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§1o INTRODUCT10N 

In this note we are concerned with pre-unitury or unitary x-algebras 

over the complex field. The study of these algebras v~s initiat~d by EoM. 

Alfsen in the preceding note ((1)) • For definition and basic properties 

of pre-unitary algebras, we refer to this paper. Our goal in this note is 

to prove that a pre-unitary x-algebra or.. can be imbedded in 1}. c?- -
/'-

algebra ~ the imbedding being one to one onto a dense subset of .. ":)Z , 
_.., 

and preserving all structure of CZ • In fact, Cl will be the solution 

of ~ universal problem for 
'"TJ ~ 

(j;,. , in the sense that (..~: and 

have the same (essentially, by canonical extensions) states, pure states, 

representations and topologically irreducible representations. 

be called the enveloping c!- -algebra of c;z 0 

vd.ll 

If C:-[ is an involutive B~nach-algebra with approximate identity, it 

is known that it has an enveloping c* -algebra with the properties stated 

'~'Jove o For an exposition of this, we refer to the book of Di.Joni.er ( (2)) • 

However, involutive Banuch-algebras are pre-unitary, so our results &re 

strictly more general. Nevertheless, most of the methods in Dixmier's 

presentation can be carried over, due to the essential fact proved in ((1)) , 

that a x-algebra (JG is pre-unitary if and only if the set of stateo on 

(](_ is w*-compact o 

In the connnutative case, the desired theorem is easily attainable by 

the function r0presentatiGn of a pre-unitary x -algebra as a dense sub-

algebra of In the general, non-con~utative situation the 

adequate substitute for the multiplicative, real functionals are the topo-

logically irreducible representations~ so we have to establish a corres-

pondance between irreducible representations and pure states, or more gener-

ally, between the states on 
r-t 

L. \. a..'1.d the representations of 



- 2-

§2. POSITIVE LINEA..11. FUNCTIONALS AND REPRESENTATIONS 

In the first prop..Jsition we gather some infor:tr..ation, needed for later 

reference. As in ((1)) , 
.-, :):_ 

!~i-' will denote the set of positive, extend-

able linear functionals on a pre-unitary .x-algebra CY . Fer p 0 ~T_;:k 5 

we put: 

C(p) = sup 
X E- C.il 

2 
I p(x) I , .... 
p(x ~x) 

Correspondingly, for x c OZ , v.Je put : 

B(x) 
7._ 1. 

sup p(x -x) 2 

G(p) :S 1 
,~-,X 

PG ,_F 

For each xE (;ll, B(x) is finite ( ((1)) , prop. 3). 

2.1 PrQposition 

Let C{ be a pre-unitary x-algebra, and suppose p(::: [jJx • Then we 

shall have: 

(i) = p(x) 0 , x c; 

!p(x) J 

2 
L.. C(p) . .X ) (}{_ . p(x x X.:::;._; 

' 
i p(x) l C(p) B(x) 0 c;._- C? .. 

' 
X . 

(ii) The linear functional p defined by - y -

G ' X y tc:: I ' ~... v 

is in 
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(iii) C(p) ~ sup J:.l(x*:x:) 
B(x) ~ 1 
XE: C't 

(iv) If r l 
i x. 1- • I is ii'. net in 
" l, le 

or... , indexed by· C. <lir·e~t,Pd set, 

I ; such that B(x.) 'S 1 and p(x.) ~-?- C(p) , i E I ; then 
l l 

p(xixxi) ·-» C(p) • 

(v) p has a unique extension to a positive linear functional p. on 

(vi) 

,....._ 
OL ( == c;z (f'. c ) such that p(e) == C(p) • ":P is called 

the canonical extension ef p , and every other pwsitive linear 
_....___., 

functional on (}(, ext ending .. . .-.........: 
p maJorlzes p o 

With the assumptiQn of 

twpology;' that is: 

(iv) , we have x. ~-'> e in the 
l 

,..... r x · 
p 1 (x. - e)(x. - e)Jl -> 0 • 

... l l 

........... 

Hence ("! J...., is N - dense in 
p 

CJ(~ in this case o 

N -
p 

P r o o f : (i) is clear from ((1)) o To prove (ii) ~ let YE. 02. 

py is positive, for if x c=- C?.~ : 

Next: 

2 
' x 12 :t i:. = I p( v iy) L p(y ·y)p( (xy) (xy)) 
p(;;t; xy) - p((xy)*(xy)) 
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(iii) f~llows from formula (2.3) in ((1)) and the definition of 

B(x) • 

Now, suppose 1.. i. 
x.'. 

- 1 J :t·= I 
is a net in 

and p(x.) --> C(p) • Then by 
l 

rn 
·.,/C such that 

2 2 2 
• B(x.) 

1 
!p(x) I < C(p) • p(x~x.) ~ C(p) 

l l 

(iv) followsb 

(v) is kn'lW11c 

To prove (vi) , consider: 

B(x. ) :·:: 1 , i(': I , 
l 

~P- .r.··(e- x.)*-(.-- x.) .... J1 -~() ( *-) ( ) ( x ) _ = p e - p x.- - p x. + p x. x. 
l l l l . l l 

= C(p) - p(x.) - p(x.) + p(x. xx.) 
. l l l l 

--~~ C(p) - C(p) - C(p) + C(p) = 0 

according to (i) , (v) and This proves the proposition, 

2.2 We nmv turn to investigate the connection bct1<reen the elements 

of :? X. an~ the representations of As usual, a represent&tion 

If of a x-algebrR is n x-homomorphism into th~ x.-algebra of boun~ed 

linear operators ,;? (H) on n Hilbert-space H • The elementary proper-

ties of such representations will be assmned ~nown. 

First~ let Tr be a representation of a pre-unitary x-al~ebra CiZ 
'>-

in the Hilbert-space H , and let 's be an element of H • 

then define a positive, linear fu.>1ctional p = p __ " , 
li.) s 

p(x) = 

en 0[. b;y: 
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Next, consider: 

2 2 
(p(x) I = I (1[ (x) f 1.~) \ ~ (TC(x) .5 i ;;~-(x) ~ )•( s I g) 

so C(p) ~ ( S ( ~) 

= ( ~·· ( "};_ ) I i l ) ( ' ' i ) ILxx.s~r:} o j!S 

~~X 
Md p E jJ • 

,--

Now, both p and ll have canonical extensions to 

serves their essential properties, by putting 

'iT (e) = 1 E £(H) • 

which pre-

In general, these extensions will not agree, on the contrary :;_ will 
y 

define a positive, linear functional p on 

y 
p(e) = (!r(e)§l~) = (s!s) 

y y 

,..-.._, 

{57._ by 

p is &.'1 extlilnsion ~Jf p , <md in general p :::; p , accorr~ing to prop. 2.1 

( v) • If, hoviever, € is cyclic in H with respect to It (Ol) so 

li: (Cl) S is dense in H 7 we will h._ve: 

2 2 

C sIS) sup i (~ (x) ~ i .i) I ) p(x) / C(p) = = sup = 
XECZ (li (x) ~ i 1L (x) ~ ) X€(3(_ p(x::tx) 

'" ~ 

,.___. 

Therefore, in this c1tse the canonical eJ\.--tensions p and TC vrill agree: 

.. ..._J . , 

N~~, we turn to the c6nverse problem: 

2.3 P r o p o s i t i o n 

Let OZ, be a pre-unitary 
.... -... -./• 

::t-algebra, and let p e: ':1"-A. be an 
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arbitrarily chosen, fixed element. Let 

= { x ! x 'E'.: Cl , p(x*x) = o t. 
J 

is a left ideal of 
rr·, 
t.....·i. , and define an inner-product .. 

on ; x,y E x,y their reopective equivalence-classes in 

e With this inner-product Ol /vii' becomes a. pre-Hilbert space 
v 

which will be denoted by H • 
p 

Let 

The Hilbert-spac~ ~bt~ined by completing 

v ,6(-; the 
H icanonical image of 

p 

' H will be denoted H 
p p 

? 

For 

every x e. (].{. d.efin~ an operator in H by left multiplication 
p 

b . r;; I y x ln _~,_ LV Then: 

(i) 
y 

Every 1[ (x) can be extP.nded to a continuous linear operator 

(ii) 

in H 
p 

(iii) 

.---..· 
The map x ·v-'7·;-c (x) , x E C'(: ; is a representation of 

,._, 
is cyclic with respect to IL, ( Ol) 

r--

in H 
p 

(iv) p(x) = ( TL"(x) ~ I~ ) for every x .,:::_ Ot,., ~ 

Iii 
•.._ ~·I -• 

P r o o f • The statements in the head of the preposition are standard 

and readily verified. To prove 
y 

(i) , let vz· E H be an arbitrary element. . p 
r-.. ,. 

We have ~~'( = y for some y E· 0(. , and hence 

' 
2 

p( (:xy Y*Cxy)) -~ x x 
/1 ~L (x) v; l/ = = p(y X xy) 

( :;t y--{ x ) B (x:;tx) · l1 vl II 
2 

L.. Bxxpyy ;::: 

' 

wh~re prop. 2.1 (ii) is used. This proves that 'it'' (x) is continuous on 
y 

HP : and hence extendable to all of Hp as required, so (i) is pr~.>ved. 
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It follows immediately that Tr is ~ algebra-homomorphism, 
1 ,-.._ 

f r: .--Y:) or x ,:::. l~L·, n=y, 
L x.=z in H · we have: 

p 

and moreover, 

I ~· x ( -- ±)x 1 ) = ( ~l II (x ) ,>{ ) = IL (x !(_ . ,>( 

,__ ( ±) ,-( )x so IL X = It X , proving (ii) • 

(iii) is evident from the definition of 
,.....__ 

xEC?.: 

and H 
p 

(:L (x) ~ i g ) = (i ~ )-;;) = 13'( e*xe) = p(x) 

Finally, let 

Q.e.d. 

The representati~n 1C and the cyclic vector 

0-8sociated with the given p E fx • 

\.. . s arc sa.J.d to be 

§3. PURE STATES AND I&~UCIBIE REPRESEi'IJTATIONS 

We have already established a connection between elements of 9 ::t and 

representations of CYt., • In the case of cf- -algebrlol.s, it is further 

Y~~o~m that the pure states and irreducible representations correspond to 

each other. 1his can be soen to rely on the fact that a c* -algebra has 

ae1 approximate identity. In our situation -;.lith pre-unitary algebras 11'/e ar~ 

left without any norm, so we have to be a bit roundabout when trying to ob-

tain the connection mentioned above. 

As a first step, we state tho following propesition. The technique goes 

back to Grothendieck (1955) (see ((3)) for details). 

If p E.. :Yx , let (P] be the linep.r space gener;tted by the set 

{q(O$:qSQ} 
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3.1 P r ~ p o s i t i o n 

Let Cl. be a unitary x-algebra, p a positive, linear functional on 

n7 
r./L j and TC the representation associated \·r.i.th p , into H 

p 
Then 

there is a one to one linear, order-preserving map of onto I(~ ( C2 ) J = 

the corrunutant of lc ( 00 in 

P r o o f • Let q E: C p J ~ and define a bilinear functiQnal 

by 

; x,y E 07.. 

As q 6 [P ~~ , we must have 

4 
q = ".> . .., -/ ql. 

.:._.t'~i ·-
. 
' 

q "" i pl • 
i.:: \_ .J ' i = 1~ ••• , 4 • 

i=1 

x X l x l 
i a. (y x) \ ~ q. (y y) 2 q. (x x) 2 
~ ]_ l 

for some positive constant Ki·· ( ((1)) ~ 1.2). Thus: 

4 
L. L. 

i=1 

~ . ./ i 0 
( ~)\., • I 

l 

4 ,-.., 
i ... 
i=1 

. I I X ' I :X . • . q. (y x) i 
. l' l ' 

x1- :;tl 
K~ p(y y) 2 p(x x) 2 = K • N (y) • N (x) 

p p ..... 

so the bilinear .:e"orm is cvntinuous on the dense set ll. ( C'2. ) ~. in H , 
p 

and may therefore be extended to all ef H in a continuous way. We can 
p 

then find a bounde~ linear operator s = s on H q p 
such that: 

= 
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Now, let z (s Cl, and x,y E C\(, arbitrarily given. Then: 

which 

proves that s E Ti~( C?J ~ , again appl;ying the density of 'if'( OZ) ~ in 

H The linearity and order-properties of the map q ,__> s ::::: s are im-
p q 

mediate. It is in.jectj_ve, for suppose q =J 0 • Then there is an element 

x E: CY such that q (xxx) f- 0 • This implies that 

so s d:. 0 q' 
~ ( _. )9 

Finall~r, we prove that this map is onto !l. .. 0/.. • 

l-.l,_,;s, let s c. ,-ll-·( r•7 )Y "J1d de-~"l·ne · -·~ c: • '--· L s ,.. J.. 

q(x) = ( s iL (x) ~- i ~ ) 
.:> ~ 

Then: 

which proves that q E- (p J 

3.2 C o r o 1 l ~ r y 

= i (s /L(x) ~ ( it. (x) ~ ) / 

2 
L'. li 13 H, 1111 (x) s II = II s H • p(x*x) 

To do 

Q.e.d. 

An element 
.-·. x 

p E j.J · is a pure state on a unitary x-algebra. if and 

only if the associated representation 
r·· 
IC is topologically irreducible~ 
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P r o o f p is e.. pure state 0:::1. a unitary x-algebra if and only if 

This fact, together with prop. 3.1 proves the corollary. 

We w:mt to extend this connection to pre-unitary x-algebras 9 and will 

then need the following 

3.3 L em m <?. 

Let x-algebra, the x-algebra obtained by adjoining 

a unit to Then a representation i '- of (/[_, is irreducible if and 

only if its restriction to ·'""? u,_. is irreducible. 

P r o o f : Suppose 11L : C't, -> £ (H) J H some Hilbert-space. 
-~ 

As 0?_ => CJZ , we will obviously have 

(the denotes the corrmmtant-operation in £ (H) • ) The lemma vd.ll be 

proved if we can establish the converse inclusion. Suppose, therefore, that 
r----

s e: 'li::"( (;1{) Y , and that x ~=- CL is arbitrarily chosen. x=x + \e, 
0 

Hence: 

s • TL (x) s ·'ii. (x ) + 
0 

- -~· (x) • s 

:\ s 

~----- ~--...._.! ? 
which proves that s ,o:;: il. ( Cf(J • Q.e.d. 

3.4 C o r o l l a r y 

rr (x ) • s + 
0 

\ 

.A s 

An element p c f;ix is a pure state on a pre-unitary x-algebra 

if and only if the associated representation is topologically irreducible. 
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P r o o f : p is pure on CJl if and only if the canonical exten-
...__, 

sion p is pure on 0(_ , which by cor. 3.2 is the case if and only if 
.~-

the associated representation to }) , say TC , is topologically irreduc-

ible on 0?_. 

ll = It lc>6 

, and this is by the lemn1a. equivalent to that the restriction 

is topologically irreducible on As this restriction 

lc is the representation of CT( associated -with p , the proof is com-

plete. 

§4. THE ENVELOPING C x -ALGEBRA OF A PRE-UNITARY x-ALGEBRA 

In this and the next section we -will assume that if f)? 
VL is a pre-

unitary x-algebra, then Y x separatos the points of DZ, 

Now, let K denote the set of states on a pre-unitary x-algebra 

that is~ 

K 7 C(p) .~ 1 r 
..1 

Let 0 K be the set of extreme points in K , i.e. the set of pure 
e 

states on C/l • Furthermore, let R be the set of representations of 

C'Z, 
f 

and R the set of topologically irreducible representatio.ne of 

4.1 P r o p o s i t i o n 

Let a be a pre-unitary x-algebra, and let X = CJZ be an arbit-

rary element. Then: 

sup II !l (x) II 
rc E. R 

= sup il TL (x) II 
ICE RV 

x .l 
sup p(x x) 2 

p~:: K 

;t .l 
= sup p(x x) 2 

pE () K 
e 
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P r o • f : Let a, b, c, d denote the four numbers considered 

successively above. 

d = b 0 Let p E 9 K be given. By cor. 3.4 the representation e . 
y 

associated to p is in R , and 

p(x*x) == ('il (xxx) ~ I ~) 

2 

= (It (x) ~ I II (x) S ) 
2 

.c.. IJ 'it(x) II ( ~ I~) = II TC (x) II p(e) 

2 
= II 1L Cx) ll 

' 

so 
X 1. 

p(x x) 2 ~ sup II 'ii (x) /I d~b 0 

'f[ cs R' 

b f:. a ; evident. 

a ::: c • Let TL e R be given, and H the Hilbert-space in question. 

For "l. <2 H 

2 
( 'il(xxx) ~I tL) II TC (x) [II = ( /L(x) ~( I 'iZ (x) ~) = 

(x*x) £ C(p IL 
2 

= p il;1_ ) • B(x) 
L, ~ 

2 
L ('1_11) • B(x) 

by 2.2. Henoe II 'TL (x) H / .. ~ B(x) = 
1. x 2 

sup p(x x) , so 
pt::K 

c ~ d 0 By prop. 4 in ((1)) , K is x w -compact, so this follows 

from the Krein-Milman theorem. 

4.2 C o r o 1 l a r y 

The norm I/ ' 1/ on OZ. defined by {I x 1/ = B(x) ; x E 02_ , has 

the properties: 

11 X H 
x .I !2 

H X X h = I! X 1: ' 

!I xy !I {. II X ll 0 II y II 
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x,y ,:::: Gs o 

P r o o f This follows immediately from the proposition abo\re, via 

the fact that for each 'il E R we vdll have: 

= (I TC (x) II j,.·-c*-)!1 = I ll. :: X I, 

2 
II Tf (x) II 

I( fC(xy) !I { I! IC(x) II • li'TT (y) II ~II x II • II y II 

Qoeoc • 

.---.... 
rJow, let C{, be the completition of OZ. with respect to this norm. 

~-"". 

Then 0~ is a Cx -algebra which cont:.ains 1.JZ as a dense x- sub-

al€;ebrao vvill be called the enveloping x C -algebra of 0 --.1 
( (ref. 

((2)) ' 2o7o2). 

Next 9 we are going to study the relationship between elements of f x 
.---.... 

a1 .d positive linear functicnals on OZ.. This itJ quite s:i-.lople. 

L .J P r o p o s i t i u n 

Let 0'2, be a. pre-unitary :t-algebra and suppose that p is a linear 

,functional on C!Z • Then the f~llovdng statements are equivalent: 

p is positive on C}? and II · 1/ -continuous. 
/"-. 

(ii) 

(iii) p has a unique extension to a positive linear functional on OZ . 

Moreover, if one of these conditions are satisfied, then 

C(p) I( P /! 

P r o o f (i) \---> (ii) 0 If x E: 0?. , then by prop. 2.1 

(i) 

( p(x) J L.. C(p) • B(x) = C(p) • II x II 
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so p E. :;>*- implies horrri-continuity. 
, ....... 

(ii) Suppose X ~: c~ Then we can find a sequence 

{xn} n E l\T C C'l , x 11 ->· x in norm. Then 

£:. ll xz. I j • ll x - xn \ \ + i ! x;t - x~ ! i o K 

y 

K ------- 0 where 

K and K~ are positive constants. Therefore, if p is posj_tive <9n Cl 

and norm-continuous, then 

0 .::: p(xx x ) --> n n 
.... X. 
p(x x) ; nE N 

:·;:hen p is the unique .::_,·_r;).inuous linear f\J.c'lctic,c:.} on 
.-~" 

_,..---''-..._ 

c~L G~:~te:Yling p 0 

.iknce p is positive 0:1. (/?_ Since a poaitive~ linear f'unctior.al on a 

Cx --algebra is automatically continuous, p is also unique as a positive 

extension of p • 

(iii) r-~p... (i) 

9 (_)(_ . Ol is a 

Suppose p is the positive extension of p to 

X C -algebra, and has in particular an approximate 
/"'>. 

unit, so e~rery positive 9 linear functional on Ct is extendable to 

( 
.~·· ....... 

{-\~, with adjoined unit) as a positive linear func-

tional. Clearly 
--.....· 

,..-·l/ 

'-"'·C (:.~:~;: Et) L , so by restricting the last exten-
,...____, 

sion of p to c:)/. it follows that 

Finally, if p E j)x , 1-ve have already noted tl1at H p I/ .:... c ( p ) c Now' 

2 

d p II = sup -;---
X ~7:- (;.J~· 

sup 
XEOZ. 

ip(x) I 
p(x*x) 

2 

C(p) , 
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... 
where the seconct equality is kno~1 for positive] linear ftmctionals on c~ -

algebra.s. Hence we have C(p) ::::: I! p II 

4.4 C o r o l l a r y 

A linear f~~ctional q on a pre-unitary ±-algebra 

The linear space deterrrined by 

on 

P r o o f Suppose 

4 
q - ~ .:.<.. ('~ 

i=1 
l 

/7'; x .r 

::t --, 
J 

if and only if q 

' so 

.-J. . E (C' 
l 

lT? · 
...- CJ is ln 

is norm-continuous 

i = 1, ••• , 4 

Then each q. is norm~continuous on 
l 

.0' L'C by pr-.•p. 4.3-, n.nd hence also q • 

Conversely, suppose q is norm-continuous on ~~l Then it can be ex-
.......... · ..... ~. 

tended by continuity to Ck is a x C -algebra, s.~ we may decom-

pooe q into positive par+,:o. The corollary then follows fl'r;m the implic-

a+v-ion (l•l•l·) . c· \ . 4 3 ~ J==>· l J J. ·L1 prop. • • Q.e.d. 

At this point we take time to pick up some further information about the 

structure of (:;) :t 
•.J , now easily available. 

4.5 C o r o l 1 a r y 

If 02 is a pre-unita; y .:t-algebra and p E ?:X , then 

C(p) sup p(x::tx) 
X E. C){ 

/l X !j -::0 1 

Note: This improves the inequality of prop. 2.1 (iii) • 

P r o o f : 

C(p) 

By prop. 4.3 we lmow that 

)(p)i== sup 
X -cO( 

I/XIi~1 

! p(x) \ 
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so that we can find a sequence ~ X \ ~ 
J n n: N 

satj si';ying 
' <=. 

/1 x 1/ ~ 1 j n E N , and 
n 

We may now apply the inequality: 

2 2 
I p(xn) I -' C(p)p(~ xn) ~ C(p) 

2 
J! X i/ 

n 

(see the proof of prop. 2.1 (iv) ), which proves the corollary. 

4.6 C o r 9 1 1 a r y 

If ~ nx \..Jc., is a pre-unitary .X-algebra and p E J , then 
,'•.._j 

dense in CC 

Ol is 

P r o o f : By the corollary above, we may find a sequence 

n E N o Now, put 
j;_ 

Y =X X • n n n 
Then II y n II !':-. 1 ; n E N , and 

p(yn) -'::=> C(p) , so that by prop. 2.1 ( v;L) : 

2 ,. 'i:. l 
N (e - y ) = p lCe - y ) (e - y ) ->-p n n n -1 

0 

The proposition follo1-rs. 

4o7 p r 0 p 0 s i t i 0 n 

N -
p 

Let OZ be a pre-unitary ±-algebra, and suppose p E ~?± • If q 

is a linear functional on c:v_. satisfying: 0 ~ q ~ p , then q E. y 'i:. 

and C(q) ~ C(p) • 

P r o o f Let X be an arbitrary elaro.ent of is 

norm-dense in 
~r c:c. , so that we may evidently find a sequence 
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c f'.? 
\ ... ~ .. ~..-· converging in the N -topolovv to x p Ou 

·->- 0 , 

......... 

where f5 is the unique positive extension of p to C(. (prop9 493). In 

particular, 

so 

- ~ ~ l 0 ~ q l (x ~ x )(x - x ) 
~ n m n m 

N (x - x) -~> 0 
q n m 

I N (x ) - N (x ) I ~ 
q n q m ' 

As 

N (x - X ) 
q n m 

, 

the sequence { Nq(~) J ne N must be Cauchy, so we may define 

Now, 

lim N (x ) 2 = lim 
n --".:> o<.:J q n n --> '.)Q 

q(x:t x ) 
n n 

... ..... 
0 ~ q(x ....... x ) :S_ p(x'" x ) , so we must have 

n n n n 

It is readily verified that the value of ~(x*x) is independent of the 

particular sequence used to define it, so q becomes a positive, additive, 
........... 

homogenous functional on the positive cone in (32. • (Every positive 

element of .:5l.. can be w-ritten in the form x~x for some x E iJZ ) • 
...... -, 

We ca~ then extend q to a positive, linear functional on C:)(, • By prop. 

4.3, the restriction q = q I CS?. is then in 

shall have: 

c 
q 

X = sup q(x~ x) ~ 
XE.Ul 

II X !I -:..1 

sup p (xx~<:) 
X(".; 0(. 

/il<!/!.1 

= c p 
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The proof is finisheda 

4o8 P r o p o s i t i o n 

If QZ, is a pre-unitc..ry :<!:·-algebra~ and p,c;. are elements of 

then p + q c. :px , and 

C(p + q) = C(p) + C(q) .---· ; p + q = p + q 

P r o o f Clearly p + q E ?± , and if extended to 
.~, 

02. , we 

have 

--~ p + 4 p + q = 

so 

II !Y-;-q: II I~ A ·r ·.fA I! = ~\ p 1! + qq I' 

The proposition then follows from prop. 4.3, last statement. 

We recall that for a unitary x-algebra UC , and p a positive, 

normalized, linear functional on n··. 
v'{ ' then = the linear space 

generated by the set ~- q I o is ioomorphic to rL if and 

only if p is a pure state. We are now able to extend this to pre-unitary 

x-algebras 0 

4·9 C o r o 1 1 a r y 

If 02. is a pre-unitary :;t-algebra, and p 6 ;Y± , C(p) 1, then 

P r o o f : 1) Suppose p .::.5: '··'e K , p f- 0 , and p ~ q1 7 0 ; 

a linear functional on />:I 
, _ _.,~(__ 0 Put q2 = p - q1 ' p ~ q2 ~- 0 

p Then, by props. 4.7 and ,4 .• 8, 
,.....,X. 

q1' q2 r::: ~p ' 

1 = C(p) 

and 

and 
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so we may put A = C ( q 1 ) 9- C ( q2 ) 

1 r 2 - 1 _.A q2 • Thus r 1 ,r2 :::: K and 

= 1 - ~ , and r 1 = 

p =.Ar 1 + (1 -.A)r2 • 

extreme i K ~':> p = r 1 =- r 2 , se q1 = ~ p 9 which proves the 

first part. 

2) Suppose [P J ;; ([; , and suppc,se p = .Aq1 + ( 1 - A) q2 

0 < >.. < 1 ; q1 , q 2 E K '- ;:.. 0 £ >--q 1 £-_ p ~ which by the assumption 

implies 

anct C(q 1 )~ C(q2 ) L 1, so we must necessarily have C(q1 ) = C(q2 )=1. 

Bence 

so 

Q.e.d, 

~§~5~·--_Th ____ e __ ~~iversa~·-o_bl_e_~. 

..--...... 
.TI}eorem.1. Let OZ be a pre-unitary -:(·-algebra, (JZ its envelop-

in.cr 
9 C -algebra, and L the canonical map of 0( into 

* ,-, 
If iL is a -*-homomorphism of CJZ into a C -algebra Jj, then 

...---... ..... , '7.2 
there exists a unique *-homomorphism /[ of OZ into ~b such 

........... 

that 'IZ = li o T . II ( Cf?) is pre-unitary, and 'fZ ( & ) is the 

enveloping e-x--algebra ~f /L( G{.). 

Proof: First we observe that ll (L (x) II£. i\ x II ; x E 0?_, so 
....-...... ................... ..--...... ,........._ 

'il has a unique extension It taking 0:: into 'J$. 1c ( CJ?) con---tains f{ (on as a dense sub-algebra and 1L = /{' 0 L. Moreover' 
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....._, ~ ~ * 7L is an open mapping and fC (02) = 7L (CJ?J is a c -algebra 
,.-~-., 

(ref. ( ( 2 ) ) ~ 1.8.3). IL·con contained in !-< To see that 
'--" 

pre-unitary, let q be a linear functional on ~(C?.) , 

satisfying q_(y*y) ~ 0 for ally.:::_ rnoz); and with C(q) = 

sup J_g_(y) I 
YEil{'J?) q ( y * y) ' .0<: 

Then ~* is an element of ~ 

is 

s$.tisfying C(p) = C(q) < .Q=. • Hence p is norm-continuous on 
---... ~ 

CfL (prop. 4.3). As /Lis open~ q must be continuous on 7(02), 

and therefore has a unique positive extension to IL (on. 
;"<· 

Consequently the set of states on 7Z(G2) is w -compact, so 

I[ ( Cfl) is preuni tary (ref. ( ( 1 ) ) ; prop. 4). Now any state 

o~ a sub-c*-algebra of~ may be extended to a state on ~3 

(ref. ((2)); 2.10.1). This proves that the norm constructed 

OYJ. 7L. ( CP) as a pre-v..ni tary algebra will coalesce with the 
..-:1 

norm it inherits from ,_fj 
.,.,~~ ~ 

Hence ·li.~ ((? ) is the enveloping 

C -algebra of IL(CJZ) • 
....-... 

Consequently, (}l represents the solution of a universal 

problem for OZ • 
,...., 

In particular, 02 is the only 
-l<-

c -algebra 

containing (7 as a dense subalgebra. 

Corollaa. Let ~be a representation of the pre-unitary 
..-... 

*-algebra LJL . Then there is a unique representation ~ of 
-----. ---Cl such that /(' = 11:" T . 

,.-

~ is topologically irreducible 
.---. 

if and only if 7L is topologically irreducible. 

Proof: The first statement is immediate from the theorem, and 
..-.. .-"\. 

the second follows from the equality 7L (62) 1 = 7Z. ( 02) 1 • 
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Let 07_ be a pre-unitary -x--algebra. Then there 

is a faithful representation 
r-·· ··n 
1!..... of Ct_ in a Hilbert-space H 

Moreover /l (C?) is pre-unitary, and the map (12. ---> I"Z' f0i)::...ITH) 

is isometric. 

{~ 

Proof: This theorem is valid for C -algebras, so we may just 

apply this fact together with Theorem 1. 

Hence, the most general kind of pre-unitary *-algebras are the 

involutive subalgebras of ,L(H), H some Hilbert-space. 

( ( 1 ) ) 

( ( 2)) 

( ( 3) ) 
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