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1. INTRODUCTION 

The theory of Jacobian varieties began with RiemannVs recognition of the 

deep relations between a Riemann surface and the associated theta-functions. 

Our aim here is to review some of the principal results obtained by Riemann 

and to give an application which permits a generalization of Torelli 9 s 

theorem. 

We confine ourselves to the classical case~ although many of the results 

can be obtained for Jacobian varieties over an arbitrary groundfieldo In 

particular, the results of section 2 are clearly quite independent of the 

groundfield. 

We work with a closed Riemann surface of genus g >1 . If o2, o •• ,r;:x_g 

is a basis for the Abelian differentials of the first kind on X and 

matrix 

(x/ = j 

, Ag , B1, 

fl = (uJ~) 

••• , B is a canonical homology basis, we form a g 

by setting 

U)~+g = 

i, j = 1, o •• , g o f2.. is known as a period matrix of X • It is often 

convenient to write n = c..0.1, .Q2) where Il. 
l 

is a g x g matrix. 

() -1 1 (""\2 standard result in the theory of Riemann surfaces is that ~L ~ L 

symmetric and has positive definite imaginary part. 

is 

A 

The column vectors of ~ are linearly independent over the real num­

bers, and generate a properly discontinuous group of translations on q:g , 

which we denote by n X ~ The quotient space ([ g I Jl*- = J(X) is a repre­

sentation of the Jacobian variety of X o There exists an imbedding X-:).J(X) 

given by 
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where P is a fixed reference point in X ,. It follows from Abel? s theorem 

that this is an imbedding, and we denote by w1 the image of X under this 

map. 

VJe denote by if the set of points representable as a sum of L r 

points in w1 An r- tuple of points in w1 may also be identified with 

a divisor of degree r on X ~ and Abel?s theorem asserts that two divisors 

of degree r are linearly equivalent if and only if they determine the same 

point in if . The ,solvability of the Jacobi inversion problem implies that 

wg :::: J(X) • 

If A and B are subsets of J(X) ~ we define for a E J(X) 

A ~ B :::: £ u : u :::: a + b, a E A~ bE B 3 

AE)B:::: n A 
b~B -b 

vie note that if and only if B C A • 
u 

2. CQII.JBINATORIAL FORHULAE 

Our object is to study certain combinational relations between the sets 

if ru1d to indicate some applications to the theory of linear series on X • 
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Lemma 2.1 Let u E; J(X)--&... u f 0 0 Then the:re ts a unigue EOSi-

tive integer r £ g such :!;l}at u E:. vf 1 u '!j,. wt for t .<. r ..Land u is 

the image of a unigue 12ositive divisor of degree r 0 

P r o o f : The first assertion is obvious. By Abel9s theorem two 

positive divisors D1 and D2 of the same degree are linearly equivalent 

if and only if 9P(D1) = ~(D2 ) • Suppose u = cpCn1) = cpCn2 ) , where 

D1 -/:. D2 i and D1 and D2 are of degree r o Then D1 I"V'D2 , and there 

is a positive divisor D 

then u = (J) (D) E vf-1 o 

I 

of degree r - 1 such that D ,...._,D + P • 
1 

But 

The result may also be stated by saying that a point u E J(X) has a 

unigue minimal representation of the form u = w1 + • • • + wr , where 

1 wi E W 9 and r S. g • 

We now introduce some notation. For subsets A,B C J(X) we define A 
u 

-A , A fJ B , A E> B by 
u 

v E. A ~ v-uEA~ u 

v E. -A u ~ -v ~A u ' 

A ®B = u Ab ' 
bE.B 

and A8B nA 
bE. B -b 

0 

It is immediate from the definition that 

L e m m a 2o2 

ical devisor on X • 

iff B C A • 
u 

We also 

P r o o f : Given any positive divisor D of degree g - 1 there 
9 f 

exists a divisor D of degree g - 1 such that D + D · rv Z o Hence 
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~(D)= ~(~(D 9 )- 1P(Z)) $and as the left hand side traverses wg-1 the 

right hand side traverses and conversely. 

L e m m a 2.3 Let 0 S.. r < t C::. g-1 • Then 

P r o o f : The implication from right to left being trivial it suf­

fices to prove the implication from left to right. The inclusion ~ \:W~ 

means that for every positive divisor D of degree ~ r there is a posi­
v 

tive divisor D of degree ~ t such that 

v 
qi(D) + a-b = C((D ) 

Setting D = P , we have (a - b) f Wt o Let A be the divisor of degree 

s ~ t which corresponds to the unique minimal representation of a - b 

Suppose s ·> t - r Since A is uniquey l(A) = 1 and by the Riemann-

Roch theorem there is a divisor D of degree t - s + 1 Lr not contain-

ing p such that l(A + D) = 1 By assumption Cl(CA + D) = c9(D )+a-bE. wt 
I 

v 
Since D + A is of degree t + 1 we must have D + A rvD + p , where 

v 
l(D+A) >1 D is of degree t 0 But p does not occur on the left, hence 

This is a contradiction. It follows that s ~ t - r , i.e. 't(A) 
L t-r a - b c W , and the theorem follows. 

C o r o 1 1 a r y 1 • 

= wt-r 
a-b 

p r 0 0 f : u r:.. wt ~ wr 
'" a"' b 

only if u E wt-r 
a-b 

Let 

if and only if if. c wt i.e. if and 
b+u a ' 

0 
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C o r o 1 1 a r y 2 • Let 0 4. r ~g - j . .T.llim 

-wg-1 e vf = 
a b 

P r o o f 

P"-1-r wa 
-a-b-K 

.$:!:-1 
-v~~ 

a 

C o r o 1 1 a r y 3 • Le.i_ 0 ~ r ~ g_- 1 • Then 

wg-1 E) (-vi') = -wg-1-r 
a b -a-b-K 

P r o o f wg-1 e (-if) = n ws-1 
a b a+u 

ueV\: 

=-n 
uE.vf 

b 

C o r o 1 1 a r y 4 • Let 0 L r f. t ~ g - 1 • Then 

- vfa c \rV:bt -~(;=::::;)'~ -vF-1-t l "\pJg-1-r 
~ r -b ~ -a-K 

P r o o f : If -It~ c w~ then it?-1 e w~ c wg-1 e (-~) ' and the 

corollary follows from corollaries 1 and 3. 

Corollary 4 has an interesting interpretation. An inclusion of the form 

-if C Wt means that for every positive divisor D of degree r there is a a 
9 

positive divisor D 

9 
-a = cp (D + D ) 

of degree t 
9 

such that - CD(D) - a = CD(D ) ~ or 
I \ 
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This again means that -a is representable by a positive divisor of degree 

r + t and dimension r + 1 • The corollary then states that K - (-a) is 

representable by a positive divisor of degree 2g - 2 - (r + t) and dimen-

sion g - t • This is an expression for the Brill-Nether reciprocity the-

orem~ which is equivalent to a restricted form of the Riemann-Roch theorem. 

Thus Lemma 3 may be regarded as a combinatorial version of the latter. 

We now turn to some intersection properties of the sets w' • Consider 

first an intersection ~ n -w: . If u is a point of the intersection~ 

' there are positive divisors D and D of degree r and t such that 

u - (!)(D) +a 

' 
' _ - cp<o ) - b 

f ' ~!er~'~t:! <:p(.o .. D ) ·-:: -(a + b) • The divisor D .- D has d~gree r + t , 

_;... . ~ . 

where 

t 
•, .:.;:-··. :.,. (":._it·..._<,.n· 01 by so.l.ecting an:,· r. pojnts from D + D 

u 
1 

.~. 

is a:1uther point in the intersection. Hence, if -(a + b) is 

uniquely representable 

intersection ~ n -'vJ~ 
as the image of a divisor of degree r + t , then the 

r+t 
contains ( r ) points (counting multipli.cities), 

T"u. 
-~ 

u r+t 
( r ) 

and 

= -( r+t-1 )(a + b) 
r-1 • 

If the representation of -(a + b) as the image of a positive divisor of 

' degree r + t is not unique, then l(D + D ) )>1 , and for every Q E X 

' there is a. divisor D1 of degree r + t - 1 such that D + D rv Q + D1 • 

In this case the intersection will contain sets of dimension .~ 1 • 
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L e m m a 2.4 .;;:;L~et:;::.-...__;,1 C:. r ::._g --1~· Then the intersection 

vf n -w?'""r 
-a:--b is nolJ=empty. and, if__11ro.12er..3,_.£9rl.Sists of a discre-te set of 

such that 

lm. 
- l 

= ( g ) 
r 

and /m.u. 
- ll 

= -( g-1 )(a + b) 
r-1 

The proof is immediate from tqe preceding considerations, observing 

that -(a + b) can always be represented as the image of a divisor of de-

gree g • 

Lemma 2.5 Let 

vv1 n -v{ is either equal to w 1 or else consists of a discre_te set of -a ho--~~~~--~-~=-~----a~-J~.~~.~~~ -

points Ll1 ..... ~.;..;;.......L.....;;;u ~ th mul tipli.c.i ties m1 ..... __;;•-•_.,•__.._m;;;;;;R' __ s"'-u;;..co.;;h.:;......ot..-.h ... a ..... t 

Jm. = r + 1 
-J.: L mi ui = -(a + b.L!. 

The proof is again immediate, except for the observation that if 

-(a + b) is not uniquely representable as a divisor of degree r + 1 , 

then it is representable as a divisor of degree r + 1 and dimension > 1 • 

By the remarks following lemma 3, corollary 4~ we then have 

We next turn to intersections of the form v.f+1 n Wt 
a b 

w1 c-vf. . a b 

These are in 

general difficult to get explicitly, but we can get some information in a 

special case. Suppose 1 .C. r L t ~ g - 1 • If ~+1 ¢ W~ , the intersec­

tion should be of dimension L r • We shall now assume that 

vf c w.r+1 n wt ' for some 
c a b c 0 Then, by lemma 3, 

Lemma 2.6 Let 

vf us a+x 



- 8-

where 

It should be observed that S does not depend on x • 

P r o o f It is clear from lemma 3 that wf+ ax is contained in the 

,r+1 t Suppose now that u E vv n W + • a a x-y intersection. We may then write 

u vr1 + a = w2 + a + x - y 

and 

Each side of the last equation may be represented as a sum of t + 1 points 

in w1 • If this representation is unique, we find that x E. w1 must occur 

as a summand on the left. If x occurs in the representation of 

t-r-1 y, yEW , whence 
X 

a ~ wt-r-1 and vr+1 c wt • 
a+x-y a a+x-y If x occurs in 

the representation of w1 , then ,,.1 E v( and u € v~+x • 

• ,r+1 ¢ t ,,+1 t 
Hence, if w I w + ' and if u E. w n VJ + ' a a x-y a a x-y u ~ ~+x , then 

the representation of w1 + y as the image of a divisor of degree t + 1 

is not unique. or 

whence 

u 
t 1 w + y - y + a E w E.:> (-vi ) 

1 a-y 

On the other hand it is easily seen that 

F. Severi (( 7 , p. 380)) shows that a special linear series of de-

gree n and dimension r + 1 11depends on (r + 1) (n - r) - rg parameters¥1 • 

vie may interpret this geometrically by observing that a is the image of a 

divisor of degree r + t and dimension r + 1 if and only if -if C:: ~vt , 
-a 

or, equivalently, if and only if a E. Wt 0 (-vf) • Thus the set Wt G (-if) 
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represents the set of linear series of degree r + t and dimension r + 1 • 

Consider first the case r = 1 o 
1 By lemma 6 we have for u,v ~ W 

Clearly, 

it occurs as separate components of Wtn Wt o Hence it has dimension 
u v 

>2t- g. This number agrees with SeveriVs formula. 

Next~ consider the intersection 

w-ith wE ~{+ 1 o Let u be a point of the intersection. Then 

u = ,.1 + w = w + v + + v 
' 2 1 • • • r 

where the v. 
l 

are arbitrarily chosen points in 

in wt • 

Since wE ~+1 , we can select the 

1 x E: W • Then 

v. 
l 

such that 

are points 

Hence, either x occurs in the representation of w2 as a sum of t points 

• u 1 1 Wt I"""\. ( -.r1) I th f h E. Wt-1 1n vv ~ or e se w2 E. 'CI -vv • n e ormer case we ave w1 - o 

Hence, if w1 ¢:_ T:Jt- 1 ~ then w2 E l'l 8 (-vJ1) , and u-(v1+ ••• +vr) Wt 0 (-W1) 

for all r~·tfiples of points v. (: W 1 o Hence u E: Wt 0 ( -Vf+1 ) • In other 
l 

words, if u E { wt e (-~)J n VJ~ then either u E ~·J~- 1 or else 

u f vl E) (-1rf+1) o Ho>vever, vl 6 (-1Jt'+1) cannot be included in 1rJt-1 for 
w 



- 10-

arbitrary w ~ wr+1 • t ,..r+1 Hence 1v E> (-w ) must occur in separate com-

ponents of { Wt 9 (-if)J n w; . Hence its dimension must be greater than 

' 

and, inductively, 

dim(Wt 0 (-if))>-.. (r + 1 )t - rg 

provided Wt G (-Wt') f:. ¢ • This agrees with SeveriYs formula, and there-

sult is not restricted to characteristic zero. We have of course not estab-

lished that Wt 9 (-if) f:. ¢ when (r + 1 )t - rg 2: 0 • A result of this 

kind is apparently established for the classical case in a paper by Meiso 

3. MULTIPLICATIVE FUNCTIONS 

Let S be a subset of J(X) , and let Sl.. = (w~) be a period matrix 

of J(X) formed with a canonical homology basis of X • Let 1\ = ( ).,~) 

be a g x 2g matrix, and let ¥ be a column vector with components 

1 2g 
\'' 000 ' )( • 

A holomorphic function, CD , on ([ g 1-.'ill be said to be multiplica­
l 

ti ve .2f ~ ( 1\ 1 }') ~ S relative to .fL provided 

for every u lying over S • From this definition it is clear that if 

vanishes at some point lying over a point sf S , then it vanishes at all 

points lying over s o 



- 11 -

Lemma 3.1 

Let .) p_..;;..;;..;;._,.,•....,d r 

Let CO be multi]licative of t'rne (A v) 
--~- ~.J..j;'·- >a over J(X) • 

be first order_J?artial differential ~raters on <fg_:, 

Then () 1 • o. 0 r p multiJ?lic~t}ve of t;vpe 

tion of the) common zeros of CD, d. cO, ~ .2kco' 

over the (pro.jec-
/:r._ 

• 0. ' 61 •.• d. . . 0 d <D • 
J r I · I J I J I 

iHere : means that the OJ2erator ~. -=i~s_..::.t.::;.o_b:;;.e;:;....;d:::.e::;.:l:;.;e;;.;t::;.;e:::.:d:::.~•t-.;;a:.=s;.....;:;u:=s;..:::u;.;;;;a::l..J...;;..J., 
J 

P r o o f : This follows immediately upon differentiation of the de-

fining relation. 

L emma 3.2 Let w1 be the canonically imbedded image of X in 

J(X) • To every point w~ w1 there corresoonds a fir11 order partial 

differential operator, i) , on ([ g with_ the following_properties: 
w 

1 0 If cD vanishes identically over w1 
I -a 

of type ((\. J ¥) over w: . then ~ w CD 

and ~ CD is multipli­
wl 

cative has a zero over a + w • 

2. In any neighborhood of any point of w1 there e~st g noints. 

tdw.~ 
J 

1 o.. , w • of W 
g 

such that the operators 

the fir st;......;;.o.;;,r.;;;d-.er~p,;;,.a..;;r;...;t;,;;;i_al.;;;; differential opera~,.o.;;.r.=o.s_o.;;.;n""--_([.=-_g_.,;;,• 

P r o o f : 
-..., Lduj d duj 

Define o = - ( w )-. where dz ( '") 
w dz JuJ is the 

value of the derivative of the jth component of the imbedding function, 

taken with respect to a local coordinate, z , on w1 , and evaluated at 

w • This defines clw up to a constant factor depending on the local co-

ordinate. 

If cp vanishes over lrJ: , then its derivative with respect to a local 

d . t T.r1 · h . coor lna e on vva vanls es, l.e. 

But at the point w + a E w: this condition simply says that 

vru1ishes. This establishes (1) • 

~cD w, 

To obtain (2) we observe that 5 "'\ ( will form a basis for the l 0 w. \ 
J 
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partial differential operators of the first order whenever the matrix 

duj j 
(dz (wk)) is non-singular. Since the du form a basis for the Abelian 

differentials of the first kind on w1 , this matrix will be non-singular 

for almost all g-tuples of points on w1 o This completes the proof of 

lemma 3.2. 

I'Je shall now assume that c.D is a given holomorphic function~ multipli-
1 

cative of type (j\) y) over a set S C J(X) • Our object is to study the 

zeros induced by CD on some W 1 C S • We first 
1 a 

show that if cp does 

not vanish identically over w1 ~ then it induces a q zeros on w1 
a ~ 

count-

ing multiplicities~ where q depends only on 1'\ and ,0_ 0 

To that end we represent X by a fundamental polygon with sides (in 

order) A1, B1, -A1, -B1, •o• , Ag' Bg~ -Ag' -Bg where (A1, ••• , Ag , 

0 •• ' B ) g 
forms a canonical homology basis on X • 

Using the canonical mapping 1 X __,..vJ , we can pull a single-valued a 

branch of cp back on the polygon and study its z:eros. The number of zeros 

is obtained by evaluating the integral of the logarithmic derivative of cp 
around the polygon. We observe that as we traverse ~ the point u goes 

into u + (.).)h , and a.s we traverse Bh the point u goes into u + Wg+h • 

Hence, for the number of zeros of up over W we get 

dill ( ) d CD ( ) . t\ Observing that cD u + ~ = CS(' u + 21\l "h du , we get 
I 
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If we write fl = (0.1' n 2) and /\ = (/\ 1, 1\2) ' where D j and 

/\ j are g x g matrices, 1r.re may write 

This is also expressible in terms of the so-called characteristic matrix 

of cp 9 defined by N = (11_ /l - Y\ ..(l) • To see the significance of this 

matrix~ we consider the expression d) (u + <Alh +u)k) which, by the defin-
t 

ing relation (3.1) , may be expanded in two different ways. Since there-

sulting expressions must yield the same function, it follows by an easy cal­

culation that (t).k£.0h - t,Ahwk) must be an integer. Since t/\CA\=\...)hhk , 

we find that N must be a skew-symmetric matrix with integral entries. The 

reader may now verif;)T that the formula for q may be v.r.ritten 

q = ! Trace JN 

where 

J ( 0 E ) 
-E 0 

E is the g x g unit matrix, and 0 is the g x g null-matrix. 

Consider next two holomorphic fu...'1ctions ~ cp 1 and q> 2 , which are mul­

tiplicative of type ( /\ 1r1) and (A 1 ~12 ) respectively, over S • We form 

the quotient {J ( u) = q> 1 ( u)/ cp2 ( u) , and evaluate the integral 

Su d~(u)/~(u) around the polygon. This integral should be equal to 

the sum 

,-
2TiiL (u(Q.)- u(R.)) 

- J J 

where the Q. 
J 

are the zeros of 9 1 and the R. 
J 

are the zeros of ~ 2 • 
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In order to evaluate the integral we observe that 

(3Cu +Wh) = r~(u)exp(2lii(~- ~~)),whence 

We then get 

d/3 ') 
Now, --,;::;- = d lnJ':J r::. , and 

S d ln/~ = 2lTi(¥~+h -y~+h) , modulo multiples of 27Ti o Hence 

Bh 

modulo a sum of the form 2Tr i J ~U\ . We can rewrite the right hand 

side as (-~ 2 , 0 1) Ct1 - ¥2 ) 7 and thus get, finally 

modulo a linear combination of periods, i.e. the equation holds if the 

terms are interpreted as points in J(X) • 

Our findings may be summarized as follows: 
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T h e o r e m 3 o 1 A Let Cf .J2_e a multiplicative holomorphic__func­

tion over w: of type ( 1\;"f )_o If cp does not yanish identi~y over 

w: ..i...'it induces g zeros, u1, •••• uq _2!L,_,W: counting multiplicities, 

such that 

q ! Trace JN 

lu. 
- J 

= 

where N is the characteristic matrix of cp and z0 is a point of J(X) 

vJhich depends . onJ.x on_ .fl_ , 1\ , 1 and the canonical imbedding X -==">Wa • 

This result can be given a different formulation of some interest" 

Given a function, cp , we define its translate by a, 9a , by the rela-

tion CD (u) = Q)(u- a) • 
I a I 

If cp is multiplicative of type ( /\ y) 
S C J(X) , then cpa is multiplicative of type ( /t y- t/\a) over 

To see this, we use the defining relation, (3.1) and get 

= CD ( u)exp(iiTi(t )., u + V h - t ).,.ha) • 
I a . n 6 

over 

s a 

T h eo rem Let cp be a muJ.J;..ll~.tiYe l}olomorphic .LU££­

,:tion _.9f type (/\> ¥) over S CJ(X) • Let W~ C_Sa Then cpa is mul-

tiplis_""'a-'-'""ul;;;;... v""'e"--'o_v_e_r_W~ ..i.-B.:..YJE if ...ii_ doe.§__pot vanish ideDticallz over 

induces g zeros._ b+u1 ,__..2. o , b+uq on lrJ~ ~~.£Q1llting multiplicit:i,~ 

such that 

q = ! Trace JN 
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/ uj = T(a-b) + ~ 1 

where' T is an endomori?hism of_J(X)_J;:.§I?f~esented bLthe ma.tr~ 

([22 t/\1 - Q 1 t/\2 ) ~~~s a poin~~lXL.._.dem;nding only on 

and the cangnical imbedding X ~J1 • JYloreover. T ..0... = .f2 JN where N 

is the characteristic matrix of cp a 

Proof : We first observe that cp(a-b) is multiplicative of type 

(/\~ '(- -tyj(a-b)) over w1 • 1rve apply Theorem3.1 A and find that~ if 

cp(a-b) does not vanish identically over vv1 ~ then it induces q zeros, 

• 0 • 

/u. 
- J 

, u , on w1 , counting multiplicities, where 
q 

= 

Hence cpa induces the zeros b+u1 , o o a , b+u on w1 
q b 

- t 

q = ~ Trace JN , 

a ltJe may also 

write 2_ uj = CD.2 , -D...,) !\(a - b) + z1 , where z1 = z o + c -n2, n1 ) r · 
If cp is given, so is (\ , and ¥ ~ and hence z1 is completely 

determined. 

We now study the matrix T = (Q2 , -0.1 )t/1 • It is seen immediately 

that this may also be written as T = ((2.2 t/\1 - {l1 t/)2 ) • To show that T 

is an endomorphism, we investigate its action on the periods by forming the 

matrix T fl. . 
It has been assumed that ~ was formed with a canonical homology 

basis of X • Hence ~1 is non-singular, and ~ 1 1IL2 is symmetric, 

i.e. fL1TI2 = h2t011 ' or .C22t~ = n1~ • Hence 

(02 t~ - f2 1 t..(22 )/\ = (Q2,-~ )til /1 = 0 , and we may write 

T..[l = (-0..2~[2_1)(tf2:.A- -t;\.0.) a From the relation [LJ = C-0.2,.0.1) 

we finally get 
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T.fL i1.JN 

where N is the characteristic matrix of cp . 
We sho1-.red earlier that N has integral entries, and hence it takes 

periods into periods. By the above relation, so does T • This shows that 

T is an endomorphism of J(X) 1 and completes the proof of Theorem 3.1 B. 

The explicit formula for T fl. , however, enables us to obtain some addi-

tional information. 

Since the column vectors of D_ form a basis for ([_ g over the reals, 

it follows that T is non-singular if &~d only if N is non-singular. In 

that case, the endomorphism is surjective. If~ in particular, N is uni-

modular, then the colUITl.i.J. vectors of T 11. form a new basis for the periods, 

and hence T is an automorphism of J(X) • vfuen N is non-singular, cp 
is said to be non-degenerate. Hence we have 

C o r o 1 1 a r y 1 

and if N is unimodular, 

If cp is~ll9!k:de~ate-1 

theu_. T is an automorphi~ of 

T is sur,iect_ive4 

Unimodularity of N is found in a very important class of multiplica-

tive functions, the thetafunctions, which will be studied in the next sec-

tion. 

C o r o 1 1 a r y 2 If cp 
non-.tr.tyial1~ the.n__g > 0 • If 'f 

is multiplicative over J(X2 1 and is 

then q >- g • 

P r o o f Asswne q = 0 • Let 

has a zero. Then cp has a zero over 

that SP must vanish identically over 

has a zero over W 1 for everv w E.~\]" 1 
w ~ a 

a ~ J(X) be a point over which 9D 
~f: , and since q = 0 it follows 

'iiv: . But by the same argument cp 
, and hence vanishes identically 

over each. But then cp vanishes identically over ~? 0 a Continuing the 

1)i.e. does not vanish identically, and has zeros. 
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argument~ we find that cp must vanish identically over \oF = J(X) o a 

Suppose, finally, that 0 c( q ..(_ g • If CD does not vanish over a 
I 

then -Ta + z1 E ~ o But the set of such ::·a must be dense in J(X) o 

Hence q 2:. g , if T is non-singular. 

We conclude this section with a proof of the following result: 

L em m a 3.3 

S C J(X) • Let n 2.. 1 

Let cp be multiplicative of type C'\,¥ )__QY~ 

be an integer. and ~fine CD ( u) = CD(nu) • Then 
-\ n l 

is multiplicative of type 

1 s = t u; nu E. S} n 

/\) = n21\ 

(~))h = n ~h + !n (n - 1) \\/..0h 

over 1 s 
n 

where 

P r o o f : We use induction over n to establish the formula 

whence the lemma follows upon substituting nu for u • 

For n = 1 the formula is trivially verified~ and by assumption 

The formula to be established is now easily derived using the induction 

hypothesis. 

4. ON THE VANISHING OF THETAFUNCTIONS 

Let J:l_ = (TfiE,A) be a period matrix formed with a canonical homo-

logy basis of X , ~~d define 
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6 (u;A) 

Since A has a negative definite real part 3 it is easy to show that the 

series on the right converges absolutely and uniformly on compact subsets. 

Hence () (u;A) is defined as a holomorphic function on ([g . It can be 

shown that the function is non-trivial. By an elementary calculation one 

finds that G is multiplicative of type cll)y) over J(X) where 

1\ = (0 ' __ 1-.E) 
TP-

and 

1 ~g = 0 
g+h 1 h (aj) 

~ = '{ --- ah A = 2Tfi k 

This section will be devoted to a proof of a fundamental result first 

obtained by Riemann, which characterizes the zeros of E7 in terms of the 

imbedded image of X in J(X) • 

We say that a function vanishes of order r at a point provided the 

function and all of its partial derivatives of order ~ r vanish at the 

point, while some partial derivative of order r does not. 

T h e or em 4.1 (Hiemann). Let w1 be a canomcally imbedded 

,image of X in J(X) • Then there exists a fixed point k~J(X) depend-

ing onlx on the canonical imb~~ on A~·,:;:1L.;.:;:c!,!h_t~h:.!.a:;:.t.:;___S:::::~::..C~...:u:::.J;t.:.A:....):__...:V:.::a~n-

~s of order r + 1 over bE:l..(KJ if and onlv if 

Remark: The condition -~b [_ vJ~- 1 -r cannot be satisfied 

unless 2 r < g - 1 • This inequality does not have to be assumed, how-

ever~ less will be a consequence of the theorem. Hence~ EJ cannot 

vanish of order greater than !(g- 1) + 1 at any point of J(X) • 
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To see the significance of the result, we first observe that for r = 0 

the theorem gives the important special result that the zeros induced by e 
on J(X) are precisely the set ~-1 

k . For h 2'1 we first note that an 

inclusion -if C g-1-r 
-b wk means that b- k is the image of a positive di-

visor of degree (g- 1) and dimension (r + 1) 0 Thus the theorem asserts 

that the order of vanishing of ~ (u,A) over a point b E J(X) indicates 

the dLmension of the complete linear series of degree (g- 1) all of whose 

divisors map on b - k • 

We shall first prove the theorem for r = 0 , and then obtain the full 

theorem by induction. Since the proof is rather long, we present it in the 

form of a series of lemmas. 

1 e m m a 4.1 If (l(u- b) does not vanish identically over w1~ 

;;;i""'t_;;;in=du=c .;;.e~s __.g;;o.._...:z::..;e;;.::r:....;:o;.;;s;..J,~ u1 , • • • • 1 u 4-on W • counting multiplicities, such g 
~ that , u. = b - k • where k is a point in J(X) independent of b 
'-- J 

P r o o f : Using Theorem 3 .1 B and the given forms of 1\ and 

we find that T = E , and ~ Trace JN = g • This proves the lenwa, and de-

fines k o It will turn out that the definition of k is the correct one. 

1 e m m a 4.2 G ( ) . JZ.-1 If :: vanishes over -b ~ J X , then bE wk ~ 
where k is the constant of lemma 4.1. 

P r o o f : The argument is similar to that of Theorem 3.1 B, corolla-

ry 2. Consider the function 8 ( u - b) • If it does not vanish identic~lly 

over w1 
' 

it induces g 

w1 
' 

such that b = k + 

hand side is a point in 

Suppose now that e 

zeros, u1, ••• , ug , counting multiplicities, on 

~ L u. • Since u = 0 must be a zero, the right 
J 

7 JZ.-1 wk • 
vanishes identically over w1 • Let t be the 

largest number such that e ( u - w - b) vanishes identically over w 1 for 

11 . -,rt a wln~~. Then t .<::.,g - 1 , and there is a dense subset of Wt+1 

such that ~ (u- w- b) does not vanish identically over w1 for any w 
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in the subset. By lemma 4.1, b=k-w+ Lu. 
J 

g-1-t .B:-1 whence bE: wk c 1-'Jk ~ 

This completes the proof since the points of w must occur among the u .• 
J 

of lemma 4.2. 

Lemma lJ vanishes identically over g-1 -W • k-

P r o o f Let b E~-1 , b ~ W~-2 • Then b- k is uniquely re-

presentable as a sum of g - 1 · t · w1 pOJ.n s 1n • The corresponding divisor 

must have dimension 1 , and hence we can find a point such that 

the divisor corresponding to v1 + ••• + vg is of dimension 1 , v1 , ••• ,vg_1 

being the original points. Consider the function (3(u- b- v) • If it g 
1 does not vanish identically over W , it induces g zeros, QOO ' u g 

on w1 such that 

~u. 
- J 

b- k + v 
g 

Since the sum on the right is unique, v must appear in the sum on the 
g 

left. Hence v is a zero of 6 ( u - b - v ) , or -b is a zero of 8 
g g 

If 6 vanishes identicall:>r over w1 , this is a fortiori the case. 

T.B:-1 The set of bVs considered is dense in wk , and hence lemma 4.3 is 

established. 

From the definition of 6 (u;A) , it is easily seen that E) is an even 

function. From this fact and len~as 4.2 and 4.3, we now get Theorem 4.1 for 

the case r = 0 , i.e.: ~ vanishes over bE J(X) if and only if 

b E. w~- 1 • 

Lemma Tx ~1-r e li_-W _ b C. Wk -..¥.• _t:;.:h;,;;;.;e~n:..-.,...;===-__:.V,;;;;an:.:,;l;:;.." S~h;.:;.;e;;..:S:;_..::;O;..;:;f,__;;,o::..r;::;.d=.er 

~ s + 1 • s '-. r , over every point of w:-s whenever b S, ~-.:......:, 

P r o o f : We proceed by induction over s • For s = 0 , suppose 

bE: ~ • Then a E -~b C W~- 1 -r • Hence ~ CI'IT~- 1 , i.e. 6 vanishes 

over if. a 
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Suppose now that the lemma holds for s .C. s 0 <.. r • Then 8 and all 

of its partial derivatives of order ~ s vanish over 
0 

T-s0 
TfJ whenever a 

T-s0 b E Wa • It follows that every partial derivative of e of order 

s + 1 is mUltiplicative of the s~~e type as ~ 
0 

over 
r-s0 w t1henever a 

T-s0 
b E. wa • 

_ _r-s0 -1 _..r-so-1 C W!', --so 
Suppose b E wa _ • By lemma 2.2 w for every a a-w 

1 E 1 b E.- ..r-sc . "~d "' ""\soe w E W • Select any w W • Then w , o.J.J. u cJ a-w w is mul-

tiplicative over 
r-s0 

Wa-w , for any partial differential operator, 

of order s 
0 

By definition, d ds0 8 vanishes over c + w 
w 

on every 

W1 cvf-So • 
c a-w 

, ,soe T.F-so-1 • By lemma 2.~, C) o vanishes over vv w a Since w 

was cho~en arbitrarily, it follows that every partial derivative of order 

s + 1 
0 

vanishes over 
r-s0 -1 

Wa , and the induction is completed. This estab-

lishes lemma 4.4. 

Lemma If 6 vanishes of order r + 1 at b E r,JS-1 
~------~~~~~~~~------~--~--~=- k 

then 

_T..r c ,.a-1-r 
wb 1Nk • 

P r o o f : For r = 0 this is the result of lemma 4.2. 

and let s ~r be the largest integer such that ~ vanishes of order 

s + 1 1 over every point of ~v • Then for any (s + 1 )-tuple of points, a 

• • • ' w ' in s the partial derivative ()w 
0 

... () e is multip­
ws 

licati ve of the same type as e over By the assumption on s , and 

by lemma 3.2 (2) , the (s + 1)-tuples for which the derivative does not 

vanish identically over w1 have sums which form a dense subset of Ws+1 • 
a 

Let 

induced by "'"'\ ow 

be such an 

... () e 
w 

on 

(s + 1)-tuple, and consider the zeros 

W1 • Let them be a+u a+u 
0 s 

a 1' ••• ' g 

Then, by lemma 4.1 and theorem 3.1 B 

-a- k = 

Now, among the u. 
J 

we must find all of the w. , by the definition of d . 
1 W. 
u J 
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Hence s + 1 ~ g o By assumption~ bE w1 wRence a = b - w , for some a 
1 w E. W , and if r > s , w must occur among the u. with multiplicity 

J 

(r- s) • lve can then write -b + ltl- k = w +o •• +w +(r-s)w+u +o •• ~+ u 1 o s r+2 g 

after a suitable renumbering of the u (if necessary). If r = s ~ we get 

. .1.!-r-1 -b + v.r - v E. wk , where v = w + 
0 

0 0 0 + w s 
may be chosen arbitrarily 

from a dense subset of 
s+1 w . Hence the left hand side may be chosen ar-

bitrarily from a dense subset of -Wbs+1 which contains 
-w -v{ . 

.g-r-1 
If r - s = 1 , then - b - v E Vvk 11 or -v{ C ~-r-1 • 

. .1.!-3-s Finally, if r - s ~ 2 for all choices of w , then -b - v - w€ wk ~ 

s+2......- g-3-s i.e. -Wb '- Wk , which, by lemma 2.3, corollary 4 implies that 

-Ws+2 C Wg-3-s " which by lemma 4.4 implies that 0 vanishes of order -b k , 

s + 2 on every vv1 containing b o a 

and completes the proof of lemma 4.5. 

This contradicts the choice of 

,r C. ,.1.!-1-r The proof of Theorem 4.1 follows by observing that -1N_b INk 

,r TJ.!-1-r and only if -Vvb C wk by virtue of lemma 2.3, corollary 4· 

5. AN EXTEtTDED TORELLI THEOREH 

A theorem originally proved by Torelli asserts that the conformal 

s 

if 

structure of X is completely determined by any of its canonical period 

matrices. By Theorem 4o1 it can be seen that this result would follow from 

the assertion that the conformal structure of X is completely determined 

by J(X) and the class of translates of Wg- 1 o The latter statement is 

also the natural version of Torelli9s result for curves over an arbitrary 

field. 

Over the field of complex nu~bers 3 it is possible to give a somewhat 

stronger theorem from ~~ich TorelliYs result would follow as a special case: 

T h e o r e m 5.1 Let x_ and Y be closed Riemann surfaces of 
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gespes_t_iyely Vk2 be the c~onical_im.§.~f tl}~ k-fold ~etric produc,:t; 

of_ X _{_respectively Y ) with itself in J(X) • If there is a point 

a E. J(X) such that ~vt = V~ .. 2....for_some t l ~ t L.. g - 1 __. then X and 

y are 22nformal~eguivalent. 

P r o o f : We assume ~vt = vt a..1d have w1 c v~ o Let r be the a 

smallest integer such that w1 c v:r-+1 
b for some b E. J(X) 0 If w1 n vr 

I c 

contains two distinct points for any c ~ J(X) y then -W1 is contained in 

a translate of r , by lenrrna 2 o {:, o We assume first that this does not hap­

pen. Consider the intersection 1;J 1 n Vbg-+1 ~ ;,vhere x ~ V 1 y y E. Vg- 1-r 
x-y 

1 C r+1 . Since W Vb , by assumpt1on, the intersection may be written as 

H·1 n (Vg-1 n Vr+1) By lemma 2. G the intersection in parenthesis is of 
b+x-y b 

r the form Vb+xlJ S , where S is independent of the choice of X • 

We now invoke Theorem 3.1 B. vg- 1 is the divisor induced by a b+x-y 

translate of the thetafunction formed with a canonical matrix of Y • Hence 

it is multiplicative of some type over J(X) Y and if it does not vanish 

identically over w1 , it induces q zerus, u1 , ••• , uq on w1 , count~ 

ing multiplicities, such that 

( 5 .1) T(a + x- y) + z1 

where is a constant independent of a Y x , and y o The induced 

zeros are the points of the intersection 

Suppose that the thetafunction vanishes identically over TiJ 1 for all 

choices of x and y • Keeping x fixed, this means that 

\<[1 c vg-1 e vg-1-r 
b+x 

point y E vg- 1-r 

= ~+x Y contrary to hypothesis. Hence there is a 

1 and a point wE VJ such that the function does not 

vanish. It follows that this must be the case for all x in a sufficient-

ly s.mall neighborhood of the original one. 

Now keep y fixedy and let x vary over this neighborhood. Since the 

right hru1d side of (5.1) varies, so must the left. But the set S does 
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not vary~ and hence the variation on the left must come from a point in the 

intersection w1 n ~+x o By assumption, there cannot be two distinct points 

in this intersection, and hence the left hand side must vary over some trans­

late of kW1 , obtained from w1 by multiplying each point with a multipli­

city k • Thus T takes a neighborhood on v1 into a translate of kW1 o 

But T is an automorphism,1) and by the irreducibility of the sets involved~ 

we find that T(V1) = (kW1)d for some dE J(X) o 

T(V1) is clearly conformally equivalent to v1 and hence to Y. 

(kW1)d is obtained from w1 by a map which is bijective, except possibly 

on isolated points.2 ) Hence we have a holomorphic map from X to Y which 

fails to be bijective on at most a finite number of points. But every such 

map is a covering map, and it follows that it must be bijective. 

To get rid of the assumption that -W1 is not contained in a translate 

of Vr , we suppose now that this is the case~ and define r to be the 

smallest integer for which an inclusion of the form -w1 cvr+1 occurs. 
c 

Then -W 1 cannot have t\,,ro distinct points in corrunon with T for any 
c 

c E J(X) , and we can repeat the argument for 

This establishes Tr ~orem 5.1 • 

1 ) The characteristic matrix of a thetafunction is unimodular with respect 

to any period matrix. 

2) kw1 = kw2 :====} k(w1 - w2 ) = 0 , and this has only a finite number 

of distinct solutions. If w1 - w2 = w3 - w4 = w5 - w6 o Then 

which is impossible unless v-!4 = w6 , w3 = w5 • 
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