{G’a 1 (q) \ “ a”
qQE Y Qe Y
—— t/\
|40

Hence @(Y) is a closed max-boundary for the
space of w¥-continuous affine functions on S(4). Hence
®(Y) contains EZERZ} which in the smallest closed max-
boundary for this space. (This is an elementary consequence of
the Milman Theorem).

Let 9 be the canonical injection of SgS(A)
into S(A). Then there is a hom&omorphism 7 of ZZ;;CKY

into Y such that the diagram



skA)
¢
T
Y
A
- 3,5(4)

is commutative.
Passing to the conjugate maps, and making use of the
definition (1.15) which may be restated as P*o © =07, we

arrive at the following commutative diagram:

Cp(S(4))
%
,//’”’//////////;;:ji;;
— 6"
A > Cx(Y) a*
~— -
\ v
T*oQ

Cp ( Og8(4))

It is seen that (S),S(A)) is a larger functional

representation than (6,Y) which in turn is larger than

(,71"*09, aeSZAS), and the proof is complete.

The maximal functional representation (¢ ,5(4))
of an order unit space (A,€ ) will be called the canonical

representation of (4a,e) over the state space.

Theorem 1 is essentially due to Kadison. For the
existence of the canonical representation cf. ((12)), for the

surjectivity of @ in the complete case cf. ((1)), ((14, Lem.



- 10 -

4,3)), (( 18)), and for the maximality and minimality properties
cf. ((13, p. 328)).

We reeall that a directed vectorspace is an ordered

vectorspace E such that E = Et-EY., The following sesult is

due to D.Edwards (( 6, Th.4)).

Proposition 5. If E is a vectorspace for which the

cone E+ has a base K such that S = conv (Ku- K) is radié.lly

compact, then the gage functional
(1.16) | x| = inf {M xe s}

is a norm, and the closed unit ball of this norm is equal to S

If K dis compact in some locally convex Hausdorff

topology 9 on E, then E is complete in the norm (1.16).

Proof. 1) The set S 1is absorbing by the directed-
ness of E, and so the gage functional is well defined. It is a
norm by the radial boundedness of S, and its colsed unit ball is
equal to S since S 1is radially closed.

2) Assume K, and hence S, to be J -compact, and
consider a Cauchy sequence {Xn} in the norm (1.16). We may
assume “ x, I< 1 for =n=1,2,..., and by the J -compactness of
A S, there is a J -condensation point y of {Xn—} in [18.

Let € > 0 Ve arbitrary and determine n such that

o)
|z, - x, 1< &, for n,m=n_.
In particular x € Xno + A S for n=n_ . Since £S5
. o=
is J -closed, we shall have y¢& Xno + €8S, or equivalently
0
Hence for every n = n,
Iy - n " s h y—Xh'o “ + “ Xno - Xn” .
Thus, {Xn} converges in the norm to y, and the

proof in complete.
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We shall use the term base horm spacé, and the notation

(E,K) to denote a directed vectorspace E such that ET has a
base K for which conv (Kyu-K) is radially conpact, considered as
a normed space in the norm (1.16).

The next three propositions are due to Ellis ((11)).

Proposition 6. The norm of a base norm space (E,;Q

is additive on _E+, in fact | x| = e(x) for x>0, e being

the linear functional which carries the base, i.e. K < e'1(1l.

Proof. TLet =xeE¥*, i.e. X =9 X, with QBO,XOC-K.
Then xGoS, and so © =lxll . Applying e %o the equation
X = @x_, we obtain e(x) =p=lxIl.

Conversely x| - X e S, and so there are elements
vy, 2 €K and scalars /l,/u = 0 such that

!!XH-1X=Ay—PZ, /l+/.L=1.
Applying the functional e, one obtains
= -1 e(x) =,1—/LL < 1.

Hence e(x) < (x|l , and the proof is complete.

Proposition 7. Every element x of a base norm

space E admits a decomposition X =y - z, where ¥, z =0
and x| =4yl +)hzf.
Proof. From x|~ x€S8 it follows that
-1
e =% = Lyq - pzy,
where V1o z1€- K and /1,}120, ,’l+/u = 1, Now the proof is

complete with y = | x A Yqs» 2 = ”X H//L Zq-
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Proposition 8. If (A,e) is an order unit space,

then (A*, S(A)) is a base norm space whos norm is identical with

the standard norm of A*. Conversely, if (E,K) is a base norm

space and e is the functional carrying K (cf. Prop. 6), then

(E¥,e) is an order unit space whose norm is identical with the

standard norm of E*,

Proof. 1) The first part of the proposition fdliows
directly from Proposition 4.

2) Clearly E¥* is Archimedean in the natural
ordering. It follows from Proposition 6 and from the decomposition
of Proposition 7, that for any x&E:

le(x)| = |e(y) - e(2)[< 5]+ |z =]=x]

Hence e is bounded with norm 1.

Let a€E¥*, and let ¢& ©be the functional norm of a.

Since S = conv (K U - K), we shall have

= sup{ |a(x)] | ze K}

=imﬁﬂ20|-kéwﬂﬂ£ﬂqan.xEK}

= ini‘{){LZOl—/ﬁ\, egaS/lE’}.

It follows that e is an order unit, and that the
two norms coincide, g.c.d.

In the case of a lattice ordering the theory of
order unit- . and base norgépacesreduces to Kakutani's theory

of IL- and M-spaceg ((11, Th. 10)).
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2., _Archimedean ideals.

We shall study the interrelationship between ideals of an order
unit space (A,e) and faces of its state spa¢ce S(A), and we shall

use the notations :

(2.1) N‘L=:{p e.54)] p(a) = 0,dll aEN}, N A.
(2.2) F, ={a €A | p(a) = o4 all pE'-F},, FCYA).

It will be necessary also to work in the duality of A and Axﬁ

where the following notations will be applied :

(2.3) r° = {q(—:—AKI q (a) = o, all a(—‘;N}, NcA.
(2.%) M, = { a€h | q (a) =0, all aeM}; Mea®,

Proposition 9. If N is any subset of an order unit space (A.e),

then N is a w: - closed convex subset of S(A) and N is a w™-

closed vector subspace of A®. If N is positively generated, i.e.

N clin (1") . then N is a face of S(A) and N is an order ideal

of A%, Conversely if M is any subset of A®¥ then M is a (norm

and w - ) closed vector subspace of A, If M is positively generaped,

then M is an order ideal. In particular, F is a closed order ideal

of (A,e) for every subset F of "S(A). The proof is a straight forward

verification.

An order ideal J of an order unit space (A,e) 1is said to be

Archimedean (Stormer (( 1% ))) if

(i) J is closed.

(ii) A/J is Archimedeane.

(iii) J _dis positively generated.
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If in addition :

(iv) 79 is vpositively generated,

then we shall say that J_is strongly Archimedean.

It is not entirely abvious that there exist order ideals that

are Archimedeezn, but not strongly Archimedean. We shall see

that +this in fact is impossible in finite dimensional spaces.
However it mey occur in the in finite dimension case. A sowmewhat

technical exauple to this effect is presented in section % (Prop.9).

Proposition 10. A positively generated order ideal J of an order

unit_space (A,¢) is Archimedean iff it is the kernel of an order

homomor phisn gb'into on ordecr unit space (A', e¢') such that yb(e)ze?

Proof. If J is Archimedean, then 4/J is an order unit space with
unit¢(e),¢: A-> A/J being the canonical homomorphis.

Conversely, if ?E (8,e)=> (A', e') is an order homomorphism with
kernel J and ¢Ke) = e', then A4/J is order isoworphic to the
Archimedean ordered vectorspace dKA). It rewnains to be proved that
T is closed. To this end assume aé:ﬂ Then ¢(a)=% 0 , end bhe
Proposition 4, there is a q€&S(A') such that q'('\llj(a)):;'-'o .

It is easily verificd thet qoqb is 2 statc on  (4,e). In particular
qoyb ic continuous, and so J < (q ogb)_1(0),a§é(qo9&)-7(0) which
conpletes the proof.

® 9 & 00 00 00 0o e o

Pronosition 11. If J is an Archimedean ideal of an order unit

space (h,¢) and @: A—> A/J is the canonical wap. then (A/J.?’(e))

—

is_an order unit space and @®* . §(A/J}+Jiis a_1-1 affine
7

. . * . .
isomorphism and &4 w -~ homéouworphism onto.

—




- 15 -

The proof is a straight forward verification. Recall that
cf)xqz Qoﬁo for q £ S(A/T).

By virtue of Proposition 11,we shall identify S(A/J) with gt , and

for nE& 7t we shall write

(2.5) p (Pa)) =  Pla). aga.

The following theorem is a characterization of Archimedean order
ideols of (A,e) 1in terus of theirannihilatior faces on S(&); first

proved by E. Stormer in 2 slightly redundant form (( 17 )).

Theorem 2, Assume (4,e) to be an order unit space. If J is an

Archimedean ideal of A, then F = JL is a wx-closed face of S(A)

such that

(2.6) a€A, p(a) 20 all peF
= ceat . c = a, p(e)=p(a) all peF,

4 lL' Conversely, if F is a w- - closed face of S(A)

and J =(J

satisfying (2.6), then F, is an Archimedean ideal of (A .e) and

T+

I = (Fl

Proof. 1.) Let J be an Archimedean ideal and assume agh, p(a)=o
1

for all peJ . By Propositions 10, 11. this means that every state

on the order unit space (A/J3, (e)) takes a pos tive value at P(a).

By Proposition 4, @(a) = o. .

By the definition of quotient ordering, there is a b,ﬁEA such that

P(b,) =FP(a). It follows that a — b,EJ. Since J is positively
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generated, there is a b,EJ", such that a - b <b,. Now

define c:b1 + b2. Then ¢E AT + 377 c AT and a<g c, Moreover

p(c) = p(b) = pla) all pely

since by €J and a—b1eJ. Hence we have proved (2.6).

‘o i3 .
Trivially J<(J ) To prove the converse, we consider an

-J_ [ ]
element aé J. Then ®(a) , and so there iS a state on A/J not
vanishing at @(a). By Proposition 11, there is a p(—:--I‘L such that
p(a)40 . Hence agé(J‘LZL , and the first part of the proof is

complete.

2.) Let F be a w® - closed face of &(A) with the property (2.6).
To prove the closed order ideal F to be positively generated, we
consider an clement a€F . Then p(a) =0 for all p&F, and by (2.6)
~ there is a ce AT such that ¢=a and p(c) = p(a) = for all peF.
In other words cE(F_L)'L and ¢>a. Hence we have proved that F_L

is positively generated.

liext we assuue 50 to be the canonical map of A onto 4#/F . To prove

A/E:L drchimedean we assume a€A, and

SD(a)S}—?‘—CP(e), n=1,2,%%¢,
By definition of quotient ordering. there exists bnEF_L such that

a< %‘e“‘bn, N= 142500,

Now for every pelF.

il

1
pla) < g7, n= 1,2¢¢-,

Thus p(2)<0 for all pEF. By (2.6) there is a b€A™, b= - a
such that p(b) = - p(a) for all peF. Writing € = b+a, we shall

have a< ¢, and
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pe) = p (b) + p (a) =0, all peF.

It follows that ceF_‘L,

kernel r we shall have
1 9

Pa) £ P(c) = 0.

and since @ is an order preserving map with

Hence we have proved the Archimedicity of A/F .

Again the inclusion F <::(F_L f’ is trivial. To prove the converse,

we consider an element g € S(4) ~ F. By the Hahn Benach Theoren,

. ¥ . . . . K .
therc exists @ w - continuois linear functional on 47, 1i.e. an

element a of A such that

q (a) < 0 < p (a), all p€EF.

By (2.6) there is a ¢ E AT such that P(2) = p(e) for all

p€F. It follows that a - c€&F , whereas
q (a=c) = g(a) = p(c) .

/ 1
Hence q (F, ) and the proof is co:slete.
L

L . s s :
Corollary., The map JA—=7J is an order reversing bijection

of the Archimedean ideals of the order unit space (A.e) onto the

set of we - closed faces F of S(A) satisfying (2.6) 3 the inverse

map being Ffv-—?'F_L .

® ® @ 00 000 0 00t ace

If J is an Archimedean ideal of an order unit space (A,e), then we
shall denote the rorm of the order unit space (4/J, P(e)) by “CPﬂiwo,
and we shall denote the quotient norm of A/J irduced from the

(orcer unit) norn of 4 Dby Hqﬂawq « The duals of 4/J 1in these

two rorms will be denoted by (A/J%? and (A/J): , respectively.
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Note that if F = J* , then 1in (F)e J° , and lin (F) is a base

norm space in the gage functionalg%.of conv. (Fy- ).

Proposition 12. If J is an Archimedean ideal of an order

unit space (4.e), if Cﬁ: A>A/J is the canonical map and F = Jf

hen

ct

(2.7) o)l < P (a)llg, all a€EA,

(A/J%f is a w' - dense subset of (4/Jf* . the map gﬁ: (A/J%ﬁ:?

3 . o > 3 > (ol
A% s an isometry onto J provided with the nora included from A,

end the restriction of ?3 to (A/J)‘,‘:;'E is an isometry onto 1in(F)

provided with the hese norn gn
L.

Proof 1.) If aEA and bEJ . then -|ja+b] e < a+b =lla+b R e.

Hence

-letbPle) £ Pla) = flar v Il P le),

and so

lparlly, < Nasol
Since bET  was arbitrary. this implies ”CP(a)ﬂo < “CP(a)"q .

2.) It follows from (2.7) that (8/7)F (A/J)f; .
The statc space of 4/J is contained in (4/7)® . Hence (i/3)%

separates the points of A/J, and so (A/J%f is e

(a/3)%®
/)q

- densc in

3.) The isometry of ¢ /¥ S 3°is standsrd. (Cf. ((%,Chk,
§5, no 4)) ).

4.,) By Proposition 8, (A/J%? is a base norm space, and by Propo-

sition 7, cvery qjg(A/J%f may be decomposed as follows.
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9

where ©, +§5 = lall s _917§>2:2 o , and (,, 4, are states on
(4/3, @(e) ). By Proposition 11, @*qi'E-F‘ for i = 1,2 Hence

$* qe Jaqll conv (F u-F),

and so cp}E ¢ e lin (F) and gg (c1osi q) < all. Thus cP" is a

norm decreasing map of (A/J%f into F.

By Part 3 of the proof.‘ci()}E is 1 - 1. Hence it only remains to be
proved that (Px is onto and that the inverse map is norm decreasing.

To this end consider an element pelin (F). One may decompose.

o= APy =R Dy,

A A A cy s
where Ayt 22 = gp (p) 3 QH Qb and Pys p,&F. By Proposition
11, there are unique states q,, a, of (4/7,@(e) ) such that

*® . -
p; =(? q; » i=1,2. Writing gq = j1 qy - A5 a5 5 we shall have
c16(A/J)f s Jal < gp (p) , and qf q = p. This completes the
proof. |

® 0 0 0 0 06000 000 00 0o

To every Archimedean ideal J of an order unit space (i,e) we shall

assign a nunber ELE-[ 1,00] , the characteristic of J, indicating
3 ;
to what extent the norm-prescrving decomposition of Proposition 7

fails for the subspace J° of . Specifically :

( ) +f>05 if JO;I_":(J-O)+ _ (JO)+
2.5) © =
PJ sun i f{ “q‘ln+ “ql ” ‘ . 5 +}

otherwise
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Proposition 13. If J is an Archimedean ideal of finitc charac =

teristic - in an order unit space (A,e) and F = gt . then J° -

in F,
: gp ()
(2.9) ° Q= sup
J ae° | qf ;

and_for every ggJO there is a decomposition

(2.10) a=q a4, fJag | *laf £ hal,

where 9es 0o e (J° )+ .« -

Proof. 1.) By definitior ¢@<oo implies

I = (3" = g9* UMF = [ JAF = 1in (F).
A>0 A>0

1l

2.) For any qeJ°
grp (1) = inf {/'\l X1 q gconv (Fu- F)
= inf {A\ 3:1 a -_-),1 p, -A2 9 3 Dy

writing q =) A o 1= 1,2, we obtain

, 02€TF Ay * s =1}
uq1 I +“q2" =//L)'1 +/\//\'2 =/1, ’
and so by substitution :
. +
(2.11) Bp (q) = 1nf‘{ “ q,l“ + |l qgn I = d; = dp 3 qf‘)qze(-]o) }.
This proves (2.9).
3.) Let q& 7° and write A: gF(q}.-

By W - compactness, conv (Fu- F) is radially coupact. Hence

the gage value is effectively attained, i.c. qe,\, conv (Fu- F).



Now

a= Ao, -Aohe, MptAs =1,

where ),1,},2 >@ and D, , by & F. Writing q; = ,1;\1 1] for

i = 1,2, we obtain the desired decomposition (2.10) .

® & ® 9 &6 00000 ¢ 0000

Projosition 1k. f J is an Archimedean ideal of fintc charac =

teristic of an order unit spnace (A,e) and P A=>A/T is the

T ——

canonical map, then the order unit norm of  (A/J LgP(e) ) is

topologically equivalent to the quotient norm induced on A/J from

A, and

pca |
(2.12) = Su
>3 2 Jeoca) s

t

Proof. By Propositions 12,13, it follows that (A/J) = (A/J)‘:,

—oup Nl
5 élgéj(ﬁ\)/a'* 19 1,

By duality (i.ec. by appropriate application of the Hahn - Banach

and that

Theoren), one may convert this into the desired formula (2.12).

® 00 990900006060 08

It is clear from the definitions that an Archiwnedean order ideal

of finite characteristic must be strongly Archimedean. The reverse
implication is in fact also val:d , and it is the basis for a series
of alternate characterizations of strongly Archimedean ideals. DMNote
that the mutusl equivalence of (ii), (iii), (iv) of our next
theorem was first proved by D.,A. Edwards in a slightly different
setting (( 6.p.%10)).
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Thecorem 3. If J is an Archimedean ideal of an order unit space

(A,e) and F = Jf then the following statements =zre equivalent

(1) J_is strongly Archimedean .

(ii) The characteristic of J is finite.

(iii) lin (F) is a norm-closed subspace of 4%
(iv) lin (F) is a w' - closed subspace of A¥
(v) The order unit norm of A/J is topologi=ally

equivalent to the quotient norm.

(v1) A/J is complete in order unit norm,

Proof. The proof proceeds in two cycles (i) => (ii)=>(iii)=

(iv)=> (1), (ii)= (v)=>(1i).

1.) If J is strongly Archimedean, then

7° = (%Y - (GO - 1in (F).

By v - compactness of F and by Proposition S, 7° is coniplete
in the norm gp. Generally lal < gp (a), and by the Open HMapping

Theoren, there must exists a finite number Y such that

gp (1) < ylall, all q€7°.
By Proposition 13, J is of finite characteristic @, < Y .

2.) If J 1is of finite characteristic, then by Proposition 13,
the norm gp on 1lin (F) is topologically equivalent to the norm
induced from A® . By Proposition 5, 1in(F) is completec in gps and

hence it must be a norm -closed subspace of AT .
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3.) Assume 1lin (F) to he a norm-closed subspacec of A®. Tor
every g € lin (F) , [IqlJf{gF (q), and by the Opcn iiapping

Thecrem there is a finite number)fsuch that

ap (@) < }‘H all , all q & 1in (F).
Passing to the unit balls in the two norms, we may restate this

as follows
lin (F) F\(Ax)1 = }*conv (Fu- F).

Bquivalently

lin (F) N (4%), = ( conv (FU- F)Nn@®, ) .

The right hand term is weo- compact, hence w® - closed. By the
Banach-Dieudonné (Krein- Smulian) Theorem, lin (F) is a w" -

closed subspace of A%,

4,) Assume lin (F) to be w& - closed. By Propositions 9, 12,
lin (F) is a w* - dense subspace of the w* - closed order

jdeal J° of A®. It follows that

3° = 1in (F) = (39 - (3O)F .

Hence J 1s a strongly Archimedean ideal.

5.) If J is of finite characteristic, then the two norms of

A/T must be topologically equivalent by virtue of Proposition 1k.

6.) 1If the quotient norm of A/J 1is topologically equivalent to
the order unit norm, thecn the latter must be coumplete since the

former is complete.
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7) Assume the order unit norm of A/J to be complete. By
Proposition 12,

“CF( a) Ho < o | , forallagh. It follows by
the Open Mapping Theorem that the two norms are topologically
equivalent. Hence (A/J);‘ = (4/7) . Wow it follows by appli-
cation of Proposition 12 once more, that 1lin F = JO, and J

is strongly Archimedean.

® ® 00 060000000
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3. Archimedean faces.

In this section we shall study the space A(K) of all
continuous affine functions as a compact convex subset K of
some locally convex Hausdorff space over the reals. A(K) is
seen to be a complete order unit space in the standard ordering
of functions, with distinguished order unit equal to 1 and in
uniform norm, Applying the results of the preceding eeetions

to this space, we arrive at the following:

Proposition 15, If K d1is a compact convex subset of a

locally convex Hausdorff space, then the map xn>%  where

'§(a) = a(x) for all acA(K), is an affine and topological

isomorphism of K onto S=S(A(K)). If g:a»%@ is the canonical

representation of A(X) over its state space S, then Ep maps

A(K) (isomorphically) onto ALS)7 and -

(3.1) /a\(/lz) = a(X)s

for all x€K, aecA(X).

If J is an Archimedean ideal of A(K), and if F = Ft

ig the corresponding face of S, then for any two elements

a,b of A

(3.2) a=b (mod J) &8, ="by

(Here @%U'ﬁ%‘ are the restrictions of &,% to F).

If o' is the canonical representation of A(K)/J over

its state space F (ef, Prop. 11), if o: A(K)—> A(K)/J is

the canonical map, and if T : A(S)—> A(F) is the restriction

map, then the diagram
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A(K) —Z—> A(S)

@ T
2(x)/5 L5 1(p)
is commutative, and
(3.3) ![ D (a) bo = | % |

Il

o) @@ - me{I15] | oeam, % -4}

The restriction map L is surjective iff J is strongly

Archimedean, and in this case

TN
(3.5) 9J = sup inf{l‘u 1 bE A(K), ?F = /a\F }

aﬁJ Iﬁﬁu

The proof is straightforward, except perhaps for the

verification that xﬁAQQ is a surjection of K onto S, and
that 9 is a surjection of A(S) onto A(F) in case J is

strongly Archimedean.

1) Let p be an arbitrary state on A(K). By the Hahn-
Banach Theorem, there is a norm preserving extension of p
to a linear functional on C(X). Now H}Lﬂ = f4(1) = 1, and by
the existence of barycenters of probability measures (cf. e.g.

((16, Ch. 1)), there exists a point xE£K such that
A
p(a) = a(x) = x(a), all ag A(X).

2) By a known theorem (cf. e.g. ((16, ch.4)) ), the
F-restrictions of w¥-continuous affine functions on A* are
uniformly dense in A(F). In particular 97 (A(S)) is dense
in A(F). By Theorem 3, J is strongly Archimedean iff
A(K)/J dis complete in order unit norm, and by (3.3) this is
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equivalent to 9L (A(S)) being uniformly closed, i.e. JL(A(S))=A(F).
Finally (3.5) follows from Propogition 14 by means of

(3.3) and (3.4).

By Proposition 15 one may identify K with S = S(A(K))
and A(XK) with A(S), by which the canonical homomorphism of
A(K) onto the quotient space modulo an Archimedean ideal J
turns out to be the restriction map onto the annihilator face F
of J, and the quotient norm of an extendable continuous affine
function on F Ybecomes the infinum of the norms of all possible
extensions to a continuous affine function on the whole convex set.
A closed face F of a compact convex set K din a locally

convex Hausdorff space will be said to be (strongly) Archimedean

if its annihilator ideal J ={aE A(K) | ap = O} is a (strongly)
Archimedean ideal. The characteristic of J will also be said

to be the characteristic of P , and it will be denoted by PF

as well as ?J.

Theorem 4, Let K be a compact convex set in a locally

convex Hausdorff space. A closed face F of K is Archimedean

izs
(3.6) aBA(K) , ap =0

+ > -
==$HC(;‘-A(K) :c=a, cp=ag,

An Archimedean face P of K is strongly Archimedean

iff every aoEA(F) admits an extension to a function a€A(K).

In this case it is possible for every &>0 +to choose a€ A(K)

‘suoh that
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(3.7) ap =2, 5 |l 2] < (Qp +¢ ) | aO” .

Moreover, g)F is the smallest number with this property.

Proof, 1) The condition (3.,7) is a restatement of

condition (2.6) of Theorem 2.

2) By Proposition 15, the restriction map
T : A(K)=>A(F) is surjective iff F is strongly Archimedean,
In this case one may choose a&A(K) satisfying (3.8) by virtue
of the formula (3.5), which also proves 95‘ to be the smallest

number for which this is possible,

Our next theorem shows how the concepts of Archimedicity
and strong Archimedicity can be characterized by the existence

of continuous affine extensions with prescribed lower bounds

from the cone:
(3.8) Q) ={ a9y «o. va_ | 8 €A(K), i=1,...,n |.

Theorem 5, Let F be a closed face of a convex set K

in a locally convex Hausdorff space, F is Archimedean iff

(3.9)  agh(k) , geQ(X), ay= g

= JecA(X) 2 cTg, cp=ay ,

and F dis strongly Archimedean iff

(3.10) aEA(F) 9 géQ(K) 9 a:—!gF

“—‘——%EICEA(K) : c= g, cp = a8 .
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Proof 1)

Writing g = a Vv o, we obtain (3.6) from (3.9).
To prove the reverse implication, we assume (3.6) and procede by
induction.

Assume first that a,a,€ A(K)

and that
By application of (3.6) with a~a,

a?a1 on F.

in the place of a, we
determine b1EA(K)+ with b, = a-a, , and b=a-a, on F.
Writing ¢y = b1+a1, we obtain

Cq = 845 and Cy
This proves (3.9) in case g = a,& A(K).

= a on F,

Next we assume (3.9) valid whenever g = a,lV cee V B 1
where a,,...,8, 4 eA(K).

Let

a1,...,anEA(K), and assume that
a =

8.1\/ s 00 Va

n on F.
By the induction hypothesis, there is a cn_1(_=_A(K)
such that
> : =
Cpoq = a1V ees V a1 0 1 =2 on F,
By application of (3.6) with Cpq1 ~ 2y in the place of a,

i + _
we determine bnEA(K) such that b =c ., -a, , and
bn =0Cp 4 -8 on F. Writing c, = bn+an , We obtain

o =

n a1V...\/an,cn=a on F.

This completes the induction.

2) Clearly (3.10) implies (3.9) and also the
extendability of every a=A(F) to a function in A(K). Hence
(3.10) implies strong Archimedity of F by virtue of Theorem 4.
Conversely, if F 1is strongly Archimedean, then every
aOEA(F)

is extendable to a function a A(K), and so we may
apply (3.9) to yield (3.10).
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Remark. There is an essential difference between the two
conditions (3.9) and (3.10). The former states that if & function
in A(P) is extendable to a function in A(K), then it admits
an extension above the prescribed bound g. The latter states
that every function in A(F) admits an A(K)-extension above g.

Note also that by Theorem 4 one may conclude that if an

Archimedean face P has the "extension property", i.e. If every

aO€A(F) is extendable to an a&€A(K), then F has the .

"bounded extension property, i.e. there
exists a y< v guch that every aOEA(F) can be extended to

an agh(K) with lla"‘__gr” ao -

Finally we shall give a measure theoretic oharacterization
of strong Archimedicity and a formula for the characteristic of
an Archimedean face in terms of representing boundary measures.
We shall use the standard motation M(K) to denote the space of
(Raden-) measures on the ompact convex set K and the symbol
ZnT(K) to denote the convex subset of positive normalized measures
on K. Also we shall use the symbol H( aeK) (and.anT( aeK))
to denote the space of (positive normalized) boundary measures
on K. (Cf, e.g. ((2,p.98)).).

Two measures /-&,‘VE YN (K) are said to be equivalent if

fL(K) = 9(K) and if /u and 9/ have common resultant.
Thus /M,N'V iff
/ 4
(3.11) Ja ap = ja ay , all ae A(K).
If F is a closed face of K, if }Lemj(:m), and if ¢
is any positive measure on K such that /MN’V , then Y€ N(F).
(¢f., ((2,p.98)). ©Note that we identify % (F) and

{}A,I/Ac-:-m(k:), Spt(p,)c.F}). If 9 is allowed to be a
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signed measure, then the situation is different; now 1Y may have

resultant in F without being supported by F.

Theorem 6, If F is an Archimedean face of a compact

convex subset K of a locally convex Hausdorff space, then

(3.12) © . = sup ine 1 I | Aem(9.7), Avu }
Fopen(®)  ant { ||y [YEM(3K), Vo4 }
Proof. We denote the annihilator ideal of F in A(K)

by J, and we first establish the following two auxilliary

formulas where p(E(A(K)/J)Z and q E.(A(K)/J;:

1l

(3.13) | »p inf {IA[ | JEM(SF), A(a)=a(ay) all aEA(K)
0 B

(3.14) |l qf, = inf {i)vlilvem@ezc), Y(a)=a(ap) all aE—A(K)}

(Recall that A(K)/J is identified with the space of all
P-restrictions of functions in A(K), and so the right-hand terms
of (3.13) and (3.14) are well-defined).

Since (A(K)/J)Z is a base norm space, we may decompose D
into positive components p = DP4=Ps where glpﬂo = ”p1”0 +“p21lo.
By Proposition 15, the space of F-restrictions of funetions in
A(K) is dense in A(F). Hence p,sP, may be extended by
continuity to positive linear functionals $1f% on A(F)
such that | p|, = [ Bl + I5,] . Applying the Choguet Integral
Theorem, we obtain two positive boundary measures }L1,f}2 on F

which represent the positive linear functionals @3, 5& on A(F).

(Cf, e.g. ((5))((16)) ). Writing f¢= Wy py » we shall have

(3.15) H/Lu = ”P”o s fL(aF) = p(aF) for all agEA(K).
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If Fﬁ is any (Radon-) measure on F such that
#(aF) = p(aF) for all a=A(K), then H4' 1is an extension of

lo ll,. By (3.15)

1

the linear functional p, and so ”H'”

this completes the proof of (3.13),

Every jS(A(K)/J); corresponds to a (unique) linear
functional 4§ over A(K) vanishing on J, and Hq”q ={F&ﬂ
(cf. e.g. ((4,ch.4,85,n04)) ). Applying the Choquet Theorem in
the same way as above for the linear functional E’ on A(X),

we arrive at the formula (3.14).

To prove (3.12) we first assume T to be strongly
Archimedean, i.e, _951<i &<, By Propositions 11,12
* *
(A(K)/3), = (a(K)/3), » end

e |
(3.16) © . =  sup l o .
g ae (A(K)/T)™ e Tq

Clearly every linear functional q admits a ﬂ c W (F)
such that [ (aF) = q(aF) for all a€&A(X)., Hence we may apply
the formulas (3.13), (3.14) to rewrite (3.15) in the form (3.12).

Next we assume that F is not strongly Archimedean, i.e.

we assume §E\= p<l , In this case we must have

|

(3.17) VP LEE
e(a®)/0); o |,

for otherwise the two norms on (A(K)/J)i would be topologically"
equivalent, and then also the two norms on A(K)/J would be

equivalent, in contradiction with Theorem 3., By virtue of (3.13),
(3.14), the right hand term of (3.12) must be infinite, and hence

the equality is established also in this case.
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Remark., Without lack of generality one may choose the

measure fb of (3.12) to be of the form ﬂ»: %1 @X —d@ﬁx where
1 2

061" O¢2 € R eand XX, EF. In fact this measure is used only
to specify an equivalence class of measures, i.e. a certain

moment and net charge of a '"charge-distribution" on F. The

nominator of (3.12) expresses the least total charge of a
charge—distributionﬂon E}eK with the prescribed moment and

net charge. The denominator, however, expresses the least

total charge of g charge~distribution on gDeF with the prescribed

moment and net charge.

4. TExamples and special properties of Archimedean faces.

We shall first state an application to C¥*-aglgebras which
is essentially due to E. Stermer ((17,ch.5,2)). Recall that if
CZﬁ is a C*=~algebra with identity I, then the self-adjoint part
(lea is a complete order unit space with distinguished order
unit I, whose state space is denoted by S(OL)., A face P of
S(CL) is said to be invariant if pe=F implies PAﬁiFs where

Py is defined by
(4.1) p,(B) = p(a*a)”" p(AxBA)

whenever p(A*A) £ 0, and A &UL,

Proposition 16, A w¥-closed face F of the state space

S(OL) of a C#*-glgebra (JZ is Archimedean iff it is invariant,

in which case it is strongly Archimedean with characteristic 1.

Proof. By a theorem of E., Effros ((9,Th.28)), F is

invariant iff F, 1s the self-adjoint part of a norm-closed
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two-sided ideal J of (JL. By Stormer's theorem ((17,Th.5.2)),

this in turn is equivalent to EL being an Archimedean (order)
ideal of Czsa‘

2) If P is invariant, then by the first part of the
proof we shall have EL = Jsa’ where J 1is a norm-closed two-
gided ideal, The quotient CZ(& is itself a C*-algebra
(in quotient norm), and its self adjoint part (considered as
ordered vectorspace over |R ) is equal to the order unit space
Czsa/EL . Let 99:(]%8'-—9 Cﬁéa/F be the canonical map, and
recall that the state space of Clsa/F is equal to P (Prop. 11).

Hence the order unit norm can be expressed as follows:

.
(4.2) ”C,D(a) |, = sup 1 [p(a) | ipE‘F}, NS/

The right hand term of (4.2) is equal to the norm of the
self-adjoint element %D(a) in the C*-algebra COL/3. Hence

we shall have

(4.3) lo@, = 9@l

for all a g (g,

Now it follows from Proposition 14 that ?E‘= 1, and so F

is strongly Archimedean with characteristic 1.

Proposition 17, ZEvery closed face F of a Choquet simplex K

is strongly Archimedean with characteristic 1.

Proof, It follows from known properties of simplexes, that
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(3.6) is valid, and that every a€EA(F) admists a norm-preserving
extension to a continuous affine function on X, (These results
are based on D,A, Edwards' theorem ((7)), and are stated more
explicitely in ((8)), ((10)) and ((15)) ). By Theorem 4, the

proof is complete,

By Theorem 2, every Archimedean face F of a compact
4
convex set K satisfies F = (EL) , 1.e.

(4.4) P = P& {a‘1(0) |acA(K), ap = O}

In the terminology of ((2)) this means that F is its
own "set of determinacy" with respect to A(X)., This was proved
for closed faces of a simplex X with closed extreme boundary
f}eK (an "r-simplex") in ((2,Prop.1)), and the condition on

SeK was avoided by A. Lazar ((15,Th.1,Cor.1)).

A face F of a compact convex set is said to be exposed
relatively to A(K) if there exists an a&A(K) which "peaks"

exactly at P, or what is equivalent (since F is a face), if

(4.5) F=a" (0).

It was proved independently by D.A, Edwards and A. Lazar
that every closed face of a metrizable simplex XK is A(K)-exposed
((15,Th.1,Co0r,2)),((8,Th.3,Cor.)). The proof is based on the

property (3.6), and so it applies to Archimedean faces of any

metrizable compact convex set,
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Proposition 18. An Archimedean face F of a metrizable

compact convex set K is A(K)-exposed.

Proof. By metrizability and compactness, there is a
covering of XKNF Dby compact sets CnCK\F, N=1,2,004 o
By Hahn-Banach separation, there exists for every natural number
n , a continuous affine function a, on K such that an>=' 0

on F and anéo on C.. By (3.6) there are functions c, = anVO

C =8, = O om F, n=1,2,... . Define:
! -1
bn = 1} Cn- n “ (Cn"an)’ 1’l=1,2,... '
Now bn=O on T, bn>O on Cn , and H bn“ = 1 for

n=1,2,... +» Define next:
a = :S 2™ p
n=1 n

>
Then a&A(K), a=0 on F, and a>0 on K\F=L)n___1 cn'

This completes the proof.

If X is a compact convex set in Rn, n< ™, then A(K)
is a vectorspace of dimension at most n+1, If F is an
Archimedean face of K and J dis the corresponding ideal of
A(K), then A(X)/J is finite dimensional., By Theorem 3, J

(and F) must be strongly Archimedean in this case.

Proposition 19, There exists a compact convex set K

in an (infinite dimensional) locally convex Hausdorff space

possessing a face F which is Archimedean, but not strongly

Archimedean.,
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Proof,

—

i.e. E=(ﬁ€2)N, and define a convex compact subset K = ’
and a closed

.

<
|n=1 of

K by
f(§,7>‘ofﬁf1, 0

face TF =

R
(4.6)

Ly

I
ia

Let E Dbe a countable product of Euclidean planes,

—

n=1 Kn
<
(4.7)

E

n

{(m\> | o
L7

We claim

I
-
I
Sl=
.

that A(K)

(4.8)

o
<
/

%(ukng44)}?

a(x) = OLO +

consists of all functions of the form

— (o by Pl 1)
where X = { |

To prove this claim, we consider an
of generality we assume

a(0) = 0,

aEA(K)., Without lack
Clearly x = 1imn X, o where
x = (B0 100 (5009 )veee s G0 )y G (0,00 f
19 [ 179 52972 seeeds n{é’l’?‘l R ) /Il’|1'l’ ’ se |
It follows by the continuity of a, that it can be expressed
. ' oL
in the form (4.8) for some sequence {(aﬁ’f)i) Ji=1,2,... of
coefficients.
To verify (4.9), we first evaluate a at the point
Xy = §(1,1),(1,1),... } , Oobtaining
o)
(4.10)  2__(&y+ ) = alx) < o0 s
Next we evaluate a at the point x, = é( fj} n .
defined by )
N
> __{ 1 if Obi = 0
s 1 0

—~———

ool ar 5L
\(", :t,
if <0, [ 7)o

if 3
\

o 11 i<



obtaining

(4.11) >—<oc LB = alxy) < o0

It follows by (4.10) and (4.11) that

n

¢ 8 T
S vl ) = 25m 1 (g wpae oo ) < 00,

i=1

Conversely we assume that a is defined by (4.8), and that

(4,9) holds, To prove continuity we consider an element

x:{ ) '51 of K and an &> 0, ¢Ch
(El’?l) 1____«],2’..‘ I oose a
natural number n such that
o0
S , 2 E
(4.12) 7 Coey] +|Bih <5,
i=n+1

and let V be the neighbourhood of x consisting of all

f [
= {K_§j_, Oi))—i=1,2 such that

90 00

- vy &< ! ' i
(4.13) |2~ 8 1 < =3 J?i-oi] < 2%11" 1=1,2,...1,

—_— 0 '
where M :;Z“_i=1 (loe, | +|/Si|)
It follows by (4.712) and (4.13) that for every x'&V
OO
AT RS ARV AN NN

|>0

< 2MZZ<M+/5 EARNAE

‘a(x) a(x’ )I

1

This proves the continuity of a.
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Now we shall apply Theorem 4 to show that F 1is
Archimedean, but not strongly Archimedean.

In fact, let a£A(XK) and assume = 0, Let a be

&p
represented in the form (4.8), (4.9), and define

< .
o(x) = oy + 2 (%58, +|Filny)

Tt is seen that c¢ is of the same form (4.8), (4.9);
hence cE&A(K)., Moreover ¢ = a, c = 0, and oy = ap. This

proves F to be Archimedean,

For every natural number n , define a & A(F) Dy
an(x) =n ’?n ,
where X={_(O,f71), (O,V2), ...,}.

Clearly every exte—’nsion of the function Y/ n—> 11 )Z
defined on the edge E__(0,0), (o, %)J of the trapezoid F,
to an affine function on all of Fn must assume an absolute
value exceding % at either of the two vertices (1,0) or

(1.1). Hence

inf{“ﬁé/“ {EEA(K) s E’F = anjg =

nls

. > : .
This proves SDF = % , and since n was arbitrary,

this implies )'CF = 09O, Hence F can not be strongly

Archimedean.
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