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1.  INTRODUCTION: BIRKHOFF's THEOREM

The purpose of this seminar report is to show how certain results in
model theory can be proved using elementary set-theoretic topology.

In order to present some basic notions of model theory and to show a
typical application we shall in this introductory section present a very
simple proof of the Birkhoff theorem characterizing classes of algebras
which are axiomatizable by sets of identities.

An algebra is a set A together with a finite sequence
f1 5 soo fn of operations on A, i.e. each fi is a map
fi : Ami-*é.A s where m, is some natural number depending upon 1 . Al-
gebras having the same type of operations are called simil a f °

The language of a similarity type consists of all
formulas conetructed in the usual way from the various operations fi using
variables and the connectives of logic. We note in passing that constants
may be ldentified with constant operations.

An identity in the language, ¥¥x1 eoe \f:xn [t1 = tzjg s
is a statement of unrestricted equality between terms ti , where the class
of terms is obtained from variables and operations by repeated substitutionse.

Let K be a class of algebras of fixed similarity type. K 1is called
axiomatizable if there exists some set of sentences fﬂ such
that K is the class of models of | . K is called e guational

if fﬁ can be taken as a set of identities.

Birkhoff’%s theorem may now be stated as follows:

Theoremo. Ilet K be a class of similar algebras. K is equa~

tional if and only if K is closed under the operations of taking homo-

morphic images, subalgebras and direct products.

This theorem is characteristic of model theory in that it shows a con-

nection between syntactic and semantic properties: A purely syntactic
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condition, viz. the axioms can be given as identities; is related to geman-
tic ones, viz. the set of models s atisfying the axioms exhibit
certain closure properties.

A proof of Birkhoff's theorem runs as follows, we indicate without being
too careful about the details.

It is well known that if K is closed under subalgebras, homomorphisms
and direct products, then for each set M there exists a free
algebra FM in K , defined uniquely as the solution of a certain
universal mapping problem, and further that each A & K is the homomorphic
image of some FM in K .

Thus we can represent K = Hom(-{FM'§) s where e.g. m ranges over the
cardinalities of elements in K in order to escape setwtheoretic difficul-
ties.

We further remarx that the set [  of identities valid in all the free
algebras FM is precisely the set of identities valid throughout X .

To complete the proof we need show that any algebra B of the same
similarity type as K and which satisfies the set [  can be obtained as
the homomorphic image of some FM s specifically we shall construct a homo-
morphism G : Fz—> B, which concludes the proof as Fy € K.

The construction is started by defining G(b) = b for all generators
b& B of FB o We must show that (¢ can be extended to all of FB such
that the extended map is a homomorphism onto B - a trivial fact if B
were an element in K .

However, the proof is immediate on account of the following small re-
mark: Let W, and Wé be two words in FB . If MH = Wé in FB s We

1

have an equality t1 = t2 in elements of B (the generators) and the

operations fi o But as FB is free, this equality implies the validity
of an identity Yx, .. ¥Wx Tt =t T throughout F ; where ele~
ments bi has been replaced by variables X, . (This is immediate from

the notion of free algebra; the pedantic proof uses repeated applications
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of the universal mapping propertyg) Then by assumption this identity must
also be valid in our algebra B . ~ Applications of this remark at once
yields that G~ can be extended as asserted.

For the remaining of this paper we shall observe the required standard
of exactness and formalism. Hence in the next section we shall in some de-
tail describe the languages and the models and define the notion of satis-~
faction. Thereafter we shall explain the model-theoretic construction of
ultraproducts and give its main properties. In particular we shall obtain
the compactness of the space of models as a consequence of the main theorem
on ultraproducts, the topology being defined by letting closed sets corres-
pond to axiomatizable classes of models. All of this is well known and we
shall not give any proofs.

Within the frame-work thus set up we shall present our proof of the
Craig interpolation theorem which roughly says that if % — 1+f is prov-

able, then there exists a sentence q?o in the vocabulary common to both

‘ZP and '\‘V such that P —> CPO and C,(')O —> '\t'/ are provable.

2. THE LANGUAGE AND THE MODELS

In the introduction we treated algebraic systems with operations. As is
well known operations can be reduced to relations, and for the sake of sim-
plicity we shall in the sequel treat only relational systems.

A relational system is a sequence

O1V: <A,ooo,Rp,ooc>,

where A is some set and each Rp is a finitary relation in A , i.e.
I&)G:An? for some natural number np o« Two relational systems are called
similar if their sequences of relations have the same order type
and for each p , the ranks np are the same. The class of all similar

Fy

systems is called a *similarity type. We assume the
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notions of subsystem , homomorphiec and 1iso-

morphic image known. Ol is said to be imbeddable in % if (L
i1s isomorphic to a subsystem of &5’ o

Corresponding to a similarity class R of relational systems we may
construct a first order language L(R) having an infinite denumerable
sequence of variables, the usual logical connectives and a sequence of re-
lational symbols Pp of ranks np corresponding to the sequence of rela-
tions in the type R .

The language L(R) and the systems Ol € R are connected through the
all important notion of s atisfaction . We are going to de~

fine the symbol complex
QUL F 9(a)

meaning that the sequence a = <a,|, 8oy cee 5 Bos eee > € A®  satisfies
the formula < of L(R) in the model UL€ R . The definition will be

by recursion.

Ol fk@(a) if and only if either

i. @ 1is atomic, i.es P= P (Xi“[ s eee 5 X, ) , and
n

(ai1, coo 4 ainp> e Rp ; or

iie P = CP,’ vV sz and Olk C’fi(a) or O@}: c{'72(64) , or

il

iii. = = C?‘I and not QL ’7— C;%(a) , or

ive 619

such that b, =a, for i#j and OLFC?,,(b) .

Il

| . w
('ij)CP,I and there exists a b g A

Thus UL‘;: C?(a) is defined recursively with respect to the length of the
formula LF o The definition is unique because each formula can be unique-

ly decomposed in a sequence of subformulas ending up with atomic ones.
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A sentence is a formula without free variables. It is easily
seen that given a sentence <P and a system (L , either Ok @ (a) for
all a¢ A" | or else thefe does not exist any a ¢ A such that a
satisfies cP in OL . For sentencés we simply wrice C)L #'cp if

QlE op(a) for some a € A% , and say that <« is true in al ,
or that O isa model for q) . If [7 4is a set of sentences
in L(R) then Ol is a model for 7 if all P e ™ 4is true in (0L .

Two systems Ol and ﬁ%‘ are called elementary eqgquil-
valent ,insmols Ol= & ,if Olkqg iff k¢  for
all sentences <P in L(R) « It is trivial that isomorphic systems are
elementary equivalent. The converse, however, is not true.

The notion of el ementary extension is important.
J; is called an elementary extension of OL ( CW‘ an elementary sub-
system of X% ) if (1 1is a subsystem of ;X? and for each <P in L(R)
and a € A“ OlE Cp(a) iff o Fg(a) . (Here the equivalence could
be replaced by an implication in either direction.) (ﬂ, is said to be
elementary imbeddable in ét} if OU is isomorphic to an elementary sub-
system of )@r o

The notions of this section are due to A. Tarski and they are indis-

pensable for any treatment of formal languages and their interpretations.

3.  ULTRAPRODUCTS

Recently there has emerged a model theoretic construction of great power
and versatility, viz. the ultraproduct construction which perhaps has its
root in Skolem's construction of non-standard models of elementary arith-
metic in 1935.

In order to give the definition we shall recall the necessary properties
of filters. Let D be a class of subsets of some non-empty set I . Then

D iscalleda filter 1if (i) s,t€D = sateDd and
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(i) Se D and sctS€I = +te D . The maximal elements in the
class of filters on I are called ultrafilters and are characterized by the
equivalence sp t€D ¢ s¢D or t€&€ D,

Perhaps the main result on the existence of ultrafilters is that every
class F having the finite intersection property can be extended to an
ultrafilter. ( F has the finite intersection property if every finite sub-
set of elements of F have a non-empty intersection.)

Let -{ 011‘ ie I} be a family of relational systems of same type,
Ol, =<4 , ees , Bp, «ee) + Iet D be an ultrafilter in the index
set T . Bythe ultraproduct of the systems Ol’i with

respect to the filter D we shall understand the system
l l mi/D =< TT- A-]-—/D 9 o000 F] Rp ’ ﬂ°°> s
i€l i€l

where TrAi is the cartesian product of the various Ai consisting of all
functions f : I —>UA, such that f£(i)€ A, and TMa /D the set of

equivalence classes araising from the relation

T ~v

D 8 & {ie‘l |f(i)=g(i)1(€1) .

The relations Rp is defined by the condition that

<fi/D, cen fn/D>eRp & «{iel l<f,|(i)? cees fn(i)>€R§')§r€D ,

where fi/D denotes elements in ”Ai/D and the rank of each R113 is
assumed to be n o It is easily verified that Rp is well defined.
The chief interest of the ultraproduct as a model theoretic, and not

only as an algebraic construction, stems from the following theorem.

Main theorem on ultraproductso Let

{011‘ i€ I} be a class of models of type R and let <P be a formula

in I(R) . Denote by f/D an element in (Tf'Ai/D)c‘D and by f(i) the
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corresponding elements in A;L“ . Then the following egquivalence holds:

e

T O E pm & {sex| OLE Peanfen .

iel
This theorem was first stated by Jo% in 1955 and the proof proceeds by
induction on the length of the formula CP , using at appropriate places
the properties of ultrafilters. Assume e.g. that P= T §31 and that
the equivalence is proved true for CP,I « Then TTO-(:.L/D = WCP,'(f/D)
means that not 'rTCﬁi/D F=q%(f/D) » which by the assumption on ¢p ., is
equivalent to {i el l Q'LiFCP1(f(i))} ¢ D . This means by the
characteristic property of ultrafilters that {i €1 I Gbi = 1(?1(f(i) )}6 D,
remembering that for all 1€ I f(i) either satisfies CP1 or “1cp 1
in (;Li. °
We shall not expand upon the theory of ultraproducts in this report,
but we cannot resist including the following small result having a proof so
characteristic of the "metamathematical™ approach in this field. Let
|OLl = |A| denote the cardinality of the éet A . Assume that for
sl i&€I, [A[S m. We shall show that lTTGl%/D{ <m for all
ultrafilters D in I . Note that I may have any cardinality. The proof,
using the main theorem, is trivial. Assume that equality = 1is included in
the type and that it is interpreted as identity in models. Consider the

following sentence

(3%)(3%y) ooe (F%)(V) [72% v e v 7=x ]

which asserts that there are at most m individuals. This sentence is true
in each Ol i s hence by the theorem it is also valid in the ultraproduct,

£ m o

S

which thus has cardinality

L. THE SPACE OF MODELS

Let R be a similarity class and L(R) the corresponding language.
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For every sentence o in L(R) we define a subset Ko of R by
Ke =1 OLeR | OL E<$
¢ = 1 P 3.

On account of the formulas K?4 N cee N K?" = K P~ cee AP, and
an U se00 U K 3 = qu v oceev @, we see that the class K

is both closed under finite intersections and unions, hence can be taken
simultaneously as a base for open and closed sets for a topology on R &
(Note that because of the formula R - Ko = Kqiqp , each K is both
 open and closed.)

In logic it is usual to denote the class {.K<P E by EC , the
elementary class or the class of finitely axiocmatizable theories.
The collection of closed sets will be denoted by ECA; . It consists of
arbitrary intersections of elementary classes and corresponds to theories
axiomatizablz by scuwe set of sentences ™ in the language L(R) . The
open sets will be denoted by EC gy

R with the topology defined by EC is not Hamsdorff, we have elementary
equivalent models which are not isomorphic, and elementary equivalent models
cannot be separated by open sets, in fact L= j& if and only if

OLe Kc‘, = IF'Gch , for all sentences P in L(R) . To produce
non-isomorphic elementary equivalent models we use the same argument that
Skolem used in constructing non-standard models of arithmetic. Take any
infinite system G(, € R and an infinite index set I . Let D be a non-
principal ultrafilter in I , then Cﬂ}/D = 0L by the main theorem on
ultraproducts, but they are n ot  isomorphic.

(R,EC) is, however, quasi-compact. This follows from the following

result.

Compactness theorem. Let ™ be a set of sentences

in L(R) . Then there exists a model OV for U in R if and only if

every finite subset of " has a model in R .
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The proof is an easy application of ultraproducts. We may assume (for
simplicity) that " is countable, [ = { °P1 5Po s cec s Py s eoe % °

Define Y . = ¢, and inductively Ui1 = Wy A Ppyq - By assumption

for any n there exists an Olnéi R such that Q{,n 5 ltfn . Let
I= '{ Ty 2 oee 53 Ny ooe } and let F be the class of sets

5, = -{ ny,n+l, ceo qr s, n>1 . Then F has finite intersection property,
hence there exists an ultrafilter I extending F . Our model [ﬂ, is

then

o= 1T Q./m .

iel

We must show that Ol kP, for all of e I' . But this is immediate
by the main theorem on ultraproduct noting that each CP“ is a conjunct in

all but a finite number of the sentences 1+Pm °

Theoren . (R,EC) is quasi-compact.

This is a corollary of the compactness theorem, the proof is by the
usual "dval® argument. We also note another immediate corollary:
EC = ECz_FW ECA s 1.0 EC consists of exactly the open-closed sets, or,
expressed in logical terms, a class K dis finitely axiomatizable if and
only if both K and R - K are axiomatizable. The proof is the usual com-
pactness argument that if a closed set in a quasi-compact space is a union
of open sets, it is a union of a finite number of open sets. And this finite
collection of open sets yields the finite axiom system.,

Let R, and R

1 2

subtype of R, if the order type of relations in R, is (in a

suitable sense) a subtype of the ordertype of relations in R2 s or equi-

be two similarity classes. We say that R1 is a

valently if the language L(RZ) is an extension of the language L(R1) ob-

tained by adding relational symbold. If R1 is a subtype of R2 we may

introduce a map
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redR : R2 ~—3 R

5
227 L

the reduction map of R, to R, , defined in the following way: redy (or)
2 1 oo,

is obtained from Ol by deleting the relations not occurring in the subtype

of relations in R2 corresponding to the relations in R1 s Or said more

simply but less exact, red({0}) is obtained from (| by "throwing away"

the relations in R2 - R1 o

Propositiono. redR R is continuous with respect to the
271

topologies defined by elementary classes.

Again the proof is very simple, being based upon the observation that if
R, is a subtype of R, , then L(R1) is a sublanguage of L(R2) , 1oee

every sentence 0 in L(R,) is also a sentence in L(R,) . It suffices
R 1 2

to show that red=! . (Kqg) is open in R But it is easy to show that
RysRy ¥

2 o

redE;,R1(KE?) = Kig
for all sentences <P in L(R1) .

In every similarity type R we may introduce an equivalence relation by
identifying two systems if they are elementary equivalent. In this way we
obtain the reduced type R? which in the topology defined by the projection
map is compact and Hausdorff. It is Hausdorff because non-equivalent models
can be separated by a sentence, and the compactness of R? is most easily
inferred by use of the compactness theorem stated above. For some applica-
tions it is necessary, as will be seen in the next section, to work with

. reduced types.

5. CRAIG's INTERPOLATION THEOREM

This result can be stated as follows.
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Theorems. Let P and '\lf be two sentences within a lenguage

L(R) and suppose that P — o is provable.

1.  Assume that <p and \'% have at least one relational symbol in

common and let L(RO) be the language based upon the relational symbols

common to both ,;? and *LV o Then there exists a sentence ) in

L(R_)__such that © interpolates between p _and Y/ _, i.e. such that

both ¢ = ® anda 6 = "~ _are provable.

2., If <p_and ’\Y‘ have no common relational symbol, then either

! cP is provable or "L‘r is provable.

The intuitive idea is that this theorem helps us get rid of unnecessary
hypotheses in proofs, and the result has emerged as a rather important one
in recent research within logic. One may mention that Beth's theorem on how -
to convert implicit definitions to explicit ones as well as Robinson's ccn-
sistency lemma are easily obtainable from Craig's theorem. We may further
refer the reader to Addison's report to the 1960 Stanford Congress.

Case 2 of the theorem is an easy exercise in model theory. Assume that
<P and ~ have no common vocabulary and that T\ P is not provable.
If ’\{r is not a theorem, we have by Gdel?s completeness theorem a model
ULO € R such that G'(,o E 7 \{/‘ @ is also consistent, hence with a
little bit of care we may modify ULO to a model (J{ of both P and

I n{/ s essentially because the interpretations of the relational symbols
in ¢ and T Y do not interfere. But this is a contradiction as
P — \{f is assumed provable.

The proof of part 1 uses the machinery developed in previous sections.

Define

g =10er| QVegl,
i, = 4 Oler | OLF 1Y,
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For simplicity of nctation we drop the subscripts on redR R in the sequel.
2
o)

Let N,l:red(K,]) and N'2 1

follows from the assumption that <P —= Ay~ 1s provable which at once gives

= red(Kz) . We have that N, {1 N2 =0 . This

that K1 ak, = @ . And if there existed a model (), €N, NN, , we would
have models 011 e K1 and GLZQ K, such that red(()f,l) = red{( 2) = -
But as Cﬂ1 and Cﬂ,z are defined in a common set A of individuals and
we have in (Jl an interpretation of the common relational symbols of c?
and Ty , it is obvious that we can form a common model (’5{,’ &R of
both p and 1\~ . But then e K, 0 K, which contradicts the fact
that K1OK2=¢ .

The proof would then be finished if we could find a class K& EC in
R, which separates N1 and N, , i.e. such that N1 € K and N, N K=¢g .
= red” (K) and K,Nred (K) =¢ .  But
red-1(K) = K% for some sentence B in L(RO) ¢ L(R) , thus we have by

This implies that K

Godelts completeness theorem that both @ - © and e — \.}J’ are prov-
able.

To separate N1 and N2 by an EC-class K in Ro we have to go to

v
the reduced type RO obtained by identifying elementary equivalent systems
9
in RO o Ro is compact and Hausdorff in the quotient topologye.

K1,K2€ECR » which means that K, and K, are closed in R . But R is

quasi-compact, hence both K1 and K2 are compact sets in R . The re-

? ?
duced classes N,] and N2 are continuous images of K‘l and K2 as red
7 ? 7
is a continuous map between types. RO is Hausdorff, hence N1 and N,’Z
e 7 ?
are disjoint closed subsets of RO . ( N1 and N2 are disjoint for the
9

same reason that N1 and N'2 are disjoint.) RO is compact, hence normal,

¥ ? ?
and thus N1 and N2 can be separated by an open set KO ; lo€e

N €K d A K
C an SNK = /B

Going back to Ro s we have an open set KO separating N‘l and N2 °
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R

Now K = U K, with each X, & EC © , and as N, is quasi-compact, we

1
obtain that

N, € K. U eo0 UK,
1 i, ig

for some indices 1y s oo s Iy e Let K = Ki coo Kik , then
R

K€EC° and separates N1 and N2 o This completes the proof.

6. REFFERENCES

We have not found it necessary to include bibliographic references in
the main part of this report. However, we ought to indicate our sources,
and perhaps someonc would be interested in further references to the litera-
ture.

Birkhoff*s theorem was given in ((2)) . The conceptual framework of
model theory is due to Tarski ((10)) . Skolem's construction of non-
standard models can be found in ((9)) and the first explicit construction
of ultraproducts in Zo% ((5)) where he proves the "main theorem” on ultra-
products. Two recent introductory papers on ultraproducts are ((4)) and
((7)) , the compactness theorem being proved by ultraproducts for the first
time in ((4)) , previously one had to invoke a metamathematical argument
via Godel's theorem. A most valusble paper on ultraproducts is Keisler
((6)) in which he proves that two systems are elementary equivalent if and
only if they have isomorphic ultrapowers (using the continuum hypothesis
for the proof).

Craig?s theorem was first stated in ((3)) , the proof being heavily
gyntactic using the Herbrand-Gentzen machinery. An exposition via Robinsonts
consistency lemma is found in ((8)) , a book which can serve as a general
introduction to model theory. A recent discussion of Craig?s theorem is

found in Addison ((1)) .
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CORRECTION TO SEMINAR NR., 14 1964.

There is a gap in the proof offered for Craig's theorem, On
page 12 the assertion in parantheses "N; andNé are disjoint for
the same reason that I\T1 and N2 are disjoint" is not quite true
and not quite sufficient for our purpose.

In fact, g% ?nd Né are disjoint and the proof is as fol-
lows: Suppose N1rwN2 =k @, Then there are systems (L and J% 5
such that Ol = %5 oLeN, end &% € N,. Using the characteri-
zation of elementary equivalence in terms of ultralimit (see
Kochen ((7))) we may infer that OV and & have isomorphic ultra-
limits., If N1 and N2 are closed under ultralimits, it follows
that N1r1N2 4: g, and we may obtain a contradiction as in the text.

Now Ni = red Ki and obviously each Ki is closed under
ultralimits. Noticing that the ultralimit construction is co-ordi-
natewise defined, it easily follows that every ultra-limit in Ni
is the reduction of soms ultralimit in Ki’ Hence each Ni is
closed under ultralimits. This fills the gap and concludes the

proof.




