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Let K be a compact~ conv~ subset of a 1£callx convex, topological 

(Hausdorff) vectorspace E over the reals, and let ~ be the set of all 

K-restrictions of continuous, affine functionals on E • ~ is an Archi-

median, partially ordered vectorspace with strong order unit, and these pro­

perties ch~ function spaces d{ . Hore specifically, it can be 

shown ((8)) that if ·~ is an Archimedian, partially ordered vectorspace 

with strong order unit, and if K is taken to be the convex set of states 

(normalized, positive functionals on ()L) and E is taken to be the space 

of order-bounded linear functionals on a (i.e. E = + 
tRK-

then E is locally convex and K is .£2ffi.£§..£.:!2 in the wx -typology, and the 

mapping a ~ ~ defined by: 

( 1) ~(p) = p(a) ' p E.K ' 

is a linear isomo~phism and an order isomorphism of (X_ onto ~ • 

The term YYstateYi is transferred from the case in which a is the self-

adjoined part of a x C -algebra. Another important special case is obtained 

l.f a C f-.R(-"') f t t'\ d "f ~ ~~ or some compac space ~ L , an l. : 

(i) a is a vector-subspace of GR(Q) 

(ii) 1 E. Q_ 

(iii) a_ separates points. 

The classical example of a function space Ql satisfying (i) - (iii) , 

is the space of harmonic functions on a disk. The conditions (i) - (iii) , 

however, admit an abundancy of interesting special spaces, many of which are 

of the form a = { a I L a = 0 l where l_ is a linear operator. 

If ~ is a function-space satisfying (i) - (iii) , then one may as-

sign to every point w in n a state "' LAJ defined as the evaluation of 

the functions in Q at the point W . It is easily verified that 
/' ~ 

(...0 ~ W ia an homeomorphism of -l L into K ~ and by definition: 
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(2) 
A /'-. 

&(w) = {).)(a) = a(c.u) • 

Thus, if w~ think of W --> ~ as an embedding of Sl. into K , then 

the r~presentation a~~ will be a continuous and affine extension. 

It should be noted that all extreme points of K belong to the image 
,..... 
Il of £l . The corresponding initial points in .fl are called Choguet 

points, and the set of Choquet points is calied the ,dhoduet boundary,~ D. 
of U with respect to a . It ~dinits varibus iritrirtsic charlilcterizi-

tions. 

It is worth mentioning that a similar embedding of Sl into K is 

possible in more general cases with non-compact ~ • Then the extreme 
,.,...... 

points of K will belong to the closure of lJ.. in K , and corresponding 

initial points may be a,d.joined as limit points to fl. , in which case one 

usually talks about Martin boundary rather than Choquet boundary. 

A series of interesting results on function spaces (ft 1~) may be ob-

tained by transfer of known properties of continuous affine functions on 

convex compact sets. For example, it is known that the closure of the ex-

treme boundary, ~K e (i.e. the set of extreme points), acts as Silov 

boundarx of K with respect to H • (This follows by the theorems of Krein-

~{ilm.an, Hilman, and Hahn-Banach.) Hence one may conclude that the closure 

of the Choguet boundary acts as Silov boundary of n with re~mect to a_. 

In this way one obtains an existence proof of the Silov boundary which does 

not invoke any multiplicative structure (nor the axiom of choice). 

More interesting perhaps, is the transfer of Choguets integral theorem, 

stating that every point x in K can be expressed as the barycenter 

(3) x= (weak integral), 

of a (generally, not unique) positive, normalized boundary measure jix • 
In the metrizable case, d eK is measurable (in fact a G~ ) , and a bound­

ary measure is simply a measure r such that 
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The general definition is based on the following characterization of 

d K due toM. Herve (cf. ((5)) ): e 

where 

and 

(7) .f(x) = sup [ h(x) I hE¥ ~ h f f j 

The set Bf is called the boundarv set determined by f , and 1 is 

the lower Sffini-continuous convex envelope of f (by Hahn-Banach 9 s theorem 

in E x "~ ) • In the duality theory of convex functions studied by Fen-

chel, Bronsted and Rockafellar ((6)) ((4)) ~ ((9)) , it is the second con-

jugate f 1¥ • It is also worth noticing that transfer of (5) to the func-

tion space (ll1C() yields one of the intrinsic characterizations of the 

Choquet boundary of ~ with respect to ~ • 

In the metrizable case one may replace the intersection (5) by the 

intersection of a countable subfami.ly of [Bf j f E t (K)) (and in fact 

by a single boundary set Bf , as shown by M. Herve (cf. ((5)) ) • Hence 

in this case (4) equivalent to 

(8) for all f € e(K) • 

In the general (non-metrizable) case (4) is meaningless~ and (8) is 

taken as the definition of a boundary measure. 

It is shown by Mokobodzki ((5 )) that a positive measure is a boundary 

measure iff it is maxih1al in the sense of Bishop and de Leeuw, i.e. maximal 

in m+(K) with respect to the partial ordering defined by the cone in 

mCK) which is polar to the cone j of continuous convex functions in 
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~(K) • (The original definition of Bishop and de Leeuw only involves the 

set { h2 I hE &\ S gener_§tirg the closed convex cone j ( (2)) ) • Now 

the proof of the integral theorem (3) , is obtained by an application of 

Zornis Le~~a in which the inductivity of the set of measures with barycenter 

X (in the ordering of Bishop and de Leeuw) follows by X w -compactness of 

the set of positive normalized measures. 

This much being said about the general Choquet theorem, we return to the 

case of ( n 0,) with a metrizable fL (hence with a separable Q and 
) 

a metrizable K ) • Writing t w for the inverse image of )A G by the 

mapping uu~CD , and using the definition of a weak integral, one obtains 

(9) a(w) J a(<r)<l(Jif) ' 

~,Sl 

for all a E. Q . In the terminology of H. Bauer ( ( 1)) , rw is called 

a harmonic measure corresponding to the point w (relatively to a ) . 
When is fx (resp. jA- 0 ) unique for every x E:K ? 

By ChoquetVs uniqueness theorem this is the case if and only if K is 

a simplex, and then the correspondence x ~~x may be considered as a 

generalization of the unique barycentric coordinatization in finite dimen-

sional simplexes. 

But what is an infinite dimensional simplex? 

Choquetis original definition is a transfer of a rather exotic charac-

terization of simplexes in Enclidean space. They are exactly those convex 

compacts for which the set of nomothetic images is closed under finite in-

tersections. A different characterization of Choquet simplexes is obtained 

( Choquet, -- ~-.. _ ( ( S ) ) ) , , if one assumes (without lack of genera-

lity) that K spans E , and that K is located on a hyperplane not pass-

ing through the origin. Now, K is a simplex if and only if the generated 

cone j J ~K determines a lattice ordering in E • This property is MO -
the starting point for the proof of the uniqueness theorem which is based 
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on a decomposition lemma for vector-lattices ((3~ p. 19)) which in fact is 

a mere corollary to the general Schreier-Ore refinement theorem for modular 

lattices. In the present context it proves that the set of positive measures 

with barycenter x is directed in the ordering of Bishop and de Leeuw; hence 

there is a unique maximal measure majorizing all the others. Now, theYYonly 

ifH part of the proof is fairly simple~ and it is also possible to deduce a 

series of other interesting characterizations of simplexes. Among these we 

mention the fact, that K is a simplex if and only if 1 is affine (but 

not necessarily continuous) for every f E ~ (i.e. f is continuous and 

convex). In 2-dimensional space this is the elementary fact that a chair 

with 3 legs stands firmly on the floor whereas chairs with more legs are un-

stable. Also it should be mentioned that K is a simplex if and only if 

the mapping f ~ f is linear on :f and that K is a simplex if and 

only if the set of continuous affine functions on K is a Riesz group in 

the sense of Fuchs ((7)) • 

Finally we mention another characterization of simplexes which is non-

essentially different from the uniqueness propertyj and which is particular-

ly well suited for the subsequent investig<ltions of compact convex sets. It 

is based on the following definition: We shall say that ~ K is affinelz e 

independent if the zero measure is the only signed boundary measure~ for 

which: 

( 10) r(K) = o 

Now~ K is a simplex if and only if ~ .l{ is affinely independent. 

In spite of all the pleasant properties listed above, the simplexes may 

still exhibit some rather odd features. In 1959, E.Th. Poulsen gave an ex-

ample of a simplex whose extreme boundary is de~. It is also known that 

a continuous function on the extreme boundary cannot always be extended to 

a continuous affine function on the entire simplex, as in the finite dimen-

sional case. It was shown in 1960 by H. Bauer ((1)) that the simplexes 
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with closed extreme boundary are exactly those convex compacts K for which 

.;;a;:;n;u;y__::c;,.;o;.:;n;;.;:t-,::;i;:;n~u:-.::o:.:::u:-.::s:....:f~un=c:.:::t:;;;i:..:::o:=.;n;....:::o~n:...-...::d::.~ be extended to a continuous affin!L 

functi£g_£n K • He also showed that they are exactly those convex coNpacts 

for which the set of continuous affine functions is lattice ordered (and not 

only a Riesz group). 

In the sequel we shall refer to simplexes with closed extreme boundary 

as r-simplexes o The letter r signifies Hresolutive99 as Bauer 9 s theorem 

guarantees the solvability of a certain natural Dirichlet problem for K 

with respect to ~ K • (A warning: This Dirichlet problem does not cor­
e 

respond to the Dirichlet problem for ~ with respect to -;)cfol for the 
,...._ 

function spaces a and fsJ ( d CD..) , but for a. and (; ( d C[)_), where 
1'.; 

Q_ consists of Bauer 9 s vv Q-harmonic functions99 , i.e. those f for which 

f=_f=fo The passage from a 
the passage from d-( te the set 

~ ,..,._ 
on K o Note that lJl = ~ , 

to a larger space 
('"\,., 

f'i..... 

0{ corresponds to 

1d-{ of functions continuous and affine 

and in many important cases 

Bauer?s theorem yields a 99 concrete"' representation of r-simplexes, 

..::;t,;.;h;.;;;;e ... y_.;;;;ar~e-o.::;.;f;:......t;:;.:h~e:;....::f:;.;o:;:;r~m::......_..;::m...:-r. 1~, where X is an arbitrary compact space, 

and the quantifier m1 + assigns to X the X. w -compact set of positive 

normalized measures en X • The extreme boundary of 

morphic to X , as is well known. 

After this brief introduction of simplexes and r-simplexes we return to 

the general case. We know that a function in d( is determined by its 

values on ()eK; but how far is it determined by its values on a subset A 

of d K '? e 

It follows by Hahn-Banach?s theorem that it is determined throughout the 

closed affine span of A , and not any farther. In the terminology of dif­

ferential equations we may say that aff(A) n K is the set of determinance 

by A • 

More interesting perhaps, is a reverse problem. If we fix a point 

x~K, then the values h(x) for h ~ ~ are determined by the values of 
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h at ~ K ; but is it really necessary to know the values of h at the e 

whole of c) K ? 
e can it be that a certain part of c)K e 

(depending on 

x ) is actually irrelevant for the determination of the values at the point 

X ? 

This question can be rendered precise through the definition of a stable 

subset. we shall say that a closed subset A of K is stable if it sup-

ports any positive normalized measure on K with barycenter in A • 

Now the following theorem furnishes an answer to the question. 

Theorem 1 A closed subset of K is stable if and onJx if it 

is a union of closed faces. 

The proof of this theorem is fairly simple and will be omitted. However~ 

we recall the definition of a face. Briefly they are obtained by relativiza-

tion of supporting affine spaces. Specifically, a subset F of K is a 

face if and only if it is of the form 

where M is a supporting affine space. 

For the sake ef completeness we recall that an affine space M supports 

K if and only if Ivi n K f. ¢ and K - M is convex. 

Very little is known about the VVfacial structurev1 of convex compact sets. 

In the present lecture we shall point out that it may be quite irregular even 

in the case of simplexes. 

T h e o r e m 2 • There exists a (compact) simplex K with a face 

F for which F is no longer a face. 

The proofs of Theorem 2 and of Theorem 3 below are based on ideas com-

municated to us by V. Klee, combined with a general method to construct con-

vex sets with pre-ascribed properties, which will be explained in connection 

with Theorem 4. 
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Also.? it is natural to ask if any closed face is obtained by relativiza-

tion of closed supporting spaces (in the sense of (11) ). Closed faces of 

this kind may naturally be termed supporting faces. They play a distinguished 

role. In addition to being stable subsets.? they are also equal to their own 

•~set of determinancev1 • Our next theorem states that the concept of a sup-

porting face does not coalesce with the concept of a closed face. 

T h e o r e m 3 • There exists a (compact) simplex with a closed face 

~hich is not a supporting face. 

Finally we shall discuss an interesting problem arising in the non-

simplicial case. Is it possible to obtain uniqueness of ~x 

deK? 

for a fixed 

x , by restricting ~x to a subset of 

Geometrically one may restate the problem as follows: Is it poEsible 

for e~L_X in K to find a ( closedj simplex A such that x E A C K 

and such that d A C d K ? 
~~~~~~~--~e- e---

It is classical, but not entirely trivial, that this question has an 

affirmative answer in the finite dimensional case. A well known theorem of 

Charatheodory states that every point x ln a compact convex set in lf\n 

is a convex combination of at most n+1 extreme points. "What is actually 

shown by Charatheodory, is that x is a convex combination of affinely in-

dependent extreme points, and so they span a s~nplex with the desired proper-

ties. 

In the general case the answer is negative. In fact there exist non-

simplexes which are irreducible at certain points, in the sense of the fol-

lowing~ 

T h e o r e m 4 • There exists a (compact2 non-simplex K with a 

poi~ xE K such that no pro~er closed_££nvex subset A of K satisfies 

( 12) xf.ACKs d A L'() K 
e e 

The proofs of Theorems 2, 3, 4 are all fairly similar. They are based 
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on a general method to construct convex compact sets with pre-ascribed affine 

dependences on ~ K ~ i.e. non-zero signed boundary measures satisfying e 

( 10) • 

The method is in fact analogous to the definition of groups by means of 

generators and relations. The set of generators corresponds to the extreme 

boundary d K which is a (completely regular) topological space and not e 

only a set, and the relations corresponds to affine dependences on ;) K • 
e 

A free gro~ corresponds to a simplex (no affine dependences on d K ), and 
e 

for every compact set X , there is a unique simplex (in fact an r-simplex) 

with extreme boundary homeomorphic to X • 

In the case of groups, one may introduce relations between generators 

by factoring out the free group with respect to the subgroups generated by 

the 11wordsii defining the desired relations o In the present case we introduce 

affine dependencies on X by factoring out the simplex in 

frl (X) with respect to subspaces generated by the measures r. defining 

the desired affine dependences. 

We shall sketch how this technique can be applied to prove Theorem 4. 

An inspection of Charatheodoryvs proof shows that it is based on the fact 

that if x is convex combination, i.e. 

n 

x= l 
i=1 

~.X. 
l l 

and the points 

. 
J 

n 

L ~-
i=1 l 

n 

X 
n 

1 ' ;\. > 0 
l 

are affinely dependent, i.e. 

0 

then x can be written as a convex combination of a proper subset of 

0 0 0 In fact there are two (and usually just two) points 

which can be eliminated, namely the ones where /\ i/ fi comes nearest to 
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zero from the positive and from the negative side. (This is easily visual-

ized by dra~dng a quadrilateral in the plane.) 

To construct the desired counter example one has to start with a simplex 

such as fn 1+(N) where N is the one-point compactification of the natu-

ral numbers, and introduce an affine combination (a sequence 

such that for some point the sequences 

both approach 0 as i ~ ~· 
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