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INTRODUCTION 

All algebras considered will have a fixed field as scalars. By an ~t~~~ 

algeb:ra we will understand an algebra with the associative law of multipJica-

tion and a unit element 1 • A homomorphism between associative algebras is 

supposed to map 1 into 1 • 

An associative algebra A may be considered as a Lie algebra with the 

commutator product ( 7\ 
x,y~ =xy-yx 

morphism ~ _:;;..A from a Lie algebra 

this Lie algebra structure. 

; x~y sA When we speak of a homo-

"1 into A , we mean into A with 
-.l 

It is a consequence of the Poincare-Birkhoff-Witt theorem that a"l.y Lie 

algebra ~ is isomorphic to a Lie subalgebra of some associative algebra 

A o This implies that ~ has a faithful representation as a Lie algebra 

of linear transformations on a vector space, because the left regular repre-

sentation of A , taking a A into the linear transformation x ~ ax 

of A , is faithful. 

A ~miversal enveloping algebra of ~ is defined to be a pair .· · (U, ()(.) 

consisting of an associative algebra U and a homomorphism ()( : 01. ~ U 
.._; 

such that the following universal property is satisfied. If A is an asso-

ciati ve algebra and f : ~ ~ A is a homomorphism, then there exists a 
y 

unique homomorphism f U ~A such that the diagram 

commutes. 
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A universal enveloping algebra ( U, ()( ) of (_J is unique up to iso-

morphism. Furthermore it exists as a quotient of the tensor algebra T on 

the vector space ~ with respect to the ideal I generated by elements 

1 I' - I'. 
of the form gg - g g - rt:g,g 1 I' 

where g,g E Cj . 
Let (gi) i ~ I be a basis for the vector space ~ , where I is an 

ordinal. By a standard. mono~ of degree p :J p ~ 0 , we mean a monomial 

g. ••a g. E T of basis elements in 
l1 lp 

<J such that i 1 C::: • .1 •. .C. ip , if 

p > 0 and 1 if p =:: 0 • 

Theorem. Poirtcare-Birkhoff~Witt. The cose~of the standard 

monomials in T modulo I form a basis for th~ vecto~ace U 

The theorem may be f~rmulated without reference to a basis in C~ by 

introducing the symmetric algebra on :J . As a corollary of the theorem 

o< : CJ --7 U is injective. We identify Oj with the Lie subalgebra 

oi ( ~) of U by means of the isomorphism iX • 

, 
I. A GENERALIZATION OF THE POINCARE-BIRKHOFF-WITT THE0RE}1 

Let ~ and l'J be Lie algebras with subalgeb:l.'as !:?Jo and 

respectively, and cp : 'j 0 --:> 11 0 an isomorphism. We define a. .free m-.:£­

.9-.J:lct of Oi and 
J 

h w..L th identification CO to be a triple ( T~ . ex_ i~) 
) )( l 

consisting uf a Lie algebra l~ and homomorphisms 

(!:> : "}, ~ l~ such that the diagrat-n 

I 

,f3 
C>( t 

-------:»l~ 

~ : Cj ----) l<.. ~d 



-· 3 -

is conunutative and such that the following universal property is satisl'ied. 

If R_1 is a Lie algebra and C>( 1 : ?] ~ l~1 and ;3' : n ~ l~1 are 
y 

homomorphisms such that the corresponding diagram I commutes, then there 

exists a unique homomorphism f : 1~ ~l~L such that the diagram 

II 
1~ <E 

I~, 
~ 

conunutes. 

P r o p o s i t i o n 1 • 

(b lt 

f 1;31 
ex' ,\ I 

>l~ 

A free product of 01 and l1 with 
- :::J 

identification cD exists and is ~~que up to isJmorQhism. 

P r o o f • The uniqueness follows from the universal property. To 

prove existence we proceed a.s follows. Let T be the tensor algebra on the 

vector space Let I be the ideal in T generated by the 

elements of the form 

I' ~ ''I; '1 i··· gg - g g - ! ~~g,g ·:.. 
v 

g,g E Cj 

I' I' 
i '-::-1 hh - h h - ;~ h,h l. h,h' E ll 

g - c.p (g) g E 61 ' ::j 0 

V\Je obtain a quotient algebra TT ;::: T/I and homomorphisms \>( : C) -?- U 

and p : l1 ~ U o Let l~ be the Lie subalgebra of U generated by 

cY,( ~) u ~n,) 0 vve have then homomorphisms t;<,: <:J ~ l'\ and 

p: l1 ~ l~ such that the diagram I conunutes. 

To prove that ( l'-\ )<Y, )r ) satisfies the universal property of a free 
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I I I 
product with identification, suppose 1-:z_ is a Lie algebra and ()( ! ~ ~ lq, 

are homomorphisms making the corresponding diagrmn and (1, 1 : l1 ----> l'\ 
t ,- v l~' 

I corrnnutative. Let U be the universal enveloping algebra of '-

' hi 0\ : ~ ~ r\ and 
l I 

(3> I : n '"""7-~ extend to a linear map '::J -t h -~ l~ 

' and therefore to a homomorphism T -> U annihilating I • This gives a __ 

' homomorphism f : U ~U such that the diagram 

·u < I) 11 I 

r~ f 1~' 
~ 

o<' ~ LJ' 

corrnnutes. 
y 

f U ~U is a homomorphism of Lie algebras as well. 

a Lie subalgebra of U containing C<, (C!j') lJ fCh) ~ hence contai~ing l~ " 
Therefore f gives by restriction a homomorphism f : l~ >l~ such 

that the diagram II commutes. 

Since ex_ (OJ) u ~ 01 ) generates "h: such an homomorphism f is 

uniquea This proves the universol property of 

We write :J ~ l'l for the free product of 

fication (!) • If in particular 01 = l1 = 
1 ~o o 

c~ IL><,r) • 

OJ and l1 wit,h identi-

0 , we get the free product 

~ 0 h ~ and the diagram I reduces to a coproduct diagram. 

P r o p o s i t i o n 2 o 

its Lie subalgebra 01 o l1 
- ...j f 

U is the universal envelo2ing ~~~~f 

P r o o f • T~ = C2J ~ l1 is a Lie subalgebra of U = T/I o Suppose 

A is an associative algebra and f : 1~ ~A a homomorphism. The homo­

morphisms f t( : ~ ~ A and f f : lJ. ~ A extend to a linear map 

~J + ll ----?A and from there to a homomorphism T ~A annihilating I • 
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v 
ThiliD gives a homomorphism f U ~A such that the diagram 

v <E {-4 

r~- f' 

':1 ft;t,. 

v 
commutes. From f l>( = f t>< and 

1>, ( ~) U fo ( 1'1) , hence on 1i. 

-h 

lFf 
~ 

>A 

v 
follows that f = f 

Thus the dia.gram 

on 

commutes. ~ u l1 generates 'r • Hence ()I, ( ~) Up (7'1) generates U • 

Since 1~ :J iA ( ~:J) U f (h) 1~ generates U and / is uniquely 

determined by the fact that the last diagram is cQmmutative. 

Let (gi )i ~I and (hj) j E J be baGeG for the vector spaces c:J and 

l1 respectively with the following property. I and J are ordinals, 

and there exists an ordinal K~ I,J such that (g)i € K is a basis f1r 

(hj) j E K is a basis for and h. = (!) (g.) 
l I l 

for all iE K • 

By a monomial of degree p , p t!. 0 , we shall understand an element 

where each x 
n 

is equal to one of the basis elements in ~ or 

1'1 if p > 0 , and 1 E T if p = 0 • The monomials form a basis for the 

vector space T • 
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_E.. 
The~ L of a monomial I J X 

n 
is defined as follows. If m,n 

n==1 

is given with 1-s;m~n~p we define L =: 1 if one of the following 
mn 

cases occurs 

a) and = g .,h. 
J J 

with j <'i , j E K o 

b) and x == g. with j < i , and for all 1 such thn.t 
n J 

we have x1 E: ~ t...t 7'1 0 • 

c) x :=: h. and x = h. with j<i , and for all 1 such that 
m ~ n J 

m ~l~n we have x1 E c:1 0 U l1 • 

Otherwise we define (_ = 0 
mn 

Then ( This goes 

for p> 0 • For p = 0 we put L = o. 
p 

A monomial -~-~ xn 
n=1 

is called standard if x E l·l for all n and 
n' o 

(_ = 0 • 

T h e o r e m 3 o The cosets of the standard monomials in T modulo 

I form a basis for the vector space U • 

In the case l~ = 0 this is the Poincare-Birkhoff-Witt theorem for 

L e m m a 4 . Every element in T is equal modulo I to a linear 

.£2lli£..ination of standard monomials o 

p r 0 0 f 0 Let T be the subspace of T spanned by monomials of p 

degree p , and T the subspace of T spanned by monomials of degree p ps 

and index t_ s 0 Then we have a direct sum T = _u T and for each 

p a finite filtration 0 ~T CT 1 po- p •• o <;;:;., T • 
p 

p?O p 

As an induction hypothesis suppose ·the lemma is true for elements in 

+ T 
p, s-1 Consider a monomial in T ps We shall prove 
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p 
that ~ ~ is equal modulo I 

n=1 
to a linear combination of standard 

monomials. Since h. = g. modulo 
l l 

I if iE K ~ we may assume x 4_ 7l 
n 1 o 

for all n • 

If , ,1;-
s = 0 I I 

n=1 
X 

n 
is standard and we are finished. Suppose s > 0 • 

Then there exists a q with 1 ~q-' p such that one of the following cases 

occurs. 

A) 

B) 

X 
q 

= h. , 
l 

h. ' l 

with j <..i ~ j E" K • 

g. 
J 

with j .Ci or 

= h. with 0 

J 

If we introduoe the commutator product { x,x w S 
we can 1rr.rite 

p 

Tl 
n=1 

X 
n 

' 9 = xx -xx in T :~ 

The first term on the right lnnd side is in T , while the secc1,d term p,s-1 , 

is equal modulo I 

p 

to a linear combination of monomials in T ~ • 
p~ j 

There-

fore nx is equal modulo I to a linear combination of standard 
n=1 n 

Hence the lemma holds for elements in ~ T + T , and by 
r ps monomials. 

r<:p 
induction the lemma follows. 

Let S be the oubsp<?cce of T spanned by standard monomials. 

Lemma 5 There exists a linear map f T ---:;:. S which is the 

identity map on S and annihilates I • 

P r o o f • I is the subspace of T spanned by elements of the form 
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where each is a basis element in and either 

or xn,xn+1 E l1 , and by elements of the form 

2) 
v 

x 1 ••• xp- x 1 ••• xn ooo X 
p 

' where each xk is a basis element in or and xn = gi , xn = hi 

with i E K • 

Assume as induction hypothesis that we have defined a linear map 

f : l I T + T 1 -----7S such that f is the identity map on any stan---.1.. r p s-
r P ' 

dard monomial where f is defined, and f annihilates any element 1) or 

p 
2) where f is defined. Let n X be a monomial in T Assume 

n=1 
n ps 

first xn dh 
I 0 

for all n • If s = 0 ' the monomial is standard, and 

p 
we define f(~ xn) 

n=1 

p 
-t -1 xn 
n=1 

Suppose s > 0 • Then there exists a q 

with 1{ q<p such that one of the cases A) or B) in the proof of Lemma 

4, occurs. 

In the case A) we have xq En, xq+1 ~ ~0 and we define 

p 
fen xn) 

q n=1 

In the case B) we have 

The two terms to which 

cases. 

We prove nex~ that 

f 

X X E 01 
q' q+1 :..J or x ,x +1 E l1 , and we define 

q q 

is applied are in T 
p,s-1 

and T 
p-1 

in both 

p 
f Cnx) 

q n=1 n 
is independent of the choice of q • 
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Suppose r is another possible choice in the sense that 1 < r < p and one 

of the cases A) or B) w~th r instead of q occurs. We may suppose 

r >q • Assume first r > q + 1 o Suppose we have the case B) both for q 

and r o Then 

f(x1 o o oX +1x • • oX +1x • o oX ) + f(x1 • o oX +1x o o o (l(x ,x 1 ~t • • oX ) + q q r r p q q L: r r+ - p 

since f is linear and annihilates the elements 1) If we have the case 

p p 
A) for q or r , then fq(11 ~) = fr(n xn) 

n=1 n=1 
follows from what we 

just proved and the fact that f annihilates the elements 2) • 

Assume r = q + 1 • Suppose x ~x +1 ~x +2 are all in q q q or all in 

p 
f (T-t xn) = f(x1 ••• x +1 X X +2 ••• x) + f(x1 •• J(x ,x + 1J:~x +2 ••• x) 
q n=1 q q q p . q q q p 

+ f(x1 0 0 oX +1 ( G: ,x +21 OQ .x ) + f(x1 0. 0 [ Gc +19x I ;x • 0 oX ) q q q ... p q q+2J q p 

and 

= f(x1 oooX +2 X +1 X oooX) + f(x1oooX ~(~ +19x 0 ) ·oooX) q q q p q .. q q+ . p 
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Therefore 

f (-h~ X ) - f ctl- X ) = f(x.1 o o o 1·. '=-y_ +1 ,x. + , ,x. 1 • • oX. ) q 1· n r _1 n t.: q q 2J q j p 
n= n-

o o oX ) 
p 

+ f(x1 •• o r (X ,x +1] . ,x +2] ••• x ) = o L q q .,.· q .· P 

p p 
Hence f en X ) = f en X ) • q 1. n r 1 n 

n= n= 
The other possible cases are x E l1 , q 

xq+1 , xq+2 E Cj 0 or xq , xq+1 E-l1 , xq+2 E CJ:'o . Then we use the 

fact that f annihilates the elements 2) , and get the same conclusion. 

p 
This proves that f err x > 

q n=1 n 
is independent of q , and we define 

f("jl X ) = f en X ) 
n=1 n q n=1 n 

If 
p 

1-r x 
n n=1 

is any monomial in T ps 
y = (b-1 (x ) 

n 1 n 
if 

p 
xn E. 11 0 and yn = xn otherwise. Then 1J yn is a mor ... omial in Tps 

p p 
and y E }1 for all n • We define, f(TT xn) = f(l-I yn) • Then ex-

n 1 o n=1 n=1 

tending by linearity we have defined f on T , and therefore a linear map ps 

f : l_l T + T -?S 
-r <p r ps 

By definition f is still the identity map on standard monomials where 

it is defined, snd it is clear that f annihilates elements 2) for which 

f is defined. Consider an element 1) for which f is defined. If 

the element is 0 0 If X op X 
n n+1 

the two monomials 
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and x1 ••• xn+1 xn ••• xp have different indices. If the indices are both 

< s , f ruu~ihilates the element 1) by the induction hypothesis. We m~y 

therefore suppose that x 1 ••• x ET P ps 
and x1 • o o xn+1 xn • • • x E T 1 o p Pf}-

Then 

hence f annihilates the element 1) • Therefore f annihilates all 

elements 1) or 2) for which f is defined. 

By induction the lemma follows. 

P r o o f o f t h e o r e m 3 o The linear map f : T ---;> S of 
v 

lerrn11a 5 induces a linear map f U --7 S 3 taking the coset modulo I of 
'i 

a standard monomial into the same standard monomial. The map g s~u 

taking a standard monomial into its coset mod~uo I is surjective by lemma 
'i 1' 'i 9 

4. Furthermore f g = 1 , hence g is injective. Thus g is an iso-
9 9 

morphism wi_tb inverse f and g maps the basis in S of standard mono-

mials onto the basis in U of cosets modulo I of standard monomials. 

c o r o l l a r y 6 0 ~t_(R ,IX.~) 
I •) 

11 wi.th identification <9 . 
~ ~lT . 

I tO 0 

tivei and O((g~ = ()Jh2 if and onlz if g E 
l 

be a_free product of 

• Then \;.( and f3c 

,_b_ E"" ho 7 
9Jo and 

P r o o f • Let g = L m.g. E 0:--{ 
iE I 1 1 _J 

and h = L n.h. 

Then 

!Y, (g) 

;3 (h) 

~ m.(g. +I) 
iE I 1 1 

L. n.(g. +I) + r n.(h. +I) 
j ~ K J J j E J-K J J 

jGJ J J 

01 and 
...j 

are injec--

h=~ 

Ell 

. 
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By theorem 3 we have therefore et-Jg) =4:;l/3f..h) if and only if m. = 0 for 
l 

n. = m. 
J J 

i EI - K , 

only if g E~o 
are injective. 

for 

' h 

j ~K , and n. = 0 for 
J 

E 11 and dJ (g) = h o 

o I 

j E J - K , which is if and 

In particular IX_ and f 
By the isomorphisms '\X. and f we identify 

Fen) of ~~ 0 

and with the 

subalgebras IX. ( Cj) and 

c o r o 1 l a r y 7 o 

and 11 i_ D . 
~ ~ f""l ~~s infinite dimensional if ~ 0 f. CJ 

I 

0 

P r o o f • We let g be a basis element from qj - r:J 0 and h 

a basis element from 11 - n Then 
b g,h E ~ g 71 and consequently 

(adg)n(h) c ':1 ~ 77 . But we have I 

= 

where each n-k k g hg is a standard monomial of degree n + 1 • If we let 

U be the subspace of U spanned by cosets modulo I of standarc mano­
p 

mials of dag.cee 

Hence c:J ~ l1 
r 

p , then we have proved 

is infinite dimensional. 

C o r o l l a r y 8 • Every subalgebra 

is the difference kernel of two homomor2hisms of 

P r o o f • We have only to put }J = ~ 

for all p • 

of a Lie algebrq. 

and 7·7 = ?1 wtth 
0 0 

(\): ~0~ 110 the identity. Then ()(,f.: ~ ~ C)g c:J are two 
I 

{gE ~: t)( (g) = j3Cg)} = ~ 0 ! that is homomorphisms such that 

ker(~(- f) = ZJ 0 • 

This means that the homomorphisms which are epic in the category of Lie 

algebras, that means cencels on the right in products of homomorphisms, are 

precisely the surjective homomorphisms. It is also true, but trivial, that 

the monic homomorphisms in the category are preci; ely the injective homo­

morphisms. 
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II. NON EXISTENCE OF INJECTIVE LIE ALGEBRAS 

Lemma 1 • There exist simple Lie algebras of dimension greater 

than any given cardinal. 

P r o o f • Let V be a vector space with d:tm V >1 and let ~ be 

the Lie algebra of all endomorphisms of V with finite dimensional range 

and trace 0 ' Then dim :j ~ dim V • It is well known that ~ is simple 

if dim V is finite. 

We shall prove that is simple also if C:J is infinite. Let 

x ~ 0 • Let I be the ideal in ~ generated by X • Suppose 
X E~ ' 

I~ ~. We can then choose Yt C?j- I • im x + im y is of finite 

dimension and has a suplementary subspace U of finite codimension in V • 

ker x and ker y are of finite codimensiono Hence W = ker x (I ker y n U 

is of finite codimension and W has a suplementary subspace v 
0 

of finite 

dimension such that V :1 im x + im y o We have then a direct sum decom-o-

position v = v + w 0 
0 

v 
0 

is invariant under x and y , and 

since y is not a scalar multiple of x o 

If Z is a set of endomorphisms of V wB define Z = 
0 

dimV>1 
0 

[z/V0 

of all endomorphisms of V 
0 

and z(W) = 0 ~ 
"" 

of trace 0 o 

Then c:J 0 is the Lie algebra 

I 0 is an ideal in :!J , 
x/V €. I and y /V J I • 

0 0 or 0 
But this is a contradiction since x/V ~ 0 

0 

and <.::J 0 is known to be simple. Hence I = ::J 
proves the lemma. 

and :)' is simple. This 

P r o p o s i t i o n 2 • The category of Lie algebras over a _given 

field has no in.iective object except 0 • 

P r o o f o Suppose <:::J is a non zero injective object. Let f1 be 

a simple Lie algebra with 

sional subalgebra of 11 
Since is injective 

dim l1 .> dim ':] • Let 11 0 be any 1-dimen­

and cp : l1 0 ---:> <:!j a non zero homomorphism .. 

CD extends to a non zero homomorphism 
\ 
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Since 1"'1: is simple ker \.!._..~ = 
t 

isomorphism into. But this is a contradiction since 

Hence the proposition followso 

0 and 'fr is an 

dim ll ->dim ~ 

On the other hand it is easy to prove that the projective Lie algebras 

are the free Lie algeb~as and their factors or equivalently the subalgebras 
I 

with supplementary ideals in free Lie algebras. 
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