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1e1o  INTRODUCTION

The general theory of Jordan algebras of self--adjoint operators on a
Hilbert space is still at its infancy. In ((3)) Jordan, von Neumann, and
Wigner classified the finite dimensional irreducible ones, and found that
they are either the real symmetric matrices, all self-adjoint matrices, or
the Clifford algebras. A great deal of the von Neumann algebra theory,
specially the comparison theory for projections, has recently been pushed
through by Topping ((6)) . Add to this some ideal theory ((2)) , and more
special theory directly influenced by quantum mechanics (for references see
((4)) ), and most of the known theory is covered.

In this note we shall discuss one approach to the theory. It turns out
that a JuW-algebra, i.e. a weakly closed Jordan algebra of self-adjoint
operators, can be decomposed along its center into three parts, one part be-
ing the self-adjoint part of a von Neumann algebra, one part algebraically
the same as in the first (i.e. is reversible) but more real in the sense
that the real symmetric matrices are real, and a third part which behaves
more like the Clifford algebras. (Theorem 2°A); We shall mainly be concerned
with reversible JW-algebras of type I, and shall show that an Abelian pro-
jection in a reversible dJW-algebra L is also Abelian in the double com-
mutant  OU  of (1 (Theorem 3.5), and that O is of type I if (O
is of type I. (Theorem 3.8). We shall then classify the irreducible, rever-
sible JW-algebras of type I as either all self-adjoint operators or all the
real symmetric operators with respect to a basis (Theorem 4.4). As a con-
‘sequence we can characterize the pure vector states of such JW-algebras

(corollary 4.5) and show that every vector is cyclic (viz. [Olx]=1) .

1.2,  NOTATION

A JW-algebra (resp. JC-algebra) ¢’ is a weakly (resp. uniformly)

~

closed linear space of self-adjoint operators on a Hilbert space o<,
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which is also a Jordan algebra over the reals, i.e. AcB = AB + BA € O

for all A,B € Ol . Then ABA and ABC + cBA ¢ Ol for all 4,B,c €([,

A Jordan ideal j in (Ul is a linear subset of (J such that

: Moo ~ ) . :
A€, B¢ | implies AeB€ .}. A Ji-foctor is a JW-algebra with

center the scalars (with respect to operator multiplication). A JC-

algebra O is irreducible if its commutant is the scalars; O is

“Abelian if all operators in (Ul operator commutes A projection E in

Cl _is Apelian if E CLE is Abelian. If (1 is a JW-algebra then

('l is of type I if every non-zero projection in (J{ majorizes a non-zero
Abelian projection in (1 « A similar definition holds for von Neumann

algebras, where by a von Neumann algebra we mean a self-adjoint weakly closed

algebra 1" of operators on o . If OU contains the identity operator

then 30 equals its double commutant @/ , hence if a JW-algebra (1
B /
contains the identity operator, then O/{/ equals the von Neumann algebra

generated by (7 . Let K ((Jl) denote the uniformly closed real alge-

bra generated by (}{ , (Ul now a JC-algebra. We say (J{ is reversible

1

ﬁ’ Ai € I whenever A,lg sev An € (. Then 948
i=n

n
if ] A, +
. i
1=1
equals the self-adjoint part of R 1) Moreover, if ((J) denotes the
Cx—algebra generated by (7 then K (C)A i I8 (C1)  is an ideal in ((7)
(see ((5)) ). If U< M we denote by [ Ul it ﬁ the subspace of <X
generated by vectors of the form Ax , A¢ {71 ¢ X 6’7\_..)1 o We identify
subspaces of &t and their projections. If YV] is a set of operators

YN is the weak closure of V1 , and W 4 ‘the self-adjoint operators
.

in YV,

2. DECOMPOSITION OF JW-ALGERRAS

We show the decomposition result announced in the introduction.

Lemna 2.1 Let O be a reversible JW-algebra. Then there
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exist central projections E and F in ({ with E + F =1 such that
E Ol is the self-adjoint part of a von Neumann algebra, and
KEN 1 [Q(FQ) = 5075 .

Proof . Let ’:4) = 6{(07)/“! i OQ(C[) o Then j is an ideal in
(O1) , hence its weak closure '} is an ideal in (({)” . Thus there ex~
ists a central projection E in (O1)” such that T =8(07) ((1, p.
45)) , and B € "1 . Now <l is reversible, hence /jSAC 7, and
('ju)sA = (,jSA)— < Ol. Tus E € O, and 'j gA =E Ol. Moreover, 1
is a von Neumann algebra. lLet F=I-E . Then F is a central projec-
tion in Ol . Thus KEM N 1 R(FCT) = F(ROD N 1 RCD) =FT

F(E(CQN)™) = <O2) « The proof is complete.

Lemma 2.2, Let Ol bea JC-algebra. Let ) = 34 € Cl:
BAC + C*ABY € (O for all B,c & & (L) 5 . Then '} is a uniformly
closed Jordan ideal in C( o- Moreover, 'j is a reversible JC-algebra.

Proof. Let ABE™ , 85, T¢ XK(J) . Then S(A+ B)T +
T4 + B)S® = (sAT + TRAS®) + (SBT + T*BS™) € (J] , so "§ is linear. Let
A€ ,Bec(Ol, S, TEXR(]) . Then S(AB + BA)T + TN(AB + BA)S® =
(SA(BT) + (BT)*AS™) + ((SB)AT + TA(SB)*) € G{ , so Ac<B €, and '
is a Jordan ideal in Lw( o Since multiplication is uniformly continuous
is uniformly closed. Let A € ™} | Ay g eee s A € O o Let

1
A+ AXA,l ¢ Cl by definition of 7§ . We show

.

n
. 1
i=2
x

'A’lA + A A,] & j , hence 3 is in particular reversible (with

Byy oo , A €70 ) . Let B,0 < K(CO) . Then B(A1A+AXA1)C+CX(A1A+AA1)BX

1

Y

= (BA,(AC) + (AC)XA,]BX) + (%) C + CXA1(BA"1)3“>) c O

The proof is completes

Definition 2.3, Let (O] bea JC-algebra. We say

is totally non-reversible if the ideal :/\ in Lemma 2.2 is zero.

Theorem 2.4. Let (O be a JW--algebra. Then there exist

three central projections E, F, G in (J{ with E+ F + G =1 such that
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E Gl is the self-adjoint part of a von Neumann algebra,
A S
F O is reversible and (K(FGI)N i ® (F¢P = 307 ,

G (1 is totally non-reversible.

Proof . Let :\j be the ideal defined in Lemma 2.2. ﬂj is weak-
ly closed, in fact, if A, ¢ M AJ( —3 A weakly, then for all
5,7 €®(C) , sa,T + T, 5% — ST + TMAS® weakly. Since O is weakly
closed ©SAT + TXASx 6(:7(, hence A& fﬁ as asserted. Let H Dbe the cen-
tral projection in (37 such that }IC}{ = fj (the existence of such an
H is shown by an easy modification of ((1, Cor. 3, p. 45)) ). Then H‘:?L
is reversible, and the existence of E and F follows from Lemma 2.71.
let G=I~-H . We must show GC1 is totally non-reversible. Let
A€ GTL . If for all B,CE (K(GT) =6 (C) , BAC + ¢*AB® € G (07, then
since B=GS, C=GT, £.7 ¢ (1) , BAC + CXABY = a(saT + Thas¥)ec O,
or, since A =GA , SAT + T"AS® ¢ G (7 C (77 for all S,T€FIC]) « But

then A¢ ") =H 7 - Thus A=GA=HA=0, GCJ] is totally non-rever-

sible. The proof is complete.

Corollary 2.5 . A JW-factor is either reversible or totally

non-reversible.

3.  ABELTAN PROJECTIONS

We shall discuss the relationship between Abelian projections in a
reversible JW-algebra ()7 and its double commutant ‘ , which by the
double commutant theorem equals the von Neumann algebra generated by at .

Lemma 3.1. Let (*{ be a reversible JW~factor and E an Abelian
projection in (Y . Then every operator in EL}Q(O”Z)E is normal.

Proof . Let AEE CT)E . Then 2L and ALY are in EOUE .
By ((6, Theorem 14)) EJJE =¥ E , where Y= is the center of (7 ,

hence A®A = aE 5 ME = bE with a and b non-negative real numbers.
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2

Thus a°E = (A%4)% = a%(ar®)a = (4%a)(aa%) = A% = (44%)? = b°E . Thus

a=5b, Ais normal.

Lemma 3.2, Let 1 be a reversible JW-factor and E an Abelian

4 B3 o . ™ ] " 1
projection in ()7 . Let A be self-adjoint in E C{ E . Then there ex-

ist two orthogonsl projections P and Q with P + Q = E and real numbers

u and v such that
=(u+v)P+ (u-v)Q &

Proof. Wefirst assume A =S +i T with S and T in EK(UDE .
Since A is self-adjoint A = (4 + A%) = 4(5 + s%) +1i &(T - %) .
(s + s¥) € 1 since 1 is reversible. As in Lemma 3.1 it follows that
there exists a real number u such that (S + Sx) =ul . Thus (A - uE)2 =
(1 (T - T]‘t))"2 = - %{(T - TX)2 € Cj? , hence equal to v2E with v real.
By spectral theory the c* -algebra generated by A and E is isomorphic to
C(o(A)) - the continuous complex functions on the spectrum of A -~ under
a map which carries A into the real function A D s and E into the

constant function A — 1 . Thus (A - u )2 = ¥° for all A €qg (h) .

i)

Thus (_T(A):%u-*v,u-véo If v=0,A=uE, if v#£0 let P

and Q Dbe the projections in the Cx—algebra generated by A and E cor-
responding to the characteristic functions for u + v and u - v respec-—

tivelys Then A= (u+v)P+ (u-v)Q, and P+Q=25E .

Notice that |u! s ]vl < %(iu+vl+ lu— vl)s ma.x;iu+ v,, lu- v)%:

fai .

el

In the general case A is self-adjoint in E C’l”E « Now, \D(C/)+ i A (CY
is strongly dense in (J] ! , hence E(()Q(C;‘) +1i X (C1))E is strongly dense
in B (7] E . By the Kaplansky density theorem ((1, Théorime 3, p. 46))
there exists a net (Am) of self-adjoint operators A, in E(R () +
i R (C))E such that [l 4 KH <l Al and A, —> A strongly. From the
first part of the proof there exist real numbers v,

, U, with
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lu“/_(, )vo(qé la,ll < WAY such that (Aﬁ—u*E)zzbviE . Let u

be a limit point of the u_and v a limit point of the v, . Consider a
subnet (Aj) of (Ao() for which Uy, -3 v o Since multiplication
is strengly continuous on the unit ball (Aj - qu)2 — (A - uE)2 strongly.
Also (Aj - qu):Z = L;v?E —> LWZE strongly. Thus (4 - uE)2 = LWZE . As
in the first part of the proof there exist orthogonal projections P and

Q with sum E such that A = (u + v)P + (u - v)Q - The proof is completes

The key lemma follows.

Lemma 3.3. Let (1 be an irreducible, reversible JW-factor and

i

E an Abelian projection in (J{ . If x is a non-zero vector in E then
E=[x] . ol cperators o ¥

Proof . In this case 1= 5 (3{')4, where Jf  is the under-
lying Hilbert space. Thus, if A is any self-adjoint operator on 3’( then
BAE = (u + v)P + (u - v)Q where u, v, P, and Q are as in Lemma 3.2. If
v =0 for all self-adjoint A then A =uE for all A, and E = [xj} 0
Otherwise E % (9—@& must be isomorphic to YWZ - the complex 2 x 2
matrices - and dim E=2 . Then E %:Q(CW)E is isomorphic to a real al-
gebra a}z , in V) 5 » and OQQ + i(){’?z is weakly dense in ﬂ'lz « Thus
(}Qz is either the set of all matrices with real coefficients relative to a

. 0 2% . i .
basis, or 0&2 = .”'7 5 In either case ‘X contains non-normal operators.

2

This contradicts Lemma 3.1. Thus E = [x ! 0

Lemma 3.4 o Let (Ul ©be a reversible JC-algebra - and E an
Abelian projection in ([ . Then E is Abelian in ((7) -

Proof. Let 5= (O7) and let T be an irreducible represen-
tation of (3 . If G(B) =0 then ¢ (BSE)=0 is Abelian, If
F = q(E) #0 then F is Abelian in C|L (01 ) , hence by continuity Abelian
in L,V (C1)” , an irreducible, reversible JW-factor (it is reversible by
the Kaplansky density theorem and the fact that multiplication is strongly

continuous on the unit ball). By Lemma 3.3 F =[x | , with x¢F .



-7 -

Hence ‘f (Ef3E) = ’\—xj . (iR) fo = C [x] 4is Abelian. Since the irreduc-
ible representations separate f‘j} they separate E(RE R which is thus

Abelian.

Theorem 3.5. Let (J1 ve a reversible JW~-algebra and E an
Abelian projecticn in (J . Then E is hbelian in (1",

Proof . E is Abelian in (C7) by Lemma 3., hence, by strong
contimuity, in (QU)7 , hence in  C1"  ((1, pe LL)) -

We shall now use Theorem 3.5 in order to show that if CT is of type I
then c‘”(“ is of type I. The proof of the next lemma is a direct copy of
the proof of ((1, Théoréme 1, (iii) =>(v), p. 123)) , and will therefore
be omitted. Recall that the central carrier of a projection is the least

central projection greater than or equal to it.

Lemma 3.6 If (07 is a (not necessarily reversible) JW-algebra
of type I then there exists an Abelian projection in ([ with central car-

rier I .

Lemma 3.7, Let CU be a JW-algebra and E a projection in
CT1 . Then LO’[E] = ECW“ E] is the central carrier for E with rés—
pect to both (Ul and ",

Proof . By ((1, Corollaire 1, p. 7)) {CB E_l = Cp 1is the cen-
tral carrier for E in C-i'ﬂz (3 . Clearly (Cﬂ B < );’J,; E] . Now

[Ote ]€ O1'. 1In fact, if x¢E, A,B € O] then BAEx =

—

(BAE + EAB)x - B#Bx ¢ (OIx|vE <|{CIE] . Thus B  leaves |OTE
I . / - a
in variant, [QIE] ¢ C1 . Moreover, [(NE] e (. In fact, if A € (T

then if /¢(B) denotes the range projection of an operator B , then
% (4E) = /7 (AB(AB)®) = /2 (amA) & O , by spectral theory and the fact that

Cl is weakly closed. Thus LC’I El = 7V L(AB) € J[, as asserted. Thus
AEC

{-;’7[ El belongs to the center of (O] , which in turn is contained in the

!

o 1 i g T T -
center of sz » Since (‘Z_,.(Ej E=E, }_UZE} P CE s, hence
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[Cﬂ E] = [O} EK = Oy . The proof is complete.

Theorem 3.8 . If ()Y is a reversible JW-algebra of type 1
then ()Z” is a von Neumann algebra of type I.

Proof . By Lema 3.6 there exists an Abelian projection E in CL
with central carrier CE equal to I relative to U, By Lemma 3.7
ECW E] = CE , and the central carrier of E relative to Cﬁ« equals I .
By Theorem 3.5 E is Abelian in (' . Thus (51" has an Abelian pro-
jection with central carrier I . By ((1, Théorgme 1, p. 123)) Cr' is
of type I . The proof is complete.

We leave the converse of the above theorem as an open question.

We refer the reader to ((6)) for the definition and properties of

finite JW-algebras.

Theorem 3.9 . Let CTL be a finite, infinite dimensional JW-
factor of type I (for the existence of such an (O see ((4)) ). Then (Ul
is totally non-reversible.

Proof . By Corollary 2.5 Cl is either reversible or totally
non-reversible., Assume {}1. is reversible. Since 1 is a finite JW-
factor of type I it is clear that (J{ dis simple (since all Abelian pro-
jections in 0T are equivalent ((6)) ) . Let ﬁj be an irreducible
representation of ({!) . Then f?}CQ # 0 , hence is an isomorphism, and
q>(Cﬂ) is irreducible.n Let E1 y cos s En be orthogonal Abelian projec-
tions in (7 with i;# E. = I . Then ff(Eﬁ) is Abelian in ¥ n -,
hence in cf(CW)_ o - Since ﬁﬁ(ﬁﬁ) is reversible, so is 77(60)' 5
hence S?(EE) = f‘xii] by Lemma 3.3. Thus %3(67)- is of finite dimension,

hence (J1 is of finite dimension, a contradiction.

4o  IRREDUCIBLE JW-ALGEBRAS

We shall now characterize the irreducible; reversible JW-algebras of

type I.
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Lemma A4e1 » Let (J] be an irreducible, reversible JW-algebra
of type I. If N ()N 1R = 2 0 % then there exists an orthonormal
basis (Xe)eel for o€  such that for all pairs X, s X in the basis
(A X, s xk) is real for all A € ((CD .

Proof . Let E be an Abelian projection in (J/ . Then E = LX‘I ]
with x, a wit vector in ¥ , by Lemma 3.3. If A€ K (U7) then
EAE= AE with A real. In fact, if A =u+iv with u and v
real and v #£ 0O then iE = %(E AE-wE)E K(CD , contradicting the
fact that X (CN N i&(C) = 0O . In particular, (A Xy s x1)

(l:x,l’] A i'xd X, X‘l) = 1% li 2 g real for all A in¢K (C1) . Let
_’f = ; Xys Ky oo be a maximal set of orthonormal vectors X in

S
3 such that

1) [x, JeCl,x €

2) For each X, C—j there exists Ae Q(A‘// with x = Aex’l o

Then for each AC :()v‘((;){) ? Xe 4 Xke'f 9 (A‘Xe s Xk) = (AAeX‘[ s Akx1)
(AkAAeX’I ’ x,l) is real by the preceding. We show [‘5’] =TI . Since T
TeCl, T51eCl. Assume [F) £1I.

is weakly closed and each [Xe

Then there exists an Abelian projection E in O] , ESI - 31 . Let

L

y be a unit vector in E . -By Lemma 3.3 E = iy:( o = Moreover, there
exists a (self-adjoint) unitary operator S in (U such that S [y} S =
[_x,“( ((6, Corollary 17)) « Then gz = ‘{Ay] S=39 {x,li = fy] S (x,]l;l 0 .
Let T = [y] St)\_x{] + Tx,ﬂ S [y] . Then T ¢ (] and Tx,l =z , and

z €] vyl s I- [’jj . This contradicts the maximality of f_}: 5 \:J\(,z I,

the proof is complete.

Definition 4.2 . Let (U Dbe an irreducible, reversible
JW-algebra acting on a Hilbert space 9 . We say (O 4is the real sym-

metric operators in U5 (%) with respect to a basis (Xe)eE':I for 0¢€

if (O] consists of all self-adjoint operators such that (Axe . xk) is .
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real for all x_ , in the basis. ({5(.¢) denotes all bounded operators

"k
on € ) .

Theorem Les3 . Let (rl be an irreducible, reversible JW-alge-

1

bra of type I acting on a Hilbert space € . Then

1N I8 KEDN1RO) #5048 then  C7 = BO)g -

2) If R A1 R(E)=§0% then (3 is the real symmetric

operators in (3 () with respect to a basis (Xe)eEI .

\

Proof . By Theorem 2.4 and Lemma 4.1 it remains to show that in case
2) {Jl consists of all self-adjoint operators such that (A;xe y xk) is

real for all Xe o Xy in the basis. Let A be a self-adjoint operator such

that (Axe s xk) is real for all x_,x, in the basis. Let E be a projec-

—

n .
tion of the form {_xe 1, e;€ I . Then E is an n~dimensional pro-
i=1 i

jection in ({ . Clearly E i E C (77 and is isomorphic to the real

n xn symmetric matrices with respect to the basis (x_ ) . Thus

e, i=1,00s,0
EAE ¢ (T . Since the net En of such projections converges strongly to
I, EnA En“*? A strongly. Since OT is strongly closed A & C{ . The
proof is complete.
The next result shows which 1-dimensional projections belong to 1
with U  as in Theorem Le3. It suffices to consider the case whan (1
is the real symmetric operators with respect to a basis. Recall that a vec-

tor state (W) of (1 is a state of the form A — (Ax,x) .

Theorem L. » Let (J7 be the real symmetric operators in

)
Let x = <. /\ X be a
- ee
eC1I
)

unit vector in <% . Then the following are equivalent.

,‘/.) . .
& (5¢) with respect to a basis (Xe)eél .

1 [x]ecl
2) fi,f/.JX is a pure state on 'L

3) ﬂe/}:k is real for all e,k € I .
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Proof . Clearly 1) =>2) . Also 3) ==> 1) since (Lxlxe,xk)
= A, is real for all e,k¢I implies ,‘x] ¢ (51 by Theorem 4.3.

Assume 2) . Let A =u +1iv  with u ,v_ real. Then
e e e e’'e

~—

> ui + 2 vg = > l’)ej'g =1, so the vectors y = Z u X,
e€l ecI ec I ecl
and 2z = Z v x have norms < 1 . Moreover, by 3) => 1)

ecl

(7], [2] €Ule et A €Ul . Ten Colh) = (Aly + iz),y+2) =
C/OY(A) + 00, (A) + i(Az,y) - i(Ay,2) . But (Az,y) = (z,Ay) is real, hence

(Az,y) = (Ay,z), because

<z

~ = )
(Az,y) = (A 2 ux , - v, x) = ou vp(Ax o, x)
cer g’ gop KK ekl © K e’k
i c = (A CA) (™ . Si Sy i
is real. Thus Iy = C ):y' +Cy, on { Since (), 1s pure
C/u‘y = k&, k a positive real number, unless Cu, =0 or Cop = 0,

in which case we are through . Since |y] , [z [ € [ it follows that
fy] = [z] , and y.= N z with 9\ a complex number. Thus ue=j>\ve?

and
>\e/;\;k = (>\ve+ive)(i\:vk-—ivk) = v, vk(?\,+i)(f‘;\——i)

is real. Thus 2) = 3) . The proof is complete.

In particular we have shown

Corollary Les5 . Let (7l be the real symmetric operators in
#5(3) with respect to a basis.. Let x € € . Then o, = Cdy ),
on O , where Co_ and (U 5 are pure states on o Moreover,
hxh? = Uy hzg? .

As for von Neumann algebras it seems that a good understanding of the
cyclic projections will solve many of the problems of JW-algebras. How-
ever, while cyclic projections of the form {Ql xj with { a von
Neumann algebra belong to the commutant O?l of (71 , this is not so

for JW-algebras. This even fails for reversible JW-factors of type I .

However, we have
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Theorem 4o o Let Ol be an irreducible, reversible JW-alge-
bra of type I acting on the Hilbert space +{ . If x dis a non-zero vec-
tor in ¥ then l x|l =1 .

For the proof we shall need

Lemma 4.7 . Let (9] be a reversible JC-algebra. Let E be a
projection in Ul and x a vector in I - E . If C(C/’I)x:l = I then
x|
E \<. [.("X,J o
Proof . Denote by Cﬂn the uniformly closed self-adjoint linear
n

space of operators generated by operators of the form 'T] Ai with
i=1

a, € UU. Then E[‘} = E\("'i x | for all n=1,2, o . Indecd,
i

since Ex = O , b[TAx: & T A+ ]TA Ex ¢|Ox] < [0 ) . In

i=1 i=1 i=n

particular, E maps ,'Jr "% 1 into gCﬂ x _( « Since l(@?)x] =1 the
projections [G(nx'—"‘ converge strongly to I . Thus E ‘L(fr]nx j —7 E

;

strongly, and El« ,lx = 1im E {(j{nx} =EFE, so {k( x] >z E .

Proof of Theorem L4sé . If (j/:VK(M)SA the
theorem is clear. By Theorem 4.3 we may assume {){ is the real symmetric

operators in (/% () with respect to a basis (xe) . From the proof

eec I
of Lemma 4.1 there exists Aeé (] such that x, = Ae % for all e¢ I .

Thus {_—C»(' % } =1 . Since x, was any vector such that Ix,]] e (7,
it follows that :O’( x] = I whenever | x] € C7. Let now x be any

unit vector and assume {-x] \f o1 . By Corollary 4.5 there exist vectors

y and =z with ?y [ZJ Gl x=y+iz,!§y(1‘2+!lz((2 =

2 . L . - R
x|l = 1, and (,.«)X = (,/uy + (_4)2 on O’ o Let E = {YY, + i ZJ °
Then (,\}X(E) = 'C,\Jy(E) + cv'z(E) = \y (12 + 1 z(:2 = 1,and xCE &

Il

The theorem is easily proved in case dim B’vﬁ =2 o+ Therefore 1;E ClE X’Jf
E , hence YUI x‘( > E . Assume now {/jrxl £I1 . Let y&I —\‘A;C‘? x—{
Then y &I - E ., Hence, by Lemma L.7 E < [‘\( yj o In particular

c ((7y] o Thus there exists A4,B ¢ (7] such that (i (A +1iB)y-~ x“\/ 2

Then
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(@ imym -] =[(WriBy-x0| <|@+iBy-xl< 3,
and (y,(A-1iB)x) = ((A+1iB)y,x)# 0, contrary to the assumption that

yE€I- {b] x] o Thus ((\37 xfi = I , the proof is complete.
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