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Introduction. The main result of the present paper is the 
following 

THEOREM 2. Let T be a compact space, let P be a convex cone in 
the linear space C(T) of all continuous real functions on T. 
Denote with M+(T) the set of all positive measures on T, and 
let flo be such a measure. Then for any strictly positive 
g t:. C(T) 

sup{fo(p) :p ~ P & p ~ g} = inf{JA(g): JlE:M+(T) & )A~ JJ-o on P} 

Several particular results of this kind is known. Section 1 
provides four such examples. We prove Theorem 2 via a geometric 
version of it, where we assume that the corr.pact set T is a convex 
subset of a topological linear space. This is explained in more 
detail in section 2, where we also exhibit an example which shows 
that Theorem 2 is no longer valid if g is not assumed strictly 
positive. However, if the cone P contains a strictly negative 
function, then Theorem 2 is valid for any continuous g. (Theorem 3) 
In section 3 we apply the preceding result$ to prove Theorem 4 
where we state an equality of inf. and sup. for polar convex cones. 
The first part o~ this theorem can be deri~ed from the main theorem 
of linear programming (see [6]), a fact we became aware of after 
having finished this paper. We only sketch the proofs. A paper 
containing complete proofs will appear elsewhere. 

1. Examples. In (i) and (ii) below, we assume that K is a convex, 
compact set in a locally conve~ Hausdorff space E. E1 denotes 
the topological dual of E. 
(i) The first example is a very old one; it itates that the gauge 
function of K equals the support function of the polar set of K. 



Otherwise formulated: If k t K, then 

( 1 • 1 ) suptf(k): fEE' & f f 1 on K} = inf{A ~ 0: kE. AI<}. 

(ii) The next example has been useful in the proof of the 
Choquet-theorem, see [5]. Let A denote the set of all continuous 
affine functions on K, and lAt g E: C{K). Then for any k E K 

(1.2) suptf(k) :f E: A & f ~ g on K} = inf{r(g): JA.EM+(K) &j-l..(f) = 

f(k),Vf t A}. 

(iii) If L is a linear subspace of C(T), 
H. Bauer proved in [1] that 

+ and .fAo E: M ( T ) , 

(1.3) sup{J-A-0 (1) :1 E L & 1 ~ 1 on T} = inf[_f(1): ff:M+(T) &fl = 

jJ- 0 on L}. 

(iv) The next example is a theorem in potential theory which 
recently has been proved by B. Fuglede [3]. The setting for this 
result is as follows: S and T are compact spaces, 

ther_ 

+ k : S )( T ~ IR ; for simplicity we assume k to be continuotJ,s. 
Let y~M+(T) and A & M+(S) be given. We define the potential 
of f"' and )... to be 

For any 

cap f 

cont f 

k(s,r) = sk(s,t) dp.{t) 

k (.>.. , t ) = 5 k ( s , t) dA( s ) • 

f ·~ C(T) we define 

= s upfJM f ) : f E M + ( T) & k( s ,f) L 

= in f{A ( 1 ) : A f M + ( S ) & k (A, t) ~ 

1 on s} 
f(t),\ft~ 

The result of Fuglede states that 

( 1 • 4) cap f = cont f • 

We now make the following assumption: 

T} • 
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(1.5) There exists a positive measure )J.d f M+(T) 

such that k(s,,~Ja) = 1, V s E: s. 

Using the condition (1 .5) we find by integration and by applying 
the Fubini-theorem that the condition 

k(s,p.) ~ 1, .V sE: S 

is equivalent with 

( 1 • 6) ;U_ ( k (A, t) ) ~ JA0 ( k (.A, t) ) , tl A E: M + ( S) • 
·' 

Put P={-k(.\,t):,.AE M+(s)}. Then P isaconvexconein C(T) 

and the condition (1.6) means that 

Finally, interchanging the order of integration, we get 

The equation (1 .4) can therefore be written in the 
following way 

1 { ~ ( 1 • 7 ) sup )10 ( p ) : p E P & p f.. - f J = in f f ( -f ) :,fA. €- M + ( T ) & }J.. ~)A 0 on j 

The observation that the equation (1.4) could be expressed 
in the form given by (1 .7) was the starting point of the present 
paper. 

2. The geometric version. 

As above we assume that E is a locally convex Hausdorff 
space and that E' is the topological dual of E. We equip E' 
with the weak topology. K is a compact, convex subset of E, and 
Q is a convex cone in E' with zero as vertex. As usual, the set 
Q0 = [ x E E:f(x) ~ o, V"f E q} is called the polar cone of Q. 

THEOREM 1. If Q is closed, then for any k E K 
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( 2. i ) s;up{f(k) :fEQ & f L 1 on K} = inf{)J-(1) :jlE M+(K) 

f(k), Vf t: o}, 
& /.A( f) ~ 

I 

and the inf is attained. 
This theorem looks like a hybrid of the Examples (i) and 

( ii) • It follows from the fallowing .lemma that it is actually a 
generalization of Example (i). 

LEMMA 1 • For any k E K 

Sketch of the proof of Theorem 1 : It is easy to see that 
sup ~ inf. If the theorem is not true, choose o'. such that 
sup<~<. inf. Applying Lemma 1 we then get 

Since o.,.K is convex and compact, and k-Q0 is convex and closed, 
we can use the fundamental separation theorem to assert the 
existence of an f E: E' and a real number 5 such that 

(2.2) 

First we assume that 0 ~ K. We then get ~> 0. Putting 
1 g = r::)... <(' f , we obtain 

(2.3) g(k) ~o...>sup 

We can, on the other hand, use (2.2) to infer that g E (Q0 ) 0 = Q. 
Together with (2.3) this contradicts the definition of sup. 

In order to prove Theorem 2 using Theorem 1, we first assum 
that the convex cone P is closed and that g = 1. We then apply 
Theorem 1 using the usual imbedding of T in the dual of C(T). 

If g is not a constant, we introduce the cone 

pg = .[ fg -1 : f E: p} 

Which enables us to reduce the case of general g to the case 

g = 1 • Finally, if p is not closed, we apply the above result 
to the uniform closure of P, and make use of special properties c 
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the uniform convergence to ascertain that the desired result is not 
affected by the closure operation. 

Theorem 2 includes Examples (i) and (iii), but it does not 
include Examples (ii) and (iv), because we requirB g to be 
strictly positive. This condition can, hcwever, not be relaxed in 
the general case. In fact the following example shows that Theorem 
2 can not be valid for a non-negative function which vanishes in 
just one point. 

_£xample. Let T = [o,D , let P 
non-negative coefficients, and let 

1 
\ e- t 

-< 

l_ 0' 
g ( t) = 

consists of all polynomials with 
g be defined as follows 

0 ( t L 1 

t = o. 

Ne have choosen g in this way because we want to conclude that 
p = 0 is the only member of P such that p f g. Hence we get for 
any _p. 0 E M+(T) 

We now choose ~ as the measure with unit mass placed in the p9int 
' 0 + 

t = 1. Assume that y E M (T) satisfies 

Let v denote 
lim tn = v(t), 

;(~~ ~ /p_ ( v). 

n = 0,1, .••• 

the characteristic function of the set {1}. Since 

it follows from Lebesgu~s convergence theorem that 

Hence _p.(v) ~ 1. Since g ~ e- 1v, we get 

We can therefore conclude that 

Thus we have got the desired counterexample. 

The convex cone P contains in this example the non­
negative constants, but not the constant -1. It turns out that 
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the appropriate condition on P is that P shall contain a 

strictly negative function: 

THEOREM 3. 

containing 
+ 

)J-oE M {T) 

If T is compact and P C C(T) 

a strictly negative function p0 ; 

and g E C(T) 

and the inf is attained. 

is a convex cone 
then for any 

on 

The proof of this theorem is an easy consequence of Theorem 
2 if we in addition know that -p 0 f P. However, Theorem 3 can in 

general be proved independent of Theorem 2 by a technique using 

the analytic Hahn-Banach theorem. This technique was applied by 

F.F. Bonsall to prove the Choquet theorem in the metrizable ca~e [i. 
The condition that P contains a strictly negative function is 

used to ascertain that 

cp (g) = sup{fo ( p) : p E P & p ~ g} 

is finite for any g E C(T). It is then easy to see that - cp is 

a subadditive and positive-homogeneous functional on C(T). A 

straight forward application of the Hahn-Banach theorem then gives 

the desired result. 

3. Polar convex cones. 

We denote with (K) the convex cone generated by the compa· 

convex set K. Hence 

(K) = IJ A K 
A~O 

For any }.J.. E M+ ( K) we denote with r (.f-) the resultant of r . 
r~) is uniquely given by the requirement 

));_(f) = f ( r ( )'L) ) , t/ f E. E ' • 

The next lemma should be compared with Lemma 1. 
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LEMMA 2. Let f'-' 0 E: M+(K) be given. Then 

We also observe that if hE E', then 

( q 1:: Q & q '= h on K) ~ 5> q E Q (I ( h+ ( K) 0 ) • 

Using Lemma 2 and Theorem 2 and 3 we get 

LEMMA 3. Assume that PoE: M+(K). Then: 

(i) If h t E' is strictly positive on K, 

(ii) If Q contains a function which is strictly negative on K, 
then (3.1) is valid for any hE E'. 

Applying Lemma 3 we get 

THEOREM 4. Let A,B be convex cones in E such that A is 
closed and the interior of A, int. A, is non-empty. Let f f A0 

be given. Then: 

(i) If -x E int. A 

(3.2) sup[£( y) :y ~ (x+A) n B} 

(ii) If 

( int. A) (\ B ::f f? 

then (3.2) is valid for any x f E. 

Sketch of the proof: Since int. At~, 
exists ~ weakly compact, convex subset C 

A 0 = (C) = u A c 
~~0 

It follows that if -x E int. A, then 

g(x) ). O, \fg E: C. 

it is known that there 
of E' such that 
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We then consider E as the topological dual of E' and apply 

Lemma 3. 

COROLLARY. Let f f A0 arid assume 

Then the following two statements are equivaleht 

( i) A0 n (f-B 0 ) :::: {f }. 

(ii) f(x) :::: sup~(y) :y E: (x+A) (\ B}, V xE E. 

This corollary should be compared with the characterizatio~ 
of the Choquet boundary given by M. Herve [4]. 
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