Matematisk Seminar
Universitetet i Oslo

Nr。11
Oktober 1964

NOTE ON LIE ALGEBRAS

By

Jon Reed

All algebras considered will have a fixed field as scalars. By an associative algebra we will understand an algebra with the associative law of multiplication and a unit element 1 . A homomorphism between associative algebras is supposed to map 1 into 1 。

An associative algebra A may be considered as a Lie algebra with the commutator product $[x, y \underset{y}{y}=x y-y x ; x, y \in A$. When we speak of a homomorphism $O \rightarrow A$ from a Lie algebra of into A, we mean into A with this Lie algebra structure.

It is a consequence of the Poincarě-Birkhoff-Witt theorem that any Lie algebra \quad I is isomorphic to a Lie subalgebra of some associative algebra A - This implies that O has a faithful representation as a Lie algebra of linear transformations on a vector space, because the left regular representation of A, taking $a A$ into the linear transformation $x \longrightarrow a x$ of A, is faithful.

A universal enveloping algebra of O is defined to be a pair ($U, ~(X)$ consisting of an associative algebra U and a homomorphism $\alpha: O \longrightarrow U$ such that the following universal property is satisfied. If A is an associative algebra and $f: O H \longrightarrow A$ is a homomorphism, then there exists a unique homomorphism $f^{q}: U \rightarrow A$ such that the diagram

A universal enveloping algebra (U, \mathcal{X}) of O iss unique up to iso－ morphism．Furthermore it exists as a quotient of the tensor algebra T on the vector space O with respect to the ideal I generated by elements of the form $g g^{9}-g^{9} g-\mathbb{E} g g^{p} g$ ，where $g, g^{p} \in \mathcal{J}$ ．

Let $\left(g_{i}\right)_{i \in I}$ be a basis for the vector space $O \mathcal{O}$ ，where I is an ordinal．By a standard monomial of degree $p, p \geq 0$ ，we mean a monomial $g_{i_{1}} \ldots g_{i_{p}} \in T$ of basis elements in g such that $i_{1} \leq \ldots \leq i_{p}$ ，if $p>0$ and 1 if $p=0$ 。

Theorem．Poincaré－Birkhoff－Witt。 The costs of the standard monomials in T modulo I form a basis for the vector space U ．

The theorem may be formulated without reference to a basis in O by introducing the symmetric algebra on O ．As a corollary of the theorem $\propto: O j \longrightarrow U$ is injective．We identify $O \mathcal{\text { with the Lie subalgebra }}$ $\alpha(O)$ of U by means of the isomorphism \propto 。

I．A GENERALIZATION OF THE POINCARÉ－BIRKHOFF－WITT THEOREM

Let 9 and 7 be Lie algebras with subalgebias 90 and T_{0} respectively，and $\mathbb{O}: \mathcal{J}_{0} \rightarrow h_{0}$ an isomorphism．we define a free pro－ duct of O and h with identification Q to be a triple (T, α, β) consisting of a Lie algebra $7 R$ and homomorphisms $\alpha: O \mathcal{\longrightarrow} \longrightarrow 7$ and $\beta: 7 \longrightarrow 7 R$ such that the diagram

I

is commutative and such that the following universal property is satisfied. If R^{\prime} is a Lie algebra and $\alpha^{\prime}: \sigma \longrightarrow 7 R^{\prime}$ and $\beta^{\prime}: h \longrightarrow R^{\prime}$ are homomorphisms such that the corresponding diagram I^{q} commutes, then there exists a unique homomorphism $f: 7 \vee 7 R^{\prime}$ such that the diagram

II

commutes.

Proposition 1. A free product of or and 77 with identification $C D$ exists and is unique up to isomorphism.

Proof. The uniqueness follows from the universal property. To prove existence we proceed as follows. Let T be the tensor algebra on the vector space $\quad J+T$. Let I be the ideal in T generated by the elements of the form

$$
\begin{array}{ll}
g g^{p}-g^{q} g-g, g^{p}-q & g, g^{p} \in \mathcal{G} \\
h h^{q}-h^{q} h-\left(h, h^{p}\right] & h, h^{p} \in \mathcal{Y} \\
g-\varphi(g) & g \in \mathcal{Y}_{0}
\end{array}
$$

We obtain a quotient algebra $I=T / I$ and homomorphisms $\propto: ~ O G \rightarrow U$ and $\beta: T \rightarrow U$ 。 Let $7 R$ be the Lie subalgebra of U generated by $\alpha(g) \cup \beta(7)$. We have then homomorphisms $\alpha: \sigma \longrightarrow 7 R$ and $\beta: T h \longrightarrow 7 \%$ such that the diagram I commutes.

To prove that $(7 R, \alpha, \beta)$ satisfies the universal property of a free
product with identification, suppose $7 R^{\prime}$ is a Lie algebra and $\alpha^{\prime}: g \rightarrow R^{\prime}$ and $\beta^{\prime}: 7 \longrightarrow 7 R$ are homomorphisms making the corresponding diagrain I^{9} commutative. Let U^{8} be the universal enveloping algebra of $7 \chi^{\prime}$. $\alpha^{\prime}: g \rightarrow R^{\prime}$ and $\beta^{\prime}: 7 \rightarrow R^{\prime}$ extend to a linear map $o g+h \rightarrow R^{\prime}$ and therefore to a homomorphism $T \rightarrow U^{申}$ annihilating I. This gives a .. homomorphism f: $U \longrightarrow U^{9}$ such that the diagram

commutes.
f: $U \rightarrow U^{\natural}$ is a homomorphism of Lie algebras as well. $f^{-1}\left(K^{\prime}\right)$ is a Lie subaigebra of U containing $\alpha\left(\sigma_{j}\right) \cup \beta(h)$, hence containing $7 R$ 。 Therefore f gives by restriction a homomorphism $f: 7 R \longrightarrow 7 R$ such that the diagram II commutes.
since $\alpha(0) \omega \beta(h)$ generates T_{R} such an homomorphism f is unique. This proves the universal property of (k, α, β).

We write $J_{0} 7_{1}$ for the free product of O and h with identifiction \ominus_{1}. If in particular $\sigma_{0}=\bigcap_{0}=0$, we get the free product go 7 , and the diagram I reduces to a coproduct diagram.

Proposition 2. U is the universal enveloping algebra of its Lie subalgebra $0_{\varphi}^{0} 77$

Proof. $T_{R}=Y 0{ }_{\varphi} 7$ is a Lie subalgebra of $U=T / I$. Suppose A is an associative algebra and $f: Z \longrightarrow \longrightarrow A$ a homornorphism. The homomorphisms $f \alpha: \mathcal{O} \longrightarrow A$ and $f \beta: T_{2} \longrightarrow A$ extend to a linear map $\sigma+7 \longrightarrow A$ and from there to a homomorphism $T \rightarrow A$ annihilating I.

This gives a homomorphism $f^{p}: U \rightarrow A$ such that the diagram

commutes. From $f^{\gamma} \alpha=f \alpha$ and $f^{p} \beta=f \beta$ follows that $f^{\gamma}=f$ on $\alpha(0) \omega \beta(h)$, hence on 7 Q . Thus the diagram

commutes. $\quad j \cup 77$ generates T. Hence $\alpha(O) \cup \beta(h)$ generates U 。 Since $7 \geq \propto(g) \omega \beta(h), \quad R$ generates U and f° is uniquely determined by the fact that the last diagram is commutative.

Let $\left(g_{i}\right)_{i \in I}$ and $\left(h_{j}\right)_{j \in J}$ be bases for the vector spaces $O \mathcal{J}$ and
Th respectively with the following property I and J are ordinals, and there exists an ordinal $K \leqslant I, J$ such that $\left(g_{i}\right)_{i \in K}$ is a basis for Go, $\left(h_{j}\right)_{j \in K}$ is a basis for T_{0} and $h_{i}=Q\left(g_{i}\right)$ for all $i \in K$ 。 By a monomial of degree $p, p \geq 0$, we shall understand an element $\prod_{n=1}^{p} x_{n} \in T$ where each x_{n} is equal to one of the basis elements in of or 77 if $p>0$, and $1 \in T$ if $p=0$. The monomials form a basis for the vector space T.

The index L of a monomial $\prod_{n=1}^{p} x_{n}$ is defined as follows．If m, n is given with $1 \leq m \leq n \leq p$ we define $L_{m n}=1$ if one of the following cases occurs
a）$x_{m}=g_{i}, h_{i}$ and $x_{n}=g_{j}, h_{j}$ with $j<i, j \in K$ ．
b）$x_{m}=g_{i}$ and $x_{n}=g_{j}$ with $j<i$ ，and for all 1 such that $m \leq 1 \leq n$ we have $x_{1} \in O \longrightarrow 17_{0}$ 。
c）$x_{m}=h_{i}$ and $x_{n}=h_{j}$ with $j<i$ ，and for all 1 such that $m \leq 1 \leq n$ we have $x_{1} \in Y_{0} u 77$ ．

Otherwise we define $C_{m n}=0$ 。 Then $C=\sum_{m \leq n} C_{m n}$ ．This goes for $p>0$ ．For $p=0$ we put $C=0$ ．

A monomial $\prod_{n=1}^{p} x_{n}$ is called standard if $x_{n} \underset{\sim}{\frac{1}{4}} 𠃌_{0}$ for all n and $C=0$ 。

Theorem 3．The coset of the standard monomials in T modulo I form a basis for the vector space U ．

In the case $7=0$ this is the Poincaré－Birkhoff－Witt theorem for 9.

I emma 4 ．Every element in T is equal modulo I to a linear combination of standard monomials：

Proof．Let T_{p} be the subspace of T spanned by monomials of degree p ，and $T_{p s}$ the subspace of T spanned by monomials of degree p and index $\leq s$ ．Then we have a direct sum $T=\frac{1}{p \geq 0} T_{p}$ and for each p a finite filtration $\quad 0 \leq T_{p o} \subseteq T_{p 1} \quad \cdots \quad S_{p} T_{p}$

As an induction hypothesis suppose the lemma is true for elements in $\frac{1}{r<p} T_{r}+T_{p, s-1}$－Consider a monomial $\prod_{n=1}^{p} x_{n}$ in $T_{p s}$ ．We shall prove
that $\prod_{n=1}^{p} x_{n}$ is equal modulo I to a linear combination of standard monomials. Since $h_{i}=g_{i}$ modulo I if $i \in K$, we may assume $x_{n} \not \prod_{0}$ for all n .

If $s=0, \prod_{n=1}^{p} x_{n}$ is standard and we are finished. Suppose $s>0$ 。 Then there exists a q with $1 \leqslant q<p$ such that one of the following cases occurs.
A) $x_{q}=h_{i}, x_{q+1}=g_{j}$ with $j<i, j \in K$ 。
B) $x_{q}=g_{i}, x_{q+1}=g_{j}$ with $j<i$ or

$$
x_{q}=h_{i}, x_{q+1}=h_{j} \text { with } j<i \text {. }
$$

If we introduce the commutator product $\left\{x, x^{p}\right\}=x x^{q}-x^{p} x$ in T, we can write

$$
\prod_{n=1}^{p} x_{n}=x_{1} \ldots x_{q+1} x_{q} \ldots x_{p}+x_{1} \ldots\left\{x_{q}, x_{q+1}\right\} \ldots x_{p}
$$

The first term on the right hand side is in $T_{p, s-1}$, while the seccid term is equal modulo I to a linear combination of monomials in T_{p-1}. Therefore $\prod_{n=1}^{p} x_{n}$ is equal modulo I to a linear combination of standard monomials. Hence the lemma holds for elements in $\frac{1}{r<p} T_{r}+T_{p s}$, and by induction the lemma follows.

Let S be the subspace of T spanned by standard monomials.

Lemma 5 . There exists a linear map $f: T \rightarrow S$ which is the identity map on S and annihilates I.

Proof. I is the subspace of T spanned by elements of the form 1) $\quad x_{1} \ldots x_{p}-x_{1} \ldots x_{n+1} x_{n} \ldots x_{p}-x_{1} \ldots \sum_{n+1} x_{n} \ldots x_{p}$
where each x_{k} is a basis element in O or 77 and either $x_{n}, x_{n+1} \in \mathcal{O}$ or $x_{n}, x_{n+1} \in T$, and by elements of the form
2)

$$
x_{1} \ldots x_{p}-x_{1} \ldots x_{n}^{q} \ldots x_{p}
$$

where each x_{k} is a basis element in σ or 7 and $x_{n}=g_{i}, x_{n}^{p}=h_{i}$ with $i \in K$ 。

Assume as induction hypothesis that we have defined a linear map $f: \frac{1}{r} \frac{1}{p} T_{r}+T_{p, s-1} \rightarrow S$ such that f is the identity map on any standar monomial where f is defined, and f annihilates any element 1) or 2) where f is defined. Let $\prod_{n=1}^{p} x_{n}$ be a monomial in $T_{p s}$. Assume first $x_{n} \not T_{0}$ for all n 。 If $s=0$, the monomial is standard, and we define $f\left(T_{n=1}^{p} x_{n}\right)=\frac{p}{\prod_{n=1}} x_{n}$. Suppose $s>0$. Then there exists a q with $1 \leq q<p$ such that one of the cases A) or B) in the proof of Lemma 4, occurs.

$$
\begin{aligned}
& \text { In the case A) we have } x_{q} \in T_{1}, x_{q+1} \in G 0 \quad \text { and we define } \\
& \left.f_{q}\left(\prod_{n=1}^{p} x_{n}\right)=f\left(x_{1} \ldots x_{q+1} x_{q} \ldots x_{p}\right)+f\left(x_{1} \ldots x_{q}, q\left(x_{q+1}\right)\right] \ldots x_{p}\right)
\end{aligned}
$$

In the case B) we have $x_{q^{\prime}}, x_{q+1} \in O \mathcal{O}$ or $x_{q}, x_{q+1} \in \mathcal{R}$, and we define

$$
\left.f_{q}\left(\prod_{n=1}^{p} x_{n}\right)=f\left(x_{1} \ldots x_{q+1} x_{q} \ldots x_{p}\right)+f\left(x_{1} \ldots{ }_{q}, x_{q+1}\right] \ldots x_{p}\right)
$$

The two terms to which f is applied are in $T_{p, s-1}$ and T_{p-1} in both cases.

We prove next that $f_{q}\left(\prod_{n=1}^{p} x_{n}\right)$ is independent of the choice of q.

Suppose r is another possible choice in the sense that $1 \leq r<p$ and one of the cases A）or B）with r instead of q occurs．We may suppose $r>q$ 。 Assume first $r>q+1$ 。 Suppose we have the case B）both for q and r ．Then

$$
\begin{aligned}
& f_{q}\left(\prod_{n=1}^{p} x_{n}\right)=f\left(x_{1} \ldots x_{q+1} x_{q} \ldots x_{p}\right)+f\left(x_{1} \ldots\left[x_{q}, x_{q+1}\right] \cdots x_{p}\right)= \\
& f\left(x_{1} \ldots 0 x_{q+1} x_{q} \cdots x_{r+1} x_{r} \cdots x_{p}\right)+f\left(x_{1} \ldots 0 x_{q+1} x_{q} \ldots\left(\left[x_{r}, x_{r+1}\right] \ldots x_{p}\right)+\right. \\
& \left.f\left(x_{1} \propto \circ\left(\underline{q}, x_{q+1}\right] \ldots x_{r+1} x_{r} \ldots x_{p}\right)+f\left(x_{1} \ldots{ }^{T} x_{q}, x_{q+1}\right] \ldots\left(x_{r}, x_{r+1}\right] \ldots x_{p}\right)= \\
& f\left(x_{1} \nsim x_{r+1} x_{r} \ldots x_{p}\right)+f\left(x_{1} \ldots \infty\left[x_{r}, x_{r+1}\right] \ldots x_{p}\right)=f_{r}\left(\prod_{n=1}^{p} x_{n}\right)
\end{aligned}
$$

since f is linear and annihilates the elements 1）。 If we have the case A）for q or r ，then $f_{q}\left(\prod_{n=1}^{p} x_{n}\right)=f_{r}\left(\prod_{n=1}^{p} x_{n}\right)$ follows from what we just proved and the fact that f annihilates the elements 2）。

$$
\text { Assume } \mathrm{r}=\mathrm{q}+1 \text {. Suppose } \mathrm{x}_{\mathrm{q}}, \mathrm{x}_{\mathrm{q}+1}, \mathrm{x}_{\mathrm{q}+2} \text { are all in } \sigma \text { or all in }
$$ 7）．Then

$$
\begin{aligned}
& f_{q}\left(T_{n=1}^{p} x_{n}\right)=f\left(x_{1} \ldots x_{q+1} x_{q} x_{q+2} \ldots x_{p}\right)+f\left(x_{1} \ldots\left(\left[x_{q}, x_{q+1}\right]\right) x_{q+2} \ldots x_{p}\right) \\
& =f\left(x_{1} \ldots x_{q+2} x_{q+1} x_{q} \ldots x_{p}\right)+f\left(x_{1} \ldots\left(x_{q}, x_{q+1}\right) \cdot x_{q+2} \cdots x_{p}\right) \\
& +f\left(x_{1} \ldots x_{q+1}\left(\left[x_{q}, x_{q+2}\right] \ldots x_{p}\right)+f\left(x_{1} \ldots\left(x_{q+1}, x_{q+2}\right]\right) x_{q} \cdots x_{p}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.f_{r}\left(\prod_{n=1}^{p} x_{n}\right)=f\left(x_{1} \ldots x_{q} x_{q+2} x_{q+1} \ldots x_{p}\right)+f\left(x_{1} \ldots \circ x_{q}\left(x_{q+1}, x_{q}+2\right]\right) \ldots x_{p}\right) \\
& =f\left(x_{1} \ldots x_{q+2} x_{q+1} x_{q} \ldots x_{p}\right)+f\left(x_{1} \ldots x_{q} i\left[x_{q+1}, x_{q+\cdots}\right] \cdots x_{p}\right)
\end{aligned}
$$

$$
f\left(x_{1} \cdots:\left[x_{q}, x_{q+2}\right] x_{q+1} \cdots x_{p}\right)+f\left(x_{1} \cdots x_{q+2} \cdot\left\{_{x_{q}}, x_{q+1}\right] \cdots \cdots x_{p}\right)
$$

Therefore
$f_{q}\left(\prod_{n=1}^{p} x_{n}\right)-f_{r}\left(\prod_{n=1}^{p} x_{n}\right)=f\left(x_{1} \ldots\left\{\left[x_{q+1}, x_{q+2}\right], x_{q}\right\} \ldots x_{p}\right)$
$\left.+f\left(x_{1} \ldots\left\{x_{q+1},\left[x_{q}, x_{q+2}\right]\right\} \ldots x_{p}\right)+f\left(x_{1} \ldots \int\left\{x_{q}, x_{q+1}\right], x_{q+2}\right\} \ldots x_{p}\right)$
$=f\left(x_{1} \ldots\left[\left[x_{q+1}, x_{q+2}^{2} j, x_{q}\right] \ldots x_{p}\right)+f\left(x_{1} \circ\left[x_{q+1} ;\left[x_{q}, x_{q}+2\right]\right] \ldots x_{p}\right)\right.$
$+f\left(x_{1} \ldots\left[\left[x_{q}, x_{q+1}\right],, x_{q+2}\right] \ldots x_{p}\right)=0$

Hence $f_{q}\left(\prod_{n=1}^{p} x_{n}\right)=f_{r}\left(\prod_{n=1}^{p} x_{n}\right)$. The other possible cases are $x_{q} \in \rightarrow$, $x_{q+1}, x_{q+2} \in O \int_{0}$ or $x_{q}, x_{q+1} \in T, x_{q+2} \in \mathcal{C}_{0}$. Then we use the fact that f annihilates the elements 2), and get the same conclusion. This proves that $f_{q}\left(\prod_{n=1}^{p} x_{n}\right)$ is independent of q, and we define $f\left(\prod_{n=1}^{p} x_{n}\right)=f_{q}\left(\prod_{n=1}^{p} x_{n}\right) \quad$.

If $7_{n=1}^{p} x_{n}$ is any monomial in $T_{p s}$ we let $y_{n}=0_{1}^{-1}\left(x_{n}\right)$ if $x_{n} \in 7_{0}$ and $y_{n}=x_{n}$ otherwise. Then $\prod_{n=1}^{p} y_{n}$ is a monomial in $T_{p s}$ and $y_{n}{ }_{l}^{\prime} T_{0}$ for all n. We define $f\left(\prod_{n=1}^{p} x_{n}\right)=f\left(7_{n=1}^{p} y_{n}\right)$. Then extending by linearity we have defined f on $T_{p s}$, and therefore a linear map f: $\underset{r<p}{\frac{1}{1}} T_{r}+T_{p s} \rightarrow S$.

By definition f is still the identity map on standard monomials where it is defined, and it is clear that f annihilates elements 2) for which f is defined. Consider an element 1) for which f is defined. If $x_{n}=x_{n+1}$ the element is 0 . If $x_{n} \neq x_{n+1}$ the two monomials $x_{1} \ldots 0 x_{p}$
and $x_{1} \ldots x_{n+1} x_{n} \ldots x_{p}$ have different indices．If the indices are both $<s, f$ annihilates the element 1）by the induction hypothesis．We may therefore suppose that $x_{1} \ldots x_{p} \in T_{p s}$ and $x_{1} \ldots x_{n+1} x_{n} \ldots x_{p} \in T_{p s-1}$ 。 Then

$$
\begin{aligned}
& f\left(x_{1} \ldots x_{p}\right)=f_{n}\left(x_{1} \ldots x_{p}\right)=f\left(x_{1} \ldots x_{n+1} x_{n} \not \ldots x_{p}\right)+ \\
& f\left(x_{1} \not \ldots,\left[x_{n}, x_{n+1}\right] \cdots x_{p}\right)
\end{aligned}
$$

hence f annihilates the element 1）．Therefore f annihilates all elements 1）or 2）for which f is defined．

By induction the lemma follows．

Proof of theorem 3．The linear map $f: T \rightarrow S$ of lemma 5 induces a linear map $f^{p}: U \rightarrow S$ ，taking the coset modulo I of a standard monomial into the same standard monomial．The map $g^{8}: S \rightarrow U$ taking a standard monomial into its coset modulo I is surjective by lemma 4．Furthermore $f^{8} g^{8}=1$ ，hence g^{8} is injective．Thus g^{q} is an iso－ morphism with inverse f^{8} ，and g^{8} maps the basis in S of standard mono－ mials onto the basis in U of coset modulo I of standard monomials．

Corollary 6．Let $(7,2, B)$ be a free product of O and H_{1} with identification $\theta_{1}: ⿹_{0} \rightarrow h_{0}$ ．Then α and β are injec－ Live，and $\alpha(g)=\beta(h)$ if and only if $g \in G_{0}, h \in T_{0}$ and $h=O(g)$ 。

$$
\text { Proof. Let } \left.g=\sum_{i \in I} m_{i} g_{i} \in O \mathcal{A n d} h=\sum_{j \in J} n_{j} h_{j} \in T\right\urcorner
$$

Then

$$
\begin{aligned}
& \varnothing(g)=\sum_{i \in I} m_{i}\left(g_{i}+I\right) \\
& \beta(h)=\sum_{j \in K} n_{j}\left(g_{j}+I\right)+\sum_{j \in J-K} n_{j}\left(h_{j}+I\right)
\end{aligned}
$$

By theorem 3 we have therefore $\alpha(\mathrm{g}) \Rightarrow(\mathrm{h})$ if and only if $m_{i}=0$ for $i \in I-K, n_{j}=m_{j}$ for $j \in K$ ，and $n_{j}=0$ for $j \in J-K$ ，which is if and only if $g \in G J_{0}, h \in 7_{0}$ and $\rho(g)=h$ ．In particular α and β are injective。

By the isomorphisms α and β we identify g and 7 with the subalgebras $\alpha(G)$ and $\beta(T)$ of 72 。
 and $7 \ldots \neq$ ．

Proof．We let g be a basis element from OJ－Go and h a basis element from $17-7_{0}$ ．Then $g, h \in O O_{0} 77$ and consequently
$(\operatorname{adg})^{n}(h) \in \mathcal{O}_{Q} 77$ ．But we have

$$
(a d g)^{n}(h)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} g^{n-k_{h g^{k}}}
$$

where each $g^{n-k} h g^{k}$ is a standard monomial of degree $n+1$ ．If we let U_{p} be the subspace of U spanned by coset modulo I of standard mono－ mills of degree p ，then we have proved $y_{9} 7 \cap \cap U_{p} \neq 0$ for ail p 。 Hence of $\underset{\substack{0 \\ \hline}}{ } 77$ is infinite dimensional．

Corollary 8．Every subalgebra Goof a Lie algebra， 9 is the difference kernel of two homomorphisms of of．

Proof．We have only to put $77=0$ and $77_{0}=90$ with $Q_{1}: \mathcal{I}_{0} \rightarrow 77_{0}$ the identity 。 Then $\alpha, \beta: g_{1} \rightarrow g_{0}$ of are two homomorphisms such that $\{g \in \mathcal{G}: X(g)=\beta(g)\}=\mathcal{G}_{0}$, that is $\operatorname{ker}(\alpha-\beta)=90^{\circ}$

This means that the homomorphisms which are epic in the category of Lie algebras，that means cancels on the right in products of homomorphisms，are precisely the surjective homomorphisms．It is also true，but trivial，that the monic homomorphisms in the category are precis：ely the infective homo－ morphisms．

Ie mm a 1 ．There exist simple lie algebras of dimension greater than any given cardinal．

Proof．Let V be a vector space with $\operatorname{dim} V>1$ and let G be the Lie algebra of all endomorphisms of V with finite dimensional range and trace 0．Then dim by $\geq \operatorname{dim} V$ ．It is well known that O is simple if $\operatorname{dim} V$ is finite．

We shall prove that O is simple also if O is infinite．Let $x \in O \mathcal{H}, x \neq 0$ ．Let I be the ideal in $O H$ generated by x ．Suppose $I \neq Y$ ．We can then choose $y \in O \mathcal{I}$ ．\quad ．$m x+i m y$ is of finite dimension and has a suplementary subspace U of finite codimension in V 。 ger x and ger y are of finite codimension．Hence $W=k e r x \cap k e r y \cap U$ is of finite codimension and W has a suplementary subspace V_{0} of finite dimension such that $V_{0} \sqsupseteq i m x+i m y$ 。 We have then a direct sum decor－ position $V=V_{0}+W, V_{0}$ is invariant under x and y ，and $\operatorname{dim} V_{0}>1$ since y is not a scalar multiple of x 。

If Z is a set of endomorphisms of V we define $Z_{0}=$ $\left\{z / V_{0}: \quad z \in Z, z\left(V_{0}\right) \leq V_{0}\right.$ and $\left.z(W)=0\right\} \quad$ Then y_{0} is the Lie algebra of all endomorphisms of V_{0} of trace $0 . I_{0}$ is an ideal in 0 ， $x / V_{0} \in I_{0}$ and $y / V_{0} \mathcal{F}_{0}^{\frac{1}{2}}$ ．But this is a contradiction since $x / V_{0} \neq 0$ and M_{0} is known to be simple．Hence $I=G$ and G is simple．This proves the lemma．

Proposition 2 ．The category of Lie algebras over a given field has no injective object except 0 ．

Proof．Suppose \mathscr{y} is a non zero injective object．Let T be a simple Lie algebra with $\operatorname{dim} 77>\operatorname{dim} O$ ．Let 7_{0} be any 1－dimen－ sional subalgebra of 77 and $0: 7,0]$ a non zero homomorphism． Since O is injective \oint extends to a non zero homomorphism
$Y: 77 \rightarrow 0]$. Since 77 is simple er $Y=0$ and Y is an isomorphism into. But this is a contradiction since $\operatorname{dim} 77>\operatorname{dim}$ of. Hence the proposition follows.

On the other hand it is easy to prove that the projective Lie algebras are the free Lie algebras and their factors or equivalently the subalgebras with supplementary ideals in free Lie algebras.

References
N. Jacobson. Lie algebras.

