Matematisk Seminar Universitetet i Oslo Nr. 2 Februar 1965

INVOLUTIVE ALGEBRAS OVER () .

Part II.

By

Johan F. Aarnes

§1. INTRODUCTION

In this note we are concerned with pre-unitary or unitary \star -algebras over the complex field. The study of these algebras was initiated by E.M. Alfsen in the preceding note ((1)). For definition and basic properties of pre-unitary algebras, we refer to this paper. Our goal in this note is to prove that a pre-unitary \star -algebra \mathcal{O} can be imbedded in a C^{\star} algebra $\widehat{\mathcal{O}}$, the imbedding being one to one onto a dense subset of $\widehat{\mathcal{O}}$, and preserving all structure of \mathcal{O} . In fact, $\widehat{\mathcal{O}}$ will be the solution of a universal problem for $\widehat{\mathcal{O}}$, in the sense that $\widehat{\mathcal{O}}$ and $\widehat{\mathcal{O}}$ will have the same (essentially, by canonical extensions) states, pure states, representations and topologically irreducible representations. $\widehat{\mathcal{O}}$ will be called the enveloping C^{\star} -algebra of $\widehat{\mathcal{O}}$.

If \mathcal{O} is an involutive Benach-algebra with approximate identity, it is known that it has an enveloping \mathcal{C}^{\star} -algebra with the properties stated above. For an exposition of this, we refer to the book of Dixmier ((2)). However, involutive Banach-algebras are pre-unitary, so our results are strictly more general. Nevertheless, most of the methods in Dixmier's presentation can be carried over, due to the essential fact proved in ((1)), that a \star -algebra \mathcal{O} is pre-unitary if and only if the set of states on \mathcal{O} is w^{*}-compact.

In the commutative case, the desired theorem is easily attainable by the function representation of a pre-unitary \star -algebra as a dense subalgebra of $G_{0}(M_{\rm R})$. In the general, non-commutative situation the adequate substitute for the multiplicative, real functionals are the topologically irreducible representations, so we have to establish a correspondance between irreducible representations and pure states, or more generally, between the states on $G_{\rm R}$ and the representations of $G_{\rm R}$. In the first proposition we gather some information, needed for later reference. As in ((1)), \mathcal{P}^{\star} will denote the set of positive, extendable linear functionals on a pre-unitary \star -algebra \mathcal{O}_{\cdot} . For $p \in \mathcal{P}^{\star}$, we put:

$$C(p) = \sup_{\mathbf{x} \in \mathcal{O}} \frac{|p(\mathbf{x})|^2}{p(\mathbf{x}^{\mathbf{x}})}$$

Correspondingly, for $\ensuremath{\,x}\ \in\ {\cal O}{\Bbb Z}$, we put:

$$B(\mathbf{x}) = \sup_{\substack{\mathcal{C}(\mathbf{p}) \leq 1 \\ p \in \mathcal{G}^{\mathbf{x}}}} p(\mathbf{x}^{\mathbf{x}} \mathbf{x})^{\frac{1}{\mathbf{z}}}$$

For each $x \in \mathcal{O}_{\mathcal{C}}$, B(x) is finite (((1)), prop. 3).

2.1 Proposition

Let $\mathcal{O}_{\mathcal{C}}$ be a pre-unitary x-algebra, and suppose $p \in \mathcal{P}^{X}$. Then we shall have:

(i)
$$p(\mathbf{x}^{\mathbf{x}}) = \overline{p(\mathbf{x})}$$
; $\mathbf{x} \in \mathcal{O}$
 $|p(\mathbf{x})|^2 \leq C(p) \cdot p(\mathbf{x}^{\mathbf{x}})$; $\mathbf{x} \in \mathcal{O}$
 $|p(\mathbf{x})| \leq C(p) \cdot B(\mathbf{x})$; $\mathbf{x} \in \mathcal{O}$

(ii) The linear functional p_v defined by

$$p_y(x) = p(y^x x y)$$
; $x, y \in \mathbb{N}$

is in \mathcal{P}^{\star} , and $C(p_y) \leq p(y^{\star}y)$.

(iii)
$$C(p) \ge \sup_{\substack{p(x,x) \\ B(x) \le 1 \\ x \in \mathcal{R}}} p(x,x)$$

- (iv) If $\{x_i\}_{i \in I}$ is a net in O(, indexed by a directed set I; such that $B(x_i) \leq 1$ and $p(x_i) \longrightarrow C(p)$, $i \in I$; then $p(x_i x_i) \longrightarrow C(p)$.
- (v) p has a unique extension to a positive linear functional \widetilde{p} on $\widetilde{\mathcal{O}_{\mathcal{C}}}$ (= $\mathcal{O}_{\mathcal{C}} \oplus \mathbb{C}$) such that $\widetilde{p}(e) = C(p)$. \widetilde{p} is called the canonical extension of p, and every other positive linear functional on $\widetilde{\mathcal{O}_{\mathcal{C}}}$ extending p majorizes \widetilde{p} .
- (vi) With the assumption of (iv), we have $x_1 \rightarrow e$ in the N_p topology; that is:

$$\widetilde{p}\left[(x_{i}^{\star}-e)(x_{i}-e)\right] \longrightarrow 0$$
.

Hence $\mathcal{O}_{\mathcal{V}}$ is \mathbb{N}_{p} - dense in $\mathcal{O}_{\mathcal{V}}$ in this case.

Proof: (i) is clear from ((1)). To prove (ii), let $y \in \mathcal{O}$. p_v is positive, for if $x \in \mathcal{O}$:

$$p_y(\mathbf{x}^{\mathbf{x}}\mathbf{x}) = p(\mathbf{y}^{\mathbf{x}}\mathbf{x}^{\mathbf{x}}\mathbf{y}) = p((\mathbf{x}\mathbf{y})^{\mathbf{x}}(\mathbf{x}\mathbf{y})) \ge 0$$

Next:

$$\frac{|\mathbf{p}_{\mathbf{y}}(\mathbf{x})|^{2}}{|\mathbf{p}_{\mathbf{y}}(\mathbf{x}^{\mathbf{x}}\mathbf{x})|^{2}} = \frac{|\mathbf{p}(\mathbf{y}^{\mathbf{x}}\mathbf{x}\mathbf{y})|^{2}}{|\mathbf{p}(\mathbf{y}^{\mathbf{x}}\mathbf{x}^{\mathbf{x}}\mathbf{y})|^{2}} \leq \frac{\mathbf{p}(\mathbf{y}^{\mathbf{x}}\mathbf{y})\mathbf{p}((\mathbf{x}\mathbf{y})^{\mathbf{x}}(\mathbf{x}\mathbf{y}))}{|\mathbf{p}((\mathbf{x}\mathbf{y})^{\mathbf{x}}(\mathbf{x}\mathbf{y}))|^{2}}$$
$$\implies C(\mathbf{p}_{\mathbf{y}}) \leq \mathbf{p}(\mathbf{y}^{\mathbf{x}}\mathbf{y})$$

and $p_y \in \mathcal{P}^{\star}$.

(iii) follows from formula (2.3) in ((1)), and the definition of $B(\mathbf{x})$.

Now, suppose $\{x_i\}_{i \in I}$ is a net in \bigcirc such that $B(x_i) \le 1$, $i \in I$, and $p(x_i) \longrightarrow C(p)$. Then by

$$|p(\mathbf{x}_{i})|^{2} \leq C(p) \cdot p(\mathbf{x}_{i}^{\mathbf{x}_{i}}) \leq C(p)^{2} \cdot B(\mathbf{x}_{i})^{2}$$

 $\leq C(p)^{2}$

(iv) follows.

(v) is known.

To prove (vi), consider:

$$\widetilde{p} \left[(e - x_{i})^{*}(e - x_{i}) \right] = \widetilde{p}(e) - p(x_{i}^{*}) - p(x_{i}) + p(x_{i}^{*}x_{i})$$
$$= C(p) - \overline{p(x_{i})} - p(x_{i}) + p(x_{i}^{*}x_{i})$$
$$\longrightarrow C(p) - C(p) - C(p) + C(p) = 0 ,$$

according to (i), (v) and (iv). This proves the proposition.

2.2 We now turn to investigate the connection between the elements of \mathcal{P}^{\pm} and the representations of \mathcal{O} . As usual, a representation \overline{u} of a \pm -algebra is a \pm -homomorphism into the \pm -algebra of bounded linear operators $\mathcal{L}(H)$ on a Hilbert-space H. The elementary properties of such representations will be assumed known.

First, let \overline{n} be a representation of a pre-unitary x-algebra \overline{Cl} in the Hilbert-space H, and let ξ be an element of H. \overline{n} and ξ then define a positive, linear functional $p = p_{\overline{n}, \xi}$ on \overline{Cl} by:

$$p(\mathbf{x}) = (\pi(\mathbf{x})\xi|\xi) \qquad ; \mathbf{x} \in \mathcal{O}$$

Next, consider:

$$|p(\mathbf{x})|^{2} = |(\pi(\mathbf{x})\xi|\xi)|^{2} \langle (\pi(\mathbf{x})\xi|\pi(\mathbf{x})\xi) \cdot (\xi|\xi) \rangle$$
$$= (\pi(\mathbf{x}^{*}\mathbf{x})\xi|\xi) \cdot (\xi|\xi) = p(\mathbf{x}^{*}\mathbf{x}) \cdot (\xi|\xi)$$

so $C(p) \leq (\xi | \xi)$ and $p \in \mathcal{P}^{\star}$.

Now, both p and π have canonical extensions to \mathcal{O} which preserves their essential properties, by putting

$$\widetilde{p}(e) = C(p)$$
 and $\widetilde{ii}(e) = 1 \in \mathcal{L}(H)$.

In general, these extensions will not agree, on the contrary \widetilde{it} will define a positive, linear functional p on $\widetilde{\mathcal{O}}$ by

$$p'(e) = (\widetilde{i}(e)\xi) = (\xi)$$

p' is an extension of p, and in general $p' \ge \widetilde{p}$, according to prop. 2.1 (v). If, however, ξ is cyclic in H with respect to $\widetilde{H}(OU)$ so $\widetilde{H}(OU) \xi$ is dense in H, we will have:

$$(\xi|\xi) = \sup_{\mathbf{x} \in \mathcal{O}_{c}^{2}} \frac{\left|\left(\widehat{\pi}(\mathbf{x})\xi|\xi\right)\right|^{2}}{\left(\widehat{\pi}(\mathbf{x})\xi|\widehat{\pi}(\mathbf{x})\xi\right)} = \sup_{\mathbf{x} \in \mathcal{O}_{c}^{2}} \frac{\left|p(\mathbf{x})\right|^{2}}{p(\mathbf{x}^{*}\mathbf{x})} = C(p)$$

Therefore, in this case the canonical extensions \widetilde{p} and $\widetilde{\widetilde{n}}$ will agree:

$$\widehat{p}(\mathbf{x}) = (\widehat{\pi}(\mathbf{x})\xi|\xi) \qquad ; \quad \mathbf{x} \in O\mathbb{Z}$$

Next, we turn to the converse problem:

2.3 Proposition Let OZ be a pre-unitary x-algebra, and let $p \in \mathcal{P}^{x}$ be an arbitrarily chosen, fixed element. Let

$$\mathcal{M} = \left\{ \mathbf{x} \mid \mathbf{x} \in \widehat{\mathcal{O}}, \, \widetilde{\mathbf{p}}(\mathbf{x}^{\mathbf{x}}\mathbf{x}) = \mathbf{0} \right\}$$

Then \mathscr{W} is a left ideal of $\widetilde{\widetilde{\mathcal{O}}}$, and define an inner-product.

$$(\mathbf{x} \mid \mathbf{y}) = \mathbf{p}(\mathbf{y}^{\mathbf{X}}\mathbf{x})$$

on $\widetilde{\mathcal{O}}_{/\mathcal{W}}$; $x,y \in \widetilde{\mathcal{O}}_{\ell}$; $\overline{x},\overline{y}$ their respective equivalence-classes in $\widetilde{\mathcal{O}}_{/\mathcal{W}}$. With this inner-product $\widetilde{\mathcal{O}}_{/\mathcal{W}}$ becomes a pre-Hilbert space which will be denoted by H_{p}^{i} . Let $\xi \in H_{p}^{i}$ canonical image of $e \in \widetilde{\mathcal{O}}_{\ell}$. The Hilbert-space obtained by completing H_{p}^{i} will be denoted H_{p} . For every $x \in \widetilde{\mathcal{O}}_{\ell}$ define an operator $\widetilde{\mathcal{H}}_{p}^{i}(x)$ in H_{p}^{i} by left multiplication by \overline{x} in $\widetilde{\mathcal{O}}_{/\mathcal{W}}^{i}$. Then:

(i) Every $\widetilde{\pi}^{*}(x)$ can be extended to a continuous linear operator $\mathbb{C}(x)$ in \mathbb{H}_{p}^{-} .

(ii) The map $x \longrightarrow \widetilde{\pi}(x)$, $x \in \widetilde{\mathcal{O}_{\ell}}$; is a representation of $\widetilde{\mathcal{O}_{\ell}}$ in H_p .

(iii) ξ is cyclic with respect to $\mathcal{T}(\widetilde{\mathcal{O}})$ in \mathbb{H}_{p} . (iv) $\widetilde{p}(x) = (\mathcal{T}(x)\xi|\xi)$ for every $x \in \widetilde{\mathcal{O}}$.

Proof. The statements in the head of the proposition are standard and readily verified. To prove (i), let $\gamma \in H_p^{'}$ be an arbitrary element. We have $\gamma = \overline{y}$ for some $y \in \widehat{\mathcal{A}}$, and hence

$$\|\widetilde{\tau\iota}^{*}(\mathbf{x})_{\gamma}\|^{2} = \widetilde{p}((\mathbf{xy})^{*}(\mathbf{xy})) = \widetilde{p}(\mathbf{y}^{*}\mathbf{x}^{*}\mathbf{xy})$$
$$\leq B(\mathbf{x}^{*}\mathbf{x})\widetilde{p}(\mathbf{y}^{*}\mathbf{y}) = B(\mathbf{x}^{*}\mathbf{x}) \cdot \|\eta\|^{2},$$

where prop. 2.1 (ii) is used. This proves that $\widetilde{\iota}'(x)$ is continuous on H_p' , and hence extendable to all of H_p as required, so (i) is proved.

It follows immediately that \mathcal{T} is an algebra-homomorphism, and moreover, for $x \in \widetilde{\mathcal{C}}$, $\eta = \overline{y}$, $\chi = \overline{z}$ in H_p^{\dagger} we have:

$$(\pi(\mathbf{x}) \gamma | \boldsymbol{\chi}) = \widetilde{p}(\mathbf{z}^{\mathbf{x}}(\mathbf{x}\mathbf{y})) = \widetilde{p}((\mathbf{x}^{\mathbf{x}}\mathbf{z})^{\mathbf{x}}\mathbf{y})$$
$$= (\eta | \widetilde{\mu}(\mathbf{x}^{\mathbf{x}})\boldsymbol{\chi}) = (\widetilde{\mu}(\mathbf{x}^{\mathbf{x}})^{\mathbf{x}}\eta | \boldsymbol{\chi})$$

so $\widetilde{\mathcal{H}}(x^{\star}) = \widetilde{\mathcal{H}}(x)^{\star}$, proving (ii).

(iii) is evident from the definition of ξ and ${\tt H}_p$. Finally, let $x\in \widetilde{\mathcal{Ol}}:$

$$(\tilde{\iota}(\mathbf{x}) \xi | \xi) = (\mathbf{x} e | e) = \tilde{p}(e^{\mathbf{x}} e) = \tilde{p}(\mathbf{x})$$
.
Q.e

.d.

The representation $\widetilde{\mathbb{T}}$ and the cyclic vector $\dot{\xi}$ are said to be associated with the given $p\in \mathcal{P}^{\star}$.

§3. PURE STATES AND IRREDUCIBLE REPRESENTATIONS

We have already established a connection between elements of \mathcal{P}^{\star} and representations of $\mathcal{O}_{\mathcal{L}}$. In the case of C^{\star} -algebras, it is further known that the pure states and irreducible representations correspond to each other. This can be seen to rely on the fact that a C^{\star} -algebra has an approximate identity. In our situation with pre-unitary algebras we are left without any norm, so we have to be a bit roundabout when trying to obtain the connection mentioned above.

As a first step, we state the following proposition. The technique goes back to Grothendieck (1955) (see ((3)) for details).

If $p \in \mathcal{P}^{\mathbf{x}}$, let [p] be the linear space generated by the set $\{q \mid 0 \leq q \leq p\}$

3.1 Proposition

Let $\mathcal{O}_{\mathcal{C}}$ be a unitary **x**-algebra, p a positive, linear functional on $\mathcal{O}_{\mathcal{C}}$, and \mathcal{T} the representation associated with p, into H_p . Then there is a one to one linear, order-preserving map of [p] onto $\mathcal{T}(\mathcal{O}_{\mathcal{C}})'=$ the commutant of $\mathcal{T}(\mathcal{O}_{\mathcal{C}})$ in $\mathcal{L}(H_p)$.

Proof. Let $q \in [p]$, and define a bilinear functional $(\cdot | \cdot)_q$ on $\widetilde{\iota}(\mathcal{O}) \notin$ by

 $(\widetilde{\pi}(\mathbf{x}) \not\in |\widetilde{\pi}(\mathbf{y}) \not\in \mathcal{J}_q = q(\mathbf{y}^{\mathbf{x}}\mathbf{x}) \quad ; \mathbf{x}, \mathbf{y} \in \mathcal{O}$

As $q \in [p]$, we must have

$$q = \sum_{i=1}^{4} x_i q_i ; q_i \in [p] ; i = 1, ..., 4.$$

Hence

$$\begin{aligned} \left| \mathbf{q}_{i}(\mathbf{y}^{\mathbf{x}}\mathbf{x}) \right| &\leq \mathbf{q}_{i}(\mathbf{y}^{\mathbf{x}}\mathbf{y})^{\frac{1}{2}} \mathbf{q}_{i}(\mathbf{x}^{\mathbf{x}}\mathbf{x})^{\frac{1}{2}} \\ &\leq \mathbf{K}_{i} \mathbf{p}(\mathbf{y}^{\mathbf{x}}\mathbf{y})^{\frac{1}{2}} \cdot \mathbf{p}(\mathbf{x}^{\mathbf{x}}\mathbf{x})^{\frac{1}{2}} \end{aligned}$$

for some positive constant K_{i} (((1)), 1.2). Thus:

$$|(\pi(\mathbf{x}) \leq |\pi(\mathbf{y}) \leq)_{q}| \leq \sum_{i=1}^{4} |\boldsymbol{x}_{i}| \cdot |\mathbf{q}_{i}(\mathbf{y}^{*}\mathbf{x})|$$

$$\leq \sum_{i=1}^{4} |\boldsymbol{x}_{i}| \cdot \kappa_{i} p(\mathbf{y}^{*}\mathbf{y})^{\frac{1}{2}} p(\mathbf{x}^{*}\mathbf{x})^{\frac{1}{2}} = \kappa \cdot N_{p}(\mathbf{y}) \cdot N_{p}(\mathbf{x}) ,$$

so the bilinear form is continuous on the dense set $TL(CQ) \xi$ in H_p , and may therefore be extended to all of H_p in a continuous way. We can then find a bounded linear operator $s = s_q$ on H_p such that:

$$q(y^{\mathbf{x}}x) = (s \cdot \widetilde{\iota}(x) \xi | \widetilde{\iota}(y) \xi)$$

- 8 -

Now, let $z \in \mathbb{O}$, and $x, y \in \mathbb{O}$ arbitrarily given. Then:

$$((\mathbf{s} \cdot \widetilde{\mathbf{ll}}(\mathbf{z})) \widetilde{\mathbf{ll}}(\mathbf{x}) \stackrel{!}{\leq} (\widetilde{\mathbf{ll}}(\mathbf{y}) \stackrel{!}{\leq}) = q(\mathbf{y}^{\mathbf{x}}(\mathbf{z}\mathbf{x}))$$
$$= q((\mathbf{z}^{\mathbf{x}}\mathbf{y})^{\mathbf{x}}\mathbf{x}) = (\mathbf{s} \cdot \widetilde{\mathbf{ll}}(\mathbf{x}) \stackrel{!}{\leq} | \widetilde{\mathbf{ll}}(\mathbf{z}^{\mathbf{x}}\mathbf{y}) \stackrel{!}{\leq})$$
$$= ((\widetilde{\mathbf{ll}}(\mathbf{z})\mathbf{s}) \widetilde{\mathbf{ll}}(\mathbf{x}) \stackrel{!}{\leq} | \widetilde{\mathbf{ll}}(\mathbf{y}) \stackrel{!}{\leq}), \quad \text{which}$$

proves that $s \in \widetilde{\mathcal{H}}(\mathcal{O})^{\circ}$, again applying the density of $\widetilde{\mathcal{H}}(\mathcal{O}) \notin$ in H_p . The linearity and order-properties of the map $q \longrightarrow s = s_q$ are immediate. It is injective, for suppose $q \neq 0$. Then there is an element $x \in \widetilde{\mathcal{O}}$ such that $q(x^{\star}x) \neq 0$. This implies that

$$(s_{q}\tilde{\iota}(x) \xi | \tilde{\iota}(x) \xi) = q(x^{*}x) \neq 0$$

so $s_q \neq 0$. Finally, we prove that this map is onto $\widetilde{u}(Ol)'$. To do this, let $s \in \widetilde{u}(Ol)'$, and define

$$q(x) = (s \widetilde{u}(x) \zeta \zeta)$$

Then:

$$|q(\mathbf{x}^{\mathbf{x}}\mathbf{x})| = |(\mathbf{s}\,\overline{\iota}\,(\mathbf{x}^{\mathbf{x}}\mathbf{x})\,\underline{\xi}\,|\,\underline{\xi}\,)|$$

= $|(\mathbf{s}\,\overline{\iota}\,(\mathbf{x})\,\underline{\xi}\,|\,\overline{\iota}\,(\mathbf{x})\,\underline{\xi}\,)|$
 $\leq ||\mathbf{s}\,||\cdot||\,\overline{\iota}\,(\mathbf{x})\,\underline{\xi}\,||^{2} = ||\mathbf{s}\,||\cdot\mathbf{p}(\mathbf{x}^{\mathbf{x}}\mathbf{x})$

which proves that $q \in \{p\}$.

Q.e.d.

3.2 Corellary

An element $p \in \mathcal{P}^{\star}$ is a pure state on a unitary \star -algebra if and only if the associated representation \mathcal{T} is topologically irreducible,

that is: $\pi(\mathcal{O})^{i} \cong \mathbb{C}$

Proof: p is a pure state on a unitary x-algebra if and only if $[p] \cong ($. This fact, together with prop. 3.1 proves the corollary.

We want to extend this connection to pre-unitary x-algebras, and will then need the following

3.3 Lemma

Let \mathcal{O} be a x-algebra, $\widetilde{\mathcal{O}}$ the x-algebra obtained by adjoining a unit to \mathcal{O} . Then a representation $\widetilde{\mathcal{C}}$ of $\widetilde{\mathcal{O}}$ is irreducible if and only if its restriction to $\widetilde{\mathcal{O}}$ is irreducible.

Proof: Suppose $\widetilde{\pi}: \mathcal{O} \longrightarrow \mathcal{L}(H)$, H some Hilbert-space. As $\widetilde{\mathcal{O}} \supset \mathcal{O}$, we will obviously have

$$\pi(\alpha)' \supset \pi(\widetilde{\alpha})'$$

(the denotes the commutant-operation in $\mathcal{L}(H)$.) The lemma will be proved if we can establish the converse inclusion. Suppose, therefore, that $s \in \widetilde{\mathcal{H}}(\mathcal{O})^{\prime}$, and that $x \in \widetilde{\mathcal{O}}_{\mathcal{L}}^{\prime}$ is arbitrarily chosen. $x = x_{0} + \lambda e$, $x_{0} \in \mathcal{O}_{\mathcal{L}}^{\prime}$. Hence:

$$s \cdot \widetilde{t}(\mathbf{x}) = s \cdot \widetilde{t}(\mathbf{x}) + \lambda s = \widetilde{t}(\mathbf{x}) \cdot s + \lambda s$$
$$= \widetilde{t}(\mathbf{x}) \cdot s ,$$

which proves that $s \in \widetilde{\pi}(\widetilde{\mathfrak{K}})'$. Q.e.d.

3.4 Corollary

An element $p \in \mathcal{P}^{\star}$ is a pure state on a pre-unitary \star -algebra if and only if the associated representation is topologically irreducible.

Proof: p is pure on \mathcal{O} if and only if the canonical extension \widetilde{p} is pure on $\widetilde{\mathcal{O}}$, which by cor. 3.2 is the case if and only if the associated representation to \widetilde{p} , say $\widetilde{\mathcal{I}}$, is topologically irreducible on $\widetilde{\mathcal{O}}$, and this is by the lemma equivalent to that the restriction $\widetilde{\mathcal{I}} = \widetilde{\mathcal{I}}/\mathcal{O}$ is topologically irreducible on $\widetilde{\mathcal{O}}$. As this restriction $\widetilde{\mathcal{I}}$ is the representation of $\widetilde{\mathcal{O}}$ associated with p, the proof is complete.

§4. THE ENVELOPING C^{\star} -ALGEBRA OF A PRE-UNITARY \star -ALGEBRA

In this and the next section we will assume that if Ol is a preunitary x-algebra, then \mathcal{P}^{\star} separates the points of Ol.

Now, let K denote the set of states on a pre-unitary \pm -algebra that is:

$$K = \left\{ p \mid p \in \mathcal{P}^{\pm}, C(p) \leq 1 \right\}$$

Let $\partial_e K$ be the set of extreme points in K, i.e. the set of pure states on OZ. Furthermore, let R be the set of representations of OZ, and R' the set of topologically irreducible representations of OZ.

4.1 Proposition

Let \mathcal{O}_{L} be a pre-unitary **x**-algebra, and let $\mathbf{x} \in \mathcal{O}_{L}$ be an arbitrary element. Then:

$$\sup_{\mathbf{i} \in \mathbf{R}} \| \widehat{i_{\mathbf{c}}}(\mathbf{x}) \| = \sup_{\mathbf{i} \in \mathbf{R}} \| \widehat{i_{\mathbf{c}}}(\mathbf{x}) \|$$
$$= \sup_{\mathbf{x} \in \mathbf{R}} n(\mathbf{x}^{\mathbf{x}} \mathbf{x})^{\frac{1}{2}} = \sup_{\mathbf{x} \in \mathbf{R}} n(\mathbf{x}^{\mathbf{x}} \mathbf{x})^{\frac{1}{2}}$$

Proof: Let a, b, c, d denote the four numbers considered successively above.

 $d\leq b$. Let $p\in \mathop{\supseteq}_e K$ be given. By cor. 3.4 the representation associated to p is in R , and

$$p(\mathbf{x}^{\mathbf{x}}\mathbf{x}) = (\widetilde{\iota}(\mathbf{x}^{\mathbf{x}}\mathbf{x})\xi|\xi) = (\widetilde{\iota}(\mathbf{x})\xi|\widetilde{\iota}(\mathbf{x})\xi)$$

$$\leq ||\widetilde{\iota}(\mathbf{x})||^{2}(\xi|\xi) = ||\widetilde{\iota}(\mathbf{x})||^{2}\widetilde{p}(e)$$

$$= ||\widetilde{\iota}(\mathbf{x})||^{2}$$

50

$$p(\mathbf{x}^{\mathbf{x}}\mathbf{x})^{\frac{1}{2}} \leq \sup_{\widetilde{\mathcal{U}} \in \mathbb{R}^{4}} ||\widetilde{\mathcal{U}}(\mathbf{x})|| \implies d \leq b$$

 $b \leq a$; evident.

 $a \leq c$. Let $\widetilde{\mathcal{H}} \subset \mathbb{R}$ be given, and H the Hilbert-space in question. For $\eta \in \mathbb{H}$:

$$\|\widetilde{\iota}(\mathbf{x})\boldsymbol{\gamma}\|^{2} = (\widetilde{\iota}(\mathbf{x})\boldsymbol{\gamma} | \widetilde{\iota}(\mathbf{x})\boldsymbol{\gamma}) = (\widetilde{\iota}(\mathbf{x}^{\star}\mathbf{x})\boldsymbol{\gamma}|\boldsymbol{\gamma})$$
$$= p_{\widetilde{\iota},\boldsymbol{\gamma}} (\mathbf{x}^{\star}\mathbf{x}) \leq C(p_{\widetilde{\iota},\boldsymbol{\gamma}}) \cdot B(\mathbf{x})^{2}$$
$$\leq (\boldsymbol{\gamma}|\boldsymbol{\gamma}) \cdot B(\mathbf{x})^{2}$$

by 2.2. Hence $\|\widetilde{\eta}(\mathbf{x})\|^{2} \leq B(\mathbf{x}) = \sup_{p \in K} p(\mathbf{x}^{\mathbf{x}})^{\frac{1}{2}}$, so $a \leq c$ follows. $c \leq d$. By prop. 4 in ((1)), K is $w^{\mathbf{x}}$ -compact, so this follows from the Krein-Milman theorem. Q.e.d.

4.2 Corollary

The norm $|| \cdot ||$ on \mathcal{O}_{1}^{2} defined by || x || = B(x); $x \in \mathcal{O}_{2}^{2}$, has the properties:

$$\|\mathbf{x}^{\star}\| = \|\mathbf{x}\|$$
, $\|\mathbf{x}^{\star}\mathbf{x}\| = \|\mathbf{x}\|^{2}$,
 $\|\mathbf{x}\mathbf{y}\| \le \|\mathbf{x}\| \cdot \|\mathbf{y}\|$

 $x,y \in \mathcal{D}$.

Proof: This follows immediately from the proposition above, via the fact that for each $\widehat{n} \in \mathbb{R}$ we will have:

$$\|\widehat{\pi}(\mathbf{x}^{\mathbf{x}})\| = \|\widehat{\pi}(\mathbf{x})\|, \quad \|\widehat{\pi}(\mathbf{x}^{\mathbf{x}})\| = \|\widehat{\pi}(\mathbf{x})\|^{2}$$
$$\|\widehat{\pi}(\mathbf{x}\mathbf{y})\| \leq \|\widehat{\pi}(\mathbf{x})\| \cdot \|\widehat{\pi}(\mathbf{y})\| \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|.$$
Q.e.d.

Now, let $\widehat{\mathcal{O}}$ be the completition of $\widehat{\mathcal{O}}$ with respect to this norm. Then $\widehat{\mathcal{O}}$ is a C^{\star} -algebra which contains $\widehat{\mathcal{O}}$ as a dense \star -subalf;ebra. $\widehat{\mathcal{O}}$ will be called the enveloping C^{\star} -algebra of $\widehat{\mathcal{O}}$ (ref. ((2)), 2.7.2).

Next, we are going to study the relationship between elements of \mathscr{P}^{\star} and positive linear functionals on $\widehat{\mathscr{O}_{\mathcal{C}}}$. This is quite simple.

1.3 Proposition

Let OZ be a pre-unitary \star -algebra and suppose that p is a linear functional on OZ. Then the following statements are equivalent:

(i) $p \in \mathcal{P}^{\mathbf{X}}$.

(ii) p is positive on OZ and $|| \cdot ||$ -continuous.

(iii) p has a unique extension to a positive linear functional on $\widehat{\mathcal{O2}}$.

Moreover, if one of these conditions are satisfied, then

C(p) = || p ||.

Proof: (i) \implies (ii). If $x \in \mathcal{O}$, then by prop. 2.1 (i):

 $|p(x)| \leq C(p) \cdot B(x) = C(p) \cdot ||x||$,

so $p \in \mathcal{P}^{\star}$ implies norm-continuity.

(ii) \implies (iii). Suppose $x \in \widehat{\mathcal{C}}$. Then we can find a sequence $\{x_n\}_{n \in \mathbb{N}} \subset \widehat{\mathcal{C}}$, $x_n \longrightarrow x$ in norm. Then

$$|| \mathbf{x}^{\mathbf{x}} - \mathbf{x}_{n}^{\mathbf{x}} \mathbf{x}_{n} || \leq || \mathbf{x}^{\mathbf{x}} - \mathbf{x}^{\mathbf{x}} \mathbf{x}_{n} || + || \mathbf{x}^{\mathbf{x}} \mathbf{x}_{n} - \mathbf{x}_{n}^{\mathbf{x}} \mathbf{x}_{n} ||$$

$$\leq || \mathbf{x}^{\mathbf{x}} || \cdot || \mathbf{x} - \mathbf{x}_{n} || + || \mathbf{x}^{\mathbf{x}} - \mathbf{x}_{n}^{\mathbf{x}} || \cdot \mathbf{K}$$

$$\leq \mathbf{K} \cdot || \mathbf{x} - \mathbf{x}_{n} || \longrightarrow 0 , \quad \text{where}$$

K and K' are positive constants. Therefore, if p is positive on $\mathcal{O}\mathcal{C}$ and norm-continuous, then

$$0 \leq p(x_n^{\star} x_n) \longrightarrow \hat{p}(x_n^{\star} x) ; n \in \mathbb{N}$$
,

when \hat{p} is the unique continuous linear functional on $\widehat{\mathcal{O}}^{\hat{c}}$ extending p. Hence \hat{p} is positive on $\widehat{\mathcal{O}}^{\hat{c}}$. Since a positive, linear functional on a $C^{\hat{x}}$ -algebra is automatically continuous, \hat{p} is also unique as a positive extension of p.

(iii) \implies (i). Suppose \hat{p} is the positive extension of p to $\widehat{\mathcal{A}}$. $\widehat{\mathcal{O}}$ is a $C^{\mathbf{x}}$ -algebra, and has in particular an approximate unit, so every positive, linear functional on $\widehat{\mathcal{O}}$ is extendable to

 $\widehat{\mathcal{O}} \oplus \widehat{\mathcal{O}}$ (= $\widehat{\mathcal{O}}$ with adjoined unit) as a positive linear functional. Clearly $\widetilde{\mathcal{O}} \subset \widehat{\mathcal{O}} \oplus \widehat{\mathcal{O}}$, so by restricting the last extension of p to $\widetilde{\mathcal{O}}$, it follows that $p \in \mathcal{P}^{\star}$.

Finally, if $p \in \mathcal{P}^{\star}$, we have already noted that $||p|| \in C(p)$. Now,

$$||\mathbf{p}|| = ||\hat{\mathbf{p}}|| = \sup_{\mathbf{x} \in \widehat{\mathbb{C}^2}} \frac{|\hat{\mathbf{p}}(\mathbf{x})|^2}{|\hat{\mathbf{p}}(\mathbf{x}\mathbf{x})|} \ge \sup_{\mathbf{x} \in \widehat{\mathbb{C}^2}} \frac{|\mathbf{p}(\mathbf{x})|^2}{|\mathbf{p}(\mathbf{x}\mathbf{x})|} = C(\mathbf{p}) ,$$

where the second equality is known for positive, linear functionals on C^{\star} - algebras. Hence we have C(p) = ||p||. Q.e.d.

4.4 Corollary

A linear functional q on a pre-unitary \pm -algebra \mathcal{O} is in $[\mathcal{P}^{\pm}] =$ The linear space determined by \mathcal{P}^{\pm} if and only if q is norm-continuous on \mathcal{O} .

Proof: Suppose $q \in \left[\mathcal{P}^{-\mathbf{x}} \right]$, so

$$q = \sum_{i=1}^{4} x_i q_i$$
, $q_i \in \mathcal{P}^*$, $x_i \in \mathbb{C}$, $i = 1, ..., 4$.

Then each q_i is norm-continuous on \mathcal{O} by prop. 4.3, and hence also q. Conversely, suppose q is norm-continuous on \mathcal{O} . Then it can be extended by continuity to $\widehat{\mathcal{O}}$. $\widehat{\mathcal{O}}$ is a C^{\star} -algebra, so we may decompose \hat{q} into positive parts. The corollary then follows from the implication (iii) \longrightarrow (i) in prop. 4.3. Q.e.d.

At this point we take time to pick up some further information about the structure of \mathcal{P}^{\star} , now easily available.

4.5 Corollary

If \mathcal{O} is a pre-unitary **x**-algebra and $p \in \mathcal{P}^{\mathbf{x}}$, then

$$C(p) = \sup_{\mathbf{x} \in \mathcal{O}_{i}} p(\mathbf{x}^{\mathbf{x}})$$
$$x \in \mathcal{O}_{i}$$
$$|| \mathbf{x} || \leq 1$$

Note: This improves the inequality of prop. 2.1 (iii) .

Proof: By prop. 4.3 we know that

$$C(p) = || p || = \sup_{x \in OC} | p(x) |$$

 $|| x || \le 1$

so that we can find a sequence $\{x_n\}_{n \in \mathbb{N}} \subset O$ satisfying $\||x_n\|| \leq 1$; $n \in \mathbb{N}$, and

$$|p(x_n)| \longrightarrow C(p)$$

We may now apply the inequality:

$$|p(\mathbf{x}_n)|^2 \leq C(p)p(\mathbf{x}_n^{\bigstar} \mathbf{x}_n) \leq C(p)^2 \cdot ||\mathbf{x}_n||^2$$

(see the proof of prop. 2.1 (iv)), which proves the corollary.

4.6 Corollary

If ${\mathcal O}\!{\mathcal C}$ is a pre-unitary *-algebra and $p\in {\mathcal P}^{\, {\bf x}}$, then ${\mathcal O}\!{\mathcal C}$ is N $_p$ -dense in $\widetilde{{\mathcal O}\!{\mathcal C}}$.

Proof: By the corollary above, we may find a sequence $\left\{ \begin{array}{c} x_n \end{array} \right\}_{n \in \mathbb{N}} \subset (\mathcal{R} \text{ such that } p(x_n^{\bigstar} x_n) \longrightarrow C(p) ; || x_n || \leq 1 ; \\ n \in \mathbb{N} \text{ . Now, put } y_n = x_n^{\bigstar} x_n \text{ . Then } || y_n || \leq 1 ; n \in \mathbb{N} \text{ , and} \\ p(y_n) \longrightarrow C(p) \text{ , so that by prop. 2.1 (vi) :}$

$$N_{p}(e - y_{n})^{2} = \widetilde{p}[(e - y_{n})^{*}(e - y_{n})] \longrightarrow 0$$

The proposition follows.

4.7 Proposition

Let $\mathcal{O}l$ be a pre-unitary \star -algebra, and suppose $p \in \mathcal{P}^{\star}$. If q is a linear functional on $\mathcal{O}l$ satisfying: $0 \leq q \leq p$, then $q \in \mathcal{P}^{\star}$ and $C(q) \leq C(p)$.

Proof: Let X be an arbitrary element of $\widehat{\mathcal{O}}$. $\widehat{\mathcal{O}}$ is norm-dense in $\widehat{\widehat{\mathcal{O}}}$, so that we may evidently find a sequence

 $\{x_n\}_{n \in \mathbb{N}} \subset \mathbb{CZ}$ converging in the \mathbb{N}_p -topology to x:

$$p[(x - x_n)^{*}(x - x_n)] \leq C(p) \cdot ||x - x_n||^2 \longrightarrow 0$$
,

where \hat{p} is the unique positive extension of p to \widehat{Cl} (prop. 4.3). In particular,

$$0 \leq q \left[(x_n^{\star} - x_m^{\star})(x_n - x_m) \right] \leq p \left[(x_n^{\star} - x_m^{\star})(x_n - x_m) \right] \longrightarrow 0$$

so $\mathbb{N}_{q}(x_{n} - x_{m}) \longrightarrow 0$. As

$$|\mathbb{N}_{q}(\mathbf{x}_{n}) - \mathbb{N}_{q}(\mathbf{x}_{m})| \leq \mathbb{N}_{q}(\mathbf{x}_{n} - \mathbf{x}_{m})$$
,

the sequence $\left\{ \begin{array}{ll} N_q(x_n) \right\}_{n \in \mathbb{N}}$ must be Cauchy, so we may define

$$\hat{q}(\mathbf{x}^{\mathbf{x}}\mathbf{x}) = \lim_{n \to \infty} N_q(\mathbf{x}_n)^2 = \lim_{n \to \infty} q(\mathbf{x}_n^{\mathbf{x}}\mathbf{x}_n)$$

Now, $\texttt{O} \leqslant q(x_n^{\breve{x}} \; x_n) \leqslant p(x_n^{\breve{x}} \; x_n)$, so we must have

$$0 \leq \hat{q}(\mathbf{x}^{\mathbf{x}}\mathbf{x}) \leq \hat{p}(\mathbf{x}^{\mathbf{x}}\mathbf{x})$$

It is readily verified that the value of $\hat{q}(x^{\star}x)$ is independent of the particular sequence used to define it, so \hat{q} becomes a positive, additive, homogenous functional on the positive cone in $\widehat{\mathcal{O}}$. (Every positive element of $\widehat{\mathcal{O}}$ can be written in the form $x^{\star}x$ for some $x \in \widehat{\mathcal{O}}$). We can then extend \hat{q} to a positive, linear functional on $\widehat{\mathcal{O}}$. By prop. 4.3, the restriction $q = \hat{q} | \widehat{\mathcal{O}}_{2}$ is then in $\widehat{\mathcal{P}}^{\star}$. By cor. 4.5, we shall have:

$$\begin{array}{rcl} c_{q} &=& \sup \ q(\mathbf{x}^{\mathbf{X}}\mathbf{x}) \in \ \sup \ p(\mathbf{x}^{\mathbf{X}}\mathbf{x}) &=& c_{p} \\ & \mathbf{x} \in \mathcal{O}_{1} & \mathbf{x} \in \mathcal{O}_{2} \\ & \|\mathbf{x}\| \leq 1 & \|\mathbf{x}\| \leq 1 \end{array}$$

The proof is finished.

4.8 Proposition

If $\mathcal{O}_{\mathcal{C}}$ is a pre-unitary x-algebra, and p,q are elements of \mathcal{P}^{\star} , then $p + q \in \mathcal{P}^{\star}$, and

$$C(p+q) = C(p) + C(q)$$
; $p + q = p + q$

Proof: Clearly $p+q \in \mathcal{P}^{\star}$, and if extended to $\widehat{\mathcal{O}}$, we have

$$\hat{p} + \hat{q} = \hat{p} + \hat{q}$$

so

$$\|\hat{p} + \hat{q}\| = \|\hat{p}\| + \|\hat{q}\|$$

The proposition then follows from prop. 4.3, last statement.

We recall that for a unitary \star -algebra \mathcal{O} , and p a positive, normalized, linear functional on \mathcal{O} , then [p] = the linear space generated by the set $\{q \mid 0 \leq q \leq p\}$ is isomorphic to \mathcal{C} if and only if p is a pure state. We are now able to extend this to pre-unitary \star -algebras.

4.9 Corollary

If $\mathcal{O}_{\mathcal{C}}$ is a pre-unitary x-algebra, and $p \in \mathcal{P}^{\star}$, C(p) = 1, then $p \in \bigcirc_{e} K$ if and only if $[p] \cong \mathbb{C}$.

Proof: 1) Suppose $p \in \bigcirc_e K$, $p \neq 0$, and $p \ge q_1 \ge 0$; q_1 a linear functional on $\bigcirc \bigcirc \bigcirc$. Put $q_2 = p - q_1$, $p \ge q_2 \ge 0$ and $p = q_1 + q_2$. Then, by props. 4.7 and 4.8, $q_1, q_2 \in \bigcirc^{\star}$, and

$$1 = C(p) = C(q_1) + C(q_2)$$

- 19 -

so we may put $\lambda = C(q_1) \implies C(q_2) = 1 - \lambda$, and $r_1 = \frac{1}{\lambda} q_1$, $r_2 = \frac{1}{1 - \lambda} q_2$. Thus $r_1, r_2 \in \mathbb{K}$ and $p = \lambda r_1 + (1 - \lambda)r_2$. p is extreme i $K \implies p = r_1 = r_2$, so $q_1 = \lambda p$, which proves the first part.

2) Suppose $[p] \cong \mathcal{C}$, and suppose $p = \lambda q_1 + (1 - \lambda)q_2$; $0 < \lambda < 1; q_1, q_2 \in \mathbb{K} \implies 0 \leq \lambda q_1 \leq p$, which by the assumption implies $\lambda q_1 = \mu p, 0 \leq \mu \leq 1$. Now

$$1 = C(p) = \sum C(q_1) + (1 - \sum)C(q_2)$$

and $C(q_1)$, $C(q_2) \leq 1$, so we must necessarily have $C(q_1) = C(q_2)=1$. Hence

Q.e.d.

$$\lambda = \lambda C(q_1) = \mu C(p) = \mu$$

$$\Rightarrow \lambda q_1 = \lambda p \quad \text{so} \quad q_1 = p \Rightarrow q_2 = p.$$

§5. The universal problem.

<u>Theorem 1</u>. Let \mathcal{O} be a pre-unitary *-algebra, $\widehat{\mathcal{O}}$ its enveloping C^{*}-algebra, and $\overline{\mathcal{L}}$ the canonical map of \mathcal{O} into $\widehat{\mathcal{O}}$. If $\overline{\mathcal{L}}$ is a *-homomorphism of \mathcal{O} into a C^{*}-algebra $\widehat{\mathcal{B}}$, then there exists a unique *-homomorphism $\widehat{\pi}$ of $\widehat{\mathcal{O}}$ into $\widehat{\mathcal{B}}$ such that $\overline{\mathcal{H}} = \widehat{\mathcal{H}} \circ \overline{\mathcal{C}}$. $\overline{\mathcal{H}}(\mathcal{O})$ is pre-unitary, and $\widehat{\overline{\mathcal{H}}}(\widehat{\mathcal{O}})$ is the enveloping C^{*}-algebra of $\overline{\mathcal{H}}(\mathcal{O})$.

Proof: First we observe that $\|\widehat{\iota}(\mathbf{x})\| \leq \|\mathbf{x}\|$; $\mathbf{x} \in \mathcal{O}$, so $\widehat{\iota}$ has a unique extension $\widehat{\widehat{\iota}}$ taking $\widehat{\mathcal{O}}$ into $\widehat{\mathcal{B}}$. $\widehat{\widehat{\mathcal{T}}}(\widehat{\mathcal{O}})$ contains $\widehat{\mathcal{T}}(\mathcal{O})$ as a dense sub-algebra and $\widehat{\iota} = \widehat{\widehat{\mathcal{T}}} \circ \widehat{\mathcal{T}}$. Moreover, - 20 -

 $\widehat{\mathcal{R}}$ is an open mapping and $\widehat{\mathcal{R}}(\widehat{\mathcal{Q}}) = \overline{\mathcal{R}(\mathcal{O})}$ is a C*-algebra contained in $\widehat{\mathcal{B}}$ (ref. ((2)), 1.8.3). To see that $\mathcal{R}(\mathcal{O})$ is pre-unitary, let q be a linear functional on $\mathcal{R}(\mathcal{O})$, satisfying $q(y^*y) \ge 0$ for all $y \in \mathcal{R}(\mathcal{O})$; and with C(q) = $\sup \frac{|q(y)|}{|y|} < \infty$. Then $p = q \circ \widehat{\mathcal{R}}$ is an element of $\widehat{\mathcal{P}}^*$, $y \in \mathcal{R}(\mathcal{O})q(y^*y)$ satisfying $C(p) = C(q) < \infty$. Hence p is norm-continuous on \mathcal{O} (prop. 4.3). As $\widehat{\mathcal{R}}$ is open, q must be continuous on $\mathcal{R}(\mathcal{O})$, and therefore has a unique positive extension to $\overline{\mathcal{R}(\mathcal{O})}$. Consequently the set of states on $\mathcal{R}(\mathcal{O})$ is w*-compact, so $\mathcal{R}(\mathcal{O})$ is preunitary (ref. ((1)); prop.4). Now any state on a sub-C*-algebra of $\widehat{\mathcal{B}}$ may be extended to a state on $\widehat{\mathcal{C}}$ (ref. ((2)); 2.10.1). This proves that the norm constructed on $\mathcal{R}(\mathcal{O})$ as a pre-unitary algebra will coalesce with the norm it inherits from $\widehat{\mathcal{B}}$. Hence $\widehat{\mathcal{R}}(\widehat{\mathcal{O}})$ is the enveloping C^* -algebra of $\mathcal{R}(\mathcal{O})$.

Consequently, $\widehat{\mathcal{O}}$ represents the solution of a universal problem for $\widehat{\mathcal{O}}$. In particular, $\widehat{\widehat{\mathcal{O}}}$ is the only C^{*}-algebra containing $\widehat{\mathcal{O}}$ as a dense subalgebra.

<u>Corollary</u>. Let $\overline{\mathcal{H}}$ be a representation of the pre-unitary *-algebra \mathcal{O} . Then there is a unique representation $\widehat{\mathcal{K}}$ of $\widehat{\mathcal{O}}$ such that $\widehat{\mathcal{H}} = \widehat{\widetilde{\mathcal{L}}} \circ \widehat{\mathcal{C}}$. $\overline{\mathcal{H}}$ is topologically irreducible if and only if $\widehat{\overline{\mathcal{H}}}$ is topologically irreducible.

Proof: The first statement is immediate from the theorem, and the second follows from the equality $\overline{\mathcal{U}}(\mathcal{O})' = \widehat{\overline{\mathcal{U}}}(\widehat{\mathcal{O}})'$.

- 21 -

<u>Theorem 2</u>. Let $\mathcal{O}_{\mathcal{L}}$ be a pre-unitary *-algebra. Then there is a faithful representation \mathcal{T} of $\mathcal{O}_{\mathcal{L}}$ in a Hilbert-space H. Moreover $\mathcal{T}(\mathcal{O}_{\mathcal{L}})$ is pre-unitary, and the map $\mathcal{O}_{\mathcal{L}} \longrightarrow \mathcal{T}(\mathcal{O}_{\mathcal{L}}) \leq \int (H)$ is isometric.

Proof: This theorem is valid for C^* -algebras, so we may just apply this fact together with Theorem 1.

Hence, the most general kind of pre-unitary *-algebras are the involutive subalgebras of $\mathcal{L}(H)$, H some Hilbert-space.

References

- ((1)) Erik M. Alfsen: Involutive algebras over C . Summary I. Mat. Seminar, Oslo University, nr. 1, 1965.
- ((2)) J. Dixmier: Les C^{*}-algèbres et leurs représentations. Gauthier-Villard, Paris 1964.
- ((3)) R.T. Presser: On the ideal-structure of C^{*}-algebras. Mem. Am. Math. Soc. 1963.