Matematisk Seminar Universitetet i Oslo

Nr. 12
November 1964

ON JORDAN AIGEBRAS OF TYPE I by

Erling Störmer

1．1．INTRODUCTION

The general theory of Jordan algebras of self．－adjoint operators on a Hilbert space is still at its infancy．In（（3））Jordan，von Neumann，and Wigner classified the finite dimensional irreducible ones，and found that they are either the real symmetric matrices，all self－ad．joint matrices，or the Clifford algebras．A great deal of the von Neumann algebra theory， specially the comparison theory for projections，has recently been pushed through by Topping（（6））。 Add to this some ideal theory（（2）），and more special theory directly influenced by quantum mechanics（for references see （（4））），and most of the known theory is covered．

In this note we shall discuss one approach to the theory．It turns out that a JW－algebra，i．e．a weakly closed Jordan algebra of self－adjoint operators，can be decomposed along its center into three parts，one part be－ ing the self－adjoint part of a von Neumann algebra，one part algebraicajly the same as in the first（i。e．is reversible）but more real in the sense that the real symmetric matrices are real，and a third part which behaves more like the Clifford algebras．（Theorem 2．4）．We shall mainly be concerned with reversible JW－algebras of type I ，and shall show that an Abelian pro－ jection in a reversible JW－algebra O is also Abelian in the double com－ mutant $\Omega^{\prime \prime}$ of $O \subset$（Theorem 3．5），and that $\bigcap^{\prime \prime}$ is of type If Ω is of type I．（Theorem 3．8）．We shall then classify the irreducible，rever－ sible JW－algebras of type I as either all self－adjoint operators or all the real symmetric operators with respect to a basis（Theorem 4．4）．As a con－ sequence we can characterize the pure vector states of such JW－algebras （corollary 4.5 ）and show that every vector is cyclic（viz。 $[O I x]=I$ ）．

1．2．NOTATION

A JW－algebra（resp．JC－algebra）C is a weakly（resp．uniformly） closed linear space of self－adjoint operators on a Hilbert space ∂t ，
which is also a Jordan algebra over the reals，i。e。 $A \circ B=A B+B A \in O C$ for all $A, B \in O$ ．Then $A B A$ and $A B C+C B A \in O$ for all $A, B, C \in C Z$ ， A Jordan ideal Y in M is a linear subset of M such that $A \in M, B \in Y$ implies $A \circ B \in Y$ ．A JW－factor is a JW－algebra with center the scalars（with respect to operator multiplication）．A JC－ algebra O is irreducible if its commatant is the scalars；O is Abelian if all operators in $O($ operator commute：A projection E in O is Abelian if $E O E$ is Abelian．If $O l$ is a JW－algebra then O is of type I if every non－zero projection in $O l$ majorizes a non－zero Abelian projection in Ol A similar definition holds for von Neumann algebras，where by a von Neumann algebra we mean a self－adjoint weakly closed algebra of operators on ∂ 。 If σ contains the identity operator then 6 equals its double commutant $3^{\prime \prime}$ ，hence if a JN－algebra $O H$ contains the identity operator，then $\mathcal{O}^{\prime \prime}$ equals the von Neumann algebra generated by $O t$ ．Let $K(\pi)$ denote the uniformiy closed real alge－ bra generated by $O l$ ，$O l$ now a JC－algebra。 We say $O \pi$ is reversible if $\prod_{i=1}^{n} A_{i}+\prod_{i=n}^{1} A_{i} \in O$ whenever $A_{1}, \ldots, A_{n} \in O$ ．Then O equals the self－adjoint part of $k(C)$ 。 Moreover，if（ O（ $)$ denotes the C^{\star}－algebra generated by O then $(G) \cap i\{(Q)$ is an ideal in（ K
 generated by vectors of the form $A x, A \in C T, x \in V$ ．We identify subspaces of $d \mathscr{C}$ and their projections．If M is a set of operators m^{-}is the weak closure of M ，and $M_{S A}$ the self－adjoint operators in M 。

2．DECOMFOSITION OF JW－ALGEBRAS

We show the decomposition result announced in the introduction．
exist central projections E and F in O with $E+F=I$ such that $E O$ is the self－adjoint part of a von Neumann algebra，and $\mathfrak{R}(F O T) \cap$ i $\mathbb{R}(F O T)=\{0\}$ ．

Proof．Let $Y=\mathcal{K}(O T) \cap i \mathbb{R}(O l)$ ．Then \mathcal{Y} is an ideal in $(C l)$ ，hence its weak closure Y^{-}is an ideal in $(O)^{-}$．Thus there ex－ ists a central projection E in $(O)^{-}$such that $y^{-}=E(O)^{-} \quad((1, p$ ． 45）），and $E \in Y^{-}$．Now $O\left(\right.$ is reversible，hence $Y_{S A} \subset O$ ，and $\left(y^{-}\right)_{S A}=\left(Y_{S A}\right)^{-} \subset \Omega$ ．Thus $E \in \Pi$ ，and $Y_{S A}^{-}=E O$ ．Moreover，Y^{-} is a von Neumann algebra。 Let $F=I-E$ 。 Then F is a central projec－ tion in O ．Thus $\mathbb{K}(F O) \cap$ i $R(F(7)=F(\mathbb{R}(O) \cap$ i $R(C T))=F Y \subset$ $F\left(E(O)^{-}\right)=\{0\}$ ．The proof is complete。

Lemma 2．2．Let O be a JC－algebra。 Let $Y=\{A \in \mathcal{O}$ ： $B A C+C^{x_{A}} A B^{\star} \in \Pi$ for all $\left.B, C \in \mathbb{K}(\mathbb{C})\right\}$ ．Then $\quad \hat{y}$ is a uniformly closed Jordan ideal in $O l$ ．Moreover， \mathcal{J} is a reversible JC－algebra。

Proof。 Let $A, B \in \mathcal{Y}, S, T \in R(O)$ 。Then $S(A+B) T+$ $\mathrm{T}^{\star}(\mathrm{A}+\mathrm{B}) \mathrm{S}^{\star}=\left(\mathrm{SAT}+\mathrm{T}^{\mathrm{K}_{\mathrm{A}}} S^{\star}\right)+\left(\mathrm{SBT}+\mathrm{T}^{\star} \mathrm{BS}^{\star}\right) \in \mathrm{O}$ ，so Y is linear。 Let $A \in Y, B \in O l, S, T \in \mathcal{R}(C 7)$ ．Then $S(A B+B A) T+T^{\star}(A B+B A) S^{\star}=$ $\left(S A(B T)+(B T)^{x_{A S}}\right)+\left((S B) A T+T^{x^{\star}} A(S B)^{\star}\right) \in O L$ ，so $A \subset B \in Y$ ，and Y is a Jordan ideal in $Q_{\text {．Since multiplication is uniformly continuous }}$ Y is uniformly closed．Let $A_{1} \in Y, A_{2}, \ldots, A_{n} \in O$ ．Let $A=\prod_{i=2}^{n} A_{i}$ ．Then $A_{1} A+A^{*} A_{1} \in C$ by definition of Y ．We show $A_{1} A+A^{A_{A}} A_{1} \in \mathcal{Y}$ ，hence \mathcal{Y} is in particular reversible（with $\left.A_{2}, \ldots, A_{n} \in \mathcal{Y}\right)$ ．Let $B, C \in \mathbb{K}(O T)$ ．Then $B\left(A_{1} A+A^{x_{A_{1}}}\right) C+C^{\star}\left(A_{1} A+A A_{1}\right) B^{\star}$

The proof is complete．

Definition 2．3．Let O be a JC－algebra．We say is totally non－reversible if the ideal O in Lemma 2.2 is zero．

Theorem 2．4．Let O be a JW－algebra．Then there exist three central projections E, F, G in O with $E+F+G=I$ such that
$E Q$ is the self－adjoint part of a von Neumann algebra， $F O$ is reversible and $\hat{K}(F O) \cap$ i $\mathbb{R}(F(T)=\{0\}$ ，

GOT is totally non－reversible。
Proof．Let Y be the ideal defined in Lemma 2．2．Y is weak－ Iy closed，in fact，if $A_{\alpha} \in Y, A_{\alpha} \rightarrow A$ weakly，then for all $S, T \in R(C), S A_{\alpha^{\prime}}+T^{\star} A_{\alpha} S^{\star} \rightarrow S A T+T^{\star} A S^{\star}$ weakly．since O is weakly closed $S A T+T^{\star} A S^{\star} \in C$ ，hence $A \in Y$ as asserted。 Let H be the cen－ tral projection in O ？such that $H C=M$（the existence of such an H is shown by an easy modification of（ $(1$ ，Cor．3，p．45）））。 Then HOL is reversible，and the existence of E and F follows from Lerma 2．1． Let $G=I-H$ 。 We must show GC7 is totally non－reversible。 Let $A \in G C l$ ．If for all $B, C \in(G)=G(T), B A C+C^{\star} A B^{\star} \in G O l$ ，then since $B=G S, C=G T, S, T \in R(G), B A C+C^{\star} A B^{\star}=G\left(S A T+T^{\star} A S^{\star}\right) \in G Q$ ， or，since $A=G A, S A T+T^{\star} A S^{\star} \in G O T C O$ for all $S, T \in G(O)$ ．But then $A \in M=H O$ ．Thus $A=G A=H A=0, G O$ is totally non－rever－ sible．The proof is complete．

Corollary 2．5．A JW－factor is either reversible or totally non－reversible。

3．ABEIIAN PROJECTIONS

We shall discuss the relationship between Abelian projections in a reversible JW－algebra and its double commutant $O l^{\prime \prime}$ ，which by the double commutant theorem equals the von Neumann algebra generated by \mathcal{O} ．

Iemma 3．1．Let O be a reversible JW－factor and E an Abelian projection in $O($ ．Then every operator in $E R(O T) E$ is normal．

Proof．Let $A \in E(7) E$ ．Then $A^{t_{A}}$ and $A A^{\star}$ are in $E T E$ 。 By $((6$, Theorem 14））$E \not \subset E=$ E゙E，where C is the center of C ， hence $A^{\star_{A}} A=a E, A A^{\star}=b E$ with a and b non－negative real numbers．

Thus $a^{2} E=\left(A^{\star} A\right)^{2}=A^{\star}\left({A A^{\star}}^{\star}\right) A=\left(A^{\star} A\right)\left(A A^{\star}\right)=A\left(A^{\star} A\right) A^{\star}=\left(A A^{\star}\right)^{2}=b^{2} E$ ．Thus $\mathrm{a}=\mathrm{b}, \mathrm{A}$ is normal．

Lemma 3．2．Let O be a reversible JW－factor and E an Abelian projection in O ．Let A be self－adjoint in $E \bigcap^{\prime \prime} E$ ．Then there ex－ ist two orthogonel projections P and Q with $P+Q=E$ and real numbers u and v such that

$$
A=(u+v) P+(u-v) Q
$$

Proof。 We first assume $A=S+i T$ with S and T in $E \mathbb{K}(O T) E$ Since A is self－adjoint $A=\frac{1}{2}\left(A+A^{t}\right)=\frac{1}{2}\left(S+S^{t}\right)+i \frac{1}{2}\left(T-T^{t}\right)$ 。 $\frac{1}{2}\left(S+S^{\star}\right)<C$ since O is reversible．As in Lemma 3.1 it follows that there exists a real number u such that $\frac{1}{2}\left(S+S^{\star}\right)=u \mathbb{E}$ ．Thus $(A-u E)^{2}=$ $\left(i \frac{1}{2}\left(T-T^{\star}\right)\right)^{2}=-\frac{1}{4}\left(T-T^{\star}\right)^{2} E G$ ，hence equal to $V^{2} E$ with v real． By spectral theory the C^{x}－algebra generated by A and E is isomorphic to $C(\sigma(A))$－the continuous complex functions on the spectrum of A－under a map which carries A into the real function $\lambda \rightarrow \lambda$ ，and E into the constant function $\lambda \rightarrow 1$ ．Thus $(\lambda-u)^{2}=v^{2}$ for all $\lambda \in \sigma(A)$ 。 Thus $\sigma(A)=\{u+v, u-v\}$ ．If $v=0, A=u E$ ，if $v \neq 0$ let P and Q be the projections in the C^{\star}－algebra generated by A and E cor－ responding to the characteristic functions for $u+v$ and $u-v$ respec－ tively。 Then $A=(u+v) P+(u-v) Q$ ，and $P+Q=E$ 。

Notice that $\left.|u|,|v| \leqslant \frac{1}{2}(|u+v|+|u-v|) \leqslant \max |u+v|,|u-v|\right\}=$ $\|A\|$ 。

In the general case A is self－adjoint in $E l^{\prime \prime} E . N_{0} \mathbb{R}(O T)+i \mathbb{K}(C)$ is strongly dense in $O l^{\prime \prime}$ ，hence $E(\mathbb{R}(O \|)+i \mathbb{R}(O)) E$ is strongly dense in $E O \|^{\prime \prime} E$ 。 By the Kaplansky density theorem（（1，Théorème 3，p．46）） there exists a net $\left(A_{\alpha}\right)$ of self－adjoint operators A_{α} in $E(R(O)+$ i $\mathbb{R}(C T)) E$ such that $\left\|A_{\alpha}\right\| \leq\|A\|$ and $A_{\alpha} \rightarrow A$ strongly．From the first part of the proof there exist real numbers v_{α}, u_{α} with
$\left|u_{\alpha}\right|,\left|v_{\alpha}\right| \leqslant\left\|A_{\alpha}\right\| \leqslant\|A\|$ such that $\left(A_{\alpha}-u_{\alpha} E\right)^{2}=4 v_{\alpha}^{2} E$ ．Let u be a limit point of the u_{α} and v a limit point of the v_{α} 。 Consider a subnet $\left(A_{j}\right)$ of $\left(A_{\alpha}\right)$ for which $u_{j} \longrightarrow u, v_{j} \rightarrow v$ 。 Since multiplication is strongly continuous on the unit ball $\left(A_{j}-u_{j} E\right)^{2} \rightarrow(A-u E)^{2}$ strongly． Also $\left(A_{j}-u_{j} E\right)^{2}=4 v_{j}^{2} E \rightarrow 4 v^{2} E$ strongly。Thus $(A-u E)^{2}=4 v^{2} E$ ．As in the first part of the proof there exist orthogonal projections P and Q with surn E such that $A=(u+v) P+(u-v) Q$ ．The proof is complete． The key lemma follows．

Lemma 3．3．Let M be an irreducible，reversible JW－factor and E an Abelian projection in C ．If x is a non－zero vector in E then $E=[x]$ 。

$$
=\text { all opreators on it }
$$

Proof．In this case $G^{\prime \prime}=B_{(}\left(H^{\prime}\right)$ ，where \mathfrak{H} is the under－ lying Hilbert space．Thus，if A is any self－adjoint operator on \mathcal{H} then $E A E=(u+v) P+(u-v) Q$ where u ，v, P ，and Q are as in Lemma 3．2．If $v=0$ for all self－adjoint A then $A=u E$ for all A ，and $E=[x]$ 。 Otherwise $E(H)$ must be isomorphic to M_{2}－the complex 2×2 matrices－and $\operatorname{dim} E=2$ ．Then $E R(O T) E$ is isomorphic to a real al－ gebra R_{2} in M_{2} ，and $R_{2}+i \mathcal{R}_{2}$ is weakly dense in M_{2} ．Thus \mathbb{R}_{2} is either the set of all matrices with real coefficients relative to a basis，or $\mathbb{R}_{2}=M_{2}$ 。In either case \mathbb{R}_{2} contains non－normal operators． This contradicts Lemma 3．1．Thus $E=[x]$ 。

Lemma 3．4．Let O be a reversible JC－algebra－and E an Abelian projection in G ．Then E is Abelian in（CT）．

Proof。 Let $B=(07)$ and let φ be an irreducible represen－ tation of β ．If $\varphi(E)=0$ then $\varphi(E B E)=0$ is Abelian．If $F=\varphi(E) \neq 0$ then F is Abelian in $\mathscr{G}(O)$ ，hence by continuity Abelian in $^{\prime}(O T)^{-}$，an irreducible，reversible JW－factor（it is reversible by the Kaplansky density theorem and the fact that multiplication is strongly continuous on the unit ball）。 By Lerma 3．3 $F=[x]$ ，with $x \in F$ 。

Hence $\mathscr{P}(E \in E)=[x] \mathcal{G}(B)[x]=\mathbb{C}[x]$ is Abelian．Since the irreduc－ ible representations separate 0 they separate E 信 ，which is thus Abelian．

Theorem 3．5．Let \mathcal{O} be a reversible JW－algebra and E an Abelian projection in $O\left(T l^{\prime \prime}\right.$ ．

Proof．E is Abelian in（Ol）by Lemma 3．4，hence，by strong continuity，in $(O l)^{-}$，hence in $O T^{\prime \prime}((1, p .44))$ 。

We shall now use Theorem 3.5 in order to show that if $O($ is of type I then $O l^{\prime \prime}$ is of type I ．The proof of the next lemma is a direct copy of the proof of（ $(1$, Théorème 1 ，（iii）$\Rightarrow(v), \mathrm{p} .123)$ ），and will therefore be omitted．Recall that the central carrier of a projection is the least central projection greater than or equal to it．

Iemma 3．6．If O is a（not necessarily reversible）JW－algebra of type I then there exists an Abelian projection in $O($ with central car－ rier I 。

Lemma 3．7．Let O be a JW－algebra and E a projection in Q．Then $[O E]=\left[O{ }^{\prime \prime} E\right]$ is the central carrier for E with res－ pect to both $O T$ and $O 1^{\prime \prime}$ ．

Proof．By（（1，Corollaire 1，p．7））$\quad[\beta E]=C_{E}$ is the cen－ tral carrier for E in $\Theta^{\prime \prime}=\beta$ ．Clearly $[O E] \leqslant[O E]$ ．Now $[O T \mathrm{E}] \in O 7^{\prime}$ ．In fact，if $x \in E, A, B \in O($ then $B A E x=$ $(B A E+E A B) x-E A B x \in[O X] v E \leqslant[O E]$ ．Thus B leaves［OTE］ in variant，$[O \mid E] \in O T^{\prime}$ ．Moreover，$[O E] \in O l$ ．In fact，if $A \in C T$ then if $r(B)$ denotes the range projection of an operator B ，then $\eta(A E)=r\left(A E(A E)^{\star}\right)=r(A E A) \in \Omega$ ，by spectral theory and the fact that $O 1$ is weakly closed．Thus $[O[E]=\underset{A \in G}{V} r(A E) \in O$ ，as asserted．Thus $[O[E]$ belongs to the center of $O l$ ，which in turn is contained in the center of $C T^{\prime \prime}$ ．Since $[C T E] E=E,[O T E] \geqslant C_{E}$ ，hence
$[O E]=[B E]=C_{E}$ ．The proof is complete．
Theorem 3．8．If $O\{$ is a reversible JW－algebra of type I then $\sigma^{\prime \prime}$ is a von Neumann algebra of type I ．

Proof．By Lemma 3.6 there exists an Abelian projection E in with central carrier C_{E} equal to I relative to O ．By Lemna 3.7 $[O T \mathrm{E}]=C_{\mathrm{E}}$ ，and the central carrier of E relative to $O Z^{\prime \prime}$ equals I 。 By Theorem 3．5 E is Abelian in $G^{\prime \prime}$ ．Thus $\mathcal{T}^{\prime \prime}$ has an Abelian pro－ jection with central carrier I 。By（ $\left(1\right.$ ，Theorème 1 ，p．123））$G M^{\prime \prime}$ is of type I ．The proof is complete．

We leave the converse of the above theorem as an open question．
We refer the reader to（（6））for the definition and properties of finite JW－algebras．

Theorem 3．9．Let \mathcal{M} be a finite，infinite dimensional JW－ factor of type I（for the existence of such an \mathcal{O} see（（6）））．Then \mathcal{C} is totally non－reversible。

Proof．By Corollary 2.5 C is either reversible or totally non－reversible．Assume $O \mathcal{C}$ is reversible．Since \mathcal{O} is a finite $J W-$ factor of type I it is clear that $O\{$ is simple（since all Abelian pro－ jections in O are equivalent（（6）））。 Let \oint be an irreducible representation of (O) ．Then $\varphi \mid O \neq 0$ ，hence is an isomorphism，and $g(\mathbb{G})$ is irreducible．Let E_{1}, \ldots, E_{n} be orthogonal Abelian projec－ tions in O with $\sum_{i=1}^{n} E_{i}=I$ ．Then $\varphi\left(E_{i}\right)$ is Abelian in $\varphi(C T)$ ， hence in $\phi(O)^{-}$．Since $\phi(O)$ is reversible，so is $\varphi(O)^{-}$， hence $\varphi\left(E_{i}\right)=\left\lceil x_{i}\right]$ by Lerma 3．3．Thus $\varphi(O)^{-}$is of finite dimension， hence \mathcal{O} is of finite dimension，a contradiction．

4．IRREDUCIBIE JW－AIGEBRAS

We shall now characterize the irreducible，reversible JW－algebras of type I ．

Lemma 4．1．Let $O\{$ be an irreducible，reversible JW－algebra of type I．If $\mathfrak{R}(O) \cap i \mathbb{R}(O 7)=\{0\}$ then there exists an orthonormal basis $\left(x_{e}\right)_{e \in I}$ for ∂ such that for all pairs x_{e}, x_{k} in the basis $\left(A x_{e}, x_{k}\right.$ ）is real for all $A \in \mathbb{R}(U D)$ 。

Proof．Let E be an Abelian projection in $O 7$ ．Then $E=\left[x_{1}\right]$ with x_{1} a unit vector in $\partial($ ，by Lemma 3．3．If $A \in R(C 7)$ then $E A E=\lambda E$ with λ real．In fact，if $\lambda=u+i v$ with u and v real and $v \neq 0$ then $i E=\frac{1}{v}(E A E-u E) \in \mathcal{R}(C O$ ，contradicting the fact that $\mathbb{K}(C 7) \cap$ i $\overparen{R}(C)=0$ 。 In particular，$\left(A x_{1}, x_{1}\right)=$ $\left(\left[x_{1}\right] A\left[x_{1}\right] x_{1}, x_{1}\right)=\lambda\left\|x_{1}\right\|^{2}$ is real for all A in $\& \mathcal{R}(O)$ ．Let $f=\left\{x_{1}, x_{2}, \ldots \quad\right\}$ be a maximal set of orthonormal vectors x_{e} in He such that

1）$\left[x_{e}\right] \in C, x_{e} \in J$
2）For each $x_{e} \in \zeta$ there exists $A_{e} \in \cap$ with $x_{e}=A_{e} x_{1}$ ．

Then for each $A \in\left\{(G), x_{e}, x_{k} \in J,\left(A x_{e}, x_{k}\right)=\left(A A_{e} x_{1}, A_{k} x_{1}\right)=\right.$ （ $A_{k} A A_{e} x_{1}, x_{1}$ ）is real by the preceding。 We show $[\mathcal{S}]=I$ ．Since $O T$ is weakly closed and each $\left[x_{e}\right] \in C,[J] \in O T$ ．Assume $[J] \neq I$ 。 Then there exists an Abelian projection E in $O[E \leqslant I-[J]$ 。 Let y be a unit vector in E ．By Lemma $3.3 E=[y]$ ．Moreover，there exists a（self－adjoint）unitary operator S in $O($ such that $S[y] S=$ $\left[x_{1}\right]\left(\left(6\right.\right.$, Corollary 17））．Then $z=[y] S=S\left[x_{1}\right]=[y] S\left[x_{1}\right] \neq 0$ 。 Let $T=[y] S\left[x_{1}\right]+\left[x_{1}\right] S[y]$ ．Then $T \in Q$ and $T x_{1}=z$ ，and $z \in[y] \leqslant I-[\mathcal{J}]$－This contradicts the maximality of $\mathcal{J},:[\mathcal{V}]=I$ ， the proof is complete．

Definition 4．2．Let $O($ be an irreducible，reversible JW－algebra acting on a Hilbert space Je ．We say Ol is the real sym－ metric operators in $\gamma_{3}(\mathscr{L})$ with respect to a basis $\left(x_{e}\right)_{e \in I}$ for ∂t if O consists of all self－adjoint operators such that $\left(A x_{e}, x_{k}\right)$ is
real for all x_{e}, x_{k} in the basis．$(G)(O)$ denotes all bounded operators on ∂t ）。

Theorem 4．3．Let $O l$ be an irreducible，reversible JW－alge－ bra of type I acting on a Hilbert space $\partial \mathrm{C}$ 。 Then

1）If $\mathbb{K}(01) \cap$ i $\mathbb{R}(O T) \neq\{0\}$ then $O\left(B(H)_{S A}\right.$ 。
2）If $R(C) \cap$ i $R(O)=\{0\}$ then $O($ is the real symmetric operators in $B(j \ell)$ with respect to a basis $\left(x_{e}\right)_{e \in I .}$ ．

Proof．By Theorem 2.4 and Lemma 4.1 it remains to show that in case 2）O consists of all self－adjoint operators such that $\left(A x x_{e}, x_{k}\right)$ is real for all X_{e}, x_{k} in the basis．Let A be a self－adjoint operator such that $\left(A x_{e}, x_{k}\right)$ is real for all X_{e}, x_{k} in the basis．Let E be a projec－ tion of the form $\sum_{i=1}^{n}\left[x_{e_{i}}\right], e_{i} \in I$ ．Then E is an n－dimensional pro－ jection in $C(C l e a r l y$ ，$E \subset C$ and is isomorphic to the real $n \times n$ symmetric matrices with respect to the basis $\left(x_{e_{i}}\right)_{i=1, \ldots, n}$ ．Thus $E A E \in C$ ．Since the net E_{n} of such projections converges strongly to I，$E_{n} A E_{n} \rightarrow A$ strongly Since $O T$ is strongly closed $A \in O$ ．The proof is complete．

The next result shows which 1－dimensional projections belong to Tl with $O l$ as in Theorem 4．3．It suffices to consider the case when $O \ell$ is the real symmetric operators with respect to a basis．Recall that a vec－ tor state $C N_{x}$ of $O T$ is a state of the form $A \rightarrow\left(A x_{1} x\right)$ 。

Theorem 4．4．Let Ω be the real symmetric operators in $\hat{B}(X)$ with respect to a basis $\left(x_{e}\right)_{e \in I}$ ．Let $x=\sum_{e \in I} \lambda_{e} x_{e}$ be a unit vector in $Z ?$ ．Then the following are equivalent．

1）$[x] \in C ?$
2）ω_{x} is a pure state on
3）$\lambda_{e} \bar{\lambda}_{k}$ is real for all $e, k \in I$ 。

Proof．Clearly 1）$\Rightarrow 2)$ ．Also 3$) \Rightarrow 1)$ since $\left([x] x_{e}, x_{k}\right)$ $=\bar{\lambda}_{\mathrm{e}} \lambda_{\mathrm{k}}$ is real for all e，k氏I implies $[\mathrm{x}] \in \mathrm{O}$ by Theorem 4．3．

Assume 2）．Let $\lambda_{e}=u_{e}+i v_{e}$ with u_{e}, v_{e} real．Then $\sum_{e \in I} u_{e}^{2}+\sum_{e \in I} v_{e}^{2}=\sum_{e \in I}\left|\lambda_{e}\right|^{2}=1$ ，so the vectors $y=\sum_{e \in I}^{-} u_{e} x_{e}$ and $z=\sum_{e \in I} v_{e} x_{e}$ have norms $\leqslant 1$ ．Moreover，by 3$) \Rightarrow 1$ ） $[y],[z] \in U$ ．Let $A \in M$ ．Then $C_{x}(A)=(A(y+i z), y+i z)=$ $\omega_{y}(A)+\omega_{z}(A)+i(A z, y)-i(A y, z)$ ．But $(A z, y)=(z, A y)$ is real，hence $(\mathrm{A} z, \mathrm{y})=(\mathrm{Ay}, \mathrm{z})$ ，because
$(A z, y)=\left(A \sum_{e \in I} u_{e} x_{e}, \sum_{k \in I} v_{k} x_{k}\right)=\sum_{e, k \in I} u_{e} v_{k}\left(A x_{e}, x_{k}\right)$
is real．Thus $\omega_{x}=\left(\omega_{y}+\left(\omega_{z}\right.\right.$ on $O\left(\right.$ ．Since ω_{x} is pure $\omega_{y}=k \omega_{z}, k$ a positive real number，unless $C_{z}=0$ or $\omega_{y}=0$ ， in which case we are through ．Since $[y],[z] \in O]$ it follows that $[y]=[z]$ ，and $y=\lambda z$ with λ a complex number．Thus $u_{e}=\lambda v_{e}$ ， and

$$
\lambda_{e} \bar{\lambda}_{k}=\left(\hat{\lambda}_{v_{e}}+i v_{e}\right)\left(\bar{\lambda}_{v_{k}}-i v_{k}\right)=v_{e} v_{k}(\lambda+i)(\bar{\lambda}-i)
$$

is real．Thus 2）\Rightarrow 3）．The proof is complete．
In particular we have shown

Corollary 4．5 Let O be the real symmetric operators in $B(H)$ with respect to a basis．Let $x \in \mathcal{H}$ ．Then $\omega_{x}=C \omega_{y}+C \omega_{z}$ on O ，where $C y_{y}$ and ω_{z} are pure states on $O T$ ．Moreover， $\|x\|^{2}=\|y\|^{2}+\|z\|^{2}$ 。

As for won Neumann algebras it seems that a good understanding of the cyclic projections will solve many of the problems of JW－algebras．How－ ever，while cyclic projections of the form $[O \mid x]$ with σ a won Neumann algebra belong to the commutant $O \eta^{!}$of O ，this is not so for JW－algebras．This even fails for reversible JW－factors of type I 。 However，we have

Theoreim 4.6 ．Let $O T$ be an irreducible，reversible JW－alge－ bra of type I acting on the Hilbert space \mathcal{H} ．If x is a non－zero vec－ tor in \mathcal{O} then $[T \mathrm{x}]=\mathrm{I}$ ．

For the proof we shall need

Lemma 407 ．Let O be a reversible JC－algebra．Let E be a projection in $O[$ and x a vector in $I-E$ ．If $[(O l) x]=I$ then $E \leqslant[O x]$ ．

Proof．Denote by $C \chi^{n}$ the uniformly closed self－adjoint linear space of operators generated by operators of the form $\prod_{i=1}^{n} A_{i}$ with $A_{i} \in Q$ ．Then $E\left[O^{n}\right]=E[O l x]$ for all $n=1,2, \ldots$ ．Indeed， since $E x=0, E \prod_{i=1}^{n} A_{i} x=\left(E \prod_{i=1}^{n} A_{i}+\prod_{i=n}^{1} A_{i} E\right) x \in[O X] \leqslant\left[O^{n} x\right]$ ．In particular，E maps $\left.[0]^{n}\right]$ into $\left.[0] x\right]$ ．Since $[(07) x]=I$ the projections $\left[\Pi^{n} x\right]$ converge strongly to I ．Thus $E\left[O^{n} x\right] \rightarrow E$ strongly，and $E[C x]=\lim E\left[O l_{x}\right]=E$ ，so $[G x] \geqslant E$ ．

Proof of Theorem 406。 If $O=B(H)_{S A}$ the theorem is clear．By Theorem 4.3 we may assume $O 7$ is the real symmetric operators in $\operatorname{BH}_{3}(\mathbb{y})$ with respect to a basis $\left(x_{e}\right)$ et I ．From the proof of Lemma 401 there exists $A_{e} \in O$ such that $x_{e}=A_{e} x_{1}$ for all ef \quad 。 Thus $\left[O x_{1}\right]=I$ ．Since x_{1} was any vector such that $\left[x_{1}\right] \in O$ ， it follows that $[O[x]=I$ whenever $[x] \in G$ 。 Let now x be any unit vector and assume $[x]$ 本 01 ．By Corollary 4.5 there exist vectors y and z with $\{y\},\lceil z\} \in O 7, x=y+i z,\|y\|^{2}+\|z\|^{2}=$ $\|x\|^{2}=1$ ，and $C_{x}=C_{y}^{j}+C_{z}$ on OT．Let $E=[y]+[z]$ ． Then $\mathcal{C}_{x}(E)=\mathcal{C}_{y}(E)+\mathcal{C}_{z}(E)=\|y\|^{2}+\|z\|^{2}=1$ ，and $x \in E$ ． The theorem is easily proved in case $\operatorname{dim} \mathcal{H}=2$ ．Therefore $[E O E x]=$ E ，hence $\lceil O \backslash x\rceil \geqslant E$ ．Assume now $[O i x] \neq I$ 。 Let $y \in I-[O T x]$ ． Then $y \in I-E$ 。Hence，by Lemma $407 \quad E \leqslant[G y]$ 。 In particular $x \in[O \mathrm{y}]$ ．Thus there exists $A, B \in \Pi$ such that $\|(A+i B) y-x\|<\frac{1}{2}$ 。 Then

- 13 -
$|((A+i B) y, x)-1|=|((A+i B) y-x, x)| \leq\|(A+i B) y-x\|<\frac{1}{2}$, and $(y,(A-i B) x)=((A+i B) y, x) \neq 0$, contrary to the assumption that $y \in I-[0 \mid x]$. Thus $[0 x]=I$, the proof is complete.

References

（（1））J。Dixmier：Les algèbres diopérateurs dans liespace hilbertien． Paris 1957.
（（2））E．Effros and E．Störmer：Jordan algebras of self－adjoint operators． To appear．
（（3））P。Jordan，Jo von Neumann，and E。Wigner：On an algebraic general－ ization of the quantum mechanical formalism．Annals of Math． 35 （1934），29－64。
（（4））D．Shale and W．F．Stinespring：States of the Clifford algebra． Annals of Math．80，No．2（1964），365－381．
（（5））E．Störmer：On the Jordan structure of C^{*}－algebras．To appear．
（（6））D．Topping：Jordan algebras of self－adjoint operators． To appear in Memoirs Amer．Math．Soc。

