Two-sided ideals in C*-algebras.

by

Erling Størmer
Two-sided ideals in C^*-algebras.

Erling Størmer.

If \mathcal{A} is a C^*-algebra and \mathcal{I} and \mathcal{J} are uniformly closed two-sided ideals in \mathcal{A} then so is $\mathcal{I} + \mathcal{J}$. The following problem has been proposed by J. Dixmier [1, Problem 1.9.12]: is $(\mathcal{I} + \mathcal{J})^+ = \mathcal{I}^+ + \mathcal{J}^+$, where \mathcal{L}^+ denotes the set of positive operators in a family \mathcal{L} of operators? He suggested to the author that techniques using the duality between invariant faces of the state space $\mathcal{S}(\mathcal{A})$ of \mathcal{A} and two-sided ideals in \mathcal{A}, as shown by E. Effros, might be helpful in studying it. In this note we shall use such arguments to solve the problem to the affirmative.

By a face of $\mathcal{S}(\mathcal{A})$ we shall mean a convex subset \mathcal{F} such that if $\rho \in \mathcal{F}$, $\omega \in \mathcal{S}(\mathcal{A})$ and $a \omega \leq \rho$ for some $a > 0$, then $\omega \in \mathcal{F}$. \mathcal{F} is an invariant face if $\rho \in \mathcal{F}$ implies the state $B \rightarrow \rho(A^*BA)\rho(A^*A)^{-1}$ belongs to \mathcal{F} whenever $\rho(A^*A) \neq 0$ and $A \in \mathcal{A}$. We denote by \mathcal{F}^\perp the set of operators $A \in \mathcal{A}$ such that $\rho(A) = 0$ for all $\rho \in \mathcal{F}$. If $\mathcal{I} \subset \mathcal{A}, \mathcal{J}^\perp$ shall denote the set of states ρ such that $\rho(A) = 0$ for all $A \in \mathcal{J}$. E. Effros [2] has shown that the map $\mathcal{I} \rightarrow \mathcal{I}^\perp$ is an order inverting bijection between uniformly closed two-sided ideals of \mathcal{A} and w^*-closed invariant faces of $\mathcal{S}(\mathcal{A})$. Moreover, $(\mathcal{I}^\perp)^\perp = \mathcal{I}$, and $(\mathcal{F}^\perp)^\perp = \mathcal{F}$ when \mathcal{F} is a w^*-closed invariant face. If \mathcal{I} and \mathcal{J} are uniformly closed two-sided ideals in \mathcal{A} then $(\mathcal{I} \cap \mathcal{J})^\perp = \text{conv}(\mathcal{I}^\perp, \mathcal{J}^\perp)$ - the convex
hull of \mathcal{J}^+ and \mathcal{J}^+, and $(\mathcal{J} + \mathcal{J})^+ = \mathcal{J}^+ \cap \mathcal{J}^+$. If A is a self-adjoint operator in \mathfrak{A} let \hat{A} denote the w^*-continuous affine function on $S(\mathfrak{A})$ defined by $\hat{A}(\rho) = \rho(A)$. It has been shown by R. Kadison, [3] and [4], that the map $A \to \hat{A}$ is an isometric order-isomorphism of the self-adjoint part of \mathfrak{A} onto all w^*-continuous real affine functions on $S(\mathfrak{A})$. Moreover, if \mathfrak{J} is a uniformly closed two-sided ideal in \mathfrak{A}, and ψ is the canonical homomorphism of \mathfrak{A} onto $\mathfrak{A}/\mathfrak{J}$, then the map $\rho \to \rho \circ \psi$ is an affine isomorphism of $S(\mathfrak{A}/\mathfrak{J})$ onto \mathcal{J}^+. Thus the map $\psi(A) \to \hat{A}/\mathcal{J}^+$ is an order-isomorphic isometry on the self-adjoint operators in $\mathfrak{A}/\mathfrak{J}$.

We shall below make extensive use of these facts. For other references see [1, §.1].

Theorem. Let \mathfrak{A} be a C^*-algebra. If \mathfrak{J} and \mathfrak{J}' are uniformly closed two-sided ideals in \mathfrak{A} then

$$(\mathfrak{J} + \mathfrak{J}')^+ = \mathfrak{J}^+ + \mathfrak{J}'^+.$$

In order to prove the theorem we may assume \mathfrak{A} has an identity, denoted by I. We first prove a

Lemma. With the assumptions as in Theorem let A belong to $(\mathfrak{J} + \mathfrak{J})^+$, and let $\varepsilon > 0$ be given, $\varepsilon < 1$. Then there exist B in \mathfrak{J}^+ and C in \mathfrak{J}'^+ such that $0 \leq A - B - C \leq \varepsilon I$.

Proof. We may assume $\|A\| \leq 1$. Let ψ denote the canonical homomorphism of \mathfrak{A} onto $\mathfrak{A}/\mathfrak{J}$. Then $\psi(\mathfrak{J} + \mathfrak{J}') = \psi(\mathfrak{J}')$. Now
\[\psi(A) \geq 0. \] Therefore there exists \(B_1 \in \mathcal{J}^+ \) such that \(\psi(B_1) = \psi(A) \). Then \(\hat{B}_1 \psi = 0 \) and \(\hat{B}_1 \gamma = \hat{A} \gamma \). Since \((\gamma \cap \gamma^\perp) = \text{conv}(\gamma^\perp, \gamma^\perp), \hat{B}_1 \gamma \cap \gamma^\perp \leq \hat{A} \gamma \cap \gamma^\perp \). Let \(\phi \) denote the canonical homomorphism of \(\mathcal{A} \) onto \(\mathcal{A}/\gamma \cap \gamma^\perp \). Then \(0 \leq \phi(B_1) \leq \phi(A) \).

Let \(f \) be the real continuous function \(f(x) = (\varepsilon/3)^2 \) for \(x \leq (\varepsilon/3)^2 \), \(f(x) = x \) for \(x > (\varepsilon/3)^2 \). Let

\[
S = f(A) - B_1 f(A) - A.
\]

Then \(S \in \mathcal{J}^+ \), and

\[
(1) \quad 0 \leq \phi(S) = f(\phi(A)) - \phi(B_1) f(\phi(A)) - \phi(A) - \phi(A) f(\phi(A)) - \phi(I).
\]

Let \(g \) be the real continuous function \(g(x) = x \) for \(x \leq 1 \), \(g(x) = 1 \) for \(x > 1 \). Since \(g(0) = 0 \), \(g(S) \) is by the Stone-Weierstrass Theorem a uniform limit of polynomials in \(S \) without constant terms. Since \(S \in \mathcal{J}^+ \), and \(\mathcal{J} \) is uniformly closed, \(g(S) \in \mathcal{J}^+ \). By (1)

\[
(2) \quad \phi(g(S)) = g(\phi(S)) = \phi(S).
\]

Let

\[
B = (f(A)^{1/2} - \varepsilon/3 I) g(S) (f(A)^{1/2} - \varepsilon/3 I).
\]

Since \(g(S) \in \mathcal{J}^+ \) so is \(B \). Now \((f(x)^{1/2} - \varepsilon/3)^2 \leq x \) for \(x \geq 0 \), and \(g(S) \leq I \). Hence \(0 \leq B \leq A \). By (2)
\[\varrho(B) = (f(\varrho(A))^{\frac{1}{2}} \varepsilon/3 \varrho(I) - \varrho(g(S)) (f(\varrho(A))^{\frac{1}{2}} \varepsilon/3 \varrho(I)) \]
\[= \varrho(B_1) - \varepsilon/3 \left[(f(\varrho(A))^{\frac{1}{2}} \varrho(S) + \varrho(S) f(\varrho(A))^{\frac{1}{2}} - \varepsilon/3 \varrho(S) \right]. \]

Since \(\| f(\varrho(A))^{\frac{1}{2}} \| \leq 1, \| \varrho(S) \| \leq 1, \) and \(\varepsilon \leq 1 \)
\[\| B \| \left(\mathcal{J} \cap \mathbb{J} \right) \supset B \supset (\mathcal{J} \cap \mathbb{J})^\perp \leq \| \varrho(B) - \varrho(B_1) \| \leq \varepsilon. \]

In particular,
\[\| B \| \left(\mathcal{J} \cap \mathbb{J} \right) \supset \mathcal{B} \supset (\mathcal{J} \cap \mathbb{J})^\perp \leq \varepsilon. \]

Apply the preceding to \(A-B \) instead of \(A \) and to \(\mathcal{J} \) instead of \(\mathbb{J} \). Choose \(C_1 \in \mathcal{J}^+ \) such that \(C_1 \leq A-B \), and
\[\| C_1 \| \mathcal{J} \supset (A-B) \mathcal{J} \supset \| \leq \varepsilon. \]

Since \(C_1 \| \mathcal{J} \| = 0 \)
\[\| C_1 \| \mathcal{J} \supset (A-B) \mathcal{J} \supset \| \leq \varepsilon. \]

By (4) and (5)
\[\| \varrho(C_1) - \varrho(A-B) \| = \| C_1 \| \mathcal{J} \supset (A-B) \mathcal{J} \supset \| \leq \varepsilon. \]

Let \(D = A-(B+C_1) \). Then \(D \geq 0 \), and \(\| \varrho(D) \| \leq \varepsilon \). Let \(h \) be the real continuous function \(h(x) = 0 \) for \(x \leq \varepsilon \), \(h(x) = x-\varepsilon \) for \(x > \varepsilon \). Then \(\varrho(h(D)) = h(\varrho(D)) = 0 \), and \(h(D) \in (\mathcal{J} \cap \mathbb{J})^+ \subset \mathcal{J}^+ \). Furthermore
Let \(C = C_1 + h(D) \). Then \(C \in \mathcal{Y}^+ \), and by (6)

\[
0 \leq B + C \leq B + C_1 + D = A \leq B + C_1 + h(D) + \varepsilon I = B + C + \varepsilon I.
\]

The proof is complete.

Proof of Theorem. Let \(A \in (\mathcal{Y} + \mathcal{Y})^+ \). Multiplying \(A \) by a scalar we may assume \(0 \leq A \leq I \). By Lemma choose \(B_0 \in \mathcal{Y}^+ \), \(C_0 \in \mathcal{Y}^+ \) such that

\[
0 \leq A - B_0 - C_0 \leq 2^{-1}I.
\]

Then \(\|B_0\| = \|A\| \leq 1 \), \(\|C_0\| = \|A\| \leq 1 \). Suppose inductively

\[
B_0, B_1, \ldots, B_{n-1}, C_0, C_1, \ldots, C_{n-1}
\]

are chosen in \(\mathcal{Y}^+ \) and \(C_0, C_1, \ldots, C_{n-1} \) are chosen in \(\mathcal{Y}^+ \) such that \(\|B_j\| \leq 2^{-j}, \|C_j\| \leq 2^{-j} \), and

\[
0 \leq A - \sum_{j=0}^{n-1} B_j - \sum_{j=0}^{n-1} C_j \leq 2^{-n}I.
\]

Apply Lemma to \(A - \sum_{j=0}^{n-1} B_j - \sum_{j=0}^{n-1} C_j \) and to \(\varepsilon = 2^{-n-1} \).

Then there exist \(B_n \in \mathcal{Y}^+ \), \(C_n \in \mathcal{Y}^+ \) such that

\[
0 \leq A - \sum_{j=0}^{n-1} B_j - \sum_{j=0}^{n-1} C_j - B_n - C_n \leq 2^{-n-1}I,
\]

or

\[
0 \leq A - \sum_{j=0}^{n-1} B_j - \sum_{j=0}^{n-1} C_j \leq 2^{-n-1}I.
\]
Moreover, by (7) \(\| B_n \| \leq 2^{-n}, \| C_n \| \leq 2^{-n} \); the induction argument is complete. Let

\[
B = \sum_{j=0}^{\infty} B_j, \quad C = \sum_{j=0}^{\infty} C_j.
\]

Then \(B \in \mathcal{J}^+, C \in \mathcal{J}^+ \), and

\[
\| A - B - C \| = \lim_{n \to \infty} \| A - \sum_{j=0}^{n} B_j - \sum_{j=0}^{n} C_j \| \leq \lim_{n \to \infty} 2^{-n-1} = 0.
\]

Thus \(A = B+C \in \mathcal{J}^+ + \mathcal{J}^+ \), and \((\mathcal{J} + \mathcal{J})^+ \subseteq \mathcal{J}^+ + \mathcal{J}^+ \). Since the converse inclusion is trivial, the proof is complete.

References.

1) J. Dixmier, Les \(C^\star \)-algèbres et leurs representations, Gauthier-Villars, Paris (1964).

University of Oslo.