Holomorphically convex sets and domains of holomorphy

by
Nils Qvrelid

Introduction: The purpose of these seminar notes is to show that if \bar{U} is a holomorphically convex open set of an arbitrary complex space, thenevery point on the boundary is the natural frontier of a holomorphic function of \dot{U}. This was proved for connected open sets in $C^{\text {n }}$ by Cartan-Thullen in 1932 [1], and it turns out that the essential idea of their proof carries over to the general case. The question whether a holomorphically convex relativly cmpact open subset of a complex space is a domain af holomorphy, is of importance in study of Ievi's problem. In the papers of Grauert and Jarasimhan ([3] and 5]) the problem is to estabish the implications:

1. U is strongly pseudoconvex $\Rightarrow U$ is holomorphically convex, and
2. U is holomorphically convex $\longrightarrow U$ is a domain of holomorphy.

In these papers, special properties of U are used to construct a function that cannot be extended to a given boundary point, and th technique is not always appicabie. The main theorem of this note shows that implication 2 is always true.

This note is highly preliminary. There is a step in the rea soning of Cartan-Thuller that I dont understand, and it seems probable that if there is rot a lasuna in their proof, a stronger res and a simpler proof in the general case may also be obtained.

Part I: Notation and preliminaries.

In the sequel, we use the standard notation of set theory. \mathbb{N} denotes the set of natural numbers, and a the field of complex numbers.

Let U be a set, and $\left(f_{i}\right)_{i \in I}$ a family of complex-valued functions on U. We write $N\left(\left(f_{i}\right)_{i \leq I}\right)=\left\{X \in \mathbb{U}: f_{i}(x)=0 ; \quad i=I_{2}\right.$

To avoid ambignity, we sometimes add a subscript U, and write $\left.\mathbb{N}_{U}\left({\left(f_{i}\right.}\right)_{i \in I}\right)$.

Let x be a point inatopological space $X_{0} \mathbb{N}_{X}$ shall denote the set of open neighbourhoods of X in X. If A is a subspace of X. If A is a subspace of X and $X \in A, N_{X}(A)$ is the set of open neighbourhoods of x in A.

U and V are open subsets of topological space X. We write UCE V iff \bar{U} is compact subset of V.

If E is a subset of a topological space X, we write
$\dot{\mathrm{E}}=\overline{\mathrm{E}}-\stackrel{O}{\mathrm{E}}$, i.e. the set of frontier points of E .
For the notions of analytic and locally analytic sets of a domain G in C^{n}, and the basic results on irreducibility and local दecomposition in irreducible components we refer the reader to [2], 1 or to [6]: Notice that if B is a proper anslytic subset of an irreducible analytic set A, then $A-B$ is connected, and B is nowhere dense in A.

By a complex space, we mean a (reduced) complex space in the sense of Serre. For simplicity; we always assume that a complex space satisfies the second axiom a countabity. If A is a locally analytic subset of X, the sheaf of traces of holomorphic functions on A induces a structure of complex space on A. (Remark that open subsets and irreducible components of X are locally analytic subsets.)

When we consider A as a complex space, it is always with its indiced complex structure. By $H(X)$ we denote the vectorspace of holomorphic functions on X.

When E is a relativly compact subset of $X, f \longrightarrow\|f\| E=$ sup $|f(x)|$ is a seminorm on $H(X)$. $H(X)$, equipped with the top$x=E$ logy generated by these seminorms, is a locally convex topological vectorspace.

We say that a sequence $\left(f_{n}\right)_{n \equiv \mathbb{N}}$ in $H(X)$ converges u.e.c. (uniformly on every compact), if it converges in this topology. By [2], Satz 28, $H(X)$ is complete.

Let K be a compact subset of a complex space X.
By \hat{K} we denote $\left\{x \in X:|f(x)| \leqslant\|f\|_{K} ; \quad f \in H(X)\right\}$.
We say that f is holomorphically convex, iff K is compact $\Rightarrow \hat{\mathrm{K}}$ is comport.

Part II: The theorem.

Theorem: Let X be a complex space, and U an open set in X.
$U \quad$ is holomorphically convex \rightarrow ($f \in \dot{U})(\exists f \in H(U) \quad[f$ is n extendable to a holomorphic function in any neighbourhood of x. Proof: We assume $\dot{U}=\neq \varnothing$. If not, the theorem is trivially true.

Let $X=\underset{i \leqslant I}{U} X_{i}$ be a decomposition into irreducible component and $\left.\left(U_{S}\right)_{S \in S}=\frac{1}{i=I}\right\}$ of $U \cap X_{i} \bullet^{*}$

We may assume $S=\mathbb{N}$, or $S=\left\{1 \ldots n_{0}\right.$? $n_{0} \in \mathbb{N}$.
The first step of the proof is to construct a function $f \in H(U)$, such that:

ii. $N \mathbb{N}(f) \beth \dot{U}$. (Closure taken in $X)$.

* See correction of the end, 1.)

The principle of construction, which goes back to Cartan-ihullen is as follows:

1. Choose a sequence $\left(x_{i}\right)_{i \leftarrow N}$ of points in U, with every point in \dot{U} as an accumulation point.
2. Find a sequence $\left(f_{i}\right)_{i \in \mathbb{N}}$ in $H(U)$, such that:
a. (\quad as es) $f_{i} \not U_{S}=0$, unless Us is compact.
b. $\quad f_{i}\left(x_{i}\right)=0$.
c. $\quad \prod_{i=1}^{\infty} f_{i}$ converges u.e.c. in U.
$\operatorname{Then} \mathbb{N}\left(\prod_{i=1}^{\infty} f_{i}\right)=\prod_{i=1}^{\infty} \mathbb{N}\left(f_{i}\right)$, so $f=\prod_{i=1}^{\infty} f_{i}$ satisfies i and $i=$ Let $\left(V_{i}\right)_{i \in \mathbb{N}}$ be an increasing sequence of open sets in U, with

$$
\begin{aligned}
& V_{i} \subset U, i=N . \\
& V_{i} \cap U_{S}=\neq \emptyset, \text { for } i \leqslant s . \\
& U_{i=1}^{\infty} V_{i}=U
\end{aligned}
$$

Choose a dense subsequence $\left(y_{j}\right)_{j \in \mathbb{N}}$ of \dot{U}, and for each j, a fundamental system $\left(Q_{j, k}\right)_{k \leq \mathbb{N}}$ of neighbourhoods of y_{j}. Let $\left(Q_{i}\right)_{i \in \mathbb{N}}$ be an ennumeration of $\left(C_{j, k}\right)(j, k) \in \mathbb{N} X \mathbb{N}^{\circ}$ Choose a sequence $\left(x_{i}\right)_{i z N}$, such that $x_{i} E\left(O_{i} \cap U\right)-\hat{K}_{i}$ 。 Obviously $\left(x_{i}: i \in N\right)=\dot{U}$.

$$
\begin{aligned}
& x_{i} \neq \mathcal{K}_{i} \Rightarrow\left(\exists h_{i} \leq H(U)\right) \Gamma\left|h_{i}\left(x_{i}\right)\right|<\| h_{i} K_{i} \\
& \left.(\exists c=N)^{r}\left(\frac{h_{i}}{h_{i}\left(x_{i}\right)}\right)^{e} \|_{i}<\frac{1}{2^{i}}\right] . \quad \text { Set }\left(\frac{h_{i}}{h_{i}\left(x_{i}\right)}\right)^{c}=g_{i}, 0
\end{aligned}
$$

and

$$
f_{i, 0}=1-g_{i, 0} \text { Notice that } f_{i, 0}\left(x_{i}\right)=0
$$

If X is irreducible and U is connected, $f_{i, 0}$ is the sought function, because $\sum_{i=1}^{n} f_{i, 0}-1\left\|_{1}=\sum_{i=1}^{n} g_{i, 0}\right\| T_{1}$ converges for
every $I \cdots \prod_{i=1}^{\infty} f_{i, 0}$ converges u.e.c. on U. (Just as in [1]). In the general case we must modify $f_{i, 0}$ to get \underline{a}. satisfied, without destroying property \underline{b} and \underline{c}.

We are going to construct inductively two sequences $\left(g_{i, n}\right)_{n \geqslant 0}$ and $\left(f_{i, n}\right)_{n}$ yo of functions in $H(U)$, with $g_{i, 0}$ as defined above, and

$$
f_{i, n}=1-\sum_{k=0}^{n} g_{i, k} .
$$

$\left(f_{i, n}\right)_{n \geqslant 0}$ and $\left(g_{i, n}\right)_{n \geqslant 0}$ shall satisfy
A. $f_{i, n} \mid U_{S} \neq 0 \quad$ for $s \leqslant n+i$, unless U_{S} is compact.
B. $\quad f_{i, n}\left(x_{i}\right)=0$,
C. $\quad\left\|g_{i, n}\right\|_{K_{i+n}}<\frac{1}{2^{i+n}}$
D. $\quad\left\|g_{i, n+1}\right\| U_{s} \cap K_{I} \quad \frac{1}{2^{n+1}} \cdot\left\|_{i, n}\right\| U_{S} \cap_{K_{I}} \quad$ for $\quad 0<s \leqslant 1 \leqslant i+n$,
and U_{S} noncompact.
Let $f_{i, 0} \ldots f_{i, n}, g_{i, p} \ldots g_{i, n} \in H(U)$, satisfying $A-D$, be given.

Case 1. If $i+n+14 S, U_{i+n+1}$ is compact, or $f_{i, n} \mid U_{i+n+1} I_{i} 0$, set $E_{i, n+1}=0,\left(\right.$ and $\left.f_{i, n+1}=f_{i, n}\right) . A-D$ are verified. Case 2. $\left.f_{i, n+1}\right|_{U_{i+n+1}}$ 三0. $\quad \operatorname{Let} \mathbb{Z}_{i, n+1} \in U_{i+n+1}-\hat{K}_{i+n+1}$. $\left(\Xi h_{i, n+1} \in H(U)\right)\left[\int_{i, n+1}\left(Z_{i, n+1}\right) \mid>\left\|h_{i, n+1}\right\|_{i+n+1} \cdot\right.$

Thus $h_{i, n+1}-h_{i, n+1}\left(x_{i}\right)$ is nonconstant on U_{i+n+1}.
For each s, U is an irreducible complex space. $f_{i, n}$! Us :
$\cdots \mathbb{N}\left(f_{i, n} \mid U_{s}\right)$ is nowhere dense in Us. Therefore $f_{i, n}$ Usn V_{i} : if $n+i \geqslant 1 \geqslant s$, and $\left\|f_{i, n}\right\|$ Us $V_{i}>0$.

We may find a positive constant $r_{i, n+1}$, such that $r_{i, n+1} h_{i, n+1}$ $h_{i, n+1}\left(x_{i}\right) \sum_{K_{i+n+1}} \frac{1}{2^{i+n+1}}$ and
$r_{i, n+1} h_{i, n+1}-h_{i, n+1}\left(x_{i}\right)_{K_{1}}$ Us $\frac{1}{2^{n+1}} f_{i, n i!K_{1}!U s}$, for $0<s L_{1} i+n \quad$ and $\begin{gathered}\text { Us noncompact. } \\ g_{i, n+1}=r_{i, n+1}\left(h_{i, n+1}-h_{i, n+1}\left(x_{i}\right)\right)\end{gathered} \quad$ satisfies \subseteq and \underline{D}.

$$
f_{i, n+1}\left(x_{i}\right)=f_{i, n}(x)-g_{i, n+1}\left(x_{i}\right)=0
$$

$$
\left\|f_{i, n+1} U_{s} V_{I} \geqslant f_{i, n}\right\|_{S} n V_{I}-g_{i, n+1} U_{S} \cap V_{I}>\left(1-2^{\left.\frac{1}{n+1}\right)} f_{i, n}\right.
$$

Thus $f_{i, n+1}, g_{i, n+1}$ satisfyes $A-\underline{D}$, and there exists sequences satisfiing A - $\underline{\text {. }}$

For every compact K, we can find a K_{i+m} containing K 。 When $n \geqslant m,\left\|g_{i, n}\right\| K g_{i, n} \|_{i+n} \frac{1}{2^{i+n}}$, so $\sum_{n=0}^{i+m} g_{i, n}$ converges u.e.c. on U against a $g_{i} \in H(U)$.

$$
\lim _{\infty} f_{i, n}=1-g_{i}=f_{i} \cdot \text { Evidently } f_{i}\left(x_{i}\right)=0 \text { and }
$$

$\mathrm{g}_{\mathrm{i}}: \mathrm{K}_{\mathrm{j}}<\frac{1}{2^{i-1}}$. Let $0<\mathrm{s} \leqslant 1$, and Us noncompact. If i+n$\geqslant 1$ $n \geqslant 0, \quad f_{i, n+1} U_{S} K_{1} \geqslant f_{i, n} U_{S} \cap K_{1}-g_{i, n+1}{\operatorname{HUs} \cap K_{1}}^{>}\left(1-\frac{1}{2^{n+1}}\right)$

$$
\cdot\left\|f_{i, n}\right\| U_{S} \cap K_{1}
$$

By induction and going to the limit, we get: $f_{i} \| U_{s} K_{I} \geqslant$

$$
f_{i n} \|_{S=1}\left(1-\frac{1}{2^{n+s}}\right) \quad \prod_{s=1}^{\infty}\left(1-\frac{1}{2^{n+s}}\right) \text { is con }
$$

vergent with positive limit, so f_{i} Z on Us. Now form $\prod_{i=1}^{\infty} f_{i} \quad f_{i} K_{i}<\frac{1}{2^{i+1}} \Rightarrow \sum_{i=1}^{\infty} f_{i} \|_{K_{I}} \quad$ converges for every \quad I
$\lim _{n=1}^{n} f_{i}$ converges u.e.c. against, a function $f=H(U)$. Let Us be noncompact. $\mathbb{N}_{U S}(f)=\mathbb{N}_{i=1}\left(f_{i}\right) \cdot N_{U S}\left(f_{i}\right)$ is nowhere dense in Us, so by Bare's category theorem $N_{U s}(f) \neq \mathrm{Us}$ and a $f i_{\text {Us }} \neq 0$. f is 0 on every X_{i}, $i E N$, and therefore satisfies ii.

Now let $x \in \dot{U} . \quad x$ is element of finitely many irreducible components of X, say $X_{1} \ldots X_{n}$, and has a neighbourhood 0 that does only meet $X_{1} \ldots X_{n}$.

There are two possibilities:
Case 1. $\quad(\exists i)(1<i \leq n)\left(\forall W \in M_{x}\right)$ WM $\left.X_{i} \cap U \neq \varnothing \& W \quad X_{i}, \frac{0}{0 U} \neq \varnothing.\right\}$
 Proof of the theorem in case 1: Suppose f may be extended to a function $\overline{\mathrm{f}} \mathrm{EH}(\mathrm{UUW})$, for some $W \in \mathrm{~N}_{\mathrm{x}}$.
Let V be the connected component of x in $W X_{i} . ~ V$ must meet some U_{S}, so $\overline{\mathrm{I}}$ cannot be $\overline{=} 0$ on $V . \mathbb{N}_{V}(\overline{\mathrm{I}})$ is nowhere dense in V, so $V-\mathbb{N}_{V}(f)$ must contain points of both U and U. $N_{V}(f)$ is closed, so $V-N_{V}(f)$ is contained in the disjoint union of V, Y and V UU, which are open in V. Contradiction.

Proof of the theorem in case 2. Suppose I may be extended to a function $\overline{\mathrm{I}} \mathrm{E} H(\mathrm{U}, \mathrm{W})$, for some $W \in \|_{x}$.

Thus by possibly shrinking W, we get that for some $i, 1 \leqslant i \leqslant n$, $W \cap X_{i} \cap U \neq \varnothing$ and $W \cap X_{i} \cap \hat{G}=\varnothing$, that is, $W \cap X_{i} \cap C U=$ * See correction 2.)

$$
W \fallingdotseq X_{i} \cap \dot{U}
$$

Let V be the connected component of x in $W X_{i}$. V must meet some U_{S}, so $\overline{\mathrm{I}} \mathrm{Z} O$ on $V N_{V}(\overline{\mathrm{f}})$ iv CU, Now we want to construct a one-demensional locally analytic subset of V, and an open set D on A, with compact boundary in A, such that $\bar{D} \cap Q=\{x\}$.

We make use of the Remmert-Stein local description theorem. A neighbourhood V ' of x may be mapped by a biholomorphic mapping F onto an analytic subset of polycylinder $P_{n}=P_{d} \times P_{n-d}$ in N^{n}. $F(x)=0$. By choosing V^{\prime} and I_{n} suitably, we may assume that there are $n-d$ pseudopolynomials

$$
\begin{array}{r}
p_{i}\left(z_{1} \ldots z_{d}\right)=z_{i}^{I_{i}}+a_{1}^{(i)}\left(z_{1} \ldots z_{\alpha}\right): z_{i}^{I_{i-1}}+\ldots+ \\
a_{I_{i}}^{(i)}\left(z_{1} \ldots z_{\alpha}\right), \quad d+1 \leqslant i \leqslant n,
\end{array}
$$

with $a_{j}^{(i)}\left(Z_{1} \ldots Z_{d}\right)$ holomorphic functions in P_{d}, such that $F(V)$ is an irreducible component of $\mathbb{N}\left(p_{d+1}, \ldots p_{n}\right)$. We may also assume that the projection $: \mathbb{N}\left(p_{d+1} \ldots p_{n}\right) \rightarrow P_{\bar{d}}$ is surjective, proper, and with discrete fiber, and that

$$
\begin{aligned}
& a_{j}^{(i)}(0 \ldots 0)=0, \quad d+1 \leqslant i \leqslant n, \quad 1 \leqslant j \leqslant I_{i}, \quad \text { such that } \\
& T^{-1}(0, \ldots, 0)=(0, \ldots, 0)=\{P(x)\} . \quad([2] \text { 0.255). }
\end{aligned}
$$

$B=\mathbb{F}\left(\mathbb{N}_{V},(\bar{f})\right)$ is a lowerdimensional analytic subset of P_{d}, so there is an $y=P_{d}-B$. Set $I=\left\{z \in c^{d}: z=x+\lambda \cdot(y-x): \quad \lambda \in \mathbb{C}\right\}$ $B=\mathbb{N}\left(g_{1} \ldots g_{m}\right)$ in a neighbourhood of $0 . L_{i} B \Longrightarrow g_{1} \ldots \cdot g_{m}$ are notridentically 0 , so for at least one g_{k}, the zeros are discr Thus we can find $r>0$, such that when $I_{r}=\{x \in L: x, 2 m$, $\bar{L}_{n} ; B=\{0\}$ set $\pi^{1}\left(I_{r}\right)=D^{\prime} \cdot \dot{D}^{\prime}$ is compact, and $\overline{D^{\prime}} \cap F\left(\mathbb{N}_{V^{\prime}}(\bar{f})\right)=\{0\}$. Define $D=F^{-1}\left(D^{\prime}\right)$, and $A=F^{-1}\left(T^{-1}\left(I \cap P_{a}\right)\right.$ A, D has the properties we want.

Assume that every $h \in \mathcal{H}(\mathrm{U})$ may be extended to a holomorphic function \bar{h} in $U: V_{h}$, where V_{h} is some neighbourhood of x, depending on h \bar{h} induces an holomorphic function on \bar{D}, while $x \in V_{h}$. The maximum principle is valid for every complex space (Grauert-Remmertin 2], so $(\forall h \in H(U))\|\bar{h}\|_{\bar{D}}=\| h_{D}^{\|}$. This means that $D-\{x\} \subset \hat{D}$, so \hat{D} cannot be compact.

Contraticti \rightarrow. Q.E.D.

Part III: Scetch of an alternative proof of the theorem.

We conserve the notation of part II. In essentially the same way construct a sequence of points of $U\left(x_{i}\right)_{i \in I}$ and functions of $H(J) \quad\left(f_{i}\right)_{i \in I}$, such that $\sqrt{X_{i}: X_{i} X_{i}} \Rightarrow U \cap X_{k}$,

$$
\begin{aligned}
& f_{i}\left(x_{i}\right)=0, \quad\left(v_{S} E S\right) f_{i} U_{S} \neq 0 . \\
& x_{i} G_{N}\left(f_{1} \ldots f_{i-1}\right), \quad f_{i} \text { converges } \\
& \text { u.e.c. on } U .
\end{aligned}
$$

Set $f=\prod_{i=1}^{\infty} f_{i}$.
We also construct sequences $\left(x_{i}^{\prime}\right)_{i \in \mathbb{N}}$ and $\left(f_{i}^{\prime}\right)_{i \in \mathbb{N}}$, with the same properties, and such that $x_{i}^{\prime} \mathbb{N}(f), i \leqslant \mathbb{N}$. Set $f^{\prime}=\sum_{i=1}^{f_{i}}$. Pvidently f and f^{\prime} cannot be extended to boundary points of type 1. Let x be a boundary point of type 2. We may suppose that W is a neighbourhood of x, such that f and f^{\prime} may be extended to \vec{f} and \bar{f}, holomorphic in $U W, W X_{i}, U \dot{U}$, and that $\mathbb{N}(\overline{\mathrm{I}}) \mathrm{N}$ and $\mathbb{N}\left(\overline{\mathrm{I}}^{i}\right)$:W consist of finitely many irreducible components. Let $A_{1} \ldots A_{n}$ be the irreducible components of $\mathbb{I}(\bar{f}) \subset W \Gamma X_{i}$ and $B_{1} \ldots B_{r}$ the irreducible components of $\mathbb{N}\left(\overline{\mathrm{I}}^{\prime}\right)$)Wr' X_{i}...different from $A_{1} \ldots A_{n}$. Then $\left.\dot{U} \times W \times X_{i}<\sum_{i=1}^{n}\left(A_{K}, B_{I}\right)\right)$.

But $\sum_{1=1}^{r}: A_{k}\left(: B_{1}\right.$ is nowhere dense and does not disconnect A_{k}. $A_{k}-\dot{U}$ is therefore connected, and $\mathbb{N}_{U}(f) X_{i}$: Was the irreducible components $A_{1}-\dot{U}, \ldots, A_{n}-\dot{U}$.
On the other hand $A_{k}-\dot{U}$ must consist of infinitely many irreducible components, for if X_{i} EWYX $X_{i}, x_{i} \in \mathbb{N}\left(\prod_{j} f_{j}\right)$ 。

Contradiction.
In fact, we have proved a slightly stronger result:
For every $x \in \dot{U}$, either f or f^{\prime} may not be extended to a function holomorphic in a neighbourhood of x.

Part IV. Final remarks.

We begin by mentioning two immediate consequences of the theorem. Let X be complex space. We say that X is K-convex, if for every $x \in X$, we can find $f_{1} \ldots f_{p} E H(X)$, such that if $F=\left(f_{1} \ldots f_{p}\right)$: $X \longrightarrow C^{p}, X$ is an isolated point of $F^{-1}(F(x))$.

Suppose $D=(X, X, \quad X$ omplex space. D is (strongly) pseudoconvex $\Leftrightarrow(\forall x=\dot{D})\left(\exists V X_{x}\right)(Y: V \longrightarrow \mathbb{F})[$ is (strongly) pseudoconvex and continuous, and $V \cap D=e^{-1}(1-\infty, 0[)]$.
D is globally (strongly) pseudoconvex \Leftrightarrow (G) (D : $\mathrm{V} \longrightarrow \mathbb{R}$) V is an open neighbourhood of \dot{U}, is (strongly) pseudoconvex, and $V D D=0^{-1}\left(\square-\infty, O r_{-}\right)$.

By [5], Theorem I, D is strongly pseudoconves $\Rightarrow D$ is holomorphi.. cally convex.

By [7] Theorem 2, X is K-convex and D is globally pseudoconvex \Rightarrow D is holomorphically convex.

Py the theorem, in these cases D is a domain of holomorphy. This does not seem to be wellknown, and in these cases the usual proof of implication 2 breaks down.

In [4], B. Malgrange gives a much shorter way of proving the theorem, for X a complex manifold. He obtains the stronger result (just as Cartan-Thullen) that there is a $f \leqslant H(U)$ that can not be extended to any boundary point of U. We may form the function $F=\prod_{i=1}^{\infty} f_{i}^{i} . \quad F$ has a 0 of order i at X_{i}. If M is a $C^{\infty}-$ Manifold, and f a C^{∞} - function on M, then for every $n \in \mathbb{N}$, $\{x \in \mathbb{M}: x$ is a zero of order n of $f\}$ is closed in M. Suppose $x \in \dot{U}$, and f may be extended to $\bar{f} \in H(U \cup V)$, where $V \in N_{x}$. Then, for every $n \in N, \quad x$ is an accumultaion point of zeros of order n of f,thus i a zero of order n of \bar{f}. \bar{f} must be identically zero in some neighbourhood of x. Contradiction.

Suppose x is element of a complex space X. By M_{X} we denote the maximal ideal of the local ring $\}_{x}$ of x. If for every $\left\{X \in X: f_{X} \in M_{X}^{n}\right\}$ is closed (f_{X} is the germ of f at X), Malgrange: proof would carry over to the general case, because $\sum_{n=1}^{\infty} \mathbb{M}_{x}^{n}=\{0\}$. But I dont know whether this is true - .

Bibliography:

1. H. Cartan - P. Thullen: "Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen." Math. Ann. 106.
2. H. Grauert - R. Remmert: "Komplexe Räume". Math. Ann. vol136. 1958.
3. H. Grauert: "On Levi's Problem and the imbedding of real-analytic Manifolds". Ann. of Math. vol.68. 1958.
4. B. Malgrange: "Lectures on the Theory of Functions of several Complex Variables". Tata Institute of Fundamental Research. 1958。
5. R. Narasimhan: "The Levi Problem for Complex Spaces II". Math. Ann. vol146. 1962.
6. M. Hervé: "Several Complex Variables". Oxford 1963.
7. A. Andreotti - R. Narasimhan: "Okas Heftungslemma and the Problem of Levi". Transactions of Am.Math.Soc. vol.111. 19б́a

In general there is no reason to believe an irreducible complex space is locally irreducible，or that an open connected subset of an irreducible complex space is irreducible．This was mistakenly assumed in these seminar notes，and therefore some details must be changed in order to get a correct proof．

1．）Let $\left(U_{S}\right)_{S \in S}$ be a decomposition of U into irreducible components．Each U_{s} is closed in U ，so if K is a com－ pact contained in $U, U_{S} \cap \mathrm{~K}$ is compact．Thus，if U_{s} is noncompact，U_{s} is not contained in any compact subset of $ひ$ ．

The construction of f is then to be made with $\{U s\} s \in S$ Defined above．

2．）Instead of the construction given in the notes，we use the following result（Abhyankar（44．29，p．414）：

Let a be a point in complex space X ．Then exists a neigh－ bourhood V^{\prime} of a ，and a fundament system of neighbourhoods
$\left\{V_{j}\right\} \quad j \in \mathbb{N}$ of a in V^{\prime} ，such that：
i．）$X \cap V^{\prime}$ has finitely many irreducible components $X_{1}{ }^{\prime} \ldots X_{p}{ }^{\prime}$ ，and $X_{1_{a}}{ }^{\prime} \ldots X_{p_{a}}{ }^{\prime}$ are the（distinct）irre－ ducible coinponents of X_{a} ．（ A_{a} denotes the germ of A at a ，for any $A \subset X)$ ．
ii．）X_{i}＇ΓV_{j} is irreducible for any $i, j ; \quad 1 \leqslant i \leqslant p, j \in \mathbb{N}$ ．
In the notes we may suppose that all neighbourhoods in question are contained in V^{\prime} ，and substitute $X_{i}{ }^{\prime}$ for X_{i} 。 The neighbourhood W may be chosen in V_{j} ，and $V=W \quad X_{i}$ ： It is easily seen that a compact U_{s} is also an irreducible component of X ，and sincètyoes not meet $C U$ ，we may suppose $v^{\prime} \cap u_{s}=\varnothing$ ，for any compact u_{s} ．Therefore $u_{s} \cap v \neq \varnothing$ implies that $f \neq 0$ on $U_{s} \cap V$ ．
With these changes，the rest of the proof goes through．
Reference：S．Abhyankar：＂Local Analytic Geometry。＂Academic Press 1964．

