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1.  INTRODUCTION

The theory of Jacobian varieties began with Riemann's recognition of the
deep relations between a Riemann surface and the associated theta-functions.
Our aim here is to review some of the principal results obtained by Riemann
and to give an application which permits a generalization of Torelli's
theorem.

We confine ourselves to the classical case, although many of the results
can be obtained for Jacobian varieties over an arbitrary groundfield. In
particular, the results of section 2 are clearly quite independent of the
groundfield.

We work with a closed Riemann surface of genus g>1 . If Cﬂ, ,,o,txg
is a basis for the Abelian differentials of the first kind on X , and

A19 coo 4 Ag ) B1, coe o Bg is a canonical homology basis, we form a

matrix () = (LD?) by setting

WOr = XO’\l : D 30’3
J Aj B

1, =15 o0 5 8 o ﬁal.is known as a period matrix of X . It is often

convenient to write () = (121,.(22) where ‘Kjli is a gx g matrix. A
standard result in the theory of Riemann surfaces is that f:l';Tfjlz is
symmetric and has positive definite imaginary part.

The column vectors of ﬁil are linearly independent over the real num-
bers, and generate a properly discontinuous group of translations on q:g 9
which we denote by j(lx . The quotient space q:g/xlf = J(X) is a repre-

sentation of the Jacobian variety of X . There exists an imbedding X—J(X)

given by



wi(Q) = ﬁimi

where P dis a fixed reference point in X . It follows from Abel's theorem
that this is an imbedding, and we denote by w1 the image of X wunder this
map.

We denote by W the set of points representable as a sum of £ r
points in W1 « An r-tuple of points in W‘I may also be identified with
a divisor of degree r on X , and Abel?s theorem asserts that two divisors
of degree r are linearly equivé.lent if and only if they determine the same
point in W' . The solvability of the Jacobi inversion problem implies that
wé = J(X) .

If A and B are subsets of J(X) , we define for a € J(X)

Aaz {u: u-—aeA}

8 = {u:—u GAa}

A®B= {u: u=a+b, a€h bE B

-A

ll
>

AoB b

We note that ug A@®B if and only if BuCA °

2.  COMBINATORIAL FORMULAE

Our object is to study certain combinational relations between the sets

W and to indicate some applications to the theory of linear series on X o
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Lemma 2.1 Let u€J(X), u#0 . Then there is a unique posi-

tive integer r < g . such that ue_Wr . ugfwt for t<£r , and u is

the image of a unique positive divisor of degree r o

Proof: The first assertion is obvious. By Abel's theorem two
positive divisors D1 and D2 of the same degree are linearly equivalent
if and only if cP(D1) = SD(DZ) . Suppose u = CP(D1) = cP(Dz) , where
D, # D, , and D, and D, are of degree r . Then D, D, , and there
is a positive divisor D of degree r - 1 such that D1 ~D + P , But
then u =CF(D) ewr"1 .

The result may also be stated by saying that a point u & J(X) has a

unique minimal representation of the form u = W, oo v W where

WiE-W1 ,and r<£g o
We now introduce some notation. For subsets A,B CJ(X) we define Au

-A, , ABB, A®B by

and AGSB = mA_b .

It is immediate from the definition that uv&¢ A& B iff BuC A . We also

observe that A1 CA2 and B,] 3B2 imply A1 @B,l CA2@B2 .

Lemma 2.2 Wg-1 = —Wﬁ? , where K = QP(Z) , 72 being a canon-

ical devisor on X .

Proof : Given any positive divisor D of degree g - 1 there

? $
exists a divisor D of degree g - 1 such that D+ D ~Z . Hence



- -

- it . . : g-1
C'D(D) = -—(CP(D ) - CP(Z)) , and as the left hand side traverses W the

right hand side traverses -W;\Tf.{'{1 and conversely.

Lemma 2.3 Let 0<£Lr <t<g-1 . Then

v t—
W:;CW,D *‘\:-iaewbr o

Proof: The implication from right to left being trivial it suf-
fices to prove the implication from left to right. The inclusion Wz C_WE
means that for every positive divisor D of degree < r there is a posi-

?
tive divisor D of degree < t such that

—

PO) +ab =) .

Setting D =P , we have (a - b) € W . Let A be the divisor of degree

s £t which corresponds to the unique minimal representation of a -b &
Suppose s>t - r . Since A is unique, 1(A) =1 , and by the Riemann-
Roch theorem there is a divisor D of degree t - s + 1 £r not contain-
ing P such that 1(A +D) =1 . By assumption CP(A + D) =(‘l)(D)+a—b€Wt .
Since D + A is of degree t + 1 , we must have D + Av’\JDv + P , where

D? is of degree t . But P does not occur on the left, hence 1(D+A)>1 .
This is a contradiction. It follows that s &£t - r , i.es C?(A) =

t-r

a~-b&W 7, and the theorem follows.

Corollary 1. let O<Cre«et<€g—-1., Then

t _ T
wagwg - W.s:L—b °

t r . . -t . .

. < y -

Proof: u\NaQWb if and only if NE‘*‘U Wa , 1.€o if and
t-r

only if u & wa:b .



Corollary 2. Let O<£r<g-1. Then

=1 s _ &=l-r
W @WE = Wa bk

. -1 - _ -1
Proof: —-Wi = (-w8 ), = w%a_Kv

Corollary 3. Let 0<%r<g-1. Then

g-1 _ _y&-r
Wy E)(-W'—g) = Wbk

Il
)
|
c

. . g-1 N
Proof: WS @(WE)

Corollary 4o Lt O<&r £t £g-1., Then

. t -1-t g-1-r
- Gy S -uE T W

. t -1 t g-1
Proof: If -w:c_wb then WS QU CW @(—WZ),andthe
corollary follows from corollaries 1 and 3.
Corollary 4 has an interesting interpretation. An inclusion of the form

-W: () Wt means that for every positive divisor D of degree r there is a

¢ 7
positive divisor D  of degree t such that —C\D(D) - a= G\)(D ) , or

-a = (P(D + DY) o
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This again means that -a is representable by a positive divisor of degree
r +t and dimension r + 1 . The corollary then states that K - (-a) is
representable by a positive divisor of degree 2g - 2 - (r +t) and dimen-
sion g -t . This is an expression for the Brill-N&éther reciprocity the-
orem, which is equivalent to a restricted form of the Riemann~Roch theorem.
Thus Lemma 3 may be regarded as a combinatorial version of the latter.

We now turn to some intersection properties of the sets W . Consider
first an intersection W:{"]-Wi « If u is a8 point of the intersection,

?
there are positive divisors D and D of degree r and t such that
v .
u :CP(D)+3 = -—(P(D)-b .

’ ’ o '
Hlerve CP\D +D)=-(a *+b). The divisor D +D has degree r + t ,
{
a0 L0 e hore A divasor D1 by selecting an; r points from D + 0 , e

-~

(3R I

u o PO s s~ - b

where u, is another point in the intersection. Hence, if -(a + b) is

1

uniquely representable as the image of a divisor of degree r + t , then the

r+t
intersection W:f1 —Wg contains ( r ) points (counting multiplicities),

Ugs Ugs oo Uy s and
(M)

N _ r+t-1
VAR Gt [CR LS
If the representation of ~(a + b) as the image of a positive divisor of
?
degree r +t 1is not unique, then 1(D +D ) >1 , and for every Q € X
?
there is a divisor D, of degree r +t - 1 such that D +D ~Q + D

1
In this case the intersection will contain sets of dimension > 1 .

1 °



Lemma 2. Let 1 £r £g -1 . Then the intersection

W‘rﬂ—w,g"hr is non—-empty. and, if proper, consists of a discrete set of
Lo —

points  U,., ece o U. . with multiplicities m419 soe o O such that
] P=)

Tm. = (% ) and Z.miu_.l = =( ﬁ::: )(a +b) .

—

The proof is immediate from the preceding considerations, observing
that -(a + b) can always be represented as the image of a divisor of de-

gree g .

Lemma 2.5 Let 1<%r Zg -1, Then the intersection

V_Jjﬁ -—W,r is_either equal to W‘I ,_or else consists of a discrete set of
[=1 8] <

points U,, ocoo o U with multiplicities M., ooo , mb such that
i IS 1

ij_ = r+1, Zmiui = —-(a +b) .

The proof is again immediate, except for the observation that if
-(a + b) is not uniquely representable as a divisor of degree r + 1 s
then it is representable as a divisor of degree r + 1 and dimension > 1 .
By the remarks following lemma 3, corollary 4, we then have W; C,—Wi o

We next turn to intersections of the form W;H M W,z o These are in
general difficult to get explicitly, but we can get some information in a
special case. OSuppose 1&rLtgg-1. If wz+’l¢wt , the intersec-
tion should be of dimension <. r . We shall now assume that

1 .

WZ ('_'.Izvi-wl Y W’ s for some ¢ . Then, by lemma 3, c &W, nwg‘r i.eo
35

cma+tx=b+y,xecW ,yew T .

1

Lemma 2.6 Let xEW |, ngt—r . Then either

Wr+1C_ WZ+x+,y , Or else

a

W At = W us

a a+x-y atx
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where S =W [} (wz_y@(-vﬂ)) .

It should be observed that S does not depend on x o

Proof: It is clear from lemma 3 that Wz+x is contained in the
intersection. Suppose now that u & Wzﬂ M Wt « We may then write

atx-y

u = W1 + a = w2+a+x_..y
with w, €W A wzcz_wt and
W,I +y = W2+X °

Fach side of the last equation may be represented as a sum of t + 1 points

in W1 o 1f this representation is unique, we find that x 6W1 must occur

as a summand on the left. If x occurs in the representation of

t-r-1 t-r-1 +1 t .
¥, ¥ €W, , whence a €Wa+x—y and WZ (:wa+x_y . If x occurs in
. , T ,
the representation of Wy s then Wy & Nx and u € Wra x
. +1 t . r+ t
Hence, if W, ¢wa+x_y ,and if w@W MW . ug W., » then

the representation of Wy + y as the image of a divisor of degree t + 1

is not unique. This means that —1«71

C,Wt or w +y€Wt@(-W1) 9
i L

whence
u = w +y—y+aE.WJC @(-—W1) 0
1 a~y

R . t 1 t
On the other hand it is easily seen that wa_y(—)(-w ) C‘Wa ey
F. Severi (( 7 , p. 380)) shows that a special linear series of de-
gree n and dimension r + 1 idepends on (r + 1)(n - r) - rg parameters®.
We may interpret this geometrically by observing that a is the image of a

divisor of degree r +t and dimension r + 1 if and only if -W, Cu",

or, equivalently, if and only if a (:_Wt@ (-W°) . Thus the set W o (-w")
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represents the set of linear series of degree r + t and dimension r + 1 .

Consider first the case r =1 . By lemma 6 we have for u,v & W

t ot Al {t _1}
Wonw,o= W Ui o (=w') .

/ t-
Clearly, W' (<u') ngﬁﬂl for arbitrary u, v €W' , and it follows that

it occurs as separate components of Wﬁr\ Wf; » Hence it has dimension

> 2t - g - This number agrees with Severi's formula.,

Next, consider the intersection

Ct t

e i n
with we& Wrﬂ » Let u be a point of the intersection. Then
u=W1+W=W2+V1+oea+V

where the v, are arbitrarily chosen points in W1 5 Wy and w, are points

\V)

in W,
. 1+
Since wé& W s, we can select the \f such that w= v

X C W1 « Then

Ftooset V. t+ X
r

1

Hence, either x occurs in the representation of W, as a sum of t points

in W , or else w, € Wt@ (-W1) - In the former case we have w, ew 1,

1

Hence, if w, ¢, then w, e W (') , and U (v toe oty ) Wweo ()

for all r~ttiples of points v, € W' . Hence ue wt@(-wr“) . In other

words, if u € {_Wt o (—Wr)g M W}; then either u € Wj/:\r—ll or else

t-1

w W @) . However, W@ (<#""") camot be included in W' for
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arbitrary w € Wt . Hence W' @(-WrH) must occur in separate com-

ponents of {Wt o (-Wr)‘} N W:; . Hence its dimension must be greater than
ain(i* © (W) +t - g

and, inductively,
din(W* @ (<)) > (r + Nt - g

provided Wb ©(-W) #@ . This agrees with Severi's formula, and the re-
sult is not restricted to characteristic zero. We have of course not estab-
lished that W' © (-W)#@ when (r + 1)t -rg>=0 . A result of this

kind is apparently established for the classical case in a paper by Meis.

3. MULTIPLICATIVE FUNCTIONS

Let S be a subset of J(X) , and let LL = (cofc) be a period matrix
of J(X) formed with a canonical homology basis of X . Let /\ = (Xﬂ)

be a g x 2g matrix, and let k/ be a column vector with components
1 2g

\/,.n,\( .

A holomorphic function, ® , on (I € will be said to be multiplica-
|

tive of itype (/\)é/) over S relative to Q provided
_ .t h
(3.) @Q+wy) = OWepTiChu+ y™)

for every u 1lying over S . From this definition it is clear that if
vanishes at some point lying over a point s & S , then it vanishes at all

points lying over s .
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Lemma 3.1 Let ("D be multiplicative of type (A’X> over J(X)

Let o Ty J_br be first order partial differential operators on (I ©

Then D'I coso br@ is multiplicative of type (A)X/) over the (projec-
N
tion of the) common zeros of (P’ajd)’ Djz‘k@’ coo 31 coo aj oo Dr(P .
: i ‘

-~

(Here ~ means that the operator aj is to be deleted, as usual.)

Proof: This follows immediately upon differentiation of the de~

fining relation.

1

Lemma 3.2 et W' be the canonically imbedded image of X in

J(X) . To every point w G_W1 there corresponds a first order partial

differential operator, Dw , on ﬂ’;g with the following properties:

1o If D _vanishes identically over W1 . and aWCD is multipli-
| < \

cative of type (/\)X) over W; . then C)WQ) has a zero over a + W .
|

20 In any neighborhood of any point of W1

1

there exist g points,

oes 4 W_ g of W such that the operators iaw 23 form a basis for

W, o

the first order partial differential operators on €T g o

J
Proof : Define chlu (w)-—- , waere %IZL (w) is the
u\J

value of the derivative of the jth component of the imbedding function,

1 s, and evaluated at

taken with respect to a local coordinate, z , on W
w o This defines aw up to a constant factor depending on the local co-
ordinate.

If vanishes over W1 s then its derivative with respect to a local
a p

. ol . .
coordinate on V\Ia vanishes, i.eo.

But at the point w + a G W; this condition simply says that éw?
vanishes. This establishes (1) .

To obtain (2) we observe that {aw z& will form a basis for the
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partial differential operators of the first order whenever the matrix

J
(%E‘ (Wk)) is non-singular. Since the du’ form a basis for the Abelian

1

differentials of the first kind on W' , this matrix will be non-singular

for almost all g-tuples of points on W1 o This completes the proof of
lemma 3.2.

We shall now assume that (P is a given holomorphic function, multipli-
cative of type (/x)y) over a set SCJ(X) . Our object is to study the
zeros induced by C%) on some W;C: S « We first show that if CP does
not vanish identically over W; s, then it induces q zeros on Wl s count—
ing multiplicities, where g depends only on /\ and STL- o

To that end we represent X by a fundamental polygon with sides (in
order) A

By, -A;, -B ~B_ where (A1, ose 5 A

1’ 1’ 906 4 -Ag, Bg’ "'Ag’ g

coo Bg) forms a canonical homology basis on X .

g’
B1$
Using the canonical mapping X-—e;W; s, we can pull a single-valued
branch of CP back on the polygon and study its zeros. The number of zeros
is obtained by evaluating the integral of the logarithmic derivative of (P
around the polygon. We observe that as we traverse Ah the point u goes

into u + Lﬁh , and as we traverse Bh the point u goes into u + C&é+h o

Hence, for the number of zeros of CP over W we get

N 5 g
q = '2'?11'{[__ {S (%)%(u) - %(u+®g+h)) + X (%\f(u“«)h) - %}’(u»j
h A "y |

Observing that '%é? (u +th) - & (u) + 2TTit)h du , we get

| ki

q = 571?{2_{‘ S 2TTL5A pdu + S 2T it/\hdu} = Z {t}\h‘%m - t>\g+ha)h§ .
hoA B, h
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If we write () = (91,92) and  /\ = (/\,1,/\2) , where Qj and

/\ . are g x g matrices, we may write

q= Tra.c:e(t/\,l QZ - t/]zﬂ1)

This is also expressible in terms of the so-called characteristic matrix

of CP , defined by N = (ED_ Jt - t/\_o_) . To see the significance of this
matrix, we consider the expression (‘D (u + (_..)h +00k) which, by the defin-
ing relation (3.1) , may be expanded in two different ways. Since the re-
sulting expressions must yield the same function, it follows by an easy cal-
culation that (t)‘kwh - t)‘h(“)k) must be an integer. Since t)‘k(")hztwhxk s
we find that N must be a skew-symmetric matrix with integral entries. The

reader may now verify that the formula for q may be written

g = 3 Trace JN ,
where

_ 0 E
i= (9%,

E is the g x g unit matrix, and O is the g x g null-matrix.

Consider next two holomorphic functions, Cl\) . and (? 5 s which are mul-
tiplicative of type (/\’)’1) and (/\)}/2) respectively, over S . We form
the quotient /_}(u) = 6\31(11)/ C?Q(u) , and evaluate the integral

Xu d/}(u)//& (u) around the polygon. This integral should be equal to

the sum
A
2Tii ) (u(@y) - u(r,))

where the Qj are the zeros of @ , and the Rj are the zeros of CP 5 °
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In order to evaluate the integral we observe that

[3lared,) = P(u)exp(ZTl'i(ﬁ - {5)) , vhence

%(u +0,) = %3(@ :

We then get

Su%(u =>Tr (%m) (u+w+h>7§(u))+ X<<u+ /3\“)" uﬁﬁ(u»}

]

=g '\/’

Ffon g fo g

Now, ‘d7§" =d ln/3 , and gd ln/g = ZTTl(X,I 3/ ) , and

Sd ln/ﬁ = i(}/g+h l g*h , modulo multiples of 2Tfi . Hence

Vil = 2w ) {0, - ) - @t -y

modulo a sum of the form 2TTi > mk(,-,)k o We can rewrite the right hand

side as (-92,91)% -A/z) , and thus get, finally

2 @) - 0, QY = 2 u@) - (0, DY,

modulo a linear combination of periods; i.e. the equation holds if the
terms are interpreted as points in J(X) .

Our findings may be summarized as follows:
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Theorem 3.1A Let @ be a multiplicative holomorphic func-
. T

tion over W; of type (/\,Y)__ If ¢ does not vanish identically over
]
1

Wailit induces g zeros, Uys_zee s uq on W; counting multiplicities,
such that

q = 5 Trace JN
and

Zuj = (—‘QQ’Q1)Y T2,

where N is the characteristic matrix of C%) and 7 _is a point of J(X)

which depends only on_ () L A s _and the canonical imbedding X-—ﬁW; .

This result can be given a different formulation of some interest.
Given a function, CP s, we define its translate by a, CIDa , by the rela-
tion C.Pa(u) = d‘)(u -a) ., If CP is multiplicative of type (/\,X) over
5CJ(X) , then (P, is miltiplicative of type A, Y - *Na) over s, .

To see this, we use the defining relation, (3.1) and get

Dya +0,) =@ - a + ) = Dla - o2 (a - a) + )

= Cg)a(u)exp(ZTTi(t)\hu + Yh - t>\ha) .

Theorem 3.1B Let q) be a multiplicative holomorphic func-

. . 1 R .
tion of type (A’Y) over S CJ(X) . Let W -:-=Sa. « Then CPB‘ is mul-
tiplicative over WQ) , and if it does not vanish identically over W,l . it
induces g zeros, b+u,l s_ o000 o b+uq on WQ) . counting multiplicities,

such that

q = % Trace JN
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and
Luj = T(a-b) + z,

where T is an endomorphism of J(X) represented by the matrix

(ta/\,] —Q1t/‘2) Land 7. isa point of J (X)__depending only on s s

and the canonical imbedding X—-—;W1 . Moreover, T ) = L JIN , where N

is the characteristic matrix of cP o

Proof : We first observe that d‘D(a_b) is multiplicative of type
(A, x - 17’(.2L—b)) over WL Ve apply Theorem 3.1 A and find that, if
CP(a.—b) does not vanish identically over W‘l , then it induces q zeros;
Uys eoe s uq , on W1 , counting multiplicities, where q = 5 Trace JN ,

and

Y= L,y - A v o
J 1 X o

Hence @a induces the zeros b+u1, eos b+uq on Wb o We may also

write Zuj = (Qz, -—O_,])t/\(a. - D) + Zy s where 2, =2 ¥ (—ﬂz, Q1)3/.,
If CP is given, so is /\ s and X , and hence z, is completely
determinedf

We now study the matrix T = (Qz, —Q.])t/l . It is seen immediately
that this may also be written as T = (ta/\1 - Q1t/\2) . To show that T
is an endomorphism, we investigate its action on the periods by forming the
matrix T () .

It has been assumed that Q was formed with a canonical homology
basis of X . Hence Q‘l is non-singular, and Q ;1D2 is symmetric,
iee. ﬂ;‘lﬂz = bgtﬂﬂ , or taﬂ_1 = Q1tQ2 . Hence
(ta(l1 - ﬂ1tﬂz)/\ = (sz—Q»l )tﬂ/\ = 0, and we may write
TOL = (—ngﬂ,l)(tﬂﬂ - "AQL) . From the relation (LJ = (—QQ,Q.1)

we finally get
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1) = Lo,

where N is the characteristic matrix of C? .

We showed earlier that N has integral entries, and hence it takes
periods into periods. By the above relation, so does T . This shows that
T is an endomorphism of J(X) , and completes the proof of Theorem 3.1 B.
The explicit formula for () , however, enables us to obtain some addi-
tional information.

Since the column vectors of () form a basis for (f:g over the reals,
it follows that T is non-singular if and only if N is non-singular. In
that case, the endomorphism is surjective. If, in particular, N is uni-
modular, then the colum vectors of T {) form a new basis for the periods,
and hence T is an automorphism of J(X) . When N is non-singular, CP

is said to be non-degenerate. Hence we have

Corollary 1 1f (%) is non~-degenerate, T is8 surijective,

and if N is unimodular, then T is an automorphism of J(X) .

Unimodularity of N is found in a very important class of multiplica-
tive functions, the thetafunctions, which will be studied in the next sec-

tione.

Corollary 2 If CP is multiplicative over J(X) , and is

nonrtrivial1), then g>0 . If (P is both non-trivial and non-degenerate,

then g>g »

Proofs: Assume gq=0. Let a & J(X) be a point over which qD

has a zero. Then CP has a zero over W; ; and since q = 0 it follows
that q) must vanish identically over W; o But by the same argument (4)

1 1 . . .
has a zero over Wﬁ for every w é,wa , and hence vanishes identically

over each. But then CP vanishes identically over Wi » Continuing the

1)

i.e. does not vanish identically, and has zeros.
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argument, we find that CP must vanish identically over W&gL =J(X) .

Suppose, finally, that 0Lq g « If CP does not vanish over a ,
then -Ta + 21 €Wl . But the set of such »a must be dense in J(X) «
Hence gq>g , if T 1is non-singular.

We conclude this section with a proof of the following result:

Lemma 3.3 Let (P be multiplicative of type (/\_)x) over

SCJ(X) . Let n> 1 be an integer, and define C\?n(u) = Gl)(nu) . Then

QPn is multiplicative of type (A’v k{‘) over Ill S , where

%S = {u; nueS}

(W) = ny™ v - DA,

Proof: We use induction over n to establish the formula
— <t h 1 t
ClD(u *nwy) = qD(u)exp(ﬂTl( Ay, () + ny” n(n - 1)°0,))

whence the lemma follows upon substituting nu for u .

For n =1 the formula is trivially verified, and by assumption
‘ ot h t
(P(u tnw,) = Clo(u * (- 1) exp(2Ti("A u Yt (n - DA, -

The formula to be established is now easily derived using the induction

hypothesis,

L. ON THE VANISHING OF THETAFUNCTIONS

et (L = (TT4iE,A) bve a period matrix formed with a canonical homo-

logy basis of X , and define
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O (uza) = j;__~ exp(tm(Am +2u)) .
me 78

Since A has a negative definite real part, it is easy to show that the

series on the right converges absolutely and uniformly on compact subsets.
Hence 69(u3A) is defined as a holomorphic function on q:g . It can be
shown that the function is non-trivial. By an elementary calculation one

finds that (& is multiplicative of type (/1));) over J(X) where

1
(O s "'ﬁ_lE)

/\

1l

and

X1 = e = ngo s Yg-l-h = -Z;ri aﬁ A = (ak) °

This section will be devoted to a proof of a fundamental result first
obtained by Riemann, which characterizes the zeros of © in terms of the
imbedded image of X in J(X) .

We say that a function vanishes of order r at a point provided the
function and all of its partial derivatives of order < r vanish at the

point, while some partial derivative of order r does not.

Theorem L.l (Riemann). Let W e a canonically imbedded

image of X in J(X) . Then there exists a fixed point k& J(X) depend-

ing only on the canonical imbedding and on A , such that ©&(u3A) van-

ishes of order r + 1 over b&J(X) if and only if —wfb C;w§—1—r .

Remark: The condition —Wfb(:_Wi_1-r cannot be satisfied
unless 2r<g- 1. This inequality does not have to be assumed, how-
ever, less will be a consequence of the theorem. Hence, © cannot

vanish of order greater than 3(g - 1) + 1 at any point of J(X) -



- 20 -

To see the significance of the result, we first observe that for r =0
the theorem gives the important special result that the zeros induced by C?
on J(X) are precisely the set W§-1 o For n>1 we first note that an
inclusion —Wfbc:‘W§-1-r means that b - k is the image of a positive di-
visor of degree (g - 1) and dimension (r + 1) . Thus the theorem asserts
that the order of vanishing of (@ (u,A) over a point b & J(X) indicates
the dimension of the complete linear series of degree (g - 1) all of whose
divisors map on b - k »

We shall first prove the theorem for r = O , and then obtain the full

theorem by induction. Since the proof is rather long, we present it in the

form of a series of lemmas.

Lemma L4e1 If O(u - b) does not vanish identically over W .

it induces g gzeros, Ugs_2oe o u.g g on W1 o counting multiplicities, such

that j?_uj =b -k , where k is a point in J(X) independent of b .
Proof: Using Theorem 3.1 B and the given forms of /q and

we find that T =E , and 3 Trace JN = g . This proves the lemma, and de-

fines k . It will turn out that the definition of k is the correct one.

Lemma 4.2 If O vanishes over -b € J(X) , then b€ w}g{‘1 R

where k is the constant of lemma L.1.

Proof: The argument is similar to that of Theorem 3.1 B, corolla-
ry 2. Consider the function Ga(u - b) - If it does not vanish identicglly
over Mﬂ s it induces g =zeros, Uys eoe s ug , counting multiplicities, on

W1

, such that b =k + Z::uj - Since u = 0 must be a zero, the right
hand side is a point in w§4 .

Suppose now that & venishes identically over W' . Let t be the
largest number such that Ga(u.- w - b) vanishes identically over hﬂ for
all w in W't . Then t« g - 1, and there is a dense subset of W’t+1

such that GB(u.— w -~ b) does not vanish identically over WJ for any w
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in the subset. By lemma 41, b=k - w + Zuj , whence be& W§-1-tC‘.W§—1 s
since the points of w must occur among the uJ. o This completes the proof

of lemma L.2.

Lemma 4.3 () vanishes identically over -W§—1 .

Proof: Let b&Wﬁ-1 ,byéwﬁ‘z. Then b - k is uniquely re-

presentable as a sum of g - 1 points in W1 - The corresponding divisor

1 such that

must have dimension 1 , and hence we can find a point vg eWw
the divisor corresponding to vy + oo * vg is of dimension 1 , v1,”o,vg_,]
being the original points. Consider the function (Q(u - b - Vg) . If it

does not vanish identically over WJI , it induces g geros, Uys coe s ug

on W1 such that

Zuj = b—k-l-vg = Zvj
Since the sum on the right is unique, vg must appear in the sum on the
left. Hence vg is a zero of 6(11 - b - vg) , or =-b 1is a zero of @ .
If © vanishes identically over W1 s this is a fortiori the case.

The set of b's considered is dense in Wﬁ-'l ; and hence lemma 4.3 is
established.

From the definition of O (ujA) , it is easily seen that © is an even
function. From this fact and lemmas 4.2 and 4.3, we now get Theorem 4.1 for

vthe case r =0, i.e.: @ vanishes over b € J(X) if and only if

g~
b ewk o

Lemma Lo4 If -Wfbf_ W§-1_r . then & vanishes of order

2 s+1,sr , over every point of V\E—s whenever b € Wz—s .

Proof : We proceed by induction over s . For s = O , suppose
be I/ui . Then ac€ -Wfb CW§—1-r . Hence Wz CW&‘1 , icee © vanishes

over Wr °
a
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Suppose now that the lemma holds for s &£ 5, Zr « Then © and all

T-s
of its partial derivatives of order <& s, vanish over Wa ©  whenever

T-
b € Wa So . It follows that every partial derivative of ©® of order
; r-s
s, * 1 is multiplicative of the same type as & over Wa °  whenever
T-s
bEeW, .
Suppose b € WSt By lemma 2.2 WSl w0 pop every
Pp a ° a a-w

w GW1 o Select any wéw1 o Then b EWZZZO , and awasoc—) is mul-

v s r-so . . S
tiplicative over Wa s for any partial differential operator, a °

8
of order Sy ° By definition, Dwa ©©® vanishes over c¢ + w on every

-1 -So So . r~so-1
W, C:Wra_w . By lemma 2.2, DWB © vanishes over W,

. Since w
was chosen arbitrarily, it follows that every partial derivative of order
r—So—1

s + 1 +vanishes over Wa

o , and the induction is completed. This estab-

lishes lemma Lole

Lemma L.5 If ® vanishes of order r + 1 at bawi"1 . then
aF T,
0y Cg

Proof: For r=0 thisis the result of lemma 4.2. lLet b& W, ,

and let & €r be the largest integer such that & vanishes of order

s + 1 over every point of W; o Then for any (s + 1)-tuple of points,

sos 5 W, in W' the partial derivative Bw DW © is multip-
o s
licative of the same type as ©® over W; o By the assumption on s , and

W
o’

by lemma 3.2 (2) , the (s + 1)-tuples for which the derivative does not

vanish identically over W; have sums which form a dense subset of WSJr1 °

Let Woy cee 5 W be such an (s + 1)-tuple, and consider the zeros

S

induced by 9 0o © on W1 o Let them be atu,; ooe , &+tu_ o
0y w a 1 g
o s

Then, by lemma 4.1 and theorem 3.1 B

N\
—a"k = u. o
A i

Now, among the uJ. we must find all of the w. s by the definition of c)w .
© J
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Hence s + 1 £g . By assumption, bé& W; whence a =Db - w , for some

w GW‘I , and if r >s , w must occur among the uj with multiplicity

(r - s) « We can then write -b + w- k = w0+.,.o+ws+(r—s)w+ur+2+“.,+ u_

g

after a suitable renumbering of the u (if necessary). If r =s , we get

b t+tw-v EWE—r-1 , where v = Wy * ooo0 w, may be chosen arbitrarily

from a dense subset of WS+1 » Hence the left hand side may be chosen ar-

bitrarily from a dense subset of -W‘ijv

If r-s=1,then b-vewW™ oo afcuf™,

which contains —WII; °

Finally, if r - s =2 for all choices of w , then -b - v - w& WE—B-S,
i.e. —VJ§+2‘:.: WE_B =S | which, by lemma 2.3, corollary L implies that
;2 Cw}%'B-S , which by lemma L., implies that @ vanishes of order

5 + 2 on every W; containing b . This contradicts the choice of s

-

and completes the proof of lemma 4.5,
The proof of Theorem 4.1 follows by observing that -, cug ™ s

and only if -—W; CW§-1—r by virtue of lemma 2.3, corollary L.

5. AN EXTENDED TORELLI THEOREM

A theorem originally proved by Torelli asserts that the conformal
structure of X is completely determined by any of its canonical period
matrices. By Theorem 4.7 it can be seen that this result would follow from
the assertion that the conformal structure of X is completely determined
by J(X) and the class of translates of w1 . The latter statement is
also the natural version of Torelli's result for curves over an arbitrary
field.

Over the field of complex numbers, it is possible to give a somewhat

stronger theorem from which Torelli's result would follow as a special case:

Theoren 501 Let X and Y be closed Riemann surfaces of

genus g >1 , with a common Jacobian variety, J(X) = J(Y) . Let Wk
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(respectively Vk) be the canonical image of the k-fold symmetric product

of X (respectively Y ) with itself in J(X) . If there is a point

a € J(X) such that W° = VZ

, for some t , 14£t<g-1, then X and

Y are conformally equivalent.

Proof: We assume Wt = VZ , and have W1 C:VZ - Let r be the
smallest integer such that W C V£+1 for some b &€ J(X) . If W n Vi
contains two distinct points for any c¢ < J(X) , then W is contained in

a translate of T , by lemma 2. 5. We assume first that this does not hap-

1 g~1-r

pen. Consider the intersection W1fﬁ Vg—1 , where x eV ,yeV

b+x~=y
Since W1C: Vg+1 , by assumption, the intersection may be written as
1 g-1 r+1 . . . .
W F](Vb+x?yfj Vb ) ¢ By lemma 2.( the intersection in parenthesis is of
the form V£+XLJ S , where S is independent of the choice of x .

We now invoke Theorem 3.1 B. véliey is the divisor induced by a
translate of the thetafunction formed with a canonical matrix of Y . Hence
it is multiplicative of some type over J(X) , and if it does not vanish
identically over WJI , it induces q gzerous, Uys ooe s uq on W1 , count-

ing multiplicities, such that

(5.1) Zuj = Ma+x-y)+z, ,

where Z, is a constant independent of a , x, and y . The induced
gzeros are the points of the intersection W V%:;;y .

Suppose that the thetafunction vanishes identically over 'W‘1 for all
choices of x and y . Keeping x fixed, this means that
W C V%:; @Vg—1-—r = Vﬁ_i_x , contrary to hypothesis. Hence there is a
point y & 781" and a point w€& W' such that the function does not
vanish. It follows that this must be the case for all x in a sufficient-—
1y small neighborhood of the original one.

Now keep y fixed, and let x vary over this neighborhood. Since the

right hand side of (5.1) varies, so must the left. But the set S does
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not vary, and hence the variation on the left must come from a point in the

1 r
nVb+x

in this intersection, and hence the left hand side must vary over some trans-
1

intersection W o By assumption, there cannot be two distinct points

, obtained from W1 by multiplying each point with a multipli-

city k o Thus T takes a neighborhood on V1 into a translate of kW1 o

1)

late of kW

But T is an automorphism, ° and by the irreducibility of the sets involved,

we find that T(V1) = (kW1)d for some d € J(X) .

1

T(V1) is clearly conformally equivalent to V'  and hence to Y .

(kﬁﬂ)d is obtained from Wﬂ by a map which is bijective, except possibly

2)

on isolated points. Hence we have a holomorphic map from X to Y which
fails to be bijective on at most a finite number of points. But every such
map is a covering map, and it follows that it must be bijective.

To get rid of the assumption that -W1 is not contained in a translate
of V© s we suppose now that this is the case, and define r +to be the
smallest integer for which an inclusion of the form -hﬂ ClVZ+1 occurse.
Then —W1 cannot have two distinct points in common with Vi for any
c € J(X) , and we can repeat the argument for L

This establishes Thuorem 5.1,

1)

The characteristic matrix of a thetafunction is unimodular with respect

to any period matrix.

2) w, =, ——» k(w1 - Wé) = 0, and this has only a finite number

of distinct solutions. If w, - w

1 :‘-’WB—WA:W5‘-W6 ° Then

w1 + WL = wg + wQ
MH + we = w5 + wQ

which is impossible unless W, = W oy Wy = Wp o
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