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1. Introduction. The literature on real group algebras is

very scarce. This is of course due to the fact that Fourier
analysis is basically a complex theory, with the complex
group algebra Lz(G) as the central object of study. Never-
theless, various natural questions - pose themselves also in the
case of the real group algebra Lé(G): What is the structure
of this algebra in comparison with well-known results about
L;(G)? Which relations exist between the convolution product
and the pointwise ordering a.e. 0f the functions in Lé(G)?
To what extent do there exist functions in L;(G) with
Fourier-transforms with prescribed properties?

The purpose of the present report is to give some scattered
results in connection with the above-mentioned problems. In
a previous report [l} in this seminar we showed that there
are no other closed convex ideals in Lé(G) than those which
are contained in the kernel of the Haar-measure. In the proof
of this result (Theorem 1) it turns out that a crucial role
is played by the positivity of certain convolution productse
In._ﬁ] we also offered an elementary approach to this question
which we here complete on certain points. By means of
Theorem 1 the determination of the w*-closed convex translation
invariant subspaces of LR(G) is quite easy. We also treat
the commutativity of a certain diagram which arises in this
connection, In a final section we prove a couple of results
on Fourier transforms of real-valued functions which parallels

similar results in the complex theory.

2. Convex closed ideals in Lé(G). By Lé(G) - or simply

Lé - we demnote the ordered group algebra of all real-valued
integrable functions on a locally compact abelian group G

under the ordering f » g whenever f(x) 2 g(x) almost every-
where on G. Lé shall denote the usual group algebra of all

complex~valued integrable functions on G. We recall that an




1) . .1
ideal JL C Ly is said to be convex if fyge0l and £ 2 h 2 g

]

~—

impliies he Ol , The following theorem was proved in [1 :

-

" . 1 .
Theorem 1. A proper closed ideal in L,(G) is convex if and

——

R
only if it is contained in the kernel of the Haar-measure 4@{0_

(consisting of all functions with zero integral).

e give a number of easy corollaries some of which were
not mentioned in [1].

Corollary 1. The only regular and convex maximal ideal in

Ll

R is the kernel of the Haar measure. Otherwise expressed:?

. 1 .
If}L,is an order preserving homomorphism of LP onto a partially

ordered field F then F is isomorphic to the field of real

numbers and /uais the Haar measure of Go.

1.
If Aﬂxdenotes the maximal ideal in LC which corresponds:

AN
to the character KAE G we also note the following.

Corollary 2. If G is connected the following statements are

equivalent

(1) M _ is the kernel of the Haar measure
. 1
(2) ”%xnlﬁ is convex
(3) A%&does not contain any strictly positive function
1 1
) . . . .
(4) df)LR is of real codimension one in LR
N 1
(5) f£(X) is real for all f & LR
1 D
(6) 44'10@ Ly = ’M;S‘ N Lp =5 X je

1> 1In the following we shall always assume that JL is a

1
proper ideal. Hence LR will not be considered as an ideal

1

in LR'



Proof: The equivalence of (1), (2) and (3) is valid for
arbitrary G and follows from Corollary 1 and the proof of
Theorem 1. From the Gelfand-Mazur theorem it follows that
Lé//"miﬁLé is isomorphic to either R or C. This quotient
algebra is isomorphic to R if and only if o is a real-valued
character which means that ¢{ is the identity character if

'G is connect8d. TFrom this together with
1 _ 1, ,_ o _
(2.1) ( M’Ldn Lp _/«manRm_, (A= 28

we easily deduce the latter part of the corollary. The

1
equivalence (2.1) expresses that a maximal ideal in LR can

be extended to a maximal ideal in Lé'in at most two ways and
that the extension is unique if and only if the given maximal
ideal corresponds to a real-valued character (which means
that = = ), For more general information about the
relationship between real and complex Benach algebras we can
refer the reader to E{] and [5] .

- For later reference we give the following corollary which

is a consequence of the proof of Theorem 1l.

Corollary 3. A closed ideal (Jl is convex if and only if {J]

does not contain a strictly positive function.

Corollary 4. DOpectral analysis holds for closed convex

1
ideals in Lq while spectral synthesis does not hold.

Corollary 4 is valid since the converse of Theorem 1 is
obviously true: Any ideal contained in the kernel of the

Haar measure is convex.

If we formulate Theorem 1 in terms of homomorphisms we

get the following



1
Corollary 5. Any order-preserving ring homomorphism of Lq

onto a partially ordered ring is a factor in the canonical

1
order—preserving homomorphism of LR onto R.

o0 .
3., Convex translation invariant subspaces of LR . We denote

o0
by LR the real dual of L;, consisting of all bounded measurable

0
real-valued functions on G. Thus LR is nothing else than
the family of all the real-valued functions in the usual

0 oD
complex L -space which we shall here denote by LC . It is
a well-known fact that there is a one-to-one correspondence

1 *
between the closed ideals in LC and the w -closed translation

o0
invariant subspaces of LC (see [d] pe. 184). The same

oD
correspondence persists between the real spaces Lé and LR

By means of this correspondence we shall easily describe

*
the convex w =-closed translation invariant subspeces of L

o
R [ )
1 lt ~ o
If Ol is a closed ideal in LC we put OL =ig1 gELC
and gxf = 0 for all fe(ﬂﬁ. Similarly if C[ is a closed
. . 1 ra LR f
ideal in LR we put (L = -Lglge LR and g»xf = 0 for all fem}.
»®
The correspondence between closed ideals in LR‘ and w ~closed
translation invariant subspaces of LR is then given by the

lR
mapping gL — L

égmma 1. 01, contains a strictly positive function if and

. Lg .
only if Cﬂ,~ does not contain a strictly positive functionse.

Proof: 1If Cﬂ, contains a strictly positive function it is

R dr s
clear that OL R can not contain such a function since OZ*CR. 2{05w

Conversely if 0L does not contain a strictly positive function



R
we know from Corollary 3 of Theorem 1 that CQC:A“@ and thus

L L
1 EOZ. Rproving that OL R contains a strictly positive

function.
! not

Proposition 1. OL R is convex if and only if (/4 isVconvex.

- R w3
Proof: If OL is convex then UZC-/WG and 1 £ (JL R showing
!
that OL”®  is not convex. Conversely if ({ 1is not convex

then OZ contains a2 strictly positive function and hence

'iR
by Lemma 1, CE does not contain a strictly positive

s
function. This means that two functions in CE R cannot be
AL
R is convex,
el o0
Corollary. A w =~closed translation invariant subspace of LR

comparable without being identical and hence CZ

is convex if and only if it annihilates a strictly positive

functione,

Let :jC and ;}R denote the families of closed ideals
: 1 1 ‘
in LC and LR respectively and let .JPC and qj; denote

#*

the families of w —closed translation invariant subspaces of
Ly e ; W ; J T
c and LR respectively. We define the mappings ?j. C R
and Y/ : fc-——-‘-—) fR by

¥ L 00
gp(m)=oan§- and W (¢ = 01 “n L, .

The question arises whether the following diagram is commutative

or not: )
f
4

%
U{i g

=

Iy
Lo \ j’

e R



4

1
If(f (0L ©)H = (q}(UL)) R we shall say that D is commutative

for JL « It is clear that(? is a surjection since

. 7 { .
CF(/S) = OL when OLC L-é anda AT = OL+ 10 = ‘{Lf1+ it, | f£,.f,e0"

This ideal Xy is the unique minimal closed ideal in Lé
such that qD(lJ) = 0l . These ideals CQ,+-1CE. which are
1

in one-to-one correspondence with the closed ideals in LR

1
wWill be called symmetric ideals in LC .

Proposition 2. The diagram D is commutative for (R if and

only if Cﬂ, is a symmetric ideale.

Proof: 1f I3= Ol+ 10l witn OZéjR then

L » oD
(?‘(}'\T)) R _ Jlg]géLR and gx¥f = 0 for all fr:OZ—.} and this

set is evidently the same as 99( Ar C). Assume conversely

that Zr is not symmetric, i.e., that Zj‘ properly contains
CF(IS) + i(?(lf). Due to the fact that —LC is one-to-one

there exists a géiygo such that gxf = 0 for all

fé(P()o‘) + i(}?(/a") but not for all felr. Vriting g = g, * ig,
we get

(g +igIne = gt + 1(g,xf) = 0 for all fecpcln.

*f = gzxf = 0 for all fé?f’(lf). On the other

Thus gy

hand both gy and 8y cannot annihilate LF since

g = g, + ig2 would then do the same. This proves that either

g, or g, will annihilate qD(AY) without annihilating AT '

This implies that the diagram D is not commutative for lf' o :
In order to determine more specifically the maximal

ideals for which D is commutative it is convenient to have

the following



o e

Lemma 2. The ideal Cq‘::4%*[LM4d’consists of a2ll functions
X —a

A .
= £, + 1f such that £,(k) ='2,(a&) = 0. Otherwise
expressed: dza( = CP (Mg() + i? w) (= ?(W_a{)+i$5(/“l_&)).
Proofs If /f\l(ok) = /f\z(o() = 0 then also /26\(0() = 0 and
/f\emak' Since fl’fze 50 (/md) = SU(M”_‘() we also have
A A
fl(~d) = fZO%K) = 0 and hence f£f(—«) = 0, This inplies

féwctﬂ/w’ » Assume conversely that h = hl + ihZG% s 1o
—-d -

(3.1) ‘fh(x)(x;&)dx = uf h(x)(x,0dx = 0

By adding and subtracting the two left hand terms of (3.1)

we get

(3.2) Jh(x)((x,d) + (x,20))ax = jh(x)((x,"() - (x,00)dx = 0,

o BESSEE--

Since (x,&) + (x, ) and (x&) - (x,{) are real and purely
imaginary respectively, (3.2) is also valid when substituting

h1 or h2 for h., Adding up the two expressions on the left

hand side of (3.2) with h, instead of h we get
P o~
hl(OL) = 0. Similarly hz(OL) = 0.

Proposition 3. The diagram D is commutative for a maximal

ideal Wmak if and only if 0( is a real-valued character.

Proof: According to Proposition 2 and Lemma 2, D is

commutative for M if and only if (/[ = 4% or
o var (= My

equivalently if and only if WMd‘== Wﬂ_d_. But c( = -o{_ means

that o{ is real-valued (i.e., X assumes only the values % 1),

Since the identity character is the only continuous rezl
e

character in case & 1is connected we get the following

Corollary. If G is connected the diagram D 1is commutative

for m if and only if /M is the kernel of the Haar measure.

A

A



4. The positivity of certain convolution products on compactly

generated abelian groups, This section contains some revisions

and supplements to section 4 in [i] .

The scarcity of closed convex ideals in Lé was shown
in f{} to be mainly due to the existence of certain positive
convolution products on G. Though the proof of Lemma A
in Ii] was not difficult, it used a couple of fairly deep-
lying results of harmonic analysis. We shall in this section
show that in certain cases we can establish the existence
0of the pertinent positive convolution products in a quite
elementary way. In fact if we restrict the given function
f in Lemma A to have compact support we can obtain an
everywhere strictly positive integrable function by convoluting
f with a function which is "almost constant" - in & sense
which will be made precise below. This, however, raises the
question as to which groups G possess such almost constant
integrable functions as well as which closed convex ideals
possess functions with compact support and non-vanishing
integral.

Definition. When § is a strictly positive real number we

-

shall say that a nowhere vanishing function f on G is

almost constant of type (£,K) if

f(xl)
- +
L-e<ygy <t e
2
whenever x; - x2: K, where XK 1is a compact subset of G.

e shall say that G possesses integrable almost constant

functions if for any given £ and K there exists a (positive)

integrable almost constant function of type (£,X) on G,



Lemma 3. Any compactly generated abelian group G possesses

integrable almost constant functionse.

Proof: By thé structure theorem for compactly generated

(o

abelian groups (sece Ij], pPe 90) any such group may be written
as G = R"X Z™X F where R denotes the reals, Z the
integers, F a compact group, and m and n are non-
negative integers. This essentially reduces the question
to proving the lemma for the three groups R, Z and ¥, which
indeed is quite easy. For a compact F we can just take
any strictly positive constant function. If X 1is a compact
subset of R and ¢ 7 O , the function £ defined on R by
__%L(;

(4.1) f(x) = e
is an integrable almost constant function of type (g,K)
if the positive reazl numbers a and J are chosen such
that X C.[}a,%] and e5< 1 +&. In fact if ‘xz-xli£§ a
then also ]]xzi - |xﬂ| g a and

f(x )

6
$f(x)\e <1 +E.

-E<TrE <

The restriction of the function (4.1) to Z will give an
integrable almost constant function on 24 which is of type
(€,X) if a is azain chosen such that KC [—a,dj « Such
a choice is obviously possible since X is finite, being a
compact subset of a discrete group.

Roughly speaking we therefore only have to show how two
integrable almost constant functions on the groups G and

H, respectively, can be used to define an integrable almost



constant function on G XH. Assume therefore that g and h
are two integrable almost constant functions on G and H

and are of type (€1’K1) and (EZ,KZ) respectively. Without
loss of generality we can assume that 5?1,52 < 1. Then define

f as a function on G X H by putting

f(x,y) = g(x)*h(y).

It is clear that f is an integrable, everywhere positive

function on G X H such that

f(xl,yl)

(1-£2(1-&) < 773 7 < (L+ED1+E)

whenever (xl-xz,yl-yz)eé Kl)x Kz. In order to produce an

21y

integrable almost constant function f on G X H of type
(€,K) 1t is therefore ecnough to choose El, 22, Kl and Kz
such that X le X, and (1+&l)(1+62)< 1 +&. This
completes the proof of Lemma 2.

Since an almost constant function is nowhere equal to
zero it is clear that a group must in any case be Cy;compact
in order to possess integrable almost constant functions.

We do not know, however, whether the existence of integrable
almost constant functions characterizes the class of compactly,
generated groups or may be the class of 6'-compact groups.

In any case we have the following

Lemma 4. Let G be any locally compact abelian group which

Possesses integrable almost constant functions. If f is

1. . . .
a function in LR(U) with compact support and non-vanishing

integral, then there exists a function g & Lé(G) such

that fxg > 0.

For the proof we refer the reader to [1].




The above lemma is more restrictive than Lemma A in [il
in two wayss Ve have imposed conditions both on G and
on f. The condition on f is not inessential since we
can easily show that there exist closed ideals which are not
contained in the kernel of the Haar measure and which do not

contain functions with non-vanishing integral and compact

and put

= R
o= 1m,

K€1,2]

support: Take G

This ideal OL is not contained i%$%ernel of the Haar measure

and consists of all functions in Lé(R) which have a Fourier
transform vanishing on the interval [1,2] » If such a
function £ has compact support its Fourier transform will

be the restriction of an analytic function and hence vanish
identically on R. fence f itself is identically zero and
Ol contains no function with non-vanishing integral and

compact support.

5. Fourier transforms of real-valued functions. An ever

returning fundamental question in Fourier analysis is the
following: To what extent do there exist functions in Lé(G)
with Fourier transforms with prescribed properties? The
literature contains a variety of important contributions to
this general problem. Let us only mention various types of
separation theorems (like the well~known complex analogue

of Theorem 2 below) as well as the crucial lemma in the proof




- 12 =

of Wiener's Tauberian theorem saying that the family of
functions having a Fourier transform with compact support
is dense in Lé(G).

It is natural to ask whether the various theorems of this
kind still hold if we restrict ourselves to real-valued
functions, i.e. if we pass from Lé(G) to L%(G). Such a
study will be helpful for the investigation of the structure
of L%(G). We shall here content ourselves by proving two
separation theorems. We first establish an easy real-valued
analogue of a well-known separation thecorem of Godement [é]
Definition. If KC.OC/G\ where X is compact and 0 is

- 1 .
open we shall say that the Fourier transforms of LR(U)

1
separate X and O if there exists a function f E'LR

VAS VA
such that £ =1 on K and f =0 on EO

Theorem 2. The Fourier transforms of Lé(G) separate K

and O if and only if =K C o, ( =K = {-k! h & K} )

Proof: It is clear that =K C 0 is a necessary condition
A\ A
for separation since f(&) = f(-A) whenever f is real-valued.

If on the other hand =K € 0 then also KW =K C 0 and it

. .. o . 1
is sufficient to show that the Yourier-transforms of LR

separate Kl =Ky =K and 0. ‘e choose the open neigh-

bourhood U of the zero element in G so small that
k4

Kl + U C 0. Let further g and h denote the characteristic

functions of Kl and U respectively. Since Kl is

A oA
g

»®
; A ~ .
symmetric g = and %(g + g ) is also the characteristic

function of Kl' e now consider the function



(5.1) f =

We have here exactly the same situation as in the usual
complex proof (sece [2] ) but in the present case we can
write the right hand side of (5.1) as a linear combination

of positive definite functions with real coefficients:

* oo A A AR
ANEEA + (g +'n) -

A A mn X
g + 2% = i‘(g 2 - e -

(g -

w =

By the Fourier inversion theorem there exists a function
m(Uf € Lé having this function as its Fourier transform and
by the very form of f it is obvious that £ 1is real=-valued
and that f separates K and 0.

Let us give another separation theorem where the proof

is slightly more technicsal

Theorem 3. Given two characters o(l,da & G we can find a

1l
function f & LC such that the following requirements are

simultanously fulfilled

(1) £ is real-valued

(2> f has compact support
P

(3) f is real-valued
~\

(4) "£(X )% 0 and ‘%\(0{2) =0

if and only if Q{l#:g(z and Q(1:#= -d2

Proof. The necessity of Q{I;#'O(z is obvious. The necessity

of OLi#: ‘d% stems from the fact that when f is real-valued

N
then f&&l) =0 implies that

A { . — e
f(—‘&l) = ‘Jf(x)(xv—&l)dx = J’f(x)(xp(l)dx = f'(o{l) =0

If on the other hand the two conditions 0(14=C(2 and O<1:f= —&%



are fulfilled then the difference set Lémwtiz— L;L,n Mi;{.q is
non-void and we can pick a function g in this set. This
function g will then have thc properties (1) and (4),
Replacing g by h = g*g* we obtain a function which
satisfies (1), (3) and (4). By considering a suitable real
multiple rh instead of h we can assume that h satisfies
(1), (3) and (4) and that /1}(0(1) is an arbitrarily large
positive real number. Since the set of real-valued continuous
functions with compact support (denoted by C§o> is dense in
Lé and the Fourier transformation is - non-decreasing we can
find a2 function k & CEO such that

!/1:(0(2)]< g and Re(/]cz(o(l)) >

M=

for any given ¢ 9 0., By this transition from h to k

we have gained the property (2) at the expense of losing

the two properties (3> and (4), Some further adjustments
are therefore necessary. +1ihe function 1 = 2(k + k*)  is

a real-valued function with compact support such that

(5.2) |1 ] < 4g  and Rec’?(c(l);%

. 1 1
e can choose an approximate identity {u} for LR

consisting of continuous real-valued functions with compact
support such that u = u* . Because of (5.2) there exists
a suitable u such that

‘{x}(akz)[ < ag and Rg(i/;u\ o)) >

mie



But since
x5 »* #*
1% u = 2(k + XK )xu = (k +)#a(kx +u) = (k -wWx(x -uw)

it is clear that m = 1x%u will satisfy (1), (2) and (3),
If therefore 1?&&2) = 0 we already have a function of the

A
required type. If m(dz):k 0 we put
f=m = ——"(m»@ m)

and get 5

N
(m(dl))
A A A
f(eX ) =0 and f£(4 ) = m@k. ) - =3
2 1 1 R (o)
A
By choosing § small enough we get f(di)-#= 0 and this
completes the proof of the theorem,.
1
Sometimes we can trivially deduce a theorem about LR
1
from a corresponding theorem about LC' This is for instance
the case with Wiener's tauberian theorem: If @ is a
1
proper closed ideal in LR then (jl+ iCﬂ, is a proper
1 - -
closed ideal in LC' Hence there exists by Wiener’s theorem
1
a mamimal ideal M CLg such that 0L+ 1i0LC A
From this it follows that (J{_ is contained in the maximal
. 1 . 1 .
ideal LRrdeoL in LR' So for this purpose we do not neead
to consider any real-valued analogue of the lemma mentioned

at the beginning of this section.,.
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