Matematisk Seminar	Nr. 9
Universitetet i Oslo	November 1966.

Notes on the homology of local rings.
by

Tor Holtedahl Gulliksen.

Notes on the homology of local rings

by
Tor Holtedahl Gulliksen.

Introduction.

Let R be a commutative Noetherian ring with unit, and let \underline{a} and \underline{b} be ideals in 1. In ((7)) Tate has shown that there always exists a fri resolution X of R / \underline{a} such that X is a differential graded algebra over R. It is shown that $\operatorname{Tor}^{R}\left(R / \underline{a},{ }^{R} / \underline{b}\right)$ has a canonical structure as a graded algebra over $R / \underline{a}+\underline{b}$.

Now let R be a local ring. Put $k=R / \underline{m}$. The numbers

$$
b_{p}(R)=\operatorname{dim}_{k} \operatorname{Tor}_{p}^{R}(k, k) \quad p=0,1,2, \cdots
$$

are called the Betti-numbers of R. We define a formal power series

$$
B(R)=\sum_{p=0}^{\infty} b_{p}(R) z^{p}
$$

In ((7)) Tate gave a lower bound for $B(R)$ of a non-regular local ring R :

$$
R \quad \text { non-regular } \Rightarrow B(R) \gg \frac{(1+z)^{n}}{1-z^{2}}, \text { where } n=\operatorname{dim}_{k} \frac{m}{m^{2}}
$$

There also exists upper bounds for $B(R)$ (Serre). There are only a few cases in which one are able to calculate $B(R)$. It is known (Tate, Assmus) that

$$
\begin{equation*}
B(R)=\frac{(1+Z)^{n}}{\left(1-z^{2}\right)^{n-D i m R}} \text { if and only if } R \text { is a } \tag{1}
\end{equation*}
$$

"complete intersection", defined in (2.1). Scheja proved in ((6)) that
(2) $\quad \operatorname{codim} R \geq n-2 \Rightarrow B(R)$ is a rational function.

It is still an open question if $B(R)$ is generally rational.

In section 1 of the present paper we shall use a technique very similar to one used by Tate in ((7)) to establish some useful algebra isomorphisms concerning Tor ${ }^{R}(k, k)$. As a consequence, using a certain characterization of regular rings, we prove that the sequence $\left\{b_{p}(R)\right\}$ of a non-regular ring R is monotonely increasing. We find that $\left\{b_{p}(R)\right\}$ is bounded if and only if $\operatorname{codim} R=\operatorname{dim}_{k} \underline{m} / \underline{m}^{2}-1$.

We also extend a result of Scheja concerning the change of the homology when the ring is divided by a non-zerodivisor t notin m^{2}.

In section 2 we give a somewhat new proof of the Scheja theorem (2).

In section 3 we propose a classification of local rings R based upon considerations on R-algebras which are acyclic after adjunction of a finite set of variables.

In the present paper all rings considered will be local, Noetherian. All modules will be unitary.

Notations.

Rings will be denoted by $R, \widetilde{R}, R^{\prime}$, ideals by $\underline{a}, \underline{b}, \underline{c}, \underline{m}$. The radical of an ideal \underline{a} is denoted by rad \underline{a}. If R is a local ring, m denotes its maximal ideal, k denotes the field R / m, and \widehat{R} denotes the m-adic completion of R. Dim R denotes the dimension of R. If M is a R-module, $1(M)$ denotes its length. If M is a vectorspace $\operatorname{dim}(M)$ is its dimension. For convenience we define $n(R)=\operatorname{dim} \frac{m}{m} \underline{m}^{2}$. If T is a graded algebra, we let $T\left[Z_{r}\right]$ denote the algebra of polynomials in an indeterminate Z_{r} of degree r.

The term "R-algebra" will be used in the sense of ((7)) i.e. differential, graded, strict commutative, connected algebras over R, with unit, such that the homogenous components are finitely generated modules over R, which are trivial in negative degrees. The R-algebra obtained by adjoining a variable T of degree w to kill a cycle t of degree $w-1$, we denote by

$$
X\langle T\rangle ; d T=t
$$

We write $\operatorname{deg} I=w$.
The adjunction of T leads to an exact couple and a long homology sequence, cf. ((7)), the latter being referred to as
the exact homology sequence associated with the adjunction of I.

Lemma 1.1. Let t_{1}, \ldots, t_{n} be elements in R which build a minimal generating system for m. Let $a=\left(t_{1}, \ldots, t_{n-1}\right)$. Then if \underline{a} is a non-prime ideal in R, it is m-primary.

Proof. Assume that \underline{a} is non-prime, then R / \underline{a} is a nonregular ring. Hence

$$
\operatorname{Dim}^{R} / \underline{a}<n\left({ }^{R} / \underline{a}\right)=1 \text { so } \operatorname{Dim}^{R} / \underline{a}=0
$$

Lemma 1.2. Let codim $\mathrm{R}=\mathrm{c}$. Then there exists a minimal generating system t_{1}, \ldots, t_{n} of \underline{m} such that t_{1}, \ldots, t_{c} is a maximal R -sequence.

Proof. If m contains a non-zerodivisor, then a lemma of Murthy ((3)) shows that there exists a non-zerodivisor $t \in m, t \not \sum^{2}$. Using this, lemma (1.2) is easily proved by induction on codim R.

Proposition 1.3. R is a non-regular local ring if and only if there exists a minimal generating system t_{1}, \ldots, t_{n} for \underline{m}, and a positive integer m such that

$$
\begin{equation*}
t_{n}^{m} \in\left(t_{1}, \ldots, t_{n}\right) \tag{1}
\end{equation*}
$$

Proof. If R is regular, obviously no minimal generating system of \underline{m} can satisfy (1). Now assume that R is nonregular. Since

$$
R \cap(\underline{b} \hat{R})=\underline{b}
$$

for every ideal \underline{b} in R, it suffices to show the proposition for \widehat{R}. We can therefore assume that R is complete. By a wellknown theorem of I.S. Cohen there exists an epimorphism
(2) $\quad f: \widetilde{R} \rightarrow R$ where \widehat{R} is regular, with
maximal ideal $\widehat{\underline{m}}$. We can assume that ker $f \subset \underline{\underline{m}}^{2}$, see $((1, \S 2))$, so that $n(\widetilde{R})=n(R)$. Since R is non-regular, we have ker $f \frac{1}{\ddagger} 0$. Consequently $k e r f$ contains a nonzerodivisor a. Put $R^{\prime}=\widehat{R} /(a)$. f induces an epimorphism

$$
f^{\prime}: R^{\prime} \longrightarrow R
$$

Since codim $R^{\prime}=n-1$ there exists by (1.2) a minimal generating system $t_{j}^{\prime}, \ldots, t_{n}^{\prime}$ for the maximal ideal m^{\prime} in R^{\prime} such that $t_{1}^{\prime}, \ldots, t_{n-1}^{\prime}$ is a maximal R^{\prime}-sequence in \underline{m}^{\prime}. From the maximality of this sequence it follows that the ideal

$$
\underline{a}=\left(t_{1}^{\prime}, \ldots, t_{n-1}^{\prime}\right)
$$

is non-prime. By (1.1) we have that $t_{n}^{\prime} \in r a d$ a. Consider the elements

$$
t_{i}=f^{\prime}\left(t_{i}^{\prime}\right), i=1, \ldots, n
$$

They are easily seen to build a minimal generating system for m which satisfy (1).

Definition 1.4. Let $K(R)$ denote the set of all R-algebras

$$
R\left\langle I_{1}, \ldots, T_{n}\right\rangle ; d T_{i}=t_{i}
$$

where t_{1}, \ldots, t_{n} runs through the set of all minimal generating systems of \underline{m}.
From (1.3) follows the well known

Corollary 1.5. Let R be a non-regular ring and let $E \in K(R)$. Then

$$
\sum_{i=0}^{n(R)}(-1)^{i} \operatorname{dim} H_{i}(E)=0
$$

Proof. Since R is non-regular, let t_{1}, \ldots, t_{n} be as in (1.3) where $n=n(R)$. Construct

$$
E^{\prime}=R\left\langle T_{1}, \ldots, T_{n-1}\right\rangle ; d I_{i}=t_{i}
$$

Since the elements of $K(R)$ are all isomorphic as R-algebras, cf. ((1, § 6)), it is no loss of generality assuming

$$
E=E^{\prime}\left\langle I_{n}\right\rangle ; d I_{n}=t_{n} .
$$

From (1.3(1)) it follows that the homology modules $H_{i}\left(E^{\prime}\right)$
have finite length for all i, so the Euler-Poincare characteristic

$$
\chi\left(H\left(E^{\prime}\right)\right)=\sum_{i}(-1)^{i} 1\left(H_{i}\left(R^{\prime}\right)\right)
$$

is defined. We have an exact sequence of complexes

$$
\begin{equation*}
0 \rightarrow E^{\prime} \xrightarrow{i} E \xrightarrow{j} E^{\prime} \rightarrow 0 \tag{1}
\end{equation*}
$$

where i is the inclusion map and j is given by $j(e+e ' T)=e^{\prime} \cdot$ From (1) it follows that

$$
\chi(H(E))=\chi\left(H\left(E^{\prime}\right)\right)-\not /\left(H\left(E^{\prime}\right)\right)=0 .
$$

Q.E.D.

Observe that $\operatorname{Tor}^{R}\left({ }^{R} / \underline{a},{ }^{R} / \underline{b}\right)$ equipped with a trivial differential, can be regarded as an R-algebra, so that the algebra

$$
\operatorname{Tor}^{R}\left({ }^{R} / \underline{a},{ }^{R} / \underline{b}\right)\langle T\rangle ; d T=0
$$

is defined.

Theorem 1.6. Let R be a local ring. Let $t_{1}, \ldots, t_{n-1}, t$ be a minimal generating system for m . Let $\underline{a}=\left(t_{1}, \ldots, t_{n-1}\right)$. Then we have one of the following canonical isomorphisms of graded algebras
(i) If \underline{a} is a prime ideal then

$$
\begin{equation*}
\operatorname{Tor}^{\mathrm{P}}(k, k) \approx \operatorname{Tor}^{\mathrm{P}}(\mathrm{R} / \underline{a}, k)\left[z_{1}\right] /\left(z_{1}^{2}\right) \tag{1}
\end{equation*}
$$

where Z_{1} is an indeterminate of degree 1.
(ii) If \underline{a} is non-prime then
(2)

$$
\operatorname{Tor}^{R}(k, k) \approx \operatorname{Tor}^{R}(R / \underline{a}, k)\langle T, S\rangle ; d T=0, d S=0
$$

where $\operatorname{deg} T=1$ and $\operatorname{deg} S=2$. In particular if the characteristic of k is zero, the right hand side of (2) is canonically isomorphic (as a graded algebra) to

$$
\begin{equation*}
\operatorname{Tor}^{R}(R / \underline{a}, k)\left[z_{1}, z_{2}\right] /\left(z_{1}^{2}\right) \tag{3}
\end{equation*}
$$

where $\operatorname{deg} Z_{1}=1, \operatorname{deg} Z_{2}=2$.

Proof. Construct the R-algebra

$$
E^{\prime}=R\left\langle T_{1}, \ldots, T_{n-1}\right\rangle ; d T_{i}=t_{i}
$$

Adjoin sufficiently many variables of degree $\triangleq 2$ to kill the cycles of positive degrees. In that way one obtains an acyclic R-algebra X^{\prime} such that $H_{o}\left(X^{\prime}\right)=R / \underline{a}$. Now put

$$
Y=X^{\prime}\langle T\rangle ; d T=t
$$

and consider the exact homology sequence associated to the adjunction of T
(4) $\quad \ldots \rightarrow H_{i+1}\left(X^{\prime}\right) \rightarrow H_{i+1}(Y) \rightarrow H_{i}\left(X^{\prime}\right) \rightarrow \ldots \quad(i=1)$

II

From (4) we get
(6)

$$
H_{i}(Y)=0 \text { for } i=2
$$

We observe that $d_{* 0}$ is multiplication by t. If therefore a is a prime ideal, then $d_{* O}$ is injective. From (5) then follows $H_{1}\left({ }^{\prime} \prime^{\prime}\right)=0$, so Y is acyclic. Tensoring with k commutes with the adjunction of T. Therefore we have canonical isomorphisms of algebras

$$
\begin{aligned}
\operatorname{Tor}^{R}(k, k) & \approx H(Y \underset{R}{\otimes} k) \\
& \approx H\left(X^{\prime} \underset{R}{\bigotimes} k\langle T\rangle ; d T=t \otimes 1\right) .
\end{aligned}
$$

Since $t=0$ this is further isomorphic to
$H\left(X_{R}^{\prime} \underset{R}{ } k\right)\langle T\rangle ; d T=0$
$\approx \operatorname{Tor}^{R}(\mathrm{R} / \underline{a}, k) \mathrm{T} ; \mathrm{d} T=0$. Since $\operatorname{deg} T=1$ we easily conclude (i).

Now suppose that \underline{a} is non-prime. By (1.1) a is mprimary. Let m be the least integer such that $t^{m} \in \underset{a}{ }$, and let

$$
\begin{equation*}
t^{m}+r_{1} t_{1}+\ldots+r_{n-1} t_{n-1}=0, \quad r_{i} \in R \tag{7}
\end{equation*}
$$

Since R / \underline{a} is artinian, it follows that $l\left(H_{i}\left(X^{\prime}\right)\right)<\infty$ for
all i. Therefore (5) gives
(8)

$$
l\left(H_{1}(Y)\right)=1\left(H_{0}(Y)\right)=1
$$

Let σ be the homology class of the cycle

$$
s=t^{m-1} T+r_{1} T_{1}+\ldots+r_{n-1} T_{n-1} \quad Z_{1}(Y)
$$

We will show that σ generate $H_{1}(Y)$. By (8) it suffices to show that $\sigma \neq 0$. Looking at the definition of $j_{* 1}$ in (5) see $((7, \S 3))$, one finds that $j_{* 1}(\sigma)$ equals the homology class of t^{m-1} in $H_{o}\left(X^{\prime}\right)$. As m is minimally chosen, we have $t^{m-1} \underset{\dagger}{\frac{1}{+}} \underline{a}$. Therefore $j_{* 1}(\sigma) \neq 0$, so $\sigma \neq 0$. We will show that the R-algebra

$$
L=Y\langle S\rangle ; d S=s \text { is acyclic. }
$$

Consider the exact homology sequence associated with the adjunction of S :
(9)

$$
\begin{gathered}
\ldots \rightarrow \mathrm{H}_{4}(\mathrm{Y}) \rightarrow \mathrm{H}_{4}(\mathrm{~L}) \rightarrow \mathrm{H}_{2}(\mathrm{~L}) \rightarrow \mathrm{H}_{3}(\mathrm{Y}) \rightarrow \mathrm{H}_{3}(\mathrm{Y}) \rightarrow \mathrm{H}_{1}(\mathrm{~L}) \rightarrow \underset{2}{\mathrm{H}_{2}(\mathrm{Y})} \\
\| \\
0
\end{gathered}
$$

By construction $H_{1}(L)=0$. From (9) and (6) it follows that it suffices to show that $H_{2}(L)=0$. However, this follows
from (8) and (10), remembering that $H_{0}(L)=H_{0}(Y)$. Therefore we have

$$
\begin{align*}
\operatorname{Tor}^{R}(k, k) & \approx H\left(L \otimes_{R} k\right) \tag{11}\\
& \approx H\left(X^{\prime} \bigotimes_{R} k\langle T, S\rangle ; d T=t \otimes 1, d S=s \otimes 1\right)
\end{align*}
$$

Again $t \otimes 1=0$. Since $t_{1}, \ldots, t_{n-1}, t$ is lineary independant modulo \underline{m}^{2}, it follows from (7) that

$$
s \in \underline{m} Y_{1} \text { so } s \otimes 1=0
$$

Therefore the adjunction of I and S kommutes with H. (11) gives

$$
\begin{aligned}
\operatorname{Tor}^{R}(k, k) & \approx H\left(X^{\prime} \otimes k\right)\langle T, S\rangle ; d T=0, d S=0 \\
& \approx \operatorname{Tor}^{R}(R / \underline{a}, k)\langle T, S\rangle ; d T=0, d S=0 .
\end{aligned}
$$

So (ii) is proved.
In the case of characteristic zero one easily finds the isomorphism beiween (3) and the right hand side of (2).

Corollary 1.7. Let a be as in (1.5).
(i) If \underline{a} is a prime ideal then $d h_{R} k=d h_{R}^{R} \underline{a}+1$.
(ii) If \underline{a} is non-prime then

$$
b_{p}(R)=\sum_{i=0}^{p} c_{i}, \text { where } c_{i}=\operatorname{dim} \operatorname{Tor}_{i}^{R}(R / \underline{a}, k) \text {. }
$$

Corollary 1.8. Let R be a non-regular local ring. Then (i) $B(R) \gg \frac{(1+Z)^{n}}{1-Z^{2}}$ (Tate)
(ii) The sequence $\left\{b_{p}(R)\right\}$ is monotonely increasing.

Proof. Since R is non-regular, there is by (1.3) a minimal generating system t_{1}, \ldots, t_{n} for m such that $t_{n} \in \operatorname{rad} \underline{a}$, where $\underline{a}=\left(t_{1}, \ldots, t_{n}\right)$. Therefore (ii) fallows from (1.7 (ii)).

The R -algebra

$$
F^{\prime}=R\left\langle T_{1}, \ldots, T_{n-1}\right\rangle ; d T_{i}=t_{i}
$$

can be regarded as an exterior algebra with differential. It follows from ((5, appendice $I)$) that E^{\prime} can be imbedded (as a graded R-module) as a direct factor of a minimal resolution of R / \underline{a}. It follows that

$$
\begin{equation*}
\operatorname{dim} \operatorname{Tor}_{i}(R / \underline{a}, k) \geq \operatorname{dim} E_{i}^{\prime} \underset{R}{\otimes} k=\binom{n-1}{i} \tag{1}
\end{equation*}
$$

Now (i) follows from (1) and (1.6 (ii)).
Q.E.D.

Lemma 1.9. Let $t_{1}, \ldots, t_{n-1}, t$ be a minimal generating system for m. Assume that t is a non-zerodivisor. Put

$$
\underline{a}=\left(t_{1}, \ldots, t_{n-1}\right) \text { and } \bar{R}=R /(t) \text {. Then we have }
$$

canonical isomorphisms of graded algebras:
(i) If \underline{a} is a prime ideal

$$
\operatorname{Tor}^{\bar{R}}(k, k) \approx \operatorname{Tor}^{R}(\underline{R} / \underline{a}, k)
$$

(ii) If \underline{a} is non-prime

$$
\operatorname{Tor}^{\bar{R}}(k, k) \approx \operatorname{Tor}^{R}(R / \underline{a}, k)\langle s\rangle ; d S=0
$$

where $\operatorname{deg} S=2$.

Proof. Let X be a free R-algebra such that $H_{o}(X)=R / \underline{a}$. We have an exact sequence of complexes
(1) $\quad 0 \rightarrow x \xrightarrow{t} x \rightarrow \bar{x} \rightarrow 0$, where $\bar{x}=x / t \cdot x$
has a canonical structure as an R-algebra. Consider the exact homology sequence associated with (1)
(2) $\quad \ldots \quad H_{i+1}(X) \rightarrow H_{i+1}(\bar{X}) \rightarrow H_{i}(X) \rightarrow \ldots \quad(i \geqslant 1)$

(3)

$$
\begin{array}{cccc}
\ldots \rightarrow H_{1}(X) \rightarrow H_{1}(\bar{X}) \rightarrow H_{0}(X) \xrightarrow{t} \\
\| & H_{0}(X) \rightarrow & H_{0}(\bar{X}) \rightarrow 0 \\
0 & R / \underline{a} & R / \underline{a} & k
\end{array}
$$

We observe that (2) and (3) are analogous to (1.6 (4) and (5)). If \mathfrak{a} is prime, then \bar{X} is acyclic and (i) follows. If \underline{a} is non-prime, $H_{i}(X)$ has finite length for all i. (3) gives $1\left(H_{1}(\bar{X})\right)=1$, and one finds that $H_{1}(\bar{X})$ is generated by a
single homology class $\bar{\sigma}$, represented by a cycle $\bar{s} \in m \bar{X}_{1}$. Similar arguments as used in (1.6) shows that

$$
\begin{gathered}
L=\bar{X}\langle S\rangle ; d S=\bar{s} \text { is acyclic, so } \\
\operatorname{Tor}^{\bar{R}}(k, k) \approx H\left(L \frac{\otimes}{R} k\right) \approx H(X \underset{R}{\otimes} k)\langle S\rangle ; d S=0 .
\end{gathered}
$$

Q.E.D.

From (1.6) and (1.9) now follows

Theorem 1.10. Let t be a non-zerodivisor in a local ring R. Assume that $t \in \mathbb{m}, t \notin \underline{m}^{2}$. Then we have a canonical isomorphism of graded algebras

$$
\operatorname{Tor}^{R}(k, k) \approx \operatorname{Tor}^{\bar{R}}(k, k)[z] /\left(z^{2}\right)
$$

where Z is an indeterminate of degree 1. In particular

$$
B(R)=(1+Z) B(\bar{R}) \quad(\text { Scheja }) .
$$

Proposition 1.11. The following conditions are equivalent
(i) The sequence $\left\{b_{p}(R)\right\}$ is bounded
(ii) codim $R \geq n(R)-1$.

Proof. We observe that if t is a non-zerodivisor in R such that $t \in m, t \frac{1}{+} \underline{m}^{2}$, and $\bar{R}=R /(t)$, then by (1.10) R satisfy (i) (and (ii)) if and only if $\overline{\mathrm{R}}$ does. Therefore there is no loss of generality to assume that $\operatorname{codim} R=0$.

That (ii) implies (i) is nearly obvious, see ((6)), so we show that (i) implies (ii). Assume that

$$
\operatorname{codim} R<n(R)-1, \text { that is } n(R) \geqslant 2
$$

Let \underline{a} be as in (1.6). Since $\underline{a} \neq 0$, it follows from ((4,9, Theorem 23)) that

$$
\mathrm{dh}_{\mathrm{R}}^{\mathrm{R}} / \underline{a}=\infty
$$

By (1.3) we can assume that \underline{a} is non-prime. From (1.7 (ii)) it now follows that $\left\{b_{p}(R)\right\}$ is non-bounded.

$\underline{2}$.

In this section we make use of the invariants $\varepsilon_{i}=\varepsilon_{i}(R), i=1,2,3$ of a given local ring $R . \varepsilon_{i}$ are defined in $((6))$. We recall that ε_{i} are non-negative integers defined by means of $b_{p}(R), p=1,2,3,4$.

Definition 2.1. An R-algebra X is said to be ordinary or an ordinary extension of E if
(i) There is an $E \quad K(R)$ such that X has the form

$$
x=E\left\langle U_{1}, U_{2}, \ldots\right\rangle ; d U_{i}=u_{i}
$$

(ii) $2 \leq \operatorname{deg} U_{i} \leq \operatorname{deg} U_{i+1}, 1=1,2, \ldots$
(iii) $d U_{1}$ is a non-boundary in $E . d U_{i}$ is a non-boundary in

$$
E\left\langle U_{1}, U_{2}, \ldots, U_{i-1}\right\rangle ; d U_{i}=u_{i} \text { for } i \geq 2
$$

X is of degree g if $\sup _{i} \operatorname{deg} U_{i}=g$.

Lemma 2.2. (Assmus) An ordinary acyclic R-algebra X has the properties
(i) $\quad \mathrm{dX}_{\mathrm{p}} \subset \underline{m X}$ for $1 \leqslant \mathrm{p} \leqslant 5$
(ii) ε_{i} equals the number of adjoined variables of degree $i+1, i=1,2,3$.

Proof. (i) is proved in ((2, § 2)). Calculating Tor(k,k) by means of X, one easily proves (ii).

Lemma 2.3. Let $E \in K(R)$. Then there exists an acyclic Ralgebra X which is an ordinary extension of E, such that

$$
Z_{3}(x) \subset \underline{m E}_{3} \oplus \frac{\varepsilon_{1}}{\frac{1}{i=1}} Z_{1}(E) s_{i} \oplus \underbrace{\varepsilon_{2}}_{j=1} \underline{m V}_{j}
$$

where $\left\{S_{i}\right\}$ and $\left\{V_{j}\right\}$ is the sets of adjoined variables of degree 2 and 3.

Proof. In constructing an ordinary extension of E, it is by ((1,2.5)) possible to represent the elements of

$$
H_{2}\left(E\left\langle S_{1}, \ldots, s_{\varepsilon_{1}}\right\rangle ; d S_{i}=s_{i}\right) \text { by cycles in } Z_{2}(E) .
$$

We may therefore assume that $d V_{j} \in Z_{2}(E)$. Examining a general element in X_{3}, using (2.2) one finds

$$
z_{3}(x) \subset\left(E_{3} \oplus \underset{i=1}{\sum_{1}} z_{1}(E) s_{i} \oplus \underset{j=1}{\varepsilon_{2}} R \cdot V_{j}\right) \cap m X_{3}
$$

Q.E.D.

Lemma 2.4. If R is complete in its \underline{m}-topology. Then for every pair (E, M) where $E \in K(R)$ and M is a submodule of $H_{1}(E)$, there exists
(i) an epimorphism of rings $f^{\prime}: R^{\prime} \rightarrow R$ such that $n\left(R^{\prime}\right)=n(R)$.
(ii) a morphism of R'-algebras $\Phi: E^{\prime} E$, where $E^{\prime} \in K\left(R^{\prime}\right)$ and $\Phi_{0}=f^{\prime}$
(iii) Φ induces a morphism of graded algebras

$$
\Phi_{\star}: H\left(E^{\prime}\right) \rightarrow H(E) \quad \text { such that } \Phi_{\star 1}: H_{1}\left(E^{\prime}\right) \rightarrow H_{1}(E)
$$

is monomorphic with image M.

Proof. Since R is complete, let \widetilde{R}, \tilde{m}, f be as in (1.3(2)). Let E be defined by $E=R\left\langle T_{1}, \ldots, T_{n}\right\rangle ; d I_{i}=t_{i}$. Let $\sigma_{1}, \ldots, \sigma_{m}$ be a k-base of M, represented by cycles

$$
s_{j}=\sum_{i=1}^{n} r_{i}^{j} T_{i} \quad j=1, \ldots, m, \quad \text { where } \quad r_{i}^{j} \in R .
$$

Choose elements $\widetilde{\Gamma}_{i}^{j}$ and \widetilde{t}_{i} in \widetilde{R} which are mapped by f to r_{i}^{j} and t_{i} 。 Let $\underline{\tilde{a}}$ be the ideal in \widetilde{R} generated by

$$
\sum_{i} \tilde{r}_{i}^{j} \tilde{t}_{i}, \quad j=1, \ldots, m .
$$

Put $R^{\prime}=\widetilde{R} / \underline{\tilde{a}}$. Let $g: R \rightarrow R^{\prime}$ be the canonical map, and let (1) $f^{\prime}: R^{\prime} \rightarrow R$ be the map induced by f.

Put

$$
E^{\prime}=R^{\prime}\left\langle T_{1}^{\prime}, \ldots, T_{n}^{\prime}\right\rangle ; d T_{i}^{\prime}=g\left(\tilde{t}_{i}\right)
$$

By means of f, E is given R'-algebra structure, and can be identified, as an R^{\prime}-algebra, with $E^{\prime} \mathbb{R}^{\prime} R$. Now let
(2) $\Phi: E^{\prime} \rightarrow E$ be defined by $\Phi\left(e^{\prime}\right)=e^{\prime} \otimes 1$, for $e^{\prime} \in E^{\prime}$.
Φ is easily seen to satisfy (i). Since

$$
\operatorname{dim} H_{1}\left(E^{\prime}\right)=\operatorname{dim} \underline{a} / \underline{m} \cdot \underline{a} \quad((1, \S 2))
$$

we have $\operatorname{dim} H_{1}\left(E^{\prime}\right) \leq \operatorname{dim} M$. On the other hand $M \in \Phi_{\star}\left(H_{1}\left(E^{\prime}\right)\right)$, so $M=\Phi_{\star}\left(H^{\prime}\left(E^{\prime}\right)\right)$, and (iii) follows. Q.E.D.

Definition 2.5. R is complete intersection if

$$
n(R)-\operatorname{Dim} R=\varepsilon_{1}(R) .
$$

It should be observed that R is a complete intersection if and only if the completion $\widehat{\mathrm{R}}$ is. This is by ((6))
equivalent to saying that \widehat{R} can be obtained by dividing a regular local ring \widetilde{R} by a suitable \widetilde{R}-sequence.

Proposition 2.6. Assume that R is a non-regular ring, such that $n(R) \leqslant 2$. Let $E \in K(R)$. Then
(i) if $H_{1}(E)^{2}=0$ we have
(i') $B(R)=\frac{(1+Z)^{2}}{1-\varepsilon_{1} Z^{2}-\varepsilon_{2} Z^{3}}$ and $\varepsilon_{3}=\binom{\varepsilon_{1}}{2}$
(i") $\varepsilon_{2}-\varepsilon_{1}-1$.
(ii) If $H_{1}(E)^{2} \neq 0$, then R is a complete intersection such that $\operatorname{Dim} R=0$.

Proof. First assume $H_{1}(E)^{2}=0$. Consider the R-algebra of (2.3). Since $E_{q}=0$ for $q \geqslant 3$, we have

$$
\underline{m}_{j}, Z_{1}(E) S_{i} \subset Z_{3}(X) \text { for all } i, j .
$$

Therefore the inclusion of (2.3) becomes equality. Applying the functor $\operatorname{Tor}_{p}^{R}(-, k)$ to this equation, one gets

$$
\begin{equation*}
b_{p+4}=\varepsilon_{1} b_{p+2}+\varepsilon_{2} b_{p+1} \text { for } p \geqslant 1 \tag{1}
\end{equation*}
$$

Since $Z_{3}(x) \subset \underline{m} X,(1)$ is also correct for $p=0$. Hence (i^{\prime}). From (2.2) and $((1,2.5))$ one obtains

$$
\varepsilon_{2}=\operatorname{dim} H_{2}(E) / H_{1}(E)^{2}
$$

Therefore we have $\varepsilon_{2}=\operatorname{dim} H_{2}(E)$ and (i") follows by (1.5). Now assume that $H_{1}(E)^{2} \neq 0$. Since $B(R)=B(\hat{R})$, $\varepsilon_{i}(R)=\varepsilon_{i}(\hat{R}) \quad c f .((6))$, and since we have an algebraisomorphism $H(E) \approx \underset{R}{H}(E \underset{R}{\otimes})$, we may assume that R is complete.

Let $\sigma_{1}, \sigma_{2} \in H_{1}(E)$ such that $\sigma_{1} \cdot \sigma_{2} \neq 0$. Let M be the submodule of $H_{1}(E)$ generated by $\left\{\sigma_{1}, \sigma_{2}\right\}$.

Apply (2.4) to the pair (E,M), and let $R^{\prime}, E^{\prime}, f^{\prime}, \Phi_{\Phi} \Phi_{x}$ be as in (2.4). Since $\operatorname{dim} H_{1}\left(E^{\prime}\right)=\operatorname{dim} M=2,(1.5)$ gives (2) $\operatorname{dim} H_{2}\left(E^{\prime}\right)=1$ i.e. $\operatorname{dim} 0: \underline{m}^{\prime}=1$, where \underline{m}^{\prime} is the maximal ideal in R^{\prime}.

Since

$$
\begin{equation*}
\Phi_{\pi}\left(H_{1}\left(E^{\prime}\right)^{2}\right)=\Phi_{*}\left(H_{1}\left(E^{\prime}\right)\right)^{2}=M^{2} \neq 0 \tag{3}
\end{equation*}
$$

it follows from (2) that
(4) $\quad H_{2}\left(E^{\prime}\right)=H_{1}\left(E^{\prime}\right)^{2}$ i.e. R^{\prime} is a complete intersection cf. ((1, § 2)). Further
(5) $\operatorname{Dim} R^{\prime}=n\left(R^{\prime}\right)-\varepsilon_{1}\left(R^{\prime}\right)=0$. We are going to show that $R=R^{\prime}$. Assume that ker $f^{\prime} \pm 0$. From (2) and (5) it follows that $0: \underline{m}^{\prime}$ is contained in every non-zero ideal in R^{\prime} so $0: \underline{m}^{\prime} \subset$ ker f^{\prime}. Therefore

$$
\Phi_{\because}\left(H_{2}\left(E^{\prime}\right)\right)=\Phi\left(\left(0: \underline{m}^{\prime}\right) E_{2}^{\prime}\right)=f\left(0: \underline{m}^{\prime}\right) \bar{\Phi}\left(E_{2}^{\prime}\right)=0
$$

which is absurd by (3).

Theorem 2.7 (Scheja). Let R be a non-regular local ring. Assume that codim $R \geq n(R)-2$. Then

$$
B(R)=\frac{(1+z)^{n}}{1-\varepsilon_{1} z^{2}-\varepsilon_{2} z^{3}-\left(\varepsilon_{3}-\binom{\varepsilon_{1}}{2}\right) z^{4}} \text {, where } n=n(R)
$$

If R is not a complete intersection then

$$
\varepsilon_{2}=\varepsilon_{1}-1 \text { and } \varepsilon_{3}=\binom{\varepsilon_{1}}{2}
$$

Proof. Dividing R by the maximal R-sequence in (1.2) Scheja shows that it suffices to show the Theorem for rings R such that $n(R) \leqslant 2$, in which case (2.6) and the formula (1) in the introduction give the sufficient information.

We now restrict ourselves to those local rings R whose residue class fields k are of characteristic $p \neq 0$. We give a few results, without proofs, on the following classifiction:

Definition 3.1. Let \underline{C}_{1} be the class of regular local rings. For each $i \geqslant 2$ define
\underline{C}_{i} is the class of rings R which satisfy
(i) There is an acyclic R-algebra X which is ordinary of degree i.
(ii) $R \dot{+} \underline{C}_{q}$ for $q<i$.

The elements of $\underline{C}_{1} \cup \underline{\mathrm{C}}_{2}$ are exactly the complete intersections.

Observe that if $R \in \underline{C}_{i}$ for some i, then $B(R)$ has a radius of convergence ≥ 1. By (2.7) rings R such that codim $R \geqslant n(R)-2$, escape the above classification unless they are complete intersections.

Remembering characteristic $k=p \neq 0$, one can prove

Proposition 3.2. Let $E \in K(R)$, and let X be an extension of the form

$$
x=E\left\langle U_{1}, U_{2}, \ldots\right\rangle ; d U_{i}=u_{i}
$$

$\operatorname{deg} U_{i}$ being arbitrary. Then the homology algebra $H(X)$ is nilpotent, that is every homology class of positive degree is nilpotent.

Using (3.2) one can show

Proposition 3.3.

$$
\underline{C}_{2 i+1} \text { is empty for } i=1,2,3, \ldots
$$

To show that \underline{C}_{3} is empty, we need no restriction on the characteristic.

Proposition 3.4. If $R \in \underline{C}_{i}$ for some $i \geq 3$, then (i) $\quad \operatorname{codim} R \leq n-\varepsilon_{1}-2$
(ii) $\operatorname{dim} \underline{c}: \underline{m} / \underline{c}=1$ each time \underline{c} is generated by a maximal R-sequence in \underline{m}.

The requirements (i) and (ii) seems to be very restrictive. It seems doubtful that the two conditions can be satisfied simultaneously. As an example the Macaulay rings do not even satisfy (i).

References.

((1)) Assmus, Jr., E.F.: On the homology of local rings. Illinois J.Math. 3,(1959) 187-199.
((2)) \qquad Thesis, Harvard University (1958).
((3)) Murthy, M.P.: A note on the Primbasissatz. Archiv der Math., 12(1961) 425-428.
((4)) Northcott, D.G.: An introduction to homoloqical algebra. Cambridge University Press. (1962).
((5)) Serre, J.P.: Algebre Locale. Muliiplicites. Springer-Verlag (1965).
((6)) Scheja, G.: Bettizahlen lokaler Ringe. Mathematische Annalen 155 (1964) 155-172.
((7)) Tate, J.: Homology of noetherian rings and local rings. Illinois J.Math. 1(1957) 14-27.

Errata

pr, 1.6 for "ideals in 1 " read "ideals in R"
p.2, 1.2 for "(2.1)" read "(2.5)"
p.2, 1.13 read "Codim $R \geqslant \operatorname{dim}_{k} \quad \mathrm{~m} / \underline{m}^{2}-1$
p. 4 bottom read $" t_{n}{ }^{m} \in\left(t_{1}, \ldots, t_{n-1}\right) "$
p.6, 1.16 for " $((1, \S 6))$ " read " $((7, \S 6)) "$
p.7, 1.3 for $" H_{i}\left(R^{\prime}\right)$ " read $" H_{i}\left(E^{\prime}\right)$ "
p. 8 bottom for " $(i=1) "$ read " $(i \geqslant 1) "$
p.9, 1.3 for " $i=2 "$ read " $i \geqslant 2 "$
p.9, 1.13 read $\operatorname{THor}^{R}\left(R / \frac{a}{1}, k\right)\langle T\rangle ; \alpha T=0$
p.10, 1.4 read $" s=t^{m-1} T+r_{1} T_{1}+\ldots+r_{n-1} T_{n-1} \in Z_{1}(Y)$ "
p.11, 1.15 for " (1.5)" read "(1.6)"
p.12, 1.6 for " $\left(t_{1}, \ldots, t_{n}\right)$ " read " $\left(t_{1}, \ldots, t_{n-1}\right)$ "
p.12,1.15 for "(1.6(ii))" read "(1.7(ii))"
p.15, bottom for " $E K(R)$ " read $E \in K(R)$ "
p.16, 1.2 for $" d U_{i}$ " read $" d U_{j}$ "
p.16, 1.4 read $" E\left\langle U_{1}, U_{2}, \ldots, U_{j-1}\right\rangle ; d U_{i}=u_{i}$ for $j \geqslant 2 "$

