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INTRODUCTION

All algebras considered will have a fixed field as scalars..By an associative
algebra we will understand an algebra with the associative law of multiplica~
‘tion and a uﬁit element 1 . A homomorphism between associative algebras is
Supposed tomap 1 into 1 o

An associative algebra A may be considered as a Lie algebra with the
commutator product {x,yé} =xy -yx 3 x,yehA . When we speak of a homo-
morphism gj —>A from a Lie algebra gﬂ into A, we mean into A with
this Lie algebra structure.

It is a consequence of the Poincar&-Birkhoff-Witt theorem that any Lie
algebra 91 is isomorphiq to a Lie subalgebra ofvéoﬁé associative algebra
A, This-implies that gﬂ has a faithful representation as a Lie algebra
of linear transformations ocn a vector space, because the left regular repre-

sentation of A , taking a A into the linear transformation x ~—> ax

of A, is faithful.

A universal enveloping algebra of qq is defined to be a pair ' (U,™)
consisting of an associative algebra U and a homomorphism CK ¢ O —>U
<
such that the following universal property is satisfied. If A is an asso-

ciative algebra and f @ §j —> A 1is a homomorphism, then there exists a

?
unique homomorphism f ¢ U —>A such that the diagram

commutes.
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A universal enveloping algebra (U, ) of Cﬂ is unique up to iso-
morphisme Furthermore it exists as a quotient of the tensor algebra T on
the vector space (z} with respect to the ideal I generated by elements

? ? AL ?
of the form gg - g g - (i_\g,g 3 , where g,g € DJ .
4 .
Let (gi)iel be a basis for the vector space C‘)_’] , where I 1is an

ordinal. By a standard monomial of degree p , p20 , we mean a monomial

ese L1, if
b

g; £

i cee 8y € T of basis elements in (z‘] such that 1

1 P
p>0 and 1 if p=0.

Theorem. Poincaré-Birkhoff<Witt. The cosets of the standard

monomials in T modulo I form a basis for the vector space U .

The theorem may be formulated without reference to a basis in Cz] by
introducing the symmetric algebra on C:] « As a corollary of the theorem
X s CZ] — U is injective. We identify Oj with the Lie subalgebra

X (C}'J) of U by means of the isomorphism (X .

I. A GENERALIZATION OF THE POINCARE-BIRKHOFF-WITT THEOREM

Let OJ and 7’) be Lie algebras with subalgebias 210 and 770

respectively, and ClD : (2'{0 _>7qo an isomorphism. We define & free pro-

duct of O1 and W with identification & to be a triple (T‘q)m)/g)
3 x

consisting of a Lie algebra ‘]{ and homomorphisms ©X ¢ O:I -————)TQ and

/3 : R -——}-]2 such that the diagram

ho——-—>'f’v

[
0,

Iﬂ"
, v
O] a SN Y




-3 -

is commutative and such that the following universal property is satisiied,
[ | \
If KR is a Lie algebra and D(‘ : (3] ————>‘R and /3' : _h ——>TQ are
?
homomorphisms sush that the corresponding diagram I  commutes, then there

\
sxists a unique homomorphism f : 7:{ —%«1? such that the diagram

IT

—d

R T
f
o

\ \\ \

o =Sk

commutes.

Proposition 1. A free product of OV and 1N with
3

identification © exists and is unique up to isomorphisme.
1

Proof . The uniqueness follows from the universal property. To
prove existence we proceed as follows. Let T be the tensor algebra on the
vector space Cj + ‘l’) o Let I Dbe the ideal in T generated by the

elements of the form

? ? o v

g8 - g8 - fg.8 ) g:8 € of
v v T &Y ?

hh -hh- {bh | h,h € [

g—(,?(g) g € 0,

We obtain a quotient algebra U = T/I and homomorphisms © : Cz] —> U
and /b : Ty —> U . Let J]R be the Lie subalgebra of U generated by
O'\(Cz’]) L /5(7’)) « We have then homomorphisms QX O" —-—-“;—[’{ and
/}: T ———)»_‘27\ such that the diagram I commutes. N

To prove that ('lO\)Ov'\ )fg) satisfies the universal property of a free
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product with identification, suppose -{K‘ is a Lie algebra and (X'! g]——é.'!{‘
/:)) 1’) -—}1% are homomorphisms making the corresponding dlagram
I1P commutative. Let U be the universal enveloping algebra of -R .
X' ql -——%_R and /3': h ——{k‘ extend to a linear map Lz]-t-—h —~>7’2‘ ’
and therefore to a homomorphism T —> U' annihilating I . This gives a ..

?
homomorphism f ¢ U —=U such that the diagram

Vet
fv\ q A

commutes,

f: U ——}U' is a homomorphism of Lie algebras as well. a (_h’) is
a Lie subaigebra of U containing D((O") 9 /5(},) hence containing —IQ °
Therefore f gives by restriction a homomorphism f : 1‘?\ —-—é:':{ such
that the diagram IT commutes.

Since (O:]) u/S () generates -}? such an homomorphism f is
unique. This proves the universal property of (.R ﬁ)

We write (ﬂ o.h for the free product of OJ and ‘h wich identi-
fication ('D » If in particular O] = 7’)0 = 0, we get the free product

(3] 07’\ , and the diagram I reduces to a coproduct diagram.

Proposition 2. U is the universal enveloping algebra of

its Lie subalgebra (3 c?_]’)

Proof. "'{ = (z, SP'h is a Lie subalgebra of U = T/I . Suppose
A is an associative algebra and f : JR —>A a homomorphism. The homo-
morphisms f & : (3] —>A and f /_5 ¢ |9 —> A extend to a linear map

(_)J_+—h —> A and from there to a homomorphism T —»A annihilating I .
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) \
This gives a homomorphism f : U —=>A such that the diagram

9. . ? 9
commutes. From f L =f X and f /3 =f /A follows that f =f on

D‘\(g) LJ/A(]’\) ; hence on —{2 s Thus the diagram

f\f

‘I°\~f—\ A

commutes. Sjuh generates T . Hence ()/\(?]) u/l(—[")) generates U .
7
Since 1{ 3 V\(OJ) u/},(k) R 1’Q generates U and f is uniquely
determined by the fact that the last diagram is commutative.
Let (gi)iGI and (hj)j cg De bases for the vector spaces (2] and
'h respectively with the following property. I and J are ordinals,
and there exists an ordinal K€I,J such that’ (gi)i ¢k I8 abasis for
370 R (hj)jEK is a basis for 7’}0 and hi = (’5‘) (gi) for a}l i€k .
By a monomial of degree p , p20 , we shall understand an element

TT x € T where each X, is equal to one of the basis elements in Oj or

Ty if p>0, and 1€T if p =0 . The monomials form a basis for the

vector space T .
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The index (. of a monomial || X, is defined as follows. If m,n
n=1

is given with 1<¢m<n<p we define [ =1 if one of the following

cases occurs

— _ . . < - .
a) Xm = gi,hi and xn = gj,hj with j<i, JCK
b) x, = g &nd x = g; with j<i , and for all 1 such that

m£l<n we have x, € Cﬂu?’)oa

c) x, = h; and x = hj with j<i , and for all 1 such that

m&l<n we have x; G CﬁO U—h o

Otherwise we define (—mn = 0. Then ( = > Cmn . This goes
m<n
for p>0 . For p =0 we put ( = 0.

b l
A monomial nl :'1 x, is called standard if xnlé ']")o for all n and

( = 0.

Theorem 3. The cosets of the standard monomials in T modulo

I form a basis for the vector space U .

In the case 7") = 0 this is the Poincaré-Birkhoff-Witt theorem for

9]’ .

Lemma L4 . Every element in T is equal modulo I to a linear

combination of standard monomials.

Proof . Let T_ be the subspace of T spanned by monomials of
degree p , and Tps the subspace of T spanned by monomials of degree p

and index & s . Then we have a direct sum T = _| | Tp and for each
>
p20

o000 T L]
pl & P

As an induction hypothesis suppose the lemma is true for elements in

p a finite filtration OETPOQT

1%
%ijy Tr + Tp,s— " Consider a monomial Lj x,  in Tps o We shall prove
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p
that T X is equal modulo I to a linear combination of standard
n=1
monomials. Since hi =8 modulo I if i€ K , we may assume x %_7>]O

for all n .

s

If s=0, X, is standard and we are finished. Suppose s>0 .
n=1

Then there exists a q with 14q<€p such that one of the following cases

occurse.
A) X, = hi,xq+1 = &, with j<i , j€K »
B) Xq T 8 s Xguq T 8y with j<i or
X, = h, , Xq4q = hj with j<i o
If we introduce the commutator product {x,xq} = xx' - x'x in T,

we can write

1Y
t-r Xn = X1 coe Xq_'_,l Xq coo Xp + X1 coo Xq,xq_'_,]} coao Xp

The first term on the right hand side is in T s while the seccad term

pss—-1

is equal modulo I to a linear combination of monomials in T_, « There-

il

fore ' | X, is equal modulo I +to a linear combination of standard

n=1
monomials. Hence the lemma holds for elements in ’ , Tr + Tps , and by
r<p

induction the lemma follows.

Let S be the subspace of T spanned by standard monomials.

Lemma 5. There exists a linear map f ¢ T —>S which is the

identity map on S and annihilates I .

Proof. I is the subspace of T spanned by elements of the form

4 - eoco - coa "f:."" ?. ©o0a
1) x X - X X, X, = L Y %,

1)0.0 D 1 eo0o0 X

n+1
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where each x isa basis element in (3 or 1’) and either X%+ & %

or X% 41 < —h s, and by elements of the form

-

2) x,l eos xp—x,l eco xn coo xp

where each x

. 18 a basis element in ﬁ or jr’) and x_ =g

n

with i€K .
Assume as induction hypothesis that we have defined a linear map

£ _( l Tr + Tp 61 —»3 such that f is the identity map on any stan-
r p 4

dard monomial where f is defined, and f annihilates any element 1) or

p
2) where f is defined. Let 1 1 x be a monomial in T - Assume
n.:1 p
first X, ’C*, -ho for all n . If s =0, the monomial is standard, and
P p
we define f(T'T xn) =71 X e Suppose s>0 . Then there exists a g
n=1 n=1

with 1€ q<p such that one of the cases A) or B) in the proof of Lemma
L4, occurse.
In the case A) we have xq & ‘,‘T 5 xq+1 [ CZ]D and we define

T
q n=1

In the case B) we have XX ¢ (Z] Of X ,X 44 e M, and we define

b - _{
= oo0e coo so0e (¥ - N cee
fq(nlzl xn) f(x,I Xy41 % xp) + f(x,] (¥ q’xq+1 i xp)

The two terms to which f 1is applied are in Tp -1 and Tp ; in both
5 8~ -

casesSe

p
We prove next that fq(T[ xn) i1s independent of the choice of q »
n=1

b -
N A
— . \
T xn) = f(}c,I coo Xq+1 Xq oso xp) + f(x1 coo ‘:\_xq,(})(xqﬂ,_:_., ces X_)
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Suppose r 1is another possible choice in the sense that 1<r<p and one
of the cases A) or B) with r instead of q occurs. We may suppose
r>q o Assume first r>q + 1 . Suppose we have the case B) both for q

and r . Then

P : -~ -
fq(g xn) = f(x1ou'xq+1xq-oexp) + f(x1ooo‘LXq,Xq+1 J,’aooxp) =

f(x’l°°°xq+1xq"°xr+1xr°°'xp) + f(x‘l°°°Xq+1xq°°°(‘ﬁxr’xr+1 J,f-..xp) +

o ~ T - T .
/\ f.000 °o0 o0 LY ooo'// T eoo =
f(x1 oo . q’Xq+1;.l“ X, 1% xp) + f(x1 Xq’xq+1./’ i\_xr’xrﬂj Xp)

-

i p
V. |
,lxroeoxp) + f(x,‘ooc“'\".&r,xr_l_,l;} oooxp) = fr(T-T Xn>

T (x,I oo ‘oxr +
n=1

since f dis linear and annihilates the elements 1) » If we have the case
b p
A) for g or r,then f (T Tx)=7f (T x) follows from what we
Qp=1 1 =1 8
just proved and the fact that f annihilates the elements 2) .

Assume r =q + 1 . Suppose xq,x +1 ’Xq+2 are all in O\’l or all in

q
‘I') ° Then
fq(l‘:!] xn) = f(x1aooxq+1 Xq Xq+2900xp) + f(X,looo". Xq,Xq_'_,]]/!Xq_'_ZnooXp)

= f(x1».oxq+2 Xq+1 xq...xp) + f(x,le.e'.Cxq,xq+1],xq+2.anxp)
+ f(x1oooxc+1\6{q,xq+23 ooaxp) + f(x,loea'z Xq_’_,],:x:q_"_g,.xqoeoxp)

and

p - A\
fr(rg xn) = f(X,]o.qu -X-q+2 xq+,]oooxp) + f(X,]ooquf q‘xq_{_,]’xq_,_;;'eooxp)

= f(x1oooxq+2 Xq_'_,l quooxp) + f(X,]oooxq\(‘qu_,],Xq.l_,?} ‘oooxp)
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f(x 003 Qc +2-1 q+'l°"xp) + f(x,]oooxqﬂ_z’,@.q,xq_'_al,o-axp)

Therefore

, P P
fq(nT;T'] Xn) - fr(g xn) = f(x1ooc {{—-Xq*-’l ’Xq+2] ’Xq§ o“xp)

+

f(x,ln. 1 Zqe1? '{Xq’xq+2] }"”Xp) + f(x,I cao {'?gj;cq,xqﬂl ’Xq+2_7§ ..oxp)

i

f(x aek r\.q+‘l’ q+2 ,x ]x ) + f(x . ch+1‘ Exq’xq+2'-}:} o..xp)

+

f(X,loon [_C ’Xq_’*']-} +2},.ux)

Hence f (TT X ) =1 (ﬁ X ) » The other possible cases are xqé -1’\ s
n—‘l

Xq+1 s +2 & oj or x , X - C—h s Xq+2£ (_‘3%\0 Then we use the

fact that f annihilates the elements 2) , and get the same conclusion.

p
This proves that fq('{"f xn) is independent of gq , and we define

{
n=1 " Up=1
P . . R :
If “in:_|1 x,  is any monomial in Tps we let y = (? (xn) if
. p . 3 - T
X, 6—ho and y, =x  otherwise. Then 22[1 vy, 1isa mor.omial in o8
and y, é 7'] for all n . We define. f(l X, ) = £(7 [ ) o Then ex-
/ e n—1 n=1

tending by linearity we have defined f on Tps , and therefore a linear map

,_J_T+T—-)-S.

r<p

By definition f is still the identity map on standard monomials where
it is defined, and it is clear that f annihilates elements 2) for which
f is defined. Consider an element 1) for which f is defined. Ir

X =X the element is 0 . If x_ #x the two monomials X, eseX
n n+1] n n+1 1 D




- 11 =

and x X

1 coo n+1

< s , f annihilates the element 1) by the induction hypothesis. We may

X eee Xp have different indices. If the indices are both

ece o 0o @ o0 -T o
therefore suppose that  x, X, E‘Tps and X, X1 *n XpC: pe-1

Then

f(x,louexp) = fn(x,]uooexp) = f(x1noexn+1 Xnooaxp) +

f(x cos {% x +{) e, )

hence f annihilates the element 1) . Therefore f annihilates all
elements 1) or 2) for which f is defined.

By induction the lemma followss.

Proof of theorem 3. The linear map | f:@ T—S5 of
lemma 5 induces a linear map f? ¢t U-—S , taking the coset modulo I of
a standard monomial into the same standard monomial. The map g? : S —U
taking a standard monomial into its coset modulo I is surjective by lemma
L. Furthermore f'gg = 1 , hence gv is injective. Thus gY is an iso-

? ?
morphism with inverse f , and g maps the basis in S of standard mono-

mials onto the basis in U of cosets modulo I of standard monomials.

Corollary 6. Let (R, X .,?) be a free product of O1 and
+ v \.l

N with identification C? $ 0l —> 4 .« Then ™ and /2 are injec-
o

do
tive, and K (g) = (3(h) if and only if g € (_jJ ,,h & 770 a/;d h =) .
) ° T
Proof. Let = > ;;——- S
¢ 1(1 1 € J icd "33 77

Then

() = 7 my(g; + 1)
iel :

/ﬁ(h)::Zn(g +I)+ an(hj+l)

s€K 9 JEJ-K
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By theorem 3 we have therefore {4 (g) :-’il}(h) if and only if m, =0 for
i€el-X, n‘j = m.j for j&K , and n'j =0 for j€J - K, which is if and
only if gégja , h 67’70 and ({}(g)=h o In particular D’\and/ﬁ
are injective.,

By the isomorphisms NK and we identify g and 7"} with the

subalgebras V\(?J) and /5(7‘)) of 7Q .

Corollary 7. Czj?DTj i8 infinite dimensional ifﬁo#gj
and 7’70#77" l

Proof . Welet g bea basis element from O - go and h
a basis element from T7 - 713

« Then g;h ¢ E\] g -7 and consequently
(adg)(n) € ?j $ 7'} . But we have {

(adg)(8) = S (=D 2 g™ Hngt

=y

where each gn_'khgk is a standard monomial of degree n + 1 . If we let

U_ be the subspace of U spanned by cosets modulo I of standarc mono-
mials of degree p , then we have proved Cl'] o—h n Up #£0 for all p .
?

Hence Cﬁ c_h is infinite dimensional.
@
!

Corollary 8. Every subalgebra go of a Iie algebra S)j

is the difference kernel of two homomorphisms of E)J o

Proof. Wehave only to put [] = O] and '7‘7O= Of,, with

d{): CEI"’———}‘HO the identity. Then (X, : (\)j —_— 9?2‘3 % are two
homomorphisms such that '[gE g : X (g) =/3(g)} = ?70 , that is

ker(V-(}) = ﬁ‘o o

This means that the homomorphisms which are epic in the category of Lie
algebras, that means cencels on the right in products of homomorphiesms, are
precisely the surjective homomorphisms. It is also true, but trivial, that

the monic homomorphisms in the category are preci. ely the injective homo-

morphisms.
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IT. NON EXISTENCE OF INJECTIVE LIE ALGEBRAS

Lemma 1. There exist simple Iie algebras of dimension greater

than any given cardinal.

Proof. Let V bea vector space with dim V>1 and let (ﬂ be
the Lie algebra of a.ll éndomorphisms of V with finite dimensional range
and trace 0 . i‘l’ien dim Cj 2 d4im V it is well known that C_)J is simple
if dim V is finite.

We shall prove that 9—1 is simple also if (‘)j is infinite. Let
x 6?} , X#0 . Let I be the ideal in ?-J generated by x . Suppose
I# OJ . We can then choose y& Cﬂ—l . li_mx+imy is of finite
dimension and has a suplementary subspace U of finite codimension in V .
ker x and ker y are of finite codimension. Hence W = ker xnker ynU
is of finite codimension and W has a suplementary subspace VO of finite
dimension such that Vo dimx +imy « We have then a direct sum decom~
position V = Vo + W e VO is invariant under x and y , and dim VO>“I
since y 1s not a scalar multiple of x o

If Z is a set of endomorphisms of V we define ZO =
{:z/vO : 22, 2(V)CV  and 2(W) = oj Then  Of, is the Lic algebra
of all endomorphisms of V_ of trace 0 . I, is an ideal in g 5
X/Vo€ I, end y/VO% I . But this is a contradiction since x/VO £0
and 910 is known to be simple. Hence I = O] and 3—{ is sinpple. This

~—t

proves the lemma.

Proposition 2 . The category of lie algebras over a given

field has no injective object except O .

Proof . Suppose (Z] is a non zero injective object. Let _{') be

a simple Lie algebra with dim 17 > dim 0 . et T o be any 1-dimen-

sional subalgebra of ‘?") and (P : _h _ (Z’I a non gero homomorphisme
' o}

Since 9} is injective (D extends to a non zero homomorphism
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k%':-1'\ —> ?7 . Since ]?t is simple ker \%/ = 0 and \l- is an
isomorphism into. But this is a contradiction since dhnTW >dim ?j o
Hence the proposition follows.

On the other hand it is easy to prove that the projective Lie algebras
are the ffee Lie algebras and their factors or equivalently the subalgebras

L ,
with supplementary ideals in free Lie algebras.
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