```
Matematisk Seminar
Nr. 10
Universitetet i Oslo
September 1964
```

FROM THE THEORY OF JACOBIAN VARIETIES

By

Henrik H. Martens

1．INTRODUCTION

The theory of Jacobian varieties began with Riemann＇s recognition of the deep relations between a Riemann surface and the associated theta－functions． Our aim here is to review some of the principal results obtained by Riemann and to give an application which permits a generalization of Torelli ${ }^{8}$ s theorem．

We confine ourselves to the classical case，although many of the results can be obtained for Jacobian varieties over an arbitrary groundfield。 In particular，the results of section 2 are clearly quite independent of the groundfield。

We work with a closed Riemann surface of genus $g>1$ ．If $\alpha^{1}, \ldots \circ, \infty^{g}$ is a basis for the Abelian differentials of the first kind on X ，and $A_{1}, \ldots, A_{g}, B_{1}, \ldots, B_{g}$ is a canonical homology basis，we form a matrix $\left.\Omega=(\omega)_{j}^{i}\right)$ by setting

$$
\omega_{j}^{i}=\int_{A} \infty^{i} \quad \omega_{j+g}^{i}=\int_{B} \infty^{i}
$$

$i, j=1, \ldots, g$ ．$\quad \Omega$ is known as a period matrix of X 。 It is often convenient to write $\Omega=\left(\Omega_{1}, \Omega_{2}\right)$ where Ω_{i} is a gxg matrix．A standard result in the theory of Riemann surfaces is that $\Omega_{1}^{-1} \Omega_{2}$ is symmetric and has positive definite imaginary part．

The column vectors of S are linearly independent over the real num－ bers，and generate a properly discontinuous group of translations on \mathbb{C}^{g} ， which we denote by Ω^{*} ．The quotient space $\mathbb{C}^{g} / \Omega^{\frac{\pi}{7}}=J(X)$ is a repre－ sentation of the Jacobian variety of X ．There exists an imbedding $X \rightarrow J(X)$ given by
$u^{i}(Q)=\int_{P}^{Q} \alpha^{i}$
where P is a fixed reference point in X. It follows from Abel ${ }^{1}$ s theorem that this is an imbedding, and we denote by W^{1} the image of X under this map.

We denote by W^{r} the set of points representable as a sum of $\leq r$ points in W^{1}. An r-triple of points in W^{1} may also be identified with a divisor of degree r on X, and $A b e l^{i} s$ theorem asserts that two divisors of degree r are linearly equivalent if and only if they determine the same point in W^{r}. The solvability of the Jacobi inversion problem implies that $W^{G}=J(X)$ 。

If A and B are subsets of $J(X)$, we define for $a \in J(X)$

$$
\begin{aligned}
A_{a} & =\{u: u-a \in A\} \\
-A_{a} & =\left\{u:-u \in A_{a}\right\}
\end{aligned}
$$

$A \notin B=\{u: u=a+b, a \in A, b \in B\}$

$$
=\sum_{b \in B} A_{b}
$$

$A \Theta B=\prod_{b \in B} A-b \quad$.

We note that $u \in A \Theta B$ if and only if $B_{u} \subset A$ 。

2. COMBINATORIAL FORMULAE

Our object is to study certain combinational relations between the sets W^{r} and to indicate some applications to the theory of linear series on X.

Lemma 2.1 Let $u \in J(X), u \neq 0$ ．Then there is a unique posi－ tive integer $r \leqslant g$ ，such that $u \in W^{r}, u \not \mathbb{F}^{t}$ for $t \leq r$ ，and u is the image of a unique positive divisor of degree r ．

Proof：The first assertion is obvious．By Abel＇s theorem two positive divisors D_{1} and D_{2} of the same degree are linearly equivalent if and only if $\varphi\left(D_{1}\right)=\phi\left(D_{2}\right)$ ．Suppose $u=\varphi\left(D_{1}\right)=\phi\left(D_{2}\right)$ ，where $D_{1} \neq D_{2}$ ，and D_{1} and D_{2} are of degree r ．Then $D_{1} \sim D_{2}$ ，and there is a positive divisor D of degree $r-1$ such that $D_{1} \sim D+P$ 。 But then $u=Q^{(D)} \in W^{r-1}$ ．

The result may also be stated by saying that a point $u \in J(X)$ has a unique minimal representation of the form $u=w_{1}+\ldots+w_{r}$ ，where $w_{i} \in W^{1}$ ，and $r \leq g$ 。

We now introduce some notation．For subsets $A, B \subset J(X)$ we define A_{u} $-A_{u}, A \oplus B, A \ominus B$ by

$$
\begin{aligned}
& v \in A_{u} \Longleftrightarrow v-u \in A \\
& v \in-A_{u} \longleftrightarrow-v \in A_{u} \\
& A \oplus B=\prod_{b \in B} A_{b} \\
& A \in B=A_{b \in B} .
\end{aligned}
$$

and

It is immediate from the definition that $u \in A \Theta B$ iff $B_{u}[A$ ．We also observe that $A_{1} \subset A_{2}$ and $B_{1} \supset B_{2}$ imply $A_{1} \Theta B_{1} \subset A_{2} \Theta B_{2}$ 。

Lemma $2.2 \quad W^{g-1}=-W_{-}^{g-1}$ ，where $K=S p(Z)$ ，Z being a canon－ ical devisor on X ．

Proof：Given any positive divisor D of degree $g-1$ there exists a divisor D^{8} of degree $g-1$ such that $D+D^{8} \sim Z$ ．Hence
$\varphi(D)=-\left(\phi\left(D^{8}\right)-\varphi(Z)\right)$ ，and as the left hand side traverses W^{g-1} the right hand side traverses $-W_{-K}^{g-1}$ and conversely．

I emma 2.3 Let $0 \leqslant r \leq t \leq g-1$ ．Then
$W_{a}^{r} \subset W_{b}^{t} \Longleftrightarrow a \in W_{b}^{t-r}$.

Proof：The implication from right to left being trivial it suf－ fices to prove the implication from left to right．The inclusion $W_{a}^{r} \subset W_{b}^{t}$ means that for every positive divisor D of degree $\leq r$ there is a posi－ tive divisor $D{ }^{8}$ of degree $\leqslant t$ such that

$$
\Phi(D)+a-b=C D\left(D^{8}\right) .
$$

Setting $D=P$ ，we have $(a-b) \in W^{t}$ 。 Let A be the divisor of degree $s \leq t$ which corresponds to the unique minimal representation of $a-b$ 。 Suppose $s>t-r$ ．Since A is unique，$I(A)=1$ ，and by the Riemann－ Roch theorem there is a divisor D of degree $t-s+1 \leq r$ not contain－ ing P such that $I(A+D)=1$ ．By assumption $Q(A+D)=\mathcal{Q}(D)+a-b \in W^{t}$ 。 Since $D+A$ is of degree $t+1$ ，we must have $D+A \sim D^{\gamma}+P$ ，where D^{8} is of degree t ．But P does not occur on the left，hence $I(D+A)>1$ 。 This is a contradiction．It follows that $s \leq t-r$ ，i．e．$\varphi(A)=$ $a-b \in W^{t-r}$ ，and the theorem follows．

Corollary 1．Let $0 \leq r \leq t \leq g-1$ ．Then

$$
w_{a}^{t} \Theta w_{b}^{r}=W_{a-b}^{t-r}
$$

Proof：$u \in W_{a}^{t} \ominus W_{b}^{r}$ if and only if $W_{b+u}^{r} C_{a}^{t}$ ，i．e．if and only if $u \in W_{a-b}^{t-r}$ ．

$$
\begin{aligned}
& \text { Corollary 2. Let } 0 \leqslant r \leqslant g-1 \text {. Then } \\
& -w_{a}^{g-1} \Theta w_{b}^{r}=W_{-a-b-K}^{g-1-r} \\
& \text { Proof: }-W_{a}^{g-1}=\left(-W^{g-1}\right)_{-a}=W_{-a-K^{g}}^{g-1} \\
& \text { Corollary 3. Let } 0 \leq r \leq g-1 \text {. Then } \\
& w_{a}^{g-1} \Theta\left(-w_{b}^{r}\right)=-w_{-a-b-K}^{g-1-r} \\
& \text { Proof: } W_{a}^{g-1} \Theta\left(-W_{b}^{r}\right)=\prod_{u \in W_{b}^{r}} W_{a+u}^{g-1} \\
& =-\prod_{u \in W_{b}^{r}}\left(-W_{a}^{g-1}\right)_{-u} \\
& =-\left\{-w_{a}^{g-1} \Theta w_{b}^{r}\right\}
\end{aligned}
$$

Corollary 4. Let $0 \leqslant r \leqslant t \leqslant g-1$. Then
$-W_{a}^{r} \subset W_{b}^{t} \Longleftrightarrow-W_{-b}^{g-1-t} \complement_{-a-K}^{W_{-}^{g-1-r}}$

Proof: If $-W_{a}^{r} \subset W_{b}^{t}$ then $W^{g-1} \Theta W_{b}^{t} \subset W^{g-1} \Theta\left(-W_{a}^{r}\right)$, and the corollary follows from corollaries 1 and 3.

Corollary 4 has an interesting interpretation. An inclusion of the form $-W_{a}^{r} \subset W^{t}$ means that for every positive divisor D of degree r there is a positive divisor D^{8} of degree t such that $\left.-\Phi(D)-a=\Phi P_{1}^{q}\right)$, or

$$
-a=\varphi\left(D+D^{p}\right)
$$

This again means that $-a$ is representable by a positive divisor of degree $r+t$ and dimension $r+1$. The corollary then states that $K-(-a)$ is representable by a positive divisor of degree $2 g-2-(r+t)$ and dimension $g-t$. This is an expression for the Brill-Nöther reciprocity theorem, which is equivalent to a restricted form of the Riemann-Roch theorem. Thus Lemma 3 may be regarded as a combinatorial version of the latter.

We now turn to some intersection properties of the sets W^{5}. Consider first an intersection $W_{a}^{r} \cap-W_{b}^{t}$. If u is a point of the intersection, there are positive divisors D and D^{β} of degree r and t such that

$$
u=\mathscr{\rho}(D)+a=-\varphi\left(D^{p}\right)-b
$$

Serve $\left(P(D+I)^{\prime}\right)=-(a+b)$. The divisor $D+D^{\prime}$ has degree $r+t$,

$$
u_{1}=\varphi\left(D_{1}\right)+s-\varphi\left(L_{1}^{1}\right)-b
$$

where u_{1} is another foivat in the intersection. Hence, if $-(a+b)$ is uniquely representable as the image of a divisor of degree $r+t$, then the intersection $W_{a}^{r} \cap-W_{b}^{t}$ contains $\binom{r+t}{r}$ points (counting multiplicities), $u_{1}, u_{2}, \cdots u_{\binom{r+t}{r}}$, and

$$
\sum u_{i}=-\binom{r+t-1}{r-1}(a+b)
$$

If the representation of $-(a+b)$ as the image of a positive divisor of degree $r+t$ is not unique, then $I\left(D+D^{p}\right)>1$, and for every $Q \in X$ there is a divisor D_{1} of degree $r+t-1$ such that $D+D^{p} \sim Q+D_{1}$ In this case the intersection will contain sets of dimension ≥ 1.

Lemma 2.4 Let $1 \leq r \leq g-1$ ．Then the intersection $W^{r} \cap-W_{b}^{g-r}$ is non－empty，and，if proper y_{2} consists of a discrete set of points $u_{1} \ldots, u_{s}$ with multiplicities $m_{1, \ldots, m_{s} \text { such that }}$

$$
\sum m_{i}=\binom{g}{r} \quad \text { and } \quad \sum m_{i} u_{i}=-\binom{g-1}{r-1}(a+b) .
$$

The proof is immediate from the preceding considerations，observing that $-(a+b)$ can always be represented as the image of a divisor of de－ gree g 。

Lemma 2.5 Let $1 \leqslant r \leqslant g-1$ ．Then the intersection $W^{1} \cap-W^{r}$ is either equal to W^{1} ，or else consists of a discrete set of points $u_{1} \ldots .0 . u_{s}$ with multiplicities $m_{1} \ldots .$. $\sum m_{i}=r+1, \sum m_{i} u_{i}=-(a+b)$.

The proof is again immediate，except for the observation that if $-(a+b)$ is not uniquely representable as a divisor of degree $r+1$ ， then it is representable as a divisor of degree $r+1$ and dimension >1 。 By the remarks following lemma 3，corollary 4，we then have $W_{a}^{1} C-W_{b}^{r}$ ．

We next turn to intersections of the form $W_{a}^{r+1} \cap W_{b}^{t}$ ．These are in general difficult to get explicitly，but we can get some information in a special case．Suppose $1 \leq r<t \leq g-1$ 。 If $W_{a}^{r+1} \not \subset W_{b}^{t}$ ，the intersec－ tion should be of dimension $\leq r$ 。We shall now assume that $W_{c}^{r} \subset W_{a}^{r+1} \cap W_{b}^{t}$ ，for some c 。 Then，by lemma 3，$c \in W_{a}^{1} \cap W_{b}^{t-r}$ ，ioe． $c=a+x=b+y, x \in W^{1}, y \in W^{t-r}$.

Lemma 2.6 Let $x \in W^{1}, y \in W^{t-r}$ ．Then either

$W_{a}^{r+1} \subset W_{a+x+y-2}^{t}$ or else

$$
w_{a}^{r+1} \cap w_{a+x-y}^{t}=w_{a+x}^{r} \cup S
$$

where $\quad S=W_{a}^{r+1} \Gamma\left(W_{a-y}^{t} \Theta\left(-W^{1}\right)\right)$ 。
It should be observed that S does not depend on x 。
Proof：It is clear from lemma 3 that W_{a+x}^{r} is contained in the intersection．Suppose now that $u \in W_{a}^{r+1} \cap W_{a+x-y}^{t}$ 。 We may then write

$$
u=w_{1}+a=w_{2}+a+x-y
$$

with $w_{1} \in W^{r+1}, w_{2} \in W^{t}$ and

$$
w_{1}+y=w_{2}+x
$$

Each side of the last equation may be represented as a sum of $t+1$ points in W^{1} ．If this representation is unique，we find that $x \in W^{1}$ must occur as a summand on the left．If x occurs in the representation of $y, y \in W_{x}^{t-r-1}$ ，whence $a \in W_{a+x-y}^{t-r-1}$ and $W_{a}^{r+1} \sqsubset W_{a+x-y}^{t}$ ．If x occurs in the representation of w_{1} ，then $w_{1} \in W_{x}^{r}$ and $u \in W_{a+x}^{r}$ ．

Hence，if $W_{a}^{r+1} \frac{1}{T} W_{a+x-y}^{t}$ ，and if $u \in W_{a}^{r+1} \cap W_{a+x-y}^{t}$ ，$u \notin W_{a+x}^{r}$ ，then the representation of $w_{1}+y$ as the image of a divisor of degree $t+1$ is not unique．This means that $-W_{-W_{1}-y}^{1} \subset W^{t}$ or $W_{1}+y \in W^{t} \Theta\left(-W^{1}\right)$ ， whence

$$
u=w_{1}+y-y+a \in W_{a-y}^{t} \Theta\left(-W^{1}\right)
$$

On the other hand it is easily seen that $w_{a-y}^{t} \Theta\left(-w^{1}\right) \subset w_{a+x-y}^{t}$.
FoSeveri（ 7 ，p．380））shows that a special linear series of de－ gree n and dimension $r+1$ idepends on $(r+1)(n-r)-r g$ parametersio． We may interpret this geometrically by observing that a is the image of a divisor of degree $r+t$ and dimension $r+1$ if and only if $-W_{-a}^{r} \subset W^{t}$ ， or，equivalently，if and only if $a \in W^{t} \Theta\left(-W^{r}\right)$ ．Thus the set $W^{t} \Theta\left(-W^{r}\right)$
represents the set of linear series of degree $r+t$ and dimension $r+1$ 。 Consider first the case $r=1$ 。 By lemma 6 we have for $u, v \in W^{1}$

$$
W_{u}^{t} \cap W_{v}^{t}=W_{u+v}^{t-1} \cup\left\{W^{t} \Theta\left(-W^{1}\right)\right\}
$$

Clearly，$W^{t} \Theta\left(-W^{1}\right) \frac{1}{L} W_{u+v}^{t-1}$ for arbitrary $u, v \in W^{1}$ ，and it follows that it occurs as separate components of $W_{u}^{t} \cap W_{V}^{t}$ 。 Hence it has dimension $\geq 2 t-\mathrm{g}$ 。 This number agrees with Severi＇s formula

Next，consider the intersection

$$
\left\{W^{t} \Theta\left(-w^{r}\right)\right\} \cap W_{w}^{t}
$$

with $w \in W^{+1}$ ．Let u be a point of the intersection．Then

$$
u=w_{1}+w=w_{2}+v_{1}+\ldots+v_{r}
$$

where the v_{i} are arbitrarily chosen points in W^{1}, w_{1} and w_{2} are points in W^{t} 。

Since $w \in W^{r+1}$ ，we can select the v_{i} such that $w=v_{1}+\ldots+v_{r}+x$ ， $x \in W^{1}$ ．Then

$$
w_{1}+x=w_{2}
$$

Hence，either x occurs in the representation of w_{2} as a sum of t points in W^{1} ，or else $w_{2} \in W^{t} \Theta\left(-W^{1}\right)$ ．In the former case we have $w_{1} \in W^{t-1}$ 。 Hence，if $w_{1} \frac{1}{4} W^{t-1}$ ，then $w_{2} \in W^{t} \Theta\left(-W^{1}\right)$ ，and $u-\left(v_{1}+\ldots+v_{r}\right) W^{t} \Theta\left(-W^{1}\right)$ for all ratuples of points $v_{i} \in W^{1}$ ．Hence $u \in W^{t} \Theta\left(-W^{r+1}\right)$ ．In other words，if $u \in\left\{W^{t} \Theta\left(-W^{r}\right)\right\} \cap W_{W}^{t}$ then either $u \in W_{W}^{t-1}$ or else $u \in W^{t} \Theta\left(-W^{r+1}\right)$ ．However，$W^{t} \Theta\left(-W^{r+1}\right)$ cannot be included in W_{W}^{t-1} for
arbitrary $w \in W^{r+1}$ ．Hence $W^{t} \Theta\left(-W^{r+1}\right)$ must occur in separate com－ ponents of $\left\{W^{t} \Theta\left(-W^{r}\right)\right\} \cap W_{W}^{t}$ ．Hence its dimension must be greater than

$$
\operatorname{dim}\left(W^{t} \Theta\left(-W^{r}\right)\right)+t-g,
$$

and，inductively，

$$
\operatorname{dim}\left(W^{t} \Theta\left(-W^{r}\right)\right) \geq(r+1) t-r g,
$$

provided $W^{t} \Theta\left(-W^{r}\right) \neq \varnothing$ 。 This agrees with Severi${ }^{\gamma}$ s formula，and the re－ sult is not restricted to characteristic zero．We have of course not estab－ lished that $W^{t} \Theta\left(-W^{r}\right) \neq \varnothing$ when $(r+1) t-r g \geq 0$ 。 A result of this kind is apparently established for the classical case in a paper by Meis．

3．MULTIPLICATIVE FUNCTIONS

Let S be a subset or $J(X)$ ，and let $\Omega=\left(\omega_{k}^{j}\right)$ be a period matrix of $J(X)$ formed with a canonical homology basis of X 。 Let $\Lambda=\left(\lambda_{k}^{j}\right)$ be a $\mathrm{g} \times 2 \mathrm{~g}$ matrix，and let γ be a column vector with components $\gamma^{1}, \cdots, K^{2 g}$ ．

A holomorphic function， \mathbb{Q} ，on \mathbb{C}^{g} will be said to be multiplica－ tive of type (Λ, γ) over S relative to Ω provided
（3．1）$\Phi_{1}\left(u+\omega_{h}\right)=\Phi(u) \exp \left(2 \pi i\left({ }^{t} \lambda_{h} u+\gamma^{h}\right)\right)$
for every u lying over S ．From this definition it is clear that if vanishes at some point lying over a point $s \in S$ ，then it vanishes at all points lying over s．

Lemma 3.1 Let P be multiplicative of type (Λ, γ) over $J(X)$. Let $\partial_{1}, \ldots, \partial_{r}$ be first order partial differential operators on \int^{g}. Then $\partial_{1} \ldots \partial_{r} Q$ is multiplicative of type (Λ, γ) over the (projection of the) common zeros of $\Phi, \partial_{j} \Phi, \partial_{j c} c_{k} \Phi, \ldots, \partial_{1} \ldots \partial_{j} \ldots \partial_{r} \Phi$ 。 (Here $\hat{\imath}$ means that the operator ∂_{j} is to be deleted, as usual.)

Proof: This follows immediately upon differentiation of the defining relation.

Lemma 3.2 Let W^{1} be the canonically imbedded image of X in $J(X)$ - To every point $W \in W^{1}$ there corresponds a first order partial differential operator, $\partial \mathrm{w}$ on \int^{g} with the following properties:

1. If C_{1} vanishes identically over W_{a}^{1} and $\partial{ }_{w} \frac{Q}{1}$ is multiplicative of type (Λ, γ) over W_{a}^{1}, then $\partial{ }_{w}(\mathbb{1}$ has a zero over $a+w$.
2. In any neighborhood of any point of W^{1} there exist g points, w_{1}, \ldots, w_{g} of W^{1} such that the operators $\left\{\partial_{w_{j}}\right\}$ form a basis for the first order partial differential operators on \mathbb{C}^{g}.

Proof: Define $\partial_{w}=\sum \frac{d u^{j}}{d z}(w) \frac{\partial}{\partial u^{j}}$, where $\frac{d u^{j}}{d z}(w)$ is the value of the derivative of the j th component of the imbedding function, taken with respect to a local coordinate, z , on W^{1}, and evaluated at w. This defines ∂_{w} up to a constant factor depending on the local coordinate.

If Q vanishes over W_{a}^{1}, then its derivative with respect to a local coordinate on W_{a}^{1} vanishes, i.e.

$$
\sum \frac{\partial \varphi}{\partial u^{j}} \frac{d u^{j}}{d z}=0
$$

But at the point $w+a \in W_{a}^{1}$ this condition simply says that $\partial_{w} \Phi$ vanishes. This establishes (1) 。

To obtain (2) we observe that $\left\{\partial_{W_{j}}\right\}$ will form a basis for the
partial differential operators of the first order whenever the matrix $\left(\frac{d u^{j}}{d z}\left(w_{k}\right)\right)$ is non-singular. Since the $d u^{j}$ form a basis for the Abelian differentials of the first kind on W^{1}, this matrix will be non-singular for almost all g-tuples of points on W^{1}. This completes the proof of lenma 3.2.

We shall now assume that \oint is a given holomorphic function, multiplicative of type (Λ, γ) over a set $S \sqsubset J(X)$ 。Our object is to study the zeros induced by φ on some $W_{a}^{1} C s$. We first show that if φ does not vanish identically over W_{a}^{1}, then it induces q zeros on W_{a}^{1}, counting multiplicities, where q depends only on Λ and Ω.

To that end we represent X by a fundamental polygon with sides (in order) $A_{1}, B_{1},-A_{1},-B_{1}, \ldots, A_{g}, B_{g},-A_{g},-B_{g}$ where $\left(A_{1}, \ldots, A_{g}\right.$, B_{1}, \ldots, B_{g}) forms a canonical homology basis on X.

Using the canonical mapping $\mathrm{X} \rightarrow \mathrm{W}_{\mathrm{a}}^{1}$, we can pull a single-valued branch of Φ back on the polygon and study its zeros. The number of zeros is obtained by evaluating the integral of the logarithmic derivative of φ around the polygon. We observe that as we traverse A_{h} the point u goes into $u+\omega_{h}$, and as we traverse B_{h} the point u goes into $u+\omega_{g+h}$. Hence, for the number of zeros of Q over W we get

$$
q=\frac{1}{2 \pi i} \sum_{h}\left\{\int_{A_{h}}\left(\frac{d Q_{Q}}{Q}(u)-\frac{d \Phi}{\phi}\left(u+\omega_{g}+h\right)\right)+\int_{B_{h}}\left(\frac{d \Phi}{\varphi}\left(u+\omega_{h}\right)-\frac{d \varphi}{\varphi}(u)\right)\right\}
$$

Observing that $\frac{d \Theta}{\Phi^{\top}}\left(u+\omega_{h}\right)=\frac{d \Phi}{\varphi^{\prime}}(u)+2 \pi_{i}{ }^{t} \lambda_{h} d u$, we get

$$
q=\frac{1}{2 \pi i} \sum_{h}\left\{-\int_{A_{h}} 2 \pi i^{t} \lambda_{g+h} d u+\int_{B_{h}} 2 \pi i^{t} \lambda_{h} d u\right\}=\sum_{h}\left\{{ }^{t} \lambda_{h} \varphi_{g+h}-{ }^{t} \lambda_{g+h} \omega_{h}\right\} .
$$

If we write $\Omega=\left(\Omega_{1}, \Omega_{2}\right)$ and $\Lambda=\left(\Lambda_{1}, \Lambda_{2}\right)$, where Ω_{j} and Λ_{j} are gxg matrices, we may write

$$
q=\operatorname{Trace}\left({ }^{t} \Lambda_{1} \Omega_{2}-{ }^{t} \Lambda_{2} \Omega_{1}\right)
$$

This is also expressible in terms of the so-called characteristic matrix of Q, defined by $N=\left({ }^{t} \Omega / 1-{ }^{t} \Lambda \Omega\right)$. To see the significance of this matrix, we consider the expression $Q_{1}\left(u+\omega_{h}+\omega_{k}\right)$ which, by the defining relation (3.1), may be expanded in two different ways. Since the resuIting expressions must yield the same function, it follows by an easy calculation that $\left({ }^{t} \lambda_{k} \omega_{h}-{ }^{t} \lambda_{h} \omega_{k}\right)$ must be an integer. Since ${ }^{t} \lambda_{k} \omega_{h}={ }^{t} \omega_{h} \lambda_{k}$, we find that N must be a skew-symmetric matrix with integral entries. The reader may now verify that the formula for q may be written

$$
\mathrm{q}=\frac{1}{2} \text { Trace JN, }
$$

where

$$
J=\left(\begin{array}{rr}
0 & E \\
-\mathbb{E} & 0
\end{array}\right)
$$

E is the gxg unit matrix, and 0 is the gxg null-matrix.
Consider next two holomorphic functions, Φ_{1} and Φ_{2}, which are multiplicative of type $\left(\Lambda, \gamma_{1}\right)$ and $\left(\Lambda, \gamma_{2}\right)$ respectively, over S. We form the quotient $\beta(u)=\Phi_{1}(u) / \Phi_{2}(u)$, and evaluate the integral
$\int u d \beta(u) / \beta(u)$ around the polygon. This integral should be equal to the sum
$2 \pi_{i} \sum\left(u\left(Q_{j}\right)-u\left(R_{j}\right)\right)$
where the ${ }^{Q_{j}}$ are the zeros of Φ_{1} and the R_{j} are the zeros of $Q_{2}{ }^{\circ}$

In order to evaluate the integral we observe that $\beta\left(u+\omega_{h}\right)=\beta(u) \exp \left(2 \pi_{i}\left(\gamma_{1}^{h}-\gamma_{2}^{h}\right)\right)$, whence

$$
\frac{d \beta}{\beta \beta}\left(u+\omega_{h}\right)=\frac{d \beta}{\beta}(u)
$$

We then get

$$
\begin{aligned}
& \int u \frac{d \beta}{\beta}(u)=\sum_{h}\left\{\int_{A_{h}}\left(u \frac{d \beta}{\beta}(u)-\left(u+\omega_{g+h}\right) \frac{d \beta}{\beta}(u)\right)+\int_{B_{h}}\left(\left(u+\omega_{h}\right) \frac{d \beta}{\beta}(u)-u \frac{d \beta}{\beta}(u)\right)\right\} \\
& =\sum_{h}\left\{-\int_{A_{h}} \omega_{g+h} \frac{d \beta}{\beta}(u)+\int_{B_{h}} \omega_{h} \frac{d \beta}{\beta 3}(u)\right. \\
& \text { Now, } \frac{d \beta}{1 / 3}=d \ln \beta \text {, and } \int_{A_{h}} d \ln \beta=2 \pi i\left(\gamma_{1}^{h}-\gamma_{2}^{h}\right) \text {, and } \\
& \int_{B_{h}} d \ln \beta=2 \pi i\left(\gamma_{1}^{g+h}-\gamma_{2}^{g+h}\right) \text {, modulo multiples of } 2 \pi i \text {. Hence } \\
& \int u \frac{d \beta}{\beta}(u)=2 \pi i \sum\left\{\omega_{h}\left(\gamma_{1}^{h}-\gamma_{2}^{h}\right)-\omega_{g+h}\left(\gamma_{1}^{h}-\gamma_{2}^{h}\right)\right\}
\end{aligned}
$$

modulo a sum of the form $2 \pi i \sum m_{k} \omega_{k}$ 。 We can rewrite the right hand side as $\left(-\Omega_{2}, \Omega_{1}\right)\left(\gamma_{1}-\gamma_{2}\right)$, and thus get, finally

$$
\sum u\left(Q_{j}\right)-\left(-\Omega_{2}, \Omega_{1}\right) \gamma_{1}=\sum u\left(R_{j}\right)-\left(-\Omega_{2}, \Omega_{1}\right) \gamma_{2}
$$

modulo a linear combination of periods, ie. the equation holds if the terms are interpreted as points in $J(X)$ 。

Our findings may be summarized as follows:

Theorem 3．1 A Let Φ be a multiplicative holomorphic func－ tion over W_{a}^{1} of type (Λ, γ)－If $C D$ does not vanish identically over W_{a}^{1} Lit induces a zeros，$u_{1} \ldots \ldots u_{q}$ on W_{a}^{1} counting multiplicities， such that

$$
\mathrm{q}=\frac{1}{2} \operatorname{Trace} \mathrm{JN}
$$

and

$$
\sum_{u_{j}}=\left(-\Omega_{2}, \Omega_{-1}\right) \gamma+z_{o}
$$

where N is the characteristic matrix of (T) and z_{0} is a point of $J(X)$ which depends only on Ω, Λ ，and the canonical imbedding $X \longrightarrow W_{a}^{1}$ ．

This result can be given a different formulation of some interest． Given a function，Q ，we define its translate by a, Q_{a} ，by the vela－ tron $\mathscr{P}_{a}(u)=Q_{1}(u-a)$ ．If \prod_{1} is multiplicative of type (Λ, γ) over $S \subset J(X)$ ，then φ_{a} is multiplicative of type $\left(\Lambda, \gamma-{ }^{t} \Lambda a\right)$ over S_{a} 。 To see this，we use the defining relation，（3．1）and get

$$
\begin{aligned}
\mathscr{P}_{a}\left(u+\omega_{h}\right) & =\mathscr{P}_{1}\left(u-a+\omega_{h}\right)=\mathscr{D}(u-a) \exp \left(2 \Pi_{i}\left({ }^{t} \lambda_{h}(u-a)+\gamma^{h}\right)\right. \\
& =\bigoplus_{a}(u) \exp \left(2 \Pi_{i}\left({ }^{t} \lambda_{h} u+\gamma^{h}-{ }^{t} \lambda_{h} a\right)\right.
\end{aligned}
$$

Theorein 3.1 B Let \mathbb{Q} be a multiplicative holomorphic fund－ timon of type (Λ, γ) over $S \subset J(X)$ 。 Let $W_{b}^{1} \subseteq S_{a}$ 。 Then φ_{a} is mul－ tiplicative over W_{b}^{1} and if it does not vanish identically over W_{b}^{1}＿it induces q zeros，$b+u_{1}, \ldots, \quad b+u_{q}$ on W_{b}^{1} counting multiplicities， such that

$$
q=\frac{1}{2} \operatorname{Trace} J N
$$

and

$$
\sum_{u_{j}}=T(a-b)+z_{1}
$$

where T is an endomorphism of $J(X)$ represented by the matrix $\left(\Omega_{2}{ }^{t} \Lambda_{1}-\Omega_{1}{ }^{t} / \Lambda_{2}\right)$ ，and z_{4} is a point of $J(X)$ depending on y on and the canonical imbedding $X \longrightarrow W^{1}$ 。 Moreover，$T \Omega=\Omega \mathrm{JN}$ ，where N is the characteristic matrix of P ．

Proof：We first observe that $\mathcal{Q}_{(\mathrm{a}-\mathrm{b})}$ is multiplicative of type $\left(\Lambda, \gamma-{ }^{t} \Lambda(a-b)\right)$ over W^{1} ．We apply Theorem 3.1 A and find that，if $\varphi(a-b)$ does not vanish identically over W^{1} ，then it induces q zeros， u_{1}, \ldots, u_{q} ，on W^{1} ，counting multiplicities，where $q=\frac{1}{2} \operatorname{Trace} J N$ ， and

$$
\sum_{j} u_{j}\left(-\Omega_{2}, \Omega_{1}\right)\left(\gamma-\Lambda^{t}(a-b)\right)+z_{0} .
$$

Hence \prod_{a} induces the zeros $b+u_{1}, \ldots, b+u_{q}$ on W_{b}^{1} 。 We may also write $\sum_{j}=\left(\Omega_{2},-\Omega_{1}\right)^{t} \Lambda(a-b)+z_{1}$ ，where $z_{1}=z_{0}+\left(-\Omega_{2}, \Omega_{-1}\right) \gamma_{0}$ If Φ is given，so is Λ ，and γ ，and hence z_{1} is completely determined．

We now study the matrix $T=\left(\Omega_{2},-\Omega_{1}\right)^{t} \Lambda$ ．It is seen immediately that this may also be written as $T=\left(\Omega_{2}{ }^{t} \Lambda_{1}-\Omega_{1}{ }^{t} \Lambda_{2}\right)$ ．To show that T is an endomorphism，we investigate its action on the periods by forming the matrix $T \Omega$ 。

It has been assumed that Ω was formed with a canonical homology basis of X 。 Hence Ω_{1} is non－singular，and $\Omega_{1}^{-1} \Omega_{2}$ is symmetric， i．e．$\Omega_{1}^{-1} \Omega_{2}={ }^{t} \Omega_{2}{ }^{t} \Omega_{1}^{-1}$ ，or $\Omega_{2}{ }^{t} \Omega_{1}=\Omega_{1}{ }^{t} \Omega_{2}$ ．Hence $\left(\Omega_{2}{ }^{\mathrm{t}} \Omega_{1}-\Omega_{1}{ }^{\mathrm{t}} \Omega_{2}\right) / \Lambda=\left(\Omega_{2},-\Omega_{1}\right)^{\mathrm{t}} \Omega \Lambda=0$ ，and we may write ${ }^{T} \Omega=\left(-\Omega_{2}, \Omega_{1}\right)\left({ }^{t} \Omega A-{ }^{t} \Lambda \Omega\right)$ ．From the relation $\Omega_{J}=\left(-\Omega_{2}, \Omega_{1}\right)$ we finally get

$$
\mathrm{T} \Omega=\Omega \mathrm{JN},
$$

where iv is the characteristic matrix of Φ ．
We showed earlier that N has integral entries，and hence it takes periods into periods．By the above relation，so does T ．This shows that T is an endomorphism of $J(X)$ ，and completes the proof of Theorem 3．1 Bo The explicit formula for $T \Omega$ ，however，enables us to obtain some addi－ tional information。

Since the column vectors of Ω form a basis for \mathbb{C}^{g} over the reals， it follows that T is non－singular if and only if N is non－singular．In that case，the endomorphism is surjective．If，in particular，N is uni－ modular，then the column vectors of $T \Omega$ form a new basis for the periods， and hence T is an automorphism of $J(X)$ 。 When N is non－singular，\subseteq is said to be non－degenerate．Hence we have

Corollary 1 If φ is non－degenerate，T is surjective， and if N is unimodular，then T is an automorphism of $J(X)$ ．

Unimodularity of N is found in a very important class of multiplica－ tive functions，the thetafunctions，which will be studied in the next sec－ tion．

Corollary 2 If \oint is multiplicative over $J(X)$ ，and is non－trivial 1），then $q>0$ ．If φ is both non－trivial and non－degenerate， then $\mathrm{q} \geq \mathrm{g}$ 。

Proof：Assume $q=0$ 。 Let $a \in J(X)$ be a point over which φ has a zero．Then φ has a zero over W_{a}^{1} ，and since $q=0$ it follows that φ must vanish identically over W_{a}^{1} 。 But by the same argurnent φ has a zero over W_{W}^{1} for every $w \in W_{a}^{1}$ ，and hence vanishes identically over each．But then φ vanishes identically over W_{a}^{2} 。 Continuing the

[^0]argument, we find that \oint must vanish identically over $W_{a}^{g}=J(X)$ 。 Suppose, finally, that $0<q<g$. If \mathbb{C} does not vanish over a, then $-T a+Z_{1} \in W^{q}$. But the set of such *a must be dense in $J(X)$ 。 Hence $q \geq g$, if T is non-singular.

We conclude this section with a proof of the following result:

I e mma 3.3 Let Φ be multiplicative of type (Λ, γ) over $S \subset J(X)$. Let $n \geq 1$ be an integer, and define $\Phi_{n}(u)=\Phi(n u)$. Then \oplus_{1} is multiplicative of type $\left(\Lambda^{\prime}, \gamma^{\prime}\right)$ over $\frac{1}{n} \mathrm{~S}$, where

$$
\begin{aligned}
\frac{1}{n} S & =\{u ; n u \in S\} \\
\Lambda^{\prime} & =n^{2} \Lambda \\
\left(\gamma^{\prime}\right)^{h} & =n \gamma^{h}+\frac{1}{2} n(n-1)^{t} \lambda_{h} \omega_{h}
\end{aligned}
$$

Proof: We use induction over n to establish the formula $\Phi\left(u+n \omega_{h}\right)=\Phi(u) \exp \left(2 \pi i\left({ }^{t} \lambda_{h}(n u)+n \gamma^{h}+\frac{1}{2} n(n-1)^{t} \lambda_{h} \omega_{h}\right)\right)$, whence the lemma follows upon substituting nu for u.

For $n=1$ the formula is trivially verified, and by assumption
$\varphi\left(u+n \omega_{h}\right)=\varphi\left(u+(n-1) \omega_{h}\right) \exp \left(2 \pi i\left({ }^{t} \lambda_{h} u+\gamma^{h}+(n-1)^{t} \lambda_{h} \omega_{h}\right)\right)$.

The formula to be established is now easily derived using the induction hypothesis.

4. ON THE VANISHING OF THETAFUNCTIONS

Let $\Omega=\left(\Pi_{i E}, A\right)$ be a period matrix formed with a canonical homology basis of X, and define

$$
\Theta(u ; A)=\sum_{m \in Z^{g}} \exp \left({ }^{t_{m}}(A m+2 u)\right) .
$$

Since A has a negative definite real part，it is easy to show that the series on the right converges absolutely and uniformly on compact subsets． Hence $\theta(u ; A)$ is defined as a holomorphic function on \mathbb{T}^{g} 。 It can be shown that the function is non－trivial．By an elementary calculation one finds that θ is multiplicative of type (Λ, γ) over $J(x)$ where

$$
\Lambda=\left(0,-\frac{1}{\pi^{i}} E\right)
$$

and

$$
\gamma^{1}=\ldots=\gamma^{g}=0, \quad \gamma^{g+h}=-\frac{1}{2 \pi i} a_{h}^{h} \quad A=\left(a_{k}^{j}\right)
$$

This section will be devoted to a proof of a fundamental result first obtained by Riemann，which characterizes the zeros of θ in terms of the imbedded image of X in $J(X)$ 。

We say that a function vanishes of order r at a point provided the function and all of its partial derivatives of order $\leq r$ vanish at the point，while some partial derivative of order r does not．

Theorem 401 （Riemann）．Let W^{1} be a canonically imbedded image of X in $J(X)$ ．Then there exists a fixed point $k \in J(X)$ depend－ ing only on the canonical imbedding and on A ，such that $\Theta(u ; A)$ van－ ishes of order $r+1$ over $b \in J(X)$ if and only if $-W_{-b}^{r} \subset W_{k}^{g-1-r}$ 。
R emark：The condition $\quad-W_{-b}^{r} \subset W_{k}^{g-1-r}$ cannot be satisfied unless $2 \mathrm{r} \leq \mathrm{g}-1$ ．This inequality does not have to be assumed，how－ ever，less will be a consequence of the theorem．Hence，θ cannot vanish of order greater than $\frac{1}{2}(g-1)+1$ at any point of $J(X)$ 。

To see the significance of the result，we first observe that for $r=0$ the theorem gives the important special result that the zeros induced by Θ on $J(X)$ are precisely the set W_{k}^{g-1} ．For $n \geq 1$ we first note that an inclusion $-W_{-b}^{r} \sqsubset W_{k}^{g-1-r}$ means that $b-k$ is the image of a positive di－ visor of degree $(g-1)$ and dimension $(r+1)$ ．Thus the theorem asserts that the order of vanishing of $\Theta(u, A)$ over a point $b \in J(X)$ indicates the dimension of the complete linear series of degree $(g-1)$ all of whose divisors map on $b-k$ 。

We shall first prove the theorem for $r=0$ ，and then obtain the full theorem by induction．Since the proof is rather long，we present it in the form of a series of lemmas．

Lemma 401 If $\Theta(u-b)$ does not vanish identically over W^{1} ， it induces g zeros，u_{1} ，．．．u_{g} ．on W^{1} ，counting multiplicities，such that $\sum u_{j} \equiv b-k$ ，where k is a point in $J(X)$ independent of b ．

Proof：Using Theorem 3．1 B and the given forms of Λ and we find that $T=E$ ，and $\frac{1}{2}$ Trace $J N=g$ 。 This proves the lemma，and de－ fines k ．It will turn out that the definition of k is the correct one．

Lemma 4．2 If Θ vanishes over $-b \in J(X)$ ，then $b \in W_{k}^{g-1}$ ， where k is the constant of lemma 4．1．

Proof：The argument is similar to that of Theorem 3.1 B ，corolla－ ry 2．Consider the function $\Theta(u-b)$ ．If it does not vanish identically over W^{1} ，it induces g zeros，u_{1}, \ldots, u_{g} ，counting multiplicities，on W^{1} ，such that $b=k+\sum u_{j}$ ．Since $u=0$ must be a zero，the right hand side is a point in W_{k}^{g-1} 。

Suppose now that θ vanishes identically over W^{1} ．Let t be the largest number such that $\Theta(u-W-b)$ vanishes identically over W^{1} for all w in W^{t} ．Then $t<g-1$ ，and there is a dense subset of W^{t+1} such that $\Theta(u-w-b)$ does not vanish identically over W^{1} for any w
in the subset．By lemma $401, \mathrm{~b}=\mathrm{k}-\mathrm{w}+\sum_{\mathrm{u}}$ ，whence $\mathrm{b} \in \mathrm{W}_{\mathrm{k}}^{\mathrm{g}-1-\mathrm{t}} \subset \mathrm{w}_{\mathrm{k}}^{g-1}$ ， since the points of w must occur among the u_{j} 。 This completes the proof of lemma 4．2．

Lemma $4.3 \quad \Theta$ vanishes identically over $-W_{k}^{g-1}$ 。
Proof：Let $b \in W_{k}^{g-1}, b \notin W_{k}^{g-2}$ ．Then $b-k$ is uniquely re－ presentable as a sum of $g-1$ points in W^{1} 。 The corresponding divisor must have dimension 1 ，and hence we can find a point $v_{g} \in W^{1}$ such that the divisor corresponding to $v_{1}+\ldots+v_{g}$ is of dimension $1, v_{1}, \ldots, v_{g-1}$ being the original points．Consider the function $\theta\left(u-b-v_{g}\right)$ 。 If it does not vanish identically over W^{1} ，it induces g zeros，u_{1}, \ldots, u_{g} on W^{1} such that

$$
\sum u_{j}=b-k+v_{g}=\sum v_{j}
$$

Since the sum on the right is unique， v_{g} must appear in the sum on the left．Hence v_{g} is a zero of $\theta\left(u-b-v_{g}\right)$ ，or $-b$ is a zero of Θ ． If Θ vanishes identioally over W^{1} ，this is a fortiori the case。

The set of $\mathrm{b}^{\text {is }}$ considered is dense in W_{k}^{g-1} ，and hence lemma 403 is established．

From the definition of $\Theta(u ; A)$ ，it is easily seen that Θ is an even function．From this fact and lemmas 4.2 and 4.3 ，we now get Theorem 4.1 for the case $r=0$ ，i．e．：Θ vanishes over $b \in J(X)$ if and only if $b \in w_{k}^{g-1}$ 。

Lemma 404 If $-W_{-b}^{r} \subset W_{k}^{g-1-r}$ ，then Θ vanishes of order $\geq s+1, s<r$ ，over every point of W_{a}^{r-s} whenever $b \in W_{a}^{r-s}$ ．

Proof：We proceed by induction over s ．For $s=0$ ，suppose $b \in W_{a}^{r}$ ．Then $a \in-W_{-b}^{r} \subset W_{k}^{g-1-r}$ ．Hence $W_{a}^{r} \subset W_{k}^{g-1}$ ，i。e．Θ vanishes over W_{a}^{r} 。

Suppose now that the lemma holds for $s \leq s_{0}<r$ 。 Then Θ and all of its partial derivatives of order $\leq s_{0}$ vanish over $W_{a}^{T-s_{0}}$ whenever $b \in W_{a}^{T-s_{0}}$ ．It follows that every partial derivative of Θ of order $s_{0}+1$ is multiplicative of the same type as Θ over $W_{a}^{r-s_{o}}$ whenever $b \in W_{a}^{T-s o}$ 。

Suppose $\mathrm{b} \in W_{a}^{r-s_{o}-1}$ 。 By lemma $2.2 W_{a}^{r-s_{0}-1}\left[W_{a-w}^{r-s_{o}}\right.$ for every $w \in W^{1}$ 。 Select any $w \in W^{1}$ ．Then $b \in W_{a-w}^{r-s_{o}}$ ，and $\partial_{W} \partial^{S_{0}} \Theta$ is mul－ tiplicative over $\frac{W_{a-w}^{r-S}}{W_{0}}$ ，for any partial differential operator，$\partial^{S_{0}}$ ， of order s_{o} ．By definition，$\partial_{w} \partial^{s} \rho \theta$ vanishes over $c+w$ on every $W_{c}^{1} \subset W_{a-w}^{r-s_{o}}$ ．By lemma 2．2，$\partial_{w} \partial^{s_{o}} \theta$ vanishes over $W_{a}^{r-s o-1}$ ．Since w was chosen arbitrarily，it follows that every partial derivative of order $s_{o}+1$ vanishes over $W_{a}^{r-s_{o}-1}$ ，and the induction is completed．This estab－ lishes lemma 404.

Lemma 4.5 If Θ vanishes of order $r+1$ at $b \in W_{k}^{g-1}$ ，then $-W_{b}^{r} \boldsymbol{c}_{k}^{g-1-r}$ 。

Proof：For $r=0$ this is the result of lemma 4．2．Let $b \in W_{a}^{1}$ ， and let $s \leq r$ be the largest integer such that Θ vanishes of order $s+1$ over every point of W_{a}^{1} ．Then for any $(s+1)$－tuple of points， w_{o}, \ldots, w_{S} ，in W^{1} the partial derivative $\partial_{w_{0}} \ldots \partial_{w_{S}} \Theta$ is multip－ licative of the same type as Θ over W_{a}^{1} ．By the assumption on s ，and by lemma 3.2 （2），the（ $s+1$ ）－tuples for which the derivative does not vanish identically over W_{a}^{1} have sums which form a dense subset of W^{s+1} 。

Let w_{o}, \ldots, w_{s} be such an $(s+1)$－tuple，and consider the zeros induced by $\partial_{w_{0}} \ldots \partial_{w_{S}} \Theta$ on w_{a}^{1} ．Let them be $a+u_{1}, \ldots, a+u_{g}$ ． Then，by lemma 4.1 and theorem 3.1 B

$$
-a-k=\sum u_{j}
$$

Now，among the u_{j} we must find all of the w_{j} ，by the definition of $\partial_{w_{j}}$

Hence $s+1 \leq g$ ．By assumption，$b \in W_{a}^{1}$ whence $a=b-w$ ，for some $w \in W^{1}$ ，and if $r>s$ ，w must occur among the u_{j} with multiplicity （ $\mathrm{r}-\mathrm{s}$ ）。 We can then write $-\mathrm{b}+\mathrm{w}-\mathrm{k}=\mathrm{w}_{\mathrm{o}}+\ldots \mathrm{H}_{\mathrm{s}}+(\mathrm{r}-\mathrm{s})_{\mathrm{w}}+\mathrm{u}_{\mathrm{r}}+2+\ldots \ldots{ }^{+} \mathrm{u}_{\mathrm{g}}$ ， after a suitable renumbering of the u（if necessary）．If $r=s$ ，we get $-b+w-v \in W_{k}^{g-r-1}$ ，where $v=w_{0}+\ldots+w_{s}$ may be chosen arbitrarily from a dense subset of W^{s+1} ．Hence the left hand side may be chosen ar－ bitrarily from a dense subset of $-W_{b-w}^{s+1}$ which contains $-W_{b}^{r}$ 。

$$
\text { If } r-s=1 \text {, then }-b-v \in W_{k}^{g-r-1} \text {, or }-W_{b}^{r} \subset W_{k}^{g-r-1} \text { 。 }
$$

Finally，if $r-s \geq 2$ for all choices of w ，then $-b-v-w \in W_{k}^{g-3-s}$ ， i．e．$-W_{b}^{s+2}=W_{k}^{g-3-s}$ ，which，by lemma 2．3，corollary 4 implies that $-W_{-b}^{s+2} C_{W_{k}^{g}}^{g-3-s}$ ，which by lerma 404 implies that Θ vanishes of order $s+2$ on every W_{a}^{1} containing b ．This contradicts the choice of s ， and completes the proof of lemma 4.5 ．

The proof of Theorem 4.1 follows by observing that $-W_{-b}^{r} \subset W_{k}^{g-1-r}$ if and only if $-W_{b}^{r} \subset W_{k}^{g-1-r}$ by virtue of lemma 2.3 ，corollary 4 ．

5．AN EXTENDED TORELLI THEOREM

A theorem originally proved by Torelli asserts that the conformal structure of X is completely determined by any of its canonical period matrices．By Theorem 4.1 it can be seen that this result would follow from the assertion that the conformal structure of X is completely determined by $J(X)$ and the class of translates of W^{g-1} ．The latter statement is also the natural version of Torellis result for curves over an arbitrary field。

Over the field of complex numbers，it is possible to give a somewhat stronger theorem from which Torelli＇s result would follow as a special case：

Theorem 5．1 Let X and Y be closed Riemann surfaces of genus $g>1$ ，with a common Jacobian variety，$J(X)=J(Y)$－Let W^{k}
（respectively V^{k} ）be the canonical image of the k －fold symmetric product of X（respectively Y ）with itself in $J(X)$ 。 If there is a point $a \in J(X)$ such that $W^{t}=V_{a}^{t}$ ，for some $t, 1 \leq t \leq g-1$ ，then X and Y are conformally equivalent．

Proof：We assume $W^{t}=V_{a}^{t}$ ，and have $W^{1} \subset V_{a}^{t}$ 。 Let r be the smallest integer such that $W^{1} \subset V_{b}^{r+1}$ for some $b \in J(X)$ 。 If $W^{1} \cap V_{c}^{r}$ contains two distinct points for any $c \in J(X)$ ，then $-W^{1}$ is contained in a translate of V^{r} ，by lemma 2．6．We assume first that this does not hap－ pen．Consider the intersection $W^{1} \cap V_{b+x-y}^{g-1}$ ，where $x \in V^{1}, y \in V^{g-1-r}$ 。 Since $W^{1} \subset V_{b}^{r+1}$ ，by assumption，the intersection may be written as $W^{1} \cap\left(V_{b+x-y}^{g-1} \cap V_{b}^{r+1}\right)$ 。 By lemma 2.6 the intersection in parenthesis is of the form $V_{b+x}^{r} \cup S$ ，where S is independent of the choice of x 。 We now invoke Theorem 3．1 Bo $\mathrm{V}_{\mathrm{b}+\mathrm{x}-\mathrm{y}}^{\mathrm{g}-1}$ is the divisor induced by a translate of the thetafunction formed with a canonical matrix of Y ．Hence it is multiplicative of some type over $J(X)$ ，and if it does not vanish identically over W^{1} ，it induces q zerus，u_{1}, \ldots, u_{q} on W^{1} ，count－ ing multiplicities，such that
（5．1）$\quad \sum u_{j}=T(a+x-y)+z_{1}$,
where z_{1} is a constant independent of a, x ，and y ．The induced zeros are the points of the intersection $W^{1} \cap V_{b+x-y}^{g-1} \cdot$

Suppose that the thetafunction vanishes identically over W^{1} for all choices of x and y 。 Keeping x fixed，this means that $W^{1} \subset V_{b+x}^{g-1} \Theta V^{g-1-r}=V_{b+x}^{r}$ ，contrary to hypothesis．Hence there is a point $y \in V^{g-1-r}$ and a point $w \in W^{1}$ such that the function does not vanish．It follows that this must be the case for all x in a sufficient－ ly small neighborhood of the original one．

Now keep y fixed，and let x vary over this neighborhood．Since the right hand side of（5．1）varies，so must the left。But the set S does
not vary，and hence the variation on the left must come from a point in the intersection $W^{1} \cap V_{b+x}^{r}$ 。 By assumption，there cannot be two distinct points in this intersection，and hence the left hand side must vary over some trans－ late of KW^{1} ，obtained from W^{1} by multiplying each point with a multipli－ city k 。 Thus T takes a neighborhood on V^{1} into a translate of kW^{1} 。 But T is an automorphism，${ }^{1)}$ and by the irreducibility of the sets involved， we find that $T\left(V^{1}\right)=\left(k W^{1}\right)_{d}$ for some $d \in J(X)$ 。
$T\left(V^{1}\right)$ is clearly conformally equivalent to V^{1} and hence to Y 。 $\left(k W^{1}\right)_{d}$ is obtained from W^{1} by a map which is bijective，except possibly on isolated points．${ }^{2)}$ Hence we have a holomorphic map from X to Y which fails to be bijective on at most a finite number of points．But every such map is a covering map，and it follows that it must be bijective．

To get rid of the assumption that $-W^{1}$ is not contained in a translate of V^{r} ，we suppose now that this is the case，and define r to be the smallest integer for which an inclusion of the form $-W^{1} \subset V_{c}^{r+1}$ occurs． Then $-W^{1}$ cannot have two distinct points in common with V_{c}^{r} for any $c \in J(X)$ ，and we can repeat the argument for $-W^{1}$ ．

This establishes Theorem 5．1．

1）The characteristic matrix of a thetafunction is unimodular with respect to any period matrix．

2）$k w_{1}=k w_{2} \Longrightarrow k\left(w_{1}-w_{2}\right)=0$ ，and this has only a finite number of distinct solutions．If $w_{1}-w_{2}=w_{3}-w_{4}=w_{5}-w_{6}$ ．Then

$$
\begin{aligned}
& w_{1}+w_{4}=w_{3}+w_{2} \\
& w_{1}+w_{6}=w_{5}+w_{2}
\end{aligned}
$$

which is impossible unless $w_{4}=w_{6}, w_{3}=w_{5}$ ．

References

The material in section 2 was inspired by lemmas 1 and 3 of Weilis paper on the Torelli theorem ((6)) . Sections 3 and 4 are expositions of results obtained by Riemann in ((4)) and ((5)), with some modifications. A very elegant treatment of the material in section 4 will be found in Mayer ((3)), where further references will be found. Another exposition was recently published by Lewittes ((1)) 。 I should like to say that the idea of using derivatives of thetafunctions was my own, but Mayer informs me that it belongs to Christoffel. The extended Torelli theorem of section 5 is new, and the proof was suggested by the methods of ((2)).
((1)) Lewittes, Jo: Riemann Surfaces and the Theta Function. Acta Mathematica, 111: 1-2 (1954) pp. 37-61.
((2)) Martens, Ho: A New Proof of Torelli's Theorem. Annals of Math., Vol. 78, No. 1, 1963, pp. 107-111.
((3)) Mayer, AoLo: Special Divisors and the Jacobian Variety. Matho Anno, Vol. 153, 1964, pp. 163-167.
((4)) Riemann, Bo: Theorie der Abelschen Funktionen, Gesammelte Werke.
((5)) Riemann, Bo: Über das Verschwinden der Theta-funktionen, Gesammelte Werke.
((6)) Weil, A.: Zum Beweis des Torellischen Satzes. Nachr. Akad. Wiss. Göttingen, Math-Phys. Kl., Nr. 2, 1957.
((7)) Severi, F.: Vorlesungen über Algebraische Geometrie。 Teubner, Leipzig 1921.

[^0]: 1）i．e．does not vanish identically，and has zeros．

