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I. INTRODUCTION. 

This paper is a preliminary report on some investigations into 
the foundation of probability within the framework of polyadic algebras, 

The purpose is not to give a complete theory, but to present some basic 

results which do not require an extensive knowledge of the specific 
system of algebraic logic here adopted. Further we wish to indicate 
the intuitive background for the logical notion of probability through· 

the concept of "fair betting", and we vvant to argue in favor of a pos­
sible application by (very) briefly presenting the general statistical 
decision problem. Of course, we have no pretention of providing us~ful 
techniques for the statistician, we rather aim at supplying a conceptual 
framework within which .3. discussion of e.g. ~~_JJriori probabilities would 
be meaningful. 

II. FLIR GAMBLING. 

In this section we shall give an introduction to probability 
via the concept of faj_r gamblin_g. The theorem we state is a rather 

immediate extension of some results of Kemeny [11] and Lehman [16]. 
Let S be the set of "possible states of the world;' and ()1, 

a 6-algbra of subsets called events. If M0 E S is the true (but 
in general unlL11own) state of the world we say that the event A E 0\.. 
obtains if M0 f A, On m we suppose it is defined a real-valued 
function A(A) taking values in the interval (o,~. ~is our 
betting quotient: We assume that there are two persons betting, PI 

and PII' PI may e.g. bet that A obtains , PII that A does not 
obtain. In this case they are betting in the ratio ~(A) : 1 -~(A), 

i.e. if PII bets the amount kii that 11. does not obtain, PI is 
willing to bet the amount 

k /..(A) 
I = kii . 

1- A (A) 

that A obtains. (The other case, i.e. that PI bets that A does 
not obtain and PII bets that A obtains, is symmetric.) 

G is specified by a sequence 1 "' ) of real numbers 
""i 

and a sequence <A;') of disjoint sets from Q1. • The pay-off function 
G(M) which gives the amount of money a player would receive using 'A 

, as betting quotient, is defined by 
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where IA 
.n 

is the indicator function of the event A. G is called ad--
missible if 
t=.r. 'T 

G(M) exists for all ME S. For simplicity we shall assume 

that lxil < K, K some constant, for all G. If A is a ()-additive 

probability measure this implies that !GOOI ~ K•j L IA. (M) -A (tJAi) I~ 
l 

!G(M)I ~ K. K • !1 - A ( tfAi) J , i. e • 

Interpreting G(H) we have that I X. I 
l 

represent the combined 

amount the players bet on the event J\1 • We assume that G (M) repre-

sents the pay-off for Pr Then if xi> 0 ~ PI bets that Ai obtains, 

if xi<· O, PI bets that Ai does not obtain. x~ = 0 signifies that 

no bet is made on Ai. · 

In the example above we have one event A. The combined amount is 

1 
= kii • 1- )\(A) 

Thus for this gamble the pay-off function is 

G(lVI) = kii · 1_;W · (IA(M) -A(A)], 
as the assumption is that PI bets that A obtains. We trivially cal­

culate that if M0 E A, i.e. A obtains, then PI receives the amount 

kii" And if M0 f A, then G(M) = -ki' i.e. PII receives the amount 

ki from PI. 

A gamble G is called fair if there exists an ME S such that 

G(M)~O, i.e. the gamble is fair if PI is not certain to lose. ~is 

called a rational betting function if every admissible gamble G based 
'\ on /\ is fair. The main result, giving some intuitive background to 

the logical concept of probability, is contained in the following theorem. 

THEOREM. Let s be the set of :flOSSible states and Ot, a o-·-algebra 

oi' events in s. Then 'A is a fair betting function 
~,_,-... on <.s?CYL-> if 

and onl;y: if A is a () -additive :erobabilit;y: measure on <.s~c.n. '> • 

PROOF. By definition 0 ~ A (A)~ 1 for all A E. 01 . We show that 

-.::\ (S) = 1: If :A_(S)< 1, let x< 0 and consider the gamble 

G1 (M) = x·[I8 (r..1)- A (s)] = x•(1 - .::\(S)). Here 1 - 'A(S) >O, thus 
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G1 (M) < 0 for all ME S, which contradicts the fact that ~ is ratio­

nal. 

To show that .A,(.A') = 1 - 'A(A), consider the gamble 

G2(M) F x((IA(M)- ~(A)]+ [IA,(M)- ~(A')]). We easily see that 

G2 (M) :h x•(1- ~(A);_ 'A(A'))~ If 1- A(A)- :.\(A')>O, a choice of a 

negative :X would give that G2 (M) < 0 for all Ivi E. s. If 

1 - .?\(A) - A (A') < 0, a choice of a positive x would yield the sam$ 

conclusion, hence 1 - :A(A) - ;l..(A') must be equal to 0, i.e. 

~(A')= 1 -A(A). 

In order to prove finite additivity let A and B be disjoint 

sets from m and c = (A v B) I li Consider the gamble 

G3(r.n = x([IA(IVI)- 'A(A)) + [IB(IVI)- A(B)] + IIc(IVI)- A(C)]). One 

easily calculates that G_3(M) = x (A (Au B) - .:\(A) - A (B)). Thus by 

suitable choice of x, one concludes that A(AuB) = :ACA) + A (B) 

for disjoint sets A and B, 
The finite additivity of A 

for all disjoint sequences (Ai) • 

be disjoint and set A0 = U Ai. 

the disjoint sequence 

then the gamble 

implies that LA(Ai) exists 

To prove U' -addi ti vi ty let <. Ai) 

By assumption A0 E 01. . Consider 

..• and let x be some real number, 

G4 (M) = x• ( [L I (M) - A (A I) 1 + 2 [I~ (M) - A uj_. )] ) 
-i-1. 0 0 j Ai l 

is admissible. Hence there exists M0 E S such that G4 (M0 ) ~ 0, which 

implies, noting that I.fl' + Ll., ~ 1, that 
,_o J-l.i 

X • ( 1 - A (A; ) - L A ( Ai ) ) ~ 0 • 

If x is chosen sui table, this gives A ( UAi) = I. A (Ai). Thus the 

first part of the theorem is proved. 

To prove the converse we recall that the assumption !xil< K 

implies that !G(M)I ~ K. Hence the integral 

E(G) = IG(M)d ;\(M) 

s 
exists. E(G) expresses the expected gain for PI with respect to 

the gs.mble r< 
\..T •. Letting 



' -4-

JGn(M)d A(]~) = t: xi ( J IA. (Ivi)d ;\(rvr) - A(Ai)) = o, 
$ i=1 s l 

and th13-t G (M) 4 G(li!I). 
n Thus E( G) = 0 for all admissible G if A 

is a <r -add.i ti ve probability measure on <. S, <JL) • 
G, the~emust exist IVIES such that G(M)~O, i.e. 
betting function. This completes the proof. 

But then for every 

A is a rational 

The above theorem goes back to Ramsey [27] and de Finetti l 5] 
who both used it as a justification for the notion of subjective pro­

bability. Actue.lly, they proved only one half of the theorem. Kemeny 
[11] and Lehman [16] first showed that if A is a probability then ~ 

must b~ a rational betting function. Their proofs concern conditional 
probabilities, but we obtain their results combining the above theorem 
with the representation theorem for polyadic probabilites proved below, 
They also considered only "finiten gambles. 

Other methods of justifying subjective probabilities has been 
given by Savage [31] and Anscombe 9 kumann {1]. The latter authors base 
their definition on utility theory (see e.g. Luce, Raiffa [20]) while 
Savage introduces axioms which simultaneously define utility and pro­
bability. (A variant of the S.sv9.ge approach is given by Suppes [ 35 J. ) 

{ 

III. ALGEBRAIC LOGIC 

In this section we state some definitions and results from the 
theory of polyadic algebras. The main reference is Halmos [9] . 

.1\ polyadic algebra is the algebraic counterpart of the first 
order p~edicate logic obtained by identi~ying equivalent formulas. More 

precisely, a polyadic algebre < 1~. 9 J, S 9 3) consists of a Boolean algebra 
A, a nqn-empty set I, and two maps S and 3 . S is a map from trans­

formations ~ : I ~ I to Boolean endomorphisms on A. The image 
S ( 1:: ) is called a substitution on A. 3 is a map from subsets J ~ I 

to quantifiers 3(J) on A, where by a ,9.uantifier we understand a 
map 3(J) ~ ). --?A satisfying the following three conditions~ 
( i) 3( J) 0 = 0 (where 0 E ;~.. denotes the zero element of the Boolean 
algebra), (ii) p ~ 3(J)p for all pEA, and (iii) 3(J)(p 1\ 3(<-T)q)= 

~(J)p A 3(J)q. The reader may easily interpret the properties (i)-(iii) 
in terms of the existential quantifier in logic. 
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The interplay of the maps S 

notion of polyadic algebra. 

S ( (5 ) = identity 9 where 

S(crc) = S( cr )S(CC ). 

and 3 properly defines the 

Q· = i 1. 
for all i E I. 

These axioms assert that S is a semi-group homomorphism from trans­

formations to substitutions. Correspondingly we have for 

For the next 

And finally, 

3(0) = identity. 

3(Jv K) = 3(J) 3(K). 

axiom assume that IT=~ 

S(<J) j(J) = s ( rc) 3(J). 

if i( is injective on 

on 

-1 <t J, 

3(J)S( 't') = S('L)3( '1:-1J). 

I - J, then 

then 

The polyadic algebra <A, I, S, 3 > is called locally finite if 

for all p € A there exists a finite subset J ~ I such that 

3(I-J)p = p. The set J is then called a support of p. It is easi­

ly seen that the intersection of all supports of p again is a support 

of p which we denote by supp(p). If the set I is infinite the 

polyadic algebra is said to be of infinite degree. In this report all 

algebras are supposed to be locally finite of infinite degree. 

Let :J be a first order logic and let r be a set of sen­

tences of 'T . Let Tr denote the algebra of formulas ob-Lained 

from r by identifying two formulas cx..1 and ex 2 if the equivalence 

0( 1 ~ D( 2 is deducible from r It is well known that the propo­

sitional connectives in ~ induce a Boolean structure on ~ 
And it is fairly straight forward but rather laborious to verify that 

the quantifier and the substitution operator of the logic make :fr 
into locally finite polyadic algebra of infinite degree (provided that 

there is available an- infinite set of variables in the logic Jl ). 
The general algebraic theory of polyadic algebras is not very 

difficult being an immediate generalization of the Boolean counterpart. 

An exposition can be found in Halmos [9]. We recall that polyadic 
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homomorphisms are Boolean homomorphisms commuting with 3 and S 9 

polyadic ideals are Boolean ideals closed under ~ and s. A main 
-' 

result is that !:E:!..ery polyadic algebra is ser.G.:-simJ>le. 

We shall also need a 11 computational" result. Define the relation 

o- J ./f if o-i = 'L i for all i E. I-J. Then for locally finite poly­
adic algebras of infinite degree one has 

s(rr:) 3(J)p = V -{s(o- )p ; 

Algebras of formulas are the first main examples of polyadic 

algebras. The second main examples are derived from the notion of 

interpretation or model of first order languages. Let X and I be 

non-empty sets and B a Boolean algebra. Define on the set of all 

maps p =XI -4 B two operations S(q;) and 3(J) in the following 
way. 

Let rt= I~ I and define <t'-J<_x, where xEXI, by 

( ""C -·~x). = X~. 9 then S(o-L ) is defined bv 
" l 1,. l oJ 

S ( '"(;' ) p (X ) = p ( CC: -J~X ) ~ 

for all X E xi d ·xi "'B an p . _ --,. • 

Let Jfi and denote by xJ*y the relation that 
for all i E I-J, then 3(J) is defined by 

3(,J)p(x) = V { p(y) xJ,.,_y}. 

X~ = 
l 

;'i. B-valued functional ££1zecdic alg~bra A is now defined to be 
a Boolean subalgebra of maps from x1 to B closed under the operations 
C!(n- '. d .... ·~.. 1 an_ 3 ( J ) . Usually B is taken to be the Boolean algebra 0 

consisting of two elements { 0 9 11. Such a functional algebra is called 

a model. An important but easy result states that every model is simple. 

The converse statement taken in conjunction with the fact that every 

polyadic algebra is semi-simple, yields the following representation 

theorem. 

THEOR:CM. Every local!;z_finite..J22.1Yadic alr:;ebra of infinite degree is 

isomorphic to a subdirect product of models. 

A proof can be found in Halmos [9] or Fenstad [7]. 
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We shall also need the notion of free polyadic algebras. Let 

X and I be non-empty sets and let j be a map from X to finite 

subset~ of I. Then a locally finite polyadic algebra (F, I~ S 9 .3) is 

calla free on (X, j > if for every c:p ~ X -4 B, where B is a locally 

finite algebra with index set I and where supp( q>(x)) £: j (x), there 

exists a polyadic homomorphism f : F ~ B such that fqi =~ , where 

i = X ~ F is some fixed injection. Free polyadic algebras exists and 

every locally finite algebra is the homor1orphic image of some free 

algebra. 

There is a very close connection between free polyadic algebras 

and algebras of formulas c.Fr Where r is a S(;t of logical axioms, -

they are essentially the same alge1Jras. Freedom of F expresses that 

no extra-logical axioms are assumed. 

If we endow the class of models S of a polyadic algebra A 

with the topology generated by the sets sentence of 

M .E A iff q_ q_M = 1 5 it follows as a consequence of the theorem above 
that 

-{q_n1 

S is compact. This may be seen as follows~ 

has a model iff each finite subset of < q_ 1. 1 n ~ 

A set of sentences 

has a model. Thus 

n AI = 0 iff for some finite intersection, A n ... n A. = 0. 
n qn q_1 · qn 

As every closed set in S is an intersection of sets Aq' the con-

clusion follows. Note that if q_ is a sentence, then Aq_ is both 

open and closed. Thus in particular if }\..q_ = U Aq_n, then 

Aq_ = Lq_1 u ... u Aqn for some number n. This observation will be of 

use below. 

HEivll\.RK. In the rest of this paper we shall assume that all occurring 

alge1Jras J~ are denuma-rable and that the index set I can be identi­

fied with the set of natural numbers. ---·--

Let <A, I 9 S, 3 ) 
bility function c on 

IV. POLYJ"'-DIC PROBABILITIES. 

be a denumerable polyadic algebra. A proba­

A is a map 2. ~ IL -4 [ 0 9 1 J Which satisfies 

the following conditions. 
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for all pEA. 

s_(O) = 0 • 

s_(p v q) + £(P A q) = £(p) + _£(q) • 

Wre d.o not assume that c is continuous. (See, however, a remark fol­

lpyhng the theorem given below.) In this paper we do not enter into 

eleme:q.tary axiomatics showing in more derail hovv c can be related to 

the pq.lyadic structure of A. In a subsequent section we shall make 

so#le :treliminary remark on symmetry conditions which plausibly could 

be impospd on _£, e.g. requiring that .£(p) = .£(S('C )p) for all trans­

fol?mat;icn:s rr 
[:probability c can be introduced on I\. if there is given a 

cr ...... additive probability measure :A on S (-more precisely, 

addi t~ve probability measure 'A on <. S, 01.) , where C1.- is 

algeh~c generated by the sets J~q' q a sentence of A-) and 

. lvi 6 S there is given a probability measure plVI on the sets 

where .f XF1 is the set of j_ndi vi duals of the model M and 
• 1V 

p [M] :z { x EX~ ; pM(x) = 1}, by means of the formula 

£ (p) ~ ~ f'M(p [M] )d A (ill). 

a a--
the 'J" 

for each 

PD~<;x~ , 1 

We omit the elementary calculations that c so defined satisfies the 

requirements (i) - (iii), but remark that the probability of &n element 

pEA ·is obtained by first giving for each model I\1 the probability 

of thG set of sequences of individuals of M that satisfy p in M, 

and then taking a suitable average over the set S of all models using 

the mGasure ~ on S. The main purpose of this section is to prove 

the converse of this result. 

THEORJ:i;M. Let (A, I, S, '3) be a denumerabl_e polyadic algebra and let 

c be a probabili tv on A. Then there exi_§ts a o--addi tive_]2!£babili ty 

mea~ A. on the set of models S of L and for each model M € S 
~ "T 

Q...J2_robability p.M on the sets 

c can be given by the formula 
p [M] = i X EX~ 

s_(p) = s ~lVI(p[M])d A(M) 
s 



-9-

PROOF~ The proof will be given in several steps: 

(1). Let q be a sentence of A, i.e. supp(q) ~ 0. Define the set­

Aq by ME A iff q_M = 1. Let OL1 be the collection of all sets 
'~q_. On f\1 1 q rt v~ define a set function ~ by 

AU~ ) = c(q_) • q -

A(A) is well-defined as A =A implies that p = q by there-q_ q p 
presentation theorem of section III. ~ 1 is an algebra, and A is 

cill additive set function on this algebra. We shall prove that A is 

continuous on 01. 1 • Thus assume that Aq_ = U Aqn. By the compactness 

of S this implies that Aq = Aq_1 u • • • v Aqn = .Aq_1 v .. • v q_n for 

some number n. Hence q_ = q1 v . •. v qn. ':rl1"u-s A(Aq) = .£(q) = 

s_(q1 V ••• V q_n) =A (Aq_ U ••• U ll.q ):5 lim (.i\'1 U ••• v Aq_ ) ~ \(Aq_). 
1 -n n-4-oo '1.1 n 

This proves the continuity, thus A may be uniquely extended to a 

cr-additive probability measure on the ff-algebra ~ generated by 

the algebra 01,., 1 • ( ~ is a probability measure as A( S) = ~ (A 1 ) = 
.£(1) = 1.) 

( 2). :Next define for each p € A a measure Ap on Ol1 by 

:.\ p c·~ q ) = c ( p A q_ , • 

As above :AP is well-defined, and it is immediate that each Ap 
extends to a probability measure on 01.-. Further £(P A q_) ~ _£(q), ·thus 

each measure ~p is absolutely continuous with respect to the measure 

~ • Hence the Radon-Nikodym theorem applies, i.e. there exist non­
negative measur2ble functions fp' p € ~':c, such that 

r 
Ap(B) = jfp(M)d ~(M) ' 

B 

for all sets B: G 01, . 'I1his gives 

.£(p) = .£(PA 1) = Ap(S) = Jfp(M)d~ (M) ' 
s 

for ee.ch pEA. It remains to convert 
on the sets p[M], 

,.., (•c) I lr.i p into a probability measure 
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( 3). As a 

functions 

preliminary we shall investigate the properties of the 

fp ~ peA. Each fp can be chosen such that 

( i) 

(ii) 

(iii) 

0 ~ fp -S' 1 • 

f 1 = 1 and £0 = o, 

f + f = fp + fn• pvq pAq_ '::1. 

The prooof is by calculations~ we indicate a few instances: Let Aq E 01.1 , 

then 

J f1(l\'I)d "-CM) = A1(Aq_) = .£(1Aq) = £(q_) =:A(Aq_) = s dA(M) ~ 
A A q_ q 

thus f 1 (M) = 1 9 except for a sulJset of S 

same way we obtain f = 0 for almost all 
0 

of :)., -measure 0. In the 

me S. Next let p 1 ~ p 2 E A 

and 

.£((p1Aq)y(p2Aq)) + .£((p111. q_)A(p2Aq_)) = 

.£((p1yp2)t\q_) +.£((p1;\p2)1\q_) = 

~ f (m)d A (M) + S f _ (lVI)d A (M) = 
,, p1 v p2 ' p1 1\ p2 

Aq_ Aq_ 

Jr (f + f A J )(N)d A(Ivi) 9 

A p1 v p2 p1 I 2 
q 

thus f + f = f + f for alnost all M f S. And finally 
p1 V p2 pi A p2 p1 p2 

we obtain 0 ~ fp ~ 1 almost every-where. Thus we have a countable set~~ 

of equalities or inequalities In each true except for some set Bn~ S 

such that· ~(B)= 0. ;,s A(UB )$ 2_ A(E) = 0 9 the set I is n n n n 
valid except for a set E of ~-measure 0. But then by choosing 

some I" E S - B we may redefine the functions f ")-,y setting f (M\; = ·-o lJ '-'~ P · 
fp 0:10 ) if ME-B -thus obtaining the validity of ( i) - (iii) for all 

M~S. 
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(4). Before proceeding with the proof proper we shall pause to prove 

the following lemrJ.a which has a very plausible interpretation. 

LEMMA. Let pEA and WI E S. If Pwl(x) = 1 for. all x EX~ , then 

fp can be chosen such th.s.,t f:P (M) = 1 • } 

Define Bp = {MES; Pwr(x) = 1 for all xEX~. Let g_ be 

the universal closure of p, i.e. g_ = ( 3(I)p')'. Then g_M = 1 iff 

ME BP, hence Bp = .Aq. Vife note that q ~ p, hence g_ = pA q. 

If A(An) = 0, we may modify f on a null-set such that 
':1. p 

f (M) = 1 for l\!I E B • Hence assume that A(A ) > 0. We have p p g_ 

Jf (M)d),(M). 
p 

But :.\p (i-,_q) can also be evaluated in t:.:.nother vmy 

Ap(il.q) = _g_(pAq) = _g_(q) = A(Ag_) = ~ dA(M). 

A g_ 

Therefore 

,, 
Jtg_ 

and as 1-f ~0 and 'A(Ln)>O,weobtain 1-f =0 
p -1. p 

for almost 

all 

for 

JI/I E. Aq. Thus we may modify fp on a null-set so that f (M) = 1 p 
all ME Bp. The lemma is thus proved. 

( 5 ) • We want to use the functions 

u on the models 
,-r.~ 

M. For each 
T 

p liVI] S X~ , 
1v4 

pEA, defined as 

to defj.ne It by setting 
II/.[ -

f p 
l\!IES 

. 
to introduce probabilities 

consider the algebra of sets 

We may try· 

The main difficulty is to verify that the dnfinition is legitimate, 

i.e. p(M] = q(llll] must imply that fp(M) = fg_(M). 

Suppose there are elements p,qEA and a model IVI,/3; S such that 

p(}\10 ] = q[M0 1 but fp(M 0 ) =¥ fg_(M 0 ). Consider the element p .6 g_E;A 

defined by 
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pLi.q_ = (p VCJ.') 1\ (p'v q_). 

Using the formulas of section (3) we have 

PM (x) = qM (x) = 0 
0 0 

f E XI 
0-r x M' 

0 

Thus 

(p Aq)M (x) = 1 
0 

PM ( X ) = q_M ( X ) = 1 
0 0 

f' 11 c XI ~or a x <.,; M • From the lemmn of section (4) we conclude that 
0 

or 

fp~q(M0 ) = 1. As f 1 (M0 ) = 1 we obtain fpvc;_ 1 (l\1 0 ) + fp'Vq(M 0 ) = 2, 

i.e. fp v q, (M0 ) = fp, v q (1'.[0 ) = 1. We sh&ll further need the equa1i ties 

= 1 - f p 

f + .C• = fp V q_ I + fp 1'. C]_ I p ..Lq. I 

f p' + fa = f + f pI 1\ C]_ 
:J.. 

p'V q 

and we have 

f'p Vq_' + fp A.q_' + fp' V q_ + fp' Aq = 2 , 

Combining this result with the values of fpvq' (M0 ) and fp' vq_(M0 ) 

obtained above, we may cone lude that fp 1\ q_, (M0 ) = fp 1 A q_ (M0 ) = 0. But 

then we have 

and as f = 1 - f c we get q' q' fp(M0 ) = fq_(M0 )~ contradicting our assump-

tion above. Thus uniqueness is proved~ p (N0 1 = q (lv10 J implies that 

f 1) ( M ) = f ( M ) • 
0 q 0 

(6). Some rather trivial calculations remains in order to finish the 

proof. 

~ p ll\[] ; 
vVe must show that u~,,(ptr.1].) defined on the algebra C5L~VI = 

~.a .1 

p E itt j_s a probability measure. We give a sample calculation: 

iJM(p{.Mj) + ~J..M(q~M]) = fp(M) + fq_(M) = 

f p v q ( M) + f p A. q_ ( IVI) = t-t M ( p v q_ [M} ) + (-! M ( p A q [ M]) = 

~t lVI ( p l lri] u q_ LlVIJ ) + \AM ( p (In:] n q_ ~VI] ) , 
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using for the last equality the fact that interpretations in models 

are Boolean homomorphisms~ Thus from section (2) we obtain 

and the proof is completed. 

Ide shall make several remarks in connection with this theorem. 

Pirst, using the identity 3(J)p = Vis(o-n)p; O""nJ*6~, 
where J may be chosen finite as A is locelly finite, and <:: cr n) is 

an enumeration of all transformations which are the identity outside 

of J, it can be proved that if c satisfies the assumption 

.2. ( 3 ( J ) p) = lim .£ ( S ( a-1 ) p v . . . '\/ S ( cr n) p) , 
n~co 

then each ~ M can be chosen so that 

\1M( 3(J)p[IVI]) = lim Pr"(s( cr-1 )p[Mj u ... u s( cr n)p(M]) • 
n4oo ·'1 

However~ if c is continuous; we have not been able to conclude that 

each ~lM can be extended to a continuous probability on the cr-alge­

br2. generated by the sets p[TII], PE .L., as in this case we may need 

more than a countable number of modifications concerning the functions 

fp 
Next we EJ.ay combine the above theorem 2nd the theorem on fair 

gambling to conclude that a function c on the set of sentences to the 

interval [0,1] is a probability iff it is a fair betting function 

when we are betting on whether or not a sentence q is true. Thus 
11 r.S,tione,l bettingn gives us a prooc.ibli ty measure on the "possible 

states of the world", i.e. the mez~sure A , whereas a probability c 

also introduces a probability tlM within each model (-or possible 

state-) Ivi. If p has no:n-empty support, then p c2.n be considered 

as a cert2.in predicate or pro~erty. We shall later show that under 

suitable restrictions p .. M(p lMJ) measures the relative frequency of 

the property p in the model M. 

Finally we remark that the work above was pnrtly inspired by 

the work of Carnap on inductive logic ([2], [3], [4] ). More direct 

technical inspiration has been derived from the lecture J. :Lo~ gave to 
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the International Congress of Mathematicians in Stockholm ( [19]). 
However, we believe that our set up is more natural, working with a 

well-defined algebraic entity, the polyadic algebra 9 which in turn 

determines a well-defined set of models, the maximal ideal space. Further 

it seems that the proof indicated by ~os is not complete. (Parts (4) 

and (5) of the above proof concerning the admissibility of the definition 

p. 11 ( p [MJ) = fp (M) are lacking. ) ~c)8 also assumes that c is con­

tinuous9 thus the compactness argument of section (1) seems to be an 

improvement. However, the idea of using the Radon-Nikodym theorem in 

section (2) is taken from him. 

V. SOME REMARKS ON SYl\IIJ\f.[ETRY 9 E:B1FECTIV:F~ COHlPUTABILITY 
AN:O CG~T:DITIONAL PROBABILITIES, 

In this section we shall briefly touch upon some further topics 

in the theory of poly~dic probabilities. 

First we shall give a very simple result bearing on the _m:'in­

ciple of il'lsufficient reason. Let F be the free polyadic algebra 

generated by n elements p 19 ···~ Pn such that supp(pi) = ¢, 
i = 1 9 ••• , n. (Thus E' is essentially a Boolean algebra as S ('C) p=p 

and 3 ( J) p=p for all p £ F and all "L and ~T. ) We shall formalize 

the requirement that i 1the states of nature" does not depend upon the 

way we name the:u1. Thus let o (p) denote the element obtained from 

p ~ where p is any elc3ment of F, L e. ec v1ord in the generators pi, 

by substituti~g p~i for each constituent pi in p. ~ is to be 

regarded as a permutation 

6 
I 1 

= ( 
2 ••• 

\61 62 . . . 
which by the above definition opers,tes on F to produce the element 

o(p) from p. Our substitution principle now says that £(p) a 

.£( 6" (p)) for all p €F. 2-:'his principle entails a version of the prin­

ciple of incufficient reason. 

Let pi~ i = 0,1, denote p if i = 0 and p' if i = 1. It 

is easily seen that the element p 

p = 
i r, 1\ 1) ~­

-n 
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where (i 1 ~ ••• ,in) is running over all n-termed sequences of 0 and 

1 and L denotes repeated unions, equals 1. It thus follows that 

For es.ch pair 

o- such that 

conclude the,t 

one e&sily constructs a 

jn 
1\ Pn Hence we may 

for all s·e.quences (i!' ... 'in). Thus each ''ctomic" or "irreducible" 

fact is equiprobable. By additivity one immediately calculates that 
1 £(pi) = ~ for all i = 1~ ••• ,n. This is of course a very simple re-

sult, and it remains to investigate more realistic versions (e.g. 

uniform d.istributions over infinite sets, see Jeffreys [10] and Renyi 

[29]). But we want to emphezise one 11oint: Symmetry principles within 

polye,dic probabilities are rules of langue,ge, and as such, may be de­

fended and even considered fairly intuitive. Our algebra F was 

supposed free, this seems to be a precise version of tha notion of 

ignorance. There are no factual assumption involved. 

Another topic of great importance is the effective_£Qmputatility 

of c. It seems most reasonable to discuss this for languages :J . 
Let the associated set of axioms be r and the derived algebra be yt 
Define the function c on jL by 

rr--' 

where C{ is any formule of '::J-· Then under any notion of effective 

computability of the function .£, we would reg_uire that the set 

~ex ; . .£( od = r} is recursive for each r in the range o.f c. (We, 

of course, are assuming a ;3ui table godelnunl.,,3ring of fF" . ) The situ­

ation is analogous to the discussion o.f the word problc~m for groups. {f 
is the set of words, 

algebraic system. 

i' the defining relations and y: 
r 

the derived 

Simple cardinality arguments yield non-computable functions c. 

I .. somewhat more interesting, explicit example is as follows: 
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Let S be the set of finite models of Fin ~ i • e • XM is a finite 

(Vve assume that r contains no axiom of infinity.) 

Each pM as a function depends upon a finite number of variables, i.e 

there are natural numbers i 1 , ••• , im such I that Pr1Cx) = pl'vl(y) if 

xi1 = Y i 1 9 • • • , xim = y im, 1vhere x, y f. Xrr Thus we write more simply 

P1v1(xi , .. ~,xi) for Pr;/x). Note that card supp(p) = m. Let 
1 m 

n = card XM, we shall define the relative freq_uency flmction of p in 

M by 

fr ( p, M) = 1 
m n 

where the sum is taken over all This done define 

c on ~ by 

vvhere M1 9 M2 , ..• 

thnt £(p) = 1 iff 

every finite model. 

prehensive enough, 

[36] that the set 

Q(p) 

is some enumeration of SFin' It is easily seen 

fr ( p, Mn) = 1 for e,ll n ~ i.e. p is vo.lid in 

If the logic jr and the axioms r are com-

this entails by a v~rell-knovm result of Trachtenbrot 

-{c<.E.~; £(CX) = 1} is not recursive. Hence the 

simple function c defined above is not effectively computable. Again, 

this is just a starting point for further investigations. 

However, the point made above may have some relevance for the 

discussion of whether "subjectivei1 probabilities can be unknown or not. 

Savage ( [31] , [32] 9 [33], [3tt]) and de Finetti ( (5]) maintain that 

they always can be determined b;y- a kind of 11 introspection 11 (i.e. by 

reflection on how you would be willing to bet in certain imagined 

situations). Robbins (e.g. in [30] argue that a priori probabilities 

may exist but be unknown. As every "subjective" probability can be 

considered ss a probability on some suitable polyadic algebra, we 

believe that our remarks above may have somu relevance for this discus­

sion, and that one ought to make a distinction betw·een "pure" existence 

end effective constructibility. 
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~~ further topic which it would be of interest to treat Within 

ou:p framework concerns the problem of how arbitrary can a probability 

ass;i.gnment be? Of course, the assignment depends upon the evidence 

offered. In our framework this means that given the language 9-- and 
1 -,- ·,';.• . 

a~;iqt)'l. sets r 1 and f1 2 , it may well happen that .2.1 (A ) = .£1 ( [ex 1 r 1) 

~·f· .D f al .t.:ers rom But if the evidence offered is the 

sc:q:ne~ must then the proba1Jility assignment be the same; i.e. is there 

for a given polyadic algebra a'"p·referred, or "objectiven, or "rational" 

proba;bility function c? Here opinions differ sharply, we shall indi-
' cate soma possibilities within our framework. Every polyadic algebra 

' ' 
A ~s th~ homomorphic image of some free algebra F, the kernel being 

determined by some set df senterlcas of ?J If there exists some pre­

fe:r:sed probability on F, e.g. determined by sui ta.ble symmetry condi­

tionf3 (remember that F is .fre~)~ then this probability would determine 

a pr~fer~ed one on A by some sort of formula 

.£A ( cp( p ) ) = .£ F ( p / k e r cp ) 
wh~re .£F is the prob,s.bili ty on F, cj:. is the homomorphism 

~- ~. F ~ A , lmr c.p is the kernel of the map (which determines the 
11 f~tctual assumptions" adopted in passing from ]1 to A) and .£]!.,( • I • ) 
is t~e conditional probability derived from £F• (We shall give a short 

introduction to conditional probabilities below.) This approach would 

per~eps correspond to the point of views of Jeffreys [10] (see also 

Carn~p [2} , [ ~r]). 
c. thus deter::nined might not be effE:ctively known. Vv'hat 

ma,y know is probability functions on certain homomorphic images 

"TC> vv '-' 

of 

J\., i~ e. "ijy adding e.ssumptions we may effectively determine functions 

£.A 1 for ·certain images A' , - if the situation is sufficiently simple 

we m~y s14-cceed in determining c., by "introspection". The problem 
--'-1. 

is whether the various .£A' determine the cA. This may be so if we 

k:n'?W' sufficiently many .£A, , oth::;rvvise there may be some indeterminacy 

left, giving us a "subjective 11 c .• This may be the situation envisaged 
-.F-l. 

by Savage, and, if so 9 the difference between the subjectivists and the 

objectivists is not so important after all. Their special points can 

all be expressed y;i thin a single framevrork. Of course, this is yet 

2" speculation. 
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Having once applied the Radon-Nikodym theorem we may now define 

conditional probabilities in the following way. Let B be some set 

of sentences of A and denote by B* the following ~-measurable 

subset of S: 

If A (B-l(-) > 0 we now define for any pEA by 

.£(p/B) = 1 s ~Wl(plJ''T] )d 1\ (M) 
B* 

An elementary calcultaion then shows that if B consists of one sentence 

q and .£ ( q) > 0 : 

This definition can be used to state a formula for .£A ( cp ( p) ) 

as discussed above, where c:p~ F ~ ''!. .r~ is a homomorphism onto. :Denote 

by q.-* =niL~ 0 q sentence in F and q 'E ker cp} , then 
' 

Renyi hes in [29] introduced the notion of conditional proba­

bility algebra, several of his ideas (especially in connection with 

u:nifc:rm prior distributions) ought to be investigated within the frame­

work of this report. 

VI. INTERPRETATIONS OF THE THEORY: A 

LIMIT THEOREM. 

The probability calculus, i.e. the formal rules~ is universally 

agreed upon, either in the form of a probability algebra in the senie 

of Kolmogorov [13] (with later refinements due to Renyi [29]), or in 

the form of a confirmation function - both are essentially an additive 

set function. The interpretation, however, of the formal rules is a 

highly controversial issue, and we shall not in this paper try to give 



-19-

any serious discussion of this topic. We shall instead present a limit 

theorem for polyadic probabilities~ which we -believe may be of rele­

vance for any attempt of interpretation. As a preliminary a shor-t 

(and very inadequate) catalogue of various foundational schools may 

have some interest for the non-expert. 

First there is the frequency school up to now almost universally 

adopted after the inadequ~tcy of the "classical H conceptj_on was clearly 

demonstrated. Main proponents are von lVIieses [22], (23] and Reichen­

bach [28]. Their views as regard interpretations are essentially 

accepted without much questioning by e, g. :B'eller (6 J and Neyman [ 24], 

although most probabilists and statisticians base their formal develop­

ments on the axiomatics of Kolmogorov. One version of this school 

interpret probability as the linli t "in the long run'' of observed fre­

quency. This notion has obious intuitive appeal 5 seems to be rather 

objective~ but involves great difficulties. (Consider the complexity 

of the axioms of von Mieses. For a philosophers critique see Kneelel1~.) 

The necessary, logical or objective view (there exists one and 

only one "correct" or 11 rational" c for a given language (which then 

incorporates the given evidence)) are held by a succession of writers 

such as Keynes [12], J-effreys (10]and al,so C~:~rnap l_2], (3] and t_4] vvho 
in addition to the logical concept, probability1 , also recognizes the 

frequency concept, probability2 • 

The pure subjectivists consist of people such as Ramsey [27], 

de Finetti. [5J and Savage [31], [32J, (33], [34J. Savage also argues 
that the subjective concept has immediate applications to statistical 

techniques (see e.g. the text of Raiffa, Schlaifer [26]), and indeed 

there seems to be a tendency among people working in general decision 

theory to adopt a subjective concept of probability. We note that 

the subjectivists are severely criticized by Carnap [2], [4] who main­

tains that probability is a relative concept depending upon our know­

ledge, but it is not subjective; imposing sufficient rationality re­

quirements one is led to a "preferred" confirmation function for a 

given language. (See also our remarks toward the end of section V.) 

1fhe limit theorem given in this section may have some relevance 

for the relationship between the logical view and the frequency con­

ception. (For a physicist interpretation of 11 frequency'1 see Feynman 

[s~ p.6- 1].) 
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To state our results we shall need some definitions. 

predicate of a polyadic algebra A is a map P ~ In ~ A 

An n--place 

such that 

s ( rr ) p ( i 1 9 • • • , in ) = p ( '"( i 1 ' • • • ' 't in ) ' 

for all < i 1 , ••• , in') E In and transformations '\; : I ~ I. An equali­

ty E :for a polyadic algebra 1\ is a binary predicate which sattsfies: 

( i) :C ( i, i) = 1 for all i € I, an~ ( ii) p 1\ E ( i, j)' S ( i / j) p when­

ever i;jE,I and pEl,. Here S( 1 /j) denotesthesubstitutionwhich 

replaces the variable i by the variable j. For elementary proper­

ties Qf equality algebras we refer to Halmos [9]. 
lm equality model M is a Q-valued functional algebra with 

equality E defined in the following way: 
0 

if 

if 

f 11 "XI or a x C-' l"' Vl 
The basic representation theorem of section III may 

be extended to assert that every loqally f~n~ te_ siir~ple equality algebra 

of infinite degree.is _isomorphic to an _3quB.lity model. (Halmos [9 , 
p.228].) 

Let A be an algebra with equality E. We shall assume that 

A contains elements v 1 , v 2 , ••• , v11 , ••• which, in a sense to be 

made precise, denote constants. As I can be identified with the set 

of natural numbers, we shall denote variables by natural numbers. We 

nuw assume that for all n 9 supp ( v n) = { 1} , furtl1er that 

hold in 

excwtly 

•I .h 

n 

for all n. 

individuals 9 

Next we shall by t express that there is n 
i.e. tn is the following element of A 

(B) tn = -~(-{1,2, ... ,n1)[ (\. E(i,j)' A'~( n+1 )[ Y E(i,n+1)Jl· 
1~l,J~n 1~l~n 

i=i=j 

Here !\ and V denote; repeated intersections and unions. Jhnally 

we want to express that if a nodel has n individugls, they are all 

named by some 

satisfied 

v. , i.e. vre essume that the following inequalities are 
l 
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(C) t ~ 1\ \/(1)rv~vv'.] 
n 1 <. ":<- l1 J , l~J" n 

i==j=j 

It is not at all difficult to verify that such algebras /". 
.n exist~ 

take any e~uality model over a finite domain and interpret suitably 

the functions vn, n = 1, 2, •.• 
Let c be a probability on A, we shall impose the following 

re~uirements on c. First, c shall make individuals in models .e~ui­

probable (a 11 sampling-type" model), and next, no axiom of infinity 

shall receive positive probability. The first re~uirement is made pre­

cise through the following set of identities 

(I) c(v.l\ ~) = c(v. A~) 
- l - J 

for all sentences q E A and pair of indices i, j E I. Next 9 if B is 

some set of sentences of A, B =-{ p 1, we define n, 
c(B) = lj_m _£(p 1 ;, ••• 1\pn), a definition which makes .£(B) = ,A(B*), 

n~oo ') 
where B 1~ = () {-~-~~ ; ~ E: B(. Our second re~uirement is then rendered by 

~ J 

(II) For any set B of sentences of L., if c(E))O, there 

shall exist a tn such that for all 

q1 ' • • • '~mE :S' ~1 /\ ... /'-.. ~m /\ tn -!--- o. 

This means, by use of the representation theorem? that if a set of 

sentences in A has positive probability, it is satisfied in some 

finite model. 

One further remark, s denotes in the present context the class 

of eguality models of ,-, 
.no But because of the representation theorem 

for equality algebras, the development of section IV remains valid, so 

that any 

where each 

Let 

card ( x~,[) 

so = ULt 
n 

c on 1~ can be represented in the form 

.£(p) = r p.M(p(M] )d "(m) 
s 

ME S is an e~uali ty model. 

S 0 be the set of finite models in S, i.e. if ME S 0 , then 

is finite. We shall prove that ~(S 0 ) = 1. Obviously, 

, hence 
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(At u .•. u _itt ) = lim _£(t 1 v 
1 n n-?oo 

Now lim _£(t 1 v ••• v tn) = 1 - lim _£(t1/\ ••• At~) = 1 - ..s.(it1, t2, .• ·1) 
Suppose that .£ ( {t1 , t2, .•• } ) > 0, then by (II) there is a tn consistent 

with -bhe set i_ t1 , t:Z, •.• } , which is impossible. Hence 

£(~t1,t2,···1) = 0, and the validity of A(S 0 ) = 1 follows. But then 

A(S-S 0 ) = 0 and we may instead of integrating over S, restrict the 

domain of integration to S0 ; thus for p € A we have 

.£(p) = ~ p.l\[(p[rtrj )dA (M) • 

so 

We shall next evaluate ~ NI( vi[ IVI]) for lVI E S0 • From the re­

quirement (I) on c we obtain 

c(v.l\q) = c(v./\q) 
- l - J - = s tJ-IVI(v j[M] )d)\ (M) 

,, 
1:1 11. q_ q 

hence, by modifying on null-sets we obtain the set of equalities 

~ M ( vi \)II J ) = P. Iv1 ( v j \_ M J ) 
for all i and j. Let IVIE_S 0 , then XM = }k1 , ••• ,kn~· Define the 

following equivalence relation on the set XM : x r.;y lff x 1 = y 1 • 

Then we have 

a disjoint union where x E [ki] iff x 1 = ki. From the definition of 

tn we concl~de that (tn)M = 1, Hence the inequality (C) implies 

that (v 1 )~,p~•,.'.,(vn)IvT all are different functions of M, in fact, use 

of (A) tell~ ul:t that there is some permutation of the set ~ k 1 , ••• ,kn ~ 
such that 

for all and 

iff x 1 = k. , l. 
J 

j = 1 , ••• , n. Hence we conclude that 

v . f M] = f k . l , JL ,_ lj 

j = 1, ••• 1 n. Applying this result to the above we obtain 
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n 
= ;[ ~M (vi [MJ ) 

i=1 

From this and the equality t!M(vitlVI]) = ~-tM(vj[I¥1]) 9 we conclude that 

i = 1 9 ••• ,n. Not to complicate our notation unduly we shall state a 

special case of our limit theorem. 

supp(p) = {1}. Tiefine the function 

Let p E .A and suppose that 

fr ( p 9 M) , M E S 0 , by 

-1 ""} 
fr ( p ,M) = card ( x~.1 ) • L p:M(x) , 

where we sum over one representative from each of the equivalence classes 

[k1], ... ,[kn] 9 n = card(:X_M). Thus fr(p,M) gives the relative fre­
quency o:f the "property" p in the finite model M. We propose to 

show· that ~"-M(p[M]) = fr(p,M). This follows because p[M] = U[ki]' 
where we take the union of those [ k. J such that x E [k. J implies 

l l 

that pM(x) = 1, hence PlVI(p [MJ) = ~ D[( U [ki]) = Z. t-AM( [ki]) = fr(p,M). 
Tiefine the following random variable X on S 0 ~ 

X (H) = fr ( p, M) • 

It is then an obvious calculation that 

E I X / = EX = ~ fr ( p , M ) d A ( Tv1) 

so 
= ~ f--l M ( p (M] ) d A 0,1) = 2. ( p) • 

so 

Hence the conditions of the Kolmogorov strong law of large numbers is 

satisfied [18], and we may state the following result. 

THEOREM. Let 

elements Yn 
~md (C) _?bove. 

(I) and (II). 

any element of 

~i be a polyadJc ?dgebra with eguali ty and let the special 

and tn' n=1,2, .•• , satiE?fY __ the reauirements (A), (B) 

Let further c be any propability on A satisfyi:J}g 

If S0 is the set of finite models of A and p is 

.ii. of support one, then 
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1 f xU.) ~ £(P) 
n i=1 

a, s. , 

where xC 1 ).x( 2 ), ..• is an independent sequence of "observations of 

models", i.e. eacll xCIT- is distributed as X= fr(p,M) and inde­

pendently observed. 

The precise content of the above convergence assertion is as 

follows. Let S* == lTS 0 be a countable product where each factor 

equals S and consider on S* the product measure .A*, each factor 

having th~ measure ~ , Then for almost all sequences <X( i ))ES*, 

where x(i) == fr(p,?iii), for some Mi E S0 , ~lx(i) ----) .£(p) in the 

usual sense. Thus the convergence assertion is true except possibly 

for a _A-l<·-null set in the product space S*. 

Interpreted the theorem says that for a property p of indi­

viduals, .9_(p) is our estimate of the long range relative frequency 

of p in models ( 11 possi ble worlds"), and if A is "adequate", then 

our estimate is consistent. Thus the above theorem is to be inter­

preted as a consistency requirement on the theory of a specific function 

c. 

This result has also some connection with the views of Reichen­

bach [28] on how to interpret probability assertions concerning single 

statements. Our space of models, S, is a precise version of the rather 

vague notion of nall possible worlds". 

VII. THE GENERAL STATISTICAL DECISION PROBLEM. 

To conclude the discussion we outline briefly the general sta­

tistical decision problem following mainly Raiffa, Schlaiffer [26] and 

Raiffa [25], indicating a possible connection with our approach. 

The general formulation of the problem originates with Wald [371, 
[38], We assume given a set A of acts, a set of possible states (3) 
a family of experiments E, a sample space Z and a utility evaluation 

u ~ E x Z x i1. x ® ~ IT~ . The situation can be described as decision 

making under uncertainty~ vre do not know which state g E. e obtains' 

but we may perform an experiment e EB to obtain further information 

z E Z on which to base our decision about which act a E .A we shall 

perform. 
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The further assumption is made that 

bili ty measure P n (. , • I e) on @) x Z. 
~,z 

be determined by a probability Pz(. jG,e) 

there is given a proba­

This probability often can 

on Z and an a priori 

probability Pg on ~ 

If we have selected an experiment e E E and observed the outcome 

z £ Z, the expected utility when performing the act aE A will be 

u * ( e , z , a ) = ~ u ( e , z , a , Q ) dP g ( Q j z , e ) , 

where P9 (.jz,e) 

Pg and Pz(. !G,e) 

@ 

is the a posteriori measure on 

by means of Bayes formula. 

calculated from 

The decision maker seeks to maximoze his utility, hence he will 

choose an act a maximizing u*(e,z,a). Define 

u*(e,z) = me.x u->:·(e,z,a) , 

(to simplify we assume that such an act always exists). The expected 

utility of an experiment e is defined by 

u*(e) = Ju*(e,z)dPz(z)e) 

z 

and the maximum utility is 

u·*(e ) 
0 

u* =max u*(e). 
e 

Hence the decision maker wants to select an 

= u*, and, after performing the experiment 

the outcome, say z 0 , wants to select an act a 0 

u*(e 0 ,z 0 ,a0 ) = u*(e 0 ,z 0 ) • 

e E E 
0 

e 0 and 

such that 

such that 

observing 

This is the general problem and its optimal solution. But any 

actual solution is dependent upon our knowledge of the measure 

Pg,z(. ,.je). Usually the measure Pz(.jG,e) is "objective", e.g. 

based upon extended frequency observations. (But even at this point 

assumptions of mathematical convenience enter which help to simplify 

the problem but which are not always justifiable form the point of 

view of a strict frequency interpretation of the probability concept.) 

The real difficulty is felt to be the determination of the a priori 

measure Pg on ® 
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At this point we can perhaps make a contact with our previous 

discussion: If it were possible to determine an "adequate" language ~ 
(and hence a derived algebra A) corrGsponding to our decision problem 

such that the models of this algebra in some sense determined the state 

space @) , then a probability c on the algebra 11. would induce a 

probability Pg on ® And there is no reason why the determination 

of c should proceed upon frequency reports alone, all previous know­

ledge is of relevance in determining the actual c. (Compare her~ the 

duscussion toward the end of section V.) 

Thus~ considering the close relationship between the "states of 

the world", @ , and the space of models, S , it does not seem unreason­

able to suppose that the conceptual frame-work provided by polyadic 

probabilities may give some insight into the foundation of the general 

theory of decision making. In fact, some of our remarks in section 

IV - VI may be taken to support this ~oint of view. However, the aim 

has never been to supply efficient means in actual decision making. 
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