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§1.  INTRODUCTION

In this note we are concerned with pre-unitery or unitary -algebras
over the complex field. The study of these algebras was initiated by E.M.
Alfsen in the preceding note ((1)) . For definitien and basic properties
of pre-unitary algebras, we refer to this paper. Our goal in this note is

to prove that a pre-unitary #x-algebra U0 can ve imbedded in a C]t -

.

2

-

algebra 7 , the imbedding being one to one onto a dense subset of it

-

N\ .
and preserving all structure of C7 . 1In fact, (7 will be the solution

N

B

. 84 . ; : Vg .
of & universal problem for LA , in the sense that (¢ and 4 will

have the same (essentially, by canonical extensions) states, pure states,

~

representations and topologically irreducible representatiocns. A will
be called the enveloping c* -algebra of (JC ,

1+ (7 is an involutive Benach-algebra with approximate identity, it
is known that it has an enveloping c* ~algebra with the properties stated
2hove. For an exposition of this, we refer to the book of Dimmier ((2)) .
However, involutive Banach-algebras are pre-unitary, so our results are
strictly more general. Nevertheless, most of the methods in Dixmierts
presentation can be carried over, due to the esgential fact proved in (),
that a z—algebra C;Z is pre-unitary if and only if the set of states on

7 is wx—com.pacto

In the commutative case, the desired +theorem is easily attainable by
the function representation of a pre-unitary x -algebra as a dense sub-
algebra of ﬁio(Mﬁ) o In the general, non-commutative situation the
adequate substitute for the multiplicative,; real functionals are the topo-
logically irreducible representations, so we have to establish a corres-
pendance between irreducible representations and pure states, or more gener-—

I N
ally, between the states on (. ¢. and the representations of (/{ &
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§2. POSITIVE LINEAR FUNCTIONALS AND REPRESENTATIONS

In the first proposition we gather some information, needed for later

reference. As in ((1)) 5 e.fr":l'x will denote the set of positive, extend-

W

able linear functionals on a pre-unitary #*-algebra Cr( . Fer pe ;}ﬁx 5

we put:
. 1 2
C(p) = sup -ngélL-"
xe 3 p(x™x
Correspondingly, for x & (7 , we pub:
% 1
B(x) = sw p{x™x)=
S(p) €1
pe 5F

For each x< (% , B(x) is finite ( ((1)) , prop. 3).

21 Preposition

Let (4 be a pre-unitary =zx-algebra, and suppose pe JX « Then we

shall have:

(1) p(x*) = P s o x e (7
2
!'P(X)! < C(p) - p(xxx) s x = (7

lp(x)! = ¢(p) - B(x) ; x& (¢

(ii) The linear functional By defined by
* . o
py(X) = p(y=zy) ;i vy e O
. . cTY X x
is in /7, and C(Py) < o{yy)



(iii) c(p) > sup p(xxx)
B(x) <1
xe (X
(iv) If {xi% iel is a2 net in 7 , indexed by & direrted set
Tie > 11 ,

I ; such that B(xi) <1 and p(xi) ~2> C(p) , i€ I ; then

p(x %) —> c(p) .

(v) p has a unique extension to a positive linear furictional P on
6& (= (7 & ¢ ) such that ple) =C(p) » P is called
the canonical extension ef p , and every other pesitive linear

—~
functional on (J/ extending p majorizes P .

(vi) With the assumptien of (iv) , we have x; —> e in the Np -

tepology;' that is:
=X 1
pL(xi—e)(xi-e)Jf > 0.

Hence CJZ is Np - dense in (:_(] in this case.

Proof : (1) is clear from ((1)) . To prove (ii) , let ye i

p. is positive, for if x <« (7 :

y
p (%) = p(yw) = p(G) () >0
Next:
p (x) ] : [ X 2 x *
Py e = (¥ )| 2 pGry)p(Goy)™(xy))
p,(5x) T p(r ) p( Gy ()
= 0(py) = p(7"y)

. 4
and py < f;’ °
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(iii) fellows from formula (2.3) in ((1)) , and the definition of
B(X) °

) . : 7 ‘ ( “ i
Now, suppose {Xi) ;o1 1isametin (’C such that B(xi)u-1 , ie I,

and p(xi) —= C(p) - Then by

2 % 2 2
fp(xi)l < 0(p) -« plxix) < Clp) - B(x, )

- 2
< ¢(p)
(iv) followss

(v) is knowne

To prove (vi) , consider:

B le - x (e - x)] =5le) - plx,™) - plx;) + plx, ™)

= 0(p) - Blx) - ply) + plxy™x,)

—=> C{p) - C(p) - C(p) + C(p) = O ,

according to (i) , (v) and (iv) . This proves the propositien.

2.2 Ve now turn to investigate the connection between the eloments
of & ang the representations of Ol . hs usual, a representétion
T of a x-algebra is a *-homomerphism inte the x-algebra of bounded
linear éperators /2 (H) on a Hilbert-space H . The elementary proper-
ties of such representations will be assumed known.

First, let 70U be a representation of a pre-unitary =x-algebra cH

- _
in the Hilbert-space H , and let %5 be an element ¢f H . 1 and E
then define a positive, linear functional p = P . en ([ by:
5

i

]
h

p(x) = (7 () 1% )



Next, consider:

S0

2 2
PG = HEETIN] < (WE5IEe ) (glk
= (MG EIE)(518) = p(f0-(L15)

o(p) € (3(k) ad pe PF.

)

Now, both p and T have canonical extensions to (/% which pre-

serves their essential properties, by putting

Tle) = c(p) and TT(e) = 1e L(H) .

In general, these extensions will not agree, on the contrary

[l

‘ ? o
define a positive, linear functional p on Ol by

s
P
(v)

- 1f, however, g is cyclic in H with respect to "t ()
Tw(Cl) & is dense in H , we will have:
. | 2 2
N ( (7T €05 J
(515) = sup ‘,_( (}i)ﬁg) = sup ___________lp(;)‘ = C(p)
xecz (Rx)EITE (X)é ) xe e p(x'x)

pie) = (F)gls) = (513)

?

l:\z
i

will

is an extension of p , and in general p = p , accerding to prop. 2.1

SO

Therefore, in this case the canonical extensions p and Tt will agree:

2:3

~—~
=
?4
N~
Y
LA
g
-eo
b
Ii\'
o
N\

p(x) =

Next, we turn to the converse problem:

Proposition

Let OO ve a pre-unitary =zx-algebra; and let p « ipj‘: be an
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arbitrarily chesen, fixed element. Let

]

i;’{f = { X &X = f::tf 9 ,:5(3‘:*}1) = 0 i

]

Then /¥  is a left ideal of ¢ , and define an inner-product.

i) = prx)

o~2
on (/"-C/Wr s x,vye (7 3 X,y their respective equivalence-classes in

{

be ibhe
(e F e
“canonical image of e ¢

)
&

g : g

which will be denoted by Hp o Let E - HD o
K

The Hilbert-space ¢bteined by completing Hp will be denoted HD o For

~—
~

o~ 9 ? )
every x « (X define an operator 7 (x) in Hp by left multiplication

by x in C;f,/',,.V « Then:

-, f"’? : ) . 3
(i) Every 1 (x) can be extended to a continuous linear operator

{x i H .
(%) in . N

i 3 is & representation of (L

i

(i1) The msp x ~—>T(x) , x & (1

in H_ .
p -
(iii) E is cyclic with respect te TC((CZ) in Hp .

sy

(iv) px) = (T(x)Llg) for every x = (7, .

LN

Proof . The statements in the head of the preposition are standard

?
and readily verified. To prove (i) , let n & Hp be an arbitrary element.

We have 9 =75 for some y & C~’r’ s and hence
I — ? |2 e 4 ~, X X
¢ &yl = ()™ ) = p(r™xxy)
. X v X x 2
< B(xx)p(yy) = Blxx)-{lnll

- . . - - o ? .
where prope. 2.1 (ii) is used. This proves that T (x) is continuous on

?
H_O . and hence extendable to all of Hp as required, so (i) is proved.

£
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It follows immediately that T{ is an algebra-homomorphism, and moreover,

- - g
for x & (R, p=7, y=1z in Hp we have:

P G) = p((T2) %y

,\

A

~
»

p—

o

~r
1

= (TGS ) = (K ly)

S0 TE(X*) = TZ(X)X , proving (ii) .

(iii) is evident from the definition of E and Hp . Finally, let
x e (i
(TG 5i5) = Gx=le) = Blfxe) = Px) .

Qo.e.d.

. . “ .
The representatien 7. and the cyclic vector <% are said to be

sesociated with the given p = P

§3. PURE STATES AND IRREDUCIBLE REPRESENTATIONS

We have already established a connection between elements of :;’x and
representations of (% . In the case of Cx -algebras, it is further
known that the pure states and irreducible representations correspond te
each other. This can be seen to rely on the fact that a c* -algebra has
an approximate identity. In our situation with pre-unitary algebras we are
left without any norm, so we have to be a bit roundabout when trying to cb-
tain the connection mentioned above.

As a first step, we state the following propesition. The technique goes
back to Grothendieck (1955) (see ({(3)) for details).

Ir p(&.:pj:, let [p] be the linear space generated by the set

f { < Y,
1qg0i~q.:-?. i(



3.1 Proposition

Let C[) be a unitary =zx-algebra, p a positive, linear functional on
[/? , and TU the representation associated with p , into Hp o Then
there is a one to one linear, erder-preserving map of [p| onto & ()

the commutant of (L) in (Hp) .

Proof. Let ge [p] , end define a bilinear functienal (- 1)

'

q
on ()€ by

NP * -~
(TEEITE ), = arx) 5 xmy e &

As gqe& ip} , we must have

L
Qa = '_’\__v;\’i qﬂ_ s qi"5 ip} s 1 = 1, 0cogy L .
1=
X x 3 £ \3
Hence Eqi(ﬁ"x)‘, < q(Fy)® o (xx)?
1 1
< x'*'iip(yxy)"3 o p(3tx)?

for some positive constant Ki-'_ ( (1)) 5 1.2). Thus:

L
T g T 5 Ie 20 1] 1™
* i=1
il ) )
< 7 (a';.ié - K. p(yy)? p(x™%)% = K o Np(.V) : Np(x) s
i= -

so the bilinear form is centinuous on the dense set 1L ((CZ) éf in Hp s
and may therefore be extended to all ef HP in a continuous way. We can

then find a bounded linear operator s = Sq on Hp such that:

alyx) = (s * T LIEEE)

J
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Now, let z = (%, and x,y & C’f/ arbitrarily given. Then:

e 9

(¢ *TENTE 5(TEE) = aG™ (=)

= (@Y%) = (s - T EITE )
= ((‘T(Z)S):E(X)é ity b)) which

by < 7 . . . el iy .
proves that s e il((7.) , again applying the density of () (g in

H .« The linearity and order-properties of the map g+»—>s = sq are im-
mediate. It is injective, for suppose q # O . Then there is an element

x @ (% such that q(x"x) # O . This implies that
— i~ *
(squ.(x)glm(x)‘g) = g(x'x) £0

—_ e d
o s, # 0 . Finally, we prove that this map is onto . (O/) . To do
o~ - ¥
this, let s e (L(C7) , and define
ax) = (sTx)501%)
Then:

laG = [(TEM)§1%)]

< sl TG EN = sl p(x)

which proves that q «{p] -

Qseudo

362 Cerellary

An element p e J)x is a pure state on a unitary zx-algebra if and

only if the associated representation L is topologically irreducible,
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that is: ’?I(OZ)? =

Proof: p is a pure state on a unitary x-algebra if and only if
Yo Vo=
lpy = C

°

This fact, together with prop. 3.1 proves the corollary.

We want to extend this connection to pre-unitary x-algebras, and will
then need the following

3.3 Lemnma

Let {7 bea x-algebra, () +the x-algebra obtained by adjoining
a uwnit to (7 . Then a representation

Pt
iv of (/¢ is irreducible if and
- ~ L. .

only if its restriction to Ul is irreducible.

—

Proof:

¢ Suppose (L ol —> a[: (H),

= (% , we will obviously have

H some Hilbert-space.

s i — Pt
q(c) > (o)
(the denotes the commutant-operation in L (H) .) The lemma will be
proved if we can establish the converse inclusion.
? o
s« 1 ((¥) , and that x = (¥

[

Suppose, therefore, that

is arbitrarily chosen.

x=x_ ,\e,
o
x, & ({ - Hence:

s o T (x)

1l

s-‘ﬂ'.(xo) + s = r('T(Xo) s 5+ As

= W (x) ° s s

o T2 1
which proves that s = (L () . Q.e.de

3.4 Corollary

An element p = PF

e

is a pure state on a pre-unitary x-algebra

if and cnly if the associated representation is teopologically irreducible.
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Proof: p is pure on (7 if and only if the canonical exten-
sion p is pure on (EZ , which by cor. 3.2 is the case if and only if
the associated representation to P , say ?C , 1s topologically irreduc-
ible on 5?: , and this is by the lemma equivalent to that the restriction
W = TNL:/CS‘Z) is topologically irreducible on | !, . As this restriction

’

1C is the representation of ({ associated with p , the proof is com~

plete,

§4.  THE ENVELOPING C % _AIGEERA OF A PRE-UNITARY x-AICEBRA

In this and the next section we will assume that if Cl is a pre-

unitary %-algebra, then :f) x separates the points of ol .

Now, let K denote the set of states on a pre-unitary =-algebra 5
that is:
DX y
K= {plpe*, cl@e1}
v
Let DeK be the set of extreme points in K , i.e. the set of pure

states on (O . Furthermore, let R be the set of representations of
: ?
CJZ , and R  the set of topologically irreducible representatiens of

N7

A

L1 Proposition

Let (I be a pre-unitary x-algebra, and let x = ( be an arbit-

rary element. Then:

sup 170 (x) [l = sup (T (x) Il
e R it € Ry

m

L i
= sup p(x'x)2 = sup p(x:l:x)2

p\:K pE OeK
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Proef: Let a, b, c,d denote the four numbers considered

successively above.

d=b . Let p <= Be K be given. By cor. 3.4 the representation

v
associated to p isin R , and

p(x) = (TGE)§1%) = (TE)§ITE)Y)

2 2
< TN (L) = NTEI 3
2
= 7T (x) )|
g0 p()E £ swp TG => deb .
T eR?

b £ a ; evident.

azc. Let T &R be given, and H the Hilbert-space in question.

For VLEH :

2
ITG I = (T 1Ty = (T i)

(™) = o ) - B
= p. xXx) = .
Y T R
2
< (VUVZ ) ° B(x)
by 2.2. Hence ([T (x)/I7¢B(x)= sup p(xxx) , s0 a<c follews.

pekK

c<ds. Byprop. 4 in ((1)) , K is W -compact, so this follows
from the Krein-Milman theorem. Qee.d
L2 Corollary

The norm |{ - {| on (! defined by (/xil =Bx) ; x « G/ , has

the properties:

L = el ] = 1=l”

far [l < i=if = liwdl




- 13 -

Xyy = C:Z
This follows immediately from the proposition above, via

Proof:
the fact that for each it € R we will haves

' . 2
FeEo il = ITmel

NTES) = T,

NGy <T@ - Tl <iuxit - byl o
Qo€ofo

with respect to this norm.

N
Yow, let ({ be the completition of 7/
SN .
Then {/( is a c* -algebra which conbtains Jl as a dense x-sub-
f'\ x iy
algebra. (), will be called the enveloping ( -algebra of Ci  (ref.
j)x

((2)) , 2.7.2).
Next, we are going to study the relationship between elements of

N
ard positive linear functicmals on (J/ . This is quite siuples

L3 Propesition

C?¢ ve a pre-unitary x-algebra and suppose that p is a linear

Let
Then the following statements are equivalent:

ol

functional on

5%

(1) p e P o
(i1) p is positive on (7 and li - | -continuous.

N
(iii) p has a unique extension to & positive linear functional on C7..

Moreover, if one of these conditions are satisfied, then

If x « £/ , then by prop. 2.1

(p(x)| = C(p) = B(x) = C(p) - xIl ,



= 1 -

80 p = 5,)3!: implies norm-continuity.

' : = ‘ is
(i1) ==> (4ii) . DSuppose x & (% « ThHen we can find a seguence

Then

fx ooy © cl o, x, —=> x in norm.
* it i * ol

IXx - XX |42 Ixx-xXX

nn ! !

e

?
K and K are positive constants. Therefore, if p is positive en

and norm—continuous, then

) ' A%
0 t-p(X§ x ) —> pxx)

when P 1is the unique wcutinuous linear functicral on (72 cexhbending p .

TN
!
i/

tlence P 1s positive on

o

H

ne N

/. . Since a positive, linear functional on a

C™ -—algebra is automatically continuous, P is also unique as a positive

extension of p .

(iii) === (i) . Suppose P is the positive extension of p to

. C"—/, isa CF -algebra, and has in particular an approximate

P
unit, so every positive, linear functional on !l is extendable to

oL & ¢

~_ s,

tional. Clearly (7 < (3¢ @ @ , so by restricting the last exten-

~o

sion of p to . , it follows that p pPE

Finally, if p e j'Jx , we have already noted that

2

dpll = Hpil = Sup_ TLTE
xe cn P x)

>

sup :p(X) ‘

x e plxx)

|
!

2

ipi < c(p)

c(p)

s

= . . . . cas .
(= (¥ with adjoined unit) as a positive linear func-
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b
where the second equality is known for positive, linear functionals on C* -

algebras. Hence we have C(p) = lipil . Qeend

Loy Corollary

A linear functional g on a pre~unitary x-algebra i, is in i@x _[ =
5 .
The linear space determined by 7~ x if and only if g is norm-continuous

on (¢ .

Proof : Suppose qcf?xi s SO

L
Ve Xk 7 .
q = Z_l “‘(i q,i H qi E ‘_? 9 7( . & i s 1 = 1, so0oy l.p °

Then each Q; is norm~continuous on (?, by prwp. 4.8, and hence also q .
Conversely, suppose g is norm-continuous on O . Then it can be ex—
f i 50 o *
tended by continuity to dJe . () is a (" -algebra, sw we may decom-
pose § idinto positive parts. The corollary then fellows from the implic-
ation (iii) w=== (i) in prop. 4e3. Qooode
At this point we take time to pick up some further information about the

DX . .
structure of P , now easily available.

o5 Corollary

Ir (O is a pre-unita:y x-algebra and p = E)X , then

*

c(p) = sup p(x'x)
xe Ol
(x4 =

Note: This improves the inequality of prop. 2.1 (iii) .
Proof: By prope. 4.3 we know that

¢p) = Hpil= swp |pk)!

®om
=

¢
1

A
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& [ﬁ% satisfying

so that we can find a sequence i x & L
I " ndn e N

HxnU £ 1;n&N, and
p(x )| —=>= ¢(p)

We may now apply the inequality:

2 * 2 2
Ip(x )1 = Clp)p(x, x ) & C(p) - | x|l

(see the proof of prop. 2.1 (iv) ), which proves the corollary.

L6 Corocllary

1r (Ol is a pre-unitary x-algebra and p & ?X s Then Ol is Np -

et

-

dense in (¢ .

Proof ¢ By the corollary above, we may find a sequence

-

- x — . i .

xn’l ne N < {(3( such that p(xn xn) >~ C(p) 5 X i< 13
. .4

neN ., Now, put Y, =%, X, e Then [ ynUﬁ'l;nGN,and

p(y)) -——== C(p) , so that by prop. 2.1 (vi) :
2 _ [ x - —_—
Np(e - yn) = p {_(e - yn) (e - 31’1)] = 0 -

The proposition fellows.

L7 Proposition

Let (J be a pre-unitery #-algebra, and suppose p & P*r L oIr q
is a linear functional on (. satisfying: O £gq<«p , then q & 3) *

and C(q) £ C(p) .

N
Proof: Let ¥  Dbe an arbitrary element of i

. 2, is

norm-dense in (¢ , so that we may evidently find a sequence
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’ . —~ /";") . . T _ - . s
g‘xng ne N & {4 ~converging in the I\p topology to x

. | | 2
Pl -x ) -x)] ¢ 0 - i x-x It — o,

~
where P is the unique positive extension of p to (¢ (prop. 4.3). In
particular,

0%gq [(xﬁ - xi)(xh - xm)] < p [(Xi - z)(xn - Xm)] —= 0
s0 Nq(xn - xm) > 0 As
iNq(xn) - Nq(xm) | < Nq(xn -x)
the sequence {‘Nq(xn)} ne= N must be Cauchy, so we may define

Q(x*x) = lim N (x )2

)% = lim a(xr x
Nesoo 3 N> %

n “n
- o
Now, 0 < q(x) x) < plx; xn) , 80 we must have
0< (%) < p(xx)

It is readily verified that the value of Q(x;k) is independent of the
particular seguence used to define it, so § becomes a positive, additive,

homogenous functional on the positive cone in (J¢ . (Every positive

N\ N
v . . , b
element of /. can be written in the form x x feor some x « (7 ).

N
We can then extend § to a positive, linear functicnal on (lil, « By prope.
L.3, the restriction gq = § f 7. is then in . *, By cor. L.5;, we

shall have:

2N
g
i)
ol
)
Mx‘ﬂ-
~
!
Q

C = sup q(xxx)
1 xaeld x @ OF P

X< x4
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The proof is finished.

Lo8 Proposition

1) . . : ?x
1r Cl is a pre-unitory x-algebra, and p,q are elements of s

‘then p +q < P¥, and
Clp+q) = Op)+C@ ;3 p+q = p+aq

./‘\
Proof: Olearly p+qe P*, and if extended to (2 , we

have
"A\ Py
+q = p+4§
S0
(T+ail = fpll + gl

The proposition then folilows from prop. 4.3, last statement.

We recall that fer a unitary x-algebra OZ , and p a positive,
normalized, linear functional on (J¢. , then \:p] = the linear space
generated by the set f ql0 2q< pj is isomorphic to ¢ if and
only if p is a pure state. We are now able to extend this to pre-unitary

*-algebras.

L9 Corollary

1t (Ol is a pre-unitary zx-algebra, and p & },X , C(p) =1, then

T _

E—p_’ (Z, °

1

pE D, K if and enly if

—

Proof: 1) Supose pe ., K,p#0,and p2a>»0; q

e
a linear functional on (¢ . Put QB = P-q 5P 29> 0 and
p = q1 + A - Then, by props. 4.7 and 4.8, q,l, qQ = {“x , and

1 = C(p) = C(CLI) +C(q2) 9
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I
1T -~ X, and r, = >\q1,

Thus ry,r, = K and p =Ar, + (1 —)\)rz . p is

so we may put A = C(qy) => C{q,)
Ta = T"}':\" 4o
extreme i Ke=»p = T, = Tpy S€ Q4 = AP, which proves the
first part.

2) Suppose [pl T ¢, and suppese D = Aoy + (1 - XNa, 3
0 <A< 13 A5 € K =20 £ »q, £ p, which by the assumption

implies )\q1 = up, 0« &1, Now
1 =0(p) = XC(qq) + (1 =~ X)c(a,)

and C(q1), C(q2) £ 1, so we must necessarily have G(q1) = C(q2)=,J.

Hence
X =Ax0(aq) =/»L0(p) =
=3 >\Q1=/\p S0 q‘]‘—‘p:‘-bqu'i"-
Q.e.d.
§5. 'The universal problemn,
P
Theorem 1. Let (X bve a pre-unitary *-algebra, (J7 its envelop-

ing C-"-—algebra, and ¢ the canonical map of (J{ into OL.

If i is a *~homomorphism of (Ll into a C*-algebra ‘f:;, then

1)

/'_\:. ,D
¢ of (¢ into ) such

~

there exists a unique *-homomorphism

N
= — — ;\\ —
that 0 = e T, 7 (37 ) is pre-unitary, and 7 (G ) is the

enveloping C ~algebra sf 7(C).

Proof: First we observe that || T(x)li« x| ; xeO, so

— ) oty N
Il has a unique extension T taking (X into 4. 7C (%) cen-

—

a
tains % (C?) as a dense sub-algebra and L= 77T . Moreover,
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/L

contained in %g (ref. ((2)), 1.8.3). To see that /c(c¥) 1is

2 — *
is an open mapping and 7 (CZ) = 7 ((2) is a C -algebra

pre-unitary, let q be a linear functional on % ((22) ,

satisfying q(y*y) >0 for all ye 7(J]); and with C(q) =

swp la) ] .

= . Then p = qel1t is an element of :5# R
Yeu)a(y y)

satisfying C(p) = C(q)< o< . Hence p is norm-continuous on

Cﬂ‘(prop. 4.3)., As 7 is open, g must be continuous on v (MN),

and therefore has a unique positive extension to ZT(Cﬂ).
Consequently the set of states on 7¢ (&) is W%-oompact, so
7w () is preunitary (ref. ((1)); prop.4). Now any state
on a sub-C*—algebra cf 33 may be extended to a state on Jﬁ
(ref. ((2)); 2.10.1). This proves that the norm constructed
on 7C(C7) as a pre-unitary algebra will coalesce with the
norm it inherits from & . Hence 7 ((7) is the enveloping
¢ -algebra of 7« (7).

Consequently, (¥ represents the solution of a universal

7 . o *

problem for J¢. 1In particular, (¥ is the only C -algebra
containing (-¢ as a dense subalgebra.

Corollarx, Let 7¢ be a representation of the pre-unitary

—_~

*-algebra (] . Then there is a unigque representation % of

N -~
(% such that W= T =T . X is topologically irreducible

if and only if 7/ 1is topologically irreducible,

Proof: The first statement is immediate from the theorem, and

the second follows from the equality 7 (B)' = @ (3)'.




Theorem 2. Let O be a pre-unitary ¥-algebra. Then there
is a faithful representation 7/ of (7 in a Hilbert-space H .
Moreover 7 (%) is pre-unitary, and the map (77 ——== 7C{(%)<[(H)

is isometric.

R
Proof: This theorem is valid for C -algebras, so we may Jjust

apply this fact together with Theorem 1.

Hence, the most general kind of pre-unitary *-algebras are the

involutive subalgebras of .L(H), H some Hilbert-space.
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