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1 • .!.~reduction. The literature on real group algebras is 

very scarce. This is of course due to the fact that Fourier 

analysis is basically a complex theory, with the complex 

group algebra L1 CG) as the central object of study. Never-
c 

theless, various natural questions. pose themselves also in the 

case of the real group algebra L~(G): hlhat is the structure 

algebra in comparison with well-known results about 

Which relations exist between the convolution product 
1 

and the pointwise ordering a.e. of the functions in LR(G)? 
1 

To what extent do there exist functions in LR(G) with 

Fourier-transforms with prescribed properties? 

The purpose of the present report is to give some scattered 

results in connection with the above-mentioned problems. In 

a previous report [~ in this seminar we showed that there 

are no other closed convex ideals in L~(G) than those which 

are contained in the kernel of the Haar-measure. In the proof 

of this result (Theorem 1) it turns out that a crucial role 

is played by the positivity of certain convolution products .• 

ln fj..] we also offered an elementary approach to this question 

which we here complete on certain points. By means of 

Theorem 1 the determination of the vi~t--closed convex translation 

invariant subspaces of LR(G) is quite easy. We also treat 

the commut~tivity of a certain diagram which arises in this 

connection. In a final section we prove a couple of results 

on Fourier transforms of real-valued functions which parallels 

similar results in the complex theory. 

2. Convex closed ideals in_L~(G). By L~(G) - or simply 

L~ - we denote the ordered group algebra of all real-valued 

integrable functions on a locally compact abelian group G 

under the ordering f ~· g whenever f(x) ~ g(x) almost every-

where on G. 
1 L, shall denote the usual group algebra of all 
'-' 

complex-valued integrable functions on G. We recall that an 
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. 1) 1 
1deal 0[ C LR is said to be convex if f,g€.:0l. and f ~h ~ g 

implies h E. 01. • The following theorem was proved in [1] . . 
Tneorem 1. A proper closed ideal ~L~(G) is convex if and 

R 
only if it is contained in the kernel of the Haar-measure M{ 0 _ 

(consisting of all functions with zero integral). 

We give a number of easy corollaries some of which were 

not mentioned in [1]. 

Corollary !• The only regular and convex maximal ideal in 

L~ is the kerne~ of the Haar measure. Otherwise expressed:-

1 !!_)A-' is an order preserving homomorphism of LR onto a partially 

ordered field F then F is isomorphic to th£_field of rea! 

humbers and )A-' is the Haar measure of G. 

If ~denotes the maximal ideal in L~- which corresponds: 

to the character o<..E 'Cf we also note the following. 

Corollary 2. If G is connected the following statements are 

equivalent 

(1) 

( 2) 

( 3) 

(4) 

(5) 

( 6) 

1) 

~is the kernel of the Haar measure 

Ao<. n L~ is convex 

..M~ does not contain any strictly positive function 

~{) L~ is of real codimension one in L~ 
/\ 
f(~) is real for all f 

In the following we shall always assume that <:J't is a 

proper ideal. Hence L1 will not be considered as an ideal R 

in 
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Proof: The equivalence of (1), (2) and (3) is valid for 

arbitrary G and follows from Corollary 1 and the proof of 

Theorem 1. From the Gelfand-Mazur theorem it follows that 

is isomorphic to either R or This quotient 

algebra is isomorphic to R if and only if ~ is a real-valued 

character which means that ~ is the identity character if 

G is connect~d. From this together with 

(2.1) 

we easily deduce the latter part of the corollary. The 

1 
equivalence (2.1) expresses that a maximal ideal in LR can 

1 
be extended to a maximal ideal in LC in at most two ways and 

that the extension is unique if and only if the given maximal 

ideal corresponds to a real-valued character (which means 

that d.. = -CI\). For more general information about the 

relationship between real and complex Benach algebras we can 

refer the reader to [4] and [5] • 

For later reference we give the following corollary which 

is a consequence of the proof of Theorem 1. 

~~s~d-ideal c~ is convex if and only if 01 

~ll~ry 4. Spectral analysi~ hold~_f£E_clos~d_££~~! 

,!_dea~_in L~ while E..E.~.ctr~!_!!._lntE_.~~oes not ...!!.£.!..£.• 

Corollary 4 is valid since the converse of Theorem 1 is 

obviously true: Any ideal contained in the kernel of the 

Haar measure is convex. 

If we formulate Theorem 1 in terms of homomorphisms we 

get the following 
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l 
Any order-preserving ring homomorphism of LR 

~nto a partially ordered ring is a factor in the canoni~ 

~!_9.er-preserving homomorE_h:;;,sm of L~ onto R. 

00 
3. Convex translation invariant subspaces of LR • We denote 

00 l 
by LR the real dual of LR' consisting of all bounded measurable 

real-valued functions on G. 
o() 

Thus LR is nothing else than 

the family of all the real-valued functions in the usual 
oO 

complex L -space which we shall here denote by It is 

a well-known fact that there is a one-to-one correspondence 

between the closed ideals in * . and the w -closed translat1on 

00 
invariant subspaces of LC (see [6] p. 184). The same 

correspondence persists between the real spaces and 

By means of this correspondence we shall easily describe 

*" the convex w -closed translation invariant subspaces of 

If ot is a closed ideal in 
1 Lc we put 

i.e [ 01" 
Ol = l...g t g ELc 

and g~f = 0 for all fEOl}• Similarly if OL is a closed 

ideal in Ll we put CJl_ .l.R = {gJgELR and g*"f ::::: 0 for all f E-alJ· R 

* The correspondence between closed ideals in Ll 
R and w -closed 

translation invariant subspaces of LR is then given by the 
.l 

mapping 01_ -----=r Ol R. 

Lemma 1. 01 contains a strictly positive function if and 

J._ 
only if QL R does not contai~ a strictly positive functions. 

Proof: If 

clear that 

Ol. contains 

. l.R Ol can not 

a strictly positive function it is 

contain such a function since az.~O?!~{oj, 
Conversely if CJL does not contain a strictly positive function 
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R 
we know from Corollary 3 of Theorem 1 that O[C ,#t and thus 

0 
.lp. .LR 

1 E (JL ·"proving that Ol. contains a strictly positive 

function. 

Proposition 1. is convex if and on~y ~ ~ 
not 

iMonvex. 

Proof: If -- 1 
that (JL --fl.. 

then 

by Lemma 1, 

function. 

at is 

is not 

convex then Ol.C'#!Rand 1 E;(JtL·"< showing 
0 

convex. Conversely if OL is not convex 

contains e strictly positive function and hence 

ml.R does not contain a strictly positive 
I 

This means that two functions in O'L -r<. cannot be 

comparable without being identical and hence OL J.R. is conve:x. 

Corollary. A w*-closed trans~~nvariant subspace of L;u 

function. ----
Let :J r 

...... 

in L 1 and c 

and Jn denote 
.ti. 

LL 
R respectively 

* 

the families of closed ideals 

and let ..fc and oi R denote 

the families of w -closed translation invariant subspaces of 

L';; and ~ 00 respectively. V!e define the mappings T: JC ~ J R 

and ~ : f C ) J R by 

and 
.1 If cOL. c> = 

I 
(]1 -c 
i.JL n 

The question arises whether the following diagram is commutative 

or not: 

jc Jc 
I -c. 

~ 

D: rl l)V 
I 

"*' lg 4J JR 7 J R 
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i ..L 
lflJ'<OLc ) =: <'f<Ol)) R we shall say that D is commutative 

for ()f.., 

cp<h>=aL 
This ideal h 

It is 

when 

clear that 'f 
rt7 C L 1 
VL R and 

is a surjection since 

I 
J.S ot_+iCJL=~f+ 

'- 1 

is the unique minimal closed ideal in 

s u c h that r C h ) = {)1... • The s e i de a 1 s (JL + i 0Z. which are 

in one-to-one correspondence with the closed ideals in L~ 

Will be called symmetric ideals in 

Proposition 2o The diagram D ~~mmutative for if and 

only__!! OZ.. is a symmetric ideal. 

Proof: If 1J = Ol+ iOZ with then 

f 1 'f 2 E4'.:: 

~ ...l..R i. oO <r(hJ)) = gjgELR and g*f = 0 for 
J _.Lc 

all f EOL J and this 

set is evidently the same as lf ( 1-J ) • Assume conversely 

that J.s. is not symmetric, i.e., that J.:r £!2.£~E.!X. contains 

Due to the fact that .lc is one-to-one 
Q() 

there exists a gE.LC such that g.lff = 0 for all 

fE:<f'(kr) + if(Ar) but not for all fEh. Vlri ting g 

we get 

(gl +ig2)*f = gi*f + i(g2*f) = 0 for all f E T (b-) .. 

Thus gl* f = g27(-f = 0 for all f Ef < k>. On the other 

hand both gl and g2 cannot annihilate k- since 

g = g 1 + ig 2 would then do the same. This proves that either 

g 1 or g 2 will annihilate c:p (k) without annihilating 

This implies that the diagram D is not commutative for 0 

In order to determine more specifically the maximal 

ideals for which D is commutative it is convenient to have 

the following 
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Lel!!El~• The ideal OL =:::/~f) .-#1_d.. £.Q.!l.§.ists of a!_l fwctions 

~ /'-· 
f = f 1 + if 2 such that f 1 (d,..) = f 2 (o() = o. Q:!:..llerti...§.§. 

£~E_ressed: Ol.o(:::: cp <Mj( + up(/WJc{) <=f<M1_d..)+iCf{fiii_J>. 
Proof.:: If 1'1 (0\) = '£'2 <<1{ ) = 0 then also Jf'Co\ .. ) = 0 and 

Since f 1 ,f 2 E <f <M-1t{) = r(h11-.a<.) we also have 

= '{ 2 (-o() = 0 and hence 1(-~ ) o. This implies 

fE-Mk_f'lM!_o( Assume conversely that h = h 1 + ih 2 EO[at 1 ioe• 

( 3 .1) r h(xHx,oUdx = 
J 

J h ( x) ( x ,oO dx = 0 

By adcing and subtracting the two left hand terms of (3.1) 

we get 

(3.2) J h ( x)(( x pU + ( x ,oU) dx = J h( x) ((--;,;{) - ( x ,oO )dx 

....---
Since (x,oO + (x, ) and (xp/..) - (x,oO are real and purely 

imaginary respectively, (3.2) is also valid when substituting 

h 1 or h 2 for ho Adding up the two expressions on the left 

hand side of (3,2) with h 1 instead of h we get 
,?",. 

Similn.rl y h 2 (d... ) = 0 • 

ideal ,..vv\ol if and only if c{ is a real-valued character. 

Proof: According to Proposition 2 and Lemma 2, D is 

commutative for Nv\ol if and only if (}!_d...= /-#1.:( or 

equivalently if and only if /111.., = M1 • But o( -o( means 
"' -«.. 

that o( is real-valued (i.e., o( assumes only the values ± l)G 

Since the identity character is the only continuous real 

character in case G is connected we get the following 

00 
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4. !'!!_e positivity of certain convolutton E_ro,d,ucts on compnctly 

i[e,nerated .abelian g.!2.u~, This section contains some revisions 

and supplements to section 4 in ll] • 

The scarcity of closed convex ideals in was shown 

in [1] to be mainly due to the existence of certain positive 

convolution products on G. Though the proof of Lemma A 

in I1] was not difficult, it used a couple of fairly deep-

lying results of harmonic analysis. We shall in this section 

show that in certain cases we can establish the existence 

of the pertinent positive convolution products in a quite 

elementary way. In fact if we restrict the given function 

f in Lemma A to have compact support we can obtain an 

everywhere strictly positive integrable function by convoluting 

f with a function which is "almost constant" - in a sense 

which will be made precise below. This, however, raises the 

question as to which groups G possess such almost constant 

integrable functions as well as which closed convex ideals 

possess functions with compact support and non-vanishing 

integrnl. 

Definition. When E is a strictly positive real number we 

shall say that a nowhere vanishing function f on G is 

almost constant of type <f,K) if 

whenever x 1 _ - x 2 € K, where K is a compact subset of G. 

We shall say that G possesses integrable almost constant 

functions if for any given E and K there exists a (positive) 

integrable almost constnnt function of type (£,K) on 
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Lemmn 3 • !nY_££,mpnctly generated abelian group G possesse.s 

!Ete~ra~le almost constant functions. 

By the structure theorem for compactly generated 

abelian groups (see L3), p. 90) any such group may be written 

as G = Rn X zm X F where R denotes the reals I Z the 

integers, F a compact group, and m and n are non-

negative integers. This essentially reduces the question 

to proving the lemma for the three gro•1ps R, Z and F 1 which 

indeed is quite easy. For a compact F we can just take 

any strictly positive constant function. If K is a compact 

subset of R and [7 0 , the function f defined on R by 

f(x) = e 

is an integrable almost constant function of type <t,K> 

if the positive rea:l numbers a and J are chosen such 

that KC [-a, a] and eJ< 1 +E. In fact if 'x2 -x1i ~ a 

then also J I x 21 I x 1ll ~ a and 

The restriction of the function (4.1) to Z will give an 

integrable almost constant function on Z which is of type 

<E,K> if a is again chosen such that KC [-a,a] • Such 

a choice is obviously possible since K is finite, being a 

compact subset of a discrete group. 

Roughly speaking we therefore only have to show how two 

integrable almost constant functions on the groups G and 

H, respectively, can be used to define an integrable almost 
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constant function on G.XH. · Assur.1e therefore that g and h 

are two integrable almost constant functions on G and H 

and are of type Cf1 ,K1 ) and Cf 2 ,K2 ) respectively. 7ithout 

loss of generality we can assume that E. 1 , E:2 ( l. Then define 

f as a function on G X H by putting 

f(x,y) = g(x)•h(y). 

It is clear that f is an integrable, everywhere positive 

function on G X H such that 

In order to produce an 

integrable almost constant function f on GX H of type 

CE,K) it is therefore enough to choose £. 1 , t 2 , K 1 and K 2 

completes the proof of Lemma 2. 

Since an almost constant function is nowhere equal to 

zero it is clear that a group must in any case be 6-compact 

in order to possess integrable almost constant functions. 

We do not know, however, whether the existence of integrable 

almost constant functions characterizes the class of compactly, 

generated groups or may be the class of 6 -compact groups. 

In any case we have the following 

possesses integrable al~!_£ons~t func!ions. If f is 

a function in 

!ntegral, then there exists a function ----- L l(G) .R 

For the proof we refer the reader to [lJ. 

such 
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The above lemma is more restrictive than Lemma A in [D 
in two waysr We have imposed conditions both on G and 

on f. The condition on f is not inessential since we 

can easily show that there exist closed ideals which are not 

contained in the kernel of the Haar measure and which do not 

contain functions with non-vanishing integral and compact 

support: Take G = R and put 

This ideal is 
:!J:le_.. 

not contained invkernel of the Haar measure 

and consists of all functions in L~(R) which have a Fourier 

transform vanishing on the interval [1,2] • If such a 

function f has compact support its Fourier transform will 

be the restriction of an analytic function and hence vanish 

identically on R. Renee f itself is identically zero and 

OL contains no function with non-vanishing integral and 

compact support. 

5. Fourier transforms of real-velued functions. An ever - ---, --
returning fundamental question in Fourier analys~s is the 

following: ~ Lcl<u~) lo what extent do there exist functions in 

with Fourier transforms with prescribed properties~ The 

literature contains a variety of important contributions to 

this general problem. Let us only mention various types of 

separation theorems (like the well-known complex analogue 

of Theorem 2 below) as well as the crucial lemma in the proof 



- 12 -

of Wiener's Tauberian theorem saying that the family of 

functions having a Fourier transform with compact support 

is dense in L~(G). 

It is natural to ask whether the various theorems of this 

kind still hold if we restrict ourselves to real-valued 

functions, i.e. if we pass from to Such a 

study will be helpful for the investigation of the structure 

of L~(G). Vle shall here content ourselves by proving two 

separation theorems. \;\1 ,,e first establish an easy real-valued 

analogue of a well-known separation theorem of Godement (2] 
/".. 

Definition. If K C. 0 C G where K is compact and 0 

open we shall say that the Fourier transforms of L~(G) 

separate K and 0 if there exists a function f E L~ 
A 

such that f = 1 on K /' 
and f = 0 on 

E:.E.!l 0 if and £&Y if -K C. 0. ( -K { -k I R E K3 ) 

is 

Px.oof: It is clear that 

/\ 
for separation since f(~) 

-KC 0 is a necessary condition 

~(-~) whenever f is real-valued. 

If on the other hand -K C 0 then also K U -K C 0 and it 

is sufficient to show that the Fourier-transforms of 

separate K1 = K U-K and 0. ~e choose the open neigh-

bourhood U of the zero element in G so small that 
·1> 

K 1 + U C: 0. Let further g and h denote the characteristic 

functions of K1 and 

.1"\K- .1\ 
symmetric g = g and 

U respectively. Since K1 is 

"* ! <1 + i ) is also the chn.racteri s tic 

function of K 1 • 7e now consider the function 



- 13 ~ 

( 5. 1) f = 

We have here exactly the same situation as in the usual 

complex proof (see [~] ) but in the present case we can 

write the right hand side of (5.1) as a linear combination 

of positive definite functions with real coefficients: 

By the Fourier inversion theorem there exists a function 

m(U)f E L~ having this function as its Fourier transform and 

by the very form of f it is obvious that f is real-valued 

and that f separates K and o. 

Let us give another separation theorem where the proof 

is slightly more technical 

Theorem 3. 
A 

Given two chnrQcte~ ~ 1 ,~2 E G ~e can fin~ 

function f E. such that the following_r~quirements are 

simultanously fulfilled 

(1) f is real-valued 

(2) f has compact support 

(3) 
A 
f is real-valued 

/\ . 
1'co<2 > (4) f (<X. ) =#· 0 Q.n,Q. 0 1 

~E.!_y if 9(1 t: c/2 and d..l ::::P -~ --
,g.!:.~ of• The necessity of o( 1 =/= o( 2 is obvious. The necessity 

of ol1 ::f::: - o(2 stems from the fact that when f is real-valued 

then 1'<o(1 ) =0 implies that 

If on the other hand the two conditions CZ 1::# oZ.2 and ~/ --J-:::: -¢{ 
V\..1 T '2 
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are fulfilled then the difference set 
1 

LRn tiN1, -
• 0\~ 

L~f'! Mt, is 
J. o{1 

non-void and we can pick a function g in this set. This 

function g will then have the properties (1) and (4). 

Replacing g by h = g*'g* we obtain a function which 

satisfies ( 1) , ( 3) and ( 4) • By considering a suitable real 

multiple rh instead of h we can assume that h satisfies 

(1), (3) and (4) and that 
/\ 
h(~1 ) is an arbitrarily large 

positive real number. Since the set of real-valued continuous 

functions with compact support (denoted by CR ) is dense in 
00 

L~ and the Fourier transformation is non-decreasing we can 

find a function such that 

and 1. 
E 

for any given c '- / 0. By this transition from h to k 

we have gained the property (2) at the expense of losing 

the two properties (3) and ( 4 )·. Some further adjustments 

are therefore necessary. The f u n c t i on 1 = 2 ( k + k ;If:'- ) is 

a real-valued function with compact support such that 

( 5 • 2) < 4f.. nnd 

We can choose an approximate identity { u} for 

consisting of continuous real-valued functions with compact 

support such that u = u~ • Because of ( 5 .2) there exists 

a suitable u such that 

and Reef-:~ (et1 >) > 
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But since 

llf- u J!S. 2(k + k ))i:-u 
:r. ~ = (k +u)~(k +u) - (k -uh:(k -u) 

it is clear that m will satisfy (1), (2) and (3). 

0 we already have a function of the 

required type. 

f = m 
1 

(m* m) 
~(o/..2) 

and get 
(~(~) )2 

.A(o(. ) 
/\. A 

= 0 and f(P<. ) = m~l) -f 2 1 ~(~) 

By choosing E .1\ 
small enough we get f (~) =/== 0 and this 

completes the proof of the theorem. 

Sometimes we can trivially deduce a theorem about 

from a corresponding theorem about This is for instance 

the case with Wiener's tauberian theorem: If 0[ is a 

proper closed ideal in Ll 
R then OL+ iCJL is a proper 

closed ideal in Tl ..uc· Hence there exists by VJ'iener' s theorem 

a maE:imal ideal /l!Vt~ C L~ such that 

From this it follows that ~ is contained in the maximal 

ideul So for this purpose we do not need 

to consider any real-valued analogue of the lemma mentioned 

at the beginning of this section. 
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