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I, INTRODUCTION,

This paper is a preliminary report on some investigations into
the foundation of probability within the framework of polyadic algebras.,
The purpose is not to give a cdmpiete theory, but to present some basic
result$ which do not require an extensive knowledge of the specific;
system;of algebraic logic here adopted. Purther we wish to indicate
the intuitive background for the logical notion of probability through”
the concept of "fair betting", and we want to argue in favor of a pos-
sible application by (very) briefly presenting the general statistical
decision problem, Of course, we have no pretention of providing useful
techniques for the statistician, we rather aim at supplying a conceptual
framework within which = discussion of e.g. & priori probabilities would

be meaningful,

IT. FAIR GAMBLING,

In this section we shall give an introduction to probability
via the concept of fair gambling., The theorem we state is a rather
immediate extension of some results of Kemeny [11] and Lehman [16].

Let S ©be the set of "possible states of the world" and Ol
a (-algbra of subsets called events., If MOE S is the true (but
in general unknown) state of the world we say that the event A€ OL
obtains if MOG A, On OL we suppose it is defined a real-valued
function  A(4) taking values in the interval [O,ﬂ. A is our
betting quotient: We assume that there are two persoﬁs betting, PI

and Pyp. P; may e.g. bet that A obtains , Py that A does not
obtain., In this case they are betting in the ratio MA) 1 = ML),
i.e. if PII bets the amount kII that 4 does not obtain, PI is

willing to bet the amount
. . />‘/E~A>
k ]‘.LII
- A(4)
that A obtains., (The other case, i1.e. that PI bets that A does
not obtain and P;p bets that 4 obtains, is symmetric.)

L gample G 1s specified by a sequence <xi> of real numbers
and a sequence <Ai> of disjoint sets from Ol . The pay-off function
G(M) which gives the amount of money & player would receive using A

cas betting quotient, is defined by
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cn) = 2 x (1, (0 - As,)],
1

where I, 1is the indicator function of the event 4. G 1s called ad-
gissible‘if G(M) exists for all M€ S. Por simplicity we shall assume
that lin<K, K some constant, for all G. If X is a ¢ -additive
probability measure this implies that |G(1)] € K+|7 I, () -] <

i

Ke[1 - AU, d.e. e(m)] € K.

Interpreting G(M) we have that lxi\ represent the combined
amount the players bet on the event As. We assume that G(M) zrepre-
sents the pay-off for PI. Then if Xi>-O, PI bets that Ai obtains,
if Xi<'0, PI bets that Ai does not obtain. Xj = O signifies that
no bet is made on Ai.

In the example above we have one event A, The combined amount is

x| = ki + kyp = ki *

1= A

Thus for this gamble the pay-off function is

G(M) = kpp 1_,/1 - [IA(M) -'}\(A)],

as the assumption is that PI bets that A obtains., We trivially cal-
culate that if MOE.A, i.e. A obtains, then PI receives the amount
krp. And if MO¢ A, then G(M) = -k;, i.e. Py; Teceives the amount
kI from PI.

A gamble G 1s called fair if there exists an M& S such that
G(M)» 0, i.e. the gamble is fair if P; is not certain to lose. A is
called a rational betting function if every admissible gamble G based
on A is fair. The main result, giving some intuitive background to
the logical concept of probability, is contained in the following theorem,

THEOREM., ILet S Dbe the set of possible states and OV o §-algebra
of events in S, Then M is a fair betting function on £ 3,0LY if

and only if A dis a 0 -additive probability measure on {3,0L> .,

PRCOF. By definition 0< 2(a)g1 for all 4e0l., We show that
A(8) 1: If A(S)< 1, let x< 0 and consider the gamble
G, () = x-[I(m) - A(8)] == (1 - A(8)). Here 1 -A(S)>0, thus

i
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G,(M)< O for all MeS, which contradicts the fact that A is ratio-

nal.

To show that A(A') = 1 = A(4A), consider the gamble
Gy, (31) = x([1, (W) - Ma)]) + [IA,(M) - A(4")]). e easily see that
Go(M) = x*(1 = A(4) = A(A")). If 1 - A(4) - A(4") >0, a choice of a

negative x would give that GZ(M)< O for all MeS., If

1 - Xx(4) - A(A!)<(3 a choice of a positive x would yield the same
conclusion, hence -A(4A) =A(A') must be equal to O, i.e.

Alar) =1 = 2A(4).

In order to prove finite additivity let A and B be disjoint
sets from OV and C = (AyB)'s Consider the gamble
G (M) = X([I (m) - 4(L)] + [I M) - AB)] + [I (M) - A(c)]). One
ea31ly calculates that G. (M) =x (XAUB) - A(4) = A(B)). Thus by
suitable choice of x, one concludes that A(AUB) = A(A) + A (B)
for disjoint sets A and B.

The finite additivity of QA implies that 2 A(A;) exists
for all disjoint sequences (Ai) . To prove 0 ~additivity let <Ai>
be disjoint and set Ay = L}Ai. By assumption A € Ql . Consider
the disjoint sequence Aé, A1, AZ, ... and let x Dbe some real number,
then the gamble

G 0 = % ([1,, 00 =X+ 2 [1, (0 - X))

is admissible. Hence there exists M € S such that G4(Mo); 0, which
implies, noting that I, + ZIA = 1, that
o i

xe (1 =%(ny) = 2 A(ay)) 3 0.

If x is chosen suitable, this gives A(iji) = Z‘A(Ai). Thus the
- first part of the theorem is proved.

To prove the converse we recall that the assumption IXil< X
implies that IG(M)[S K. Hence the integral

(@) = gG(Pﬂ)d A ()

S
exists, E(G) expresses the expected gain for PI with respect to

. n
the gemble G. Letting @, (M) = T x|, (M) - A (4;)], we see that
{2 TEULy

G, (M| < X, that
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Jepma Ao = 3=z, [z, na Aan - Aw)) = o,
s i=1 g i

and that Gn(M) —>» G(M), Thus E(G) = 0 for all admissible G if )
is a @ =-additive probability measure on < S,0l). But then for every
G, thefe must exist MES such that G(M)20, i.e. A is a rational
bettiné function., This completes the proof.

The above theorem goes back to Ramsey [27] and de Finetti'[5]
who both used it as a justification for the notion of subjective p%o—
bability. 4Actuelly, they proved only one half of the theorem. Kemeny
(11] and Lehman [16] first showed that if A is a probability then A
must be a rational betting function., Their proofs concern conditional
probabilities, but we obtain their results combining the above theorem
with the representation theorem for polyadic probabilites proved below,
They also considered only "finite® gambles.

Other methods of justifying subjective probabilities has been
given by Savage [31] and Anscombe, Aumann {1]. The latter authors base
their definition on utility theory (see e.g. Iuce, Raiffa [20]) while
Savage introduces axioms which simultaneously define utility and pré—
bability., (A variant of the Savage approach is given by Suppes [35].)

ITI., ALGEBRAIC LOGIC

In this section we state some definitions and results from the
theory of polyadic algebras. The main reference is Halmos [9]. v

4 polyadic algebra is the algebraic counterpart of the first
order predicate logic obtained by identifying equivalent formulas, Ilore
precisely, a polyadic algebra {Ai,J,5; 3> consists of a Boolean algebra
L, a non-empty set I, and two maps S and I . S is a map from trans-
formations CT: I —>I to Boolean endomorphisms on A. The image
S(T ) is called a substitution on A. 3 dis a map from subsets Jg¢I
to quantifiers 3(J) on 4, where by a quantifier we understand a
map F(J) ¢+ A — 4L satisfying the following three conditions:
(1) J(J)0 = 0 (where O€4 denotes the zero element of the Boolean
algebra), (ii) » € F(J)p for all »€L, and (iii) 3H(JI)(p A J(JT)a)=
J(T)p A 3(I)gq. The reader may easily interpret the properties (i)-(iii)
in terms of the existential quantifier in logic.




The interplay of the maps S and 3 Dproperly defines the
notion of polyadic algebra. ’

S(3) = identity, where §; =1 for all ielI.
St ) = S(o )s(T).

These axioms assert that S 1is & semi-group homomorphism from trans-

formations to substitutions. Correspondingly we have for

J(@) = identity.
I(JvK) = J(J3) IK).

For the next axiom assume that C=C on I - J, then
5(q ) 3(3) = s(t) 3(J).

Aind finally, if @ is injective on T—1J, then
3(3)s(T) = s(T) AT 3).

The polyadic algebra < A,I,S,3> is called locally finite if
for all p€A there exists a finite subset J €I such that
J(I-J)p = p. The set J is then called a support of p. It is easi-
ly seen that the intersection of all supports of p again is a support
of p which we denote by supp(p). If the set I is infinite the
polyadic algebra is said to be of infinite degree. 1In this report all
algebras are supposed to be locelly finite of infinite degree.

Let F Dbe a first order logic and let [ be a set of sen-
tences of F . Tet ?} denote the algebra of formulag obtained
from 3‘ by identifying two formulas oLy and X 5 if the equivalence
c¥1 & CX2 is deducible from | . It is well known that the propo-
sitional connectives in 57 induce a Boolean structure on ?} .

And it is fairly straight forward but rather laborious to verify that
the quantifier and the substitution operator of the logic make 3}
into locally finite polyadic algebra of infinite degree (provided that
there is available an dinfinite set of variables in the logic 97 ).

The general algebraic theory of polyadic algebras is not very
difficult being an immediate generalization of the Boolean counterpart.
in exposition can be found in Halmos [9]. We recall that polyadic
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homomorphisms are Boolean homomorphisms commuting with 3 and S,
polyadic ideals are Boolean ideals closed under 3 and S. A main
result is that every polvadic algebra is sgemi-simple,

We shall also need & "computational' result., Define the relation
oyt if gy = q4 for all i€ I-J. Then for locally finite poly-

adic algebras of infinite degree omne has
s(t)3)p = Vi{s(o)lp; oozl .

Llgebras of formulas are the first main examples of polyadic
algebras., The second main examples are derived from the notion of
interpretation or model of first order languages. ILet X and I be
non-empty sets and B a Boolean algebra. Define on the set of all
maps p = I 5 B two operations S(e¢ ) and 3J(J) in the following
Way.

et T=1I-—=>1I and define T,x, where X¢€ XI, by

(T,x); = xq 4, then S(¢ ) dis defined by

S(T)p(x) = p(Tux)

for all XEXI and p:XI—%B.

Let J&¢I and denote by =xJ.¥ the relation that X, 0= ¥4
for all i€I-J, then 3J(J) dis defined by

3(I)p(x) = \/{ p(y) ; XJ*:V}-

A B=valued functional polyadic algebra L4 1is now defined to be
a8 Boolean subalgebra of maps from XI to B closed under the operations
S(w ) and J(J). TUsually B is taken to be the Boolean algebra 0
consisting of two elements 4091}. Such a functional algebra is called
a model, An important but easy result states that every model is simple.

The converse gstatement taken in conjunction with the fact that every
polyadic algebra is semi-simple, yields the following representation

theoremn.

THEOREM, Every locglly finite polyadic algebra of infinite degree is

isomorphic to a subdirect product of models.

A proof cen be found in Halmos [9] or Fenstad [7].
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We shall also need the notion of free polyadic algebras. Let
X and I Dbe non-empty sets and let J be a map from X +to finite
subsets of I. Then a locally finite polyadic algebra <(¥,I,S,3) is
calle free on (X,j) if for every c?: X — B, where B is a locally
finite algebra with index set I and where supp( P(x))cj(x), there
exists a polyadic homomorphism f : F —> B such that foi =¢ , where
i=X->F 1is some fixed injection. Free polyadic algebras exists and
every locally finite algebra is the homomorphic image of some free
algebra, |

There is a very close connection between free polyadic algebras
and algebras of formulas ?} where [ is a se¢t of logical axioms, -
they are essentially the same algebras. TPFreedom of F expresses that
no extra~logical axioms are assumed,

If we endow the class of models 3 of a polyadic algebra A
with the topology generated by the sets Aq, o0 sentence of A, where
}WEJkl iff Ay = 1, 1t follows as a consequence of the theorem =2bove
that S dis compact, This may be seen as follows: A set of sentences

qn} has a model iff each finite subset of §qn} has a model. Thus
(;\ Adn = @ iff for some finite intersection, A, ... ryAq = .

11 n
As every closed set in S dis an intersection of sets Aq, the con-

clugion follows. Note that if q 1s a sentence, then Aq 'is both

open and closed., Thus in particular if Aq = L}Aq , then
n

Aq = AO U e L)Aq for some number n. This observation will be of
1 n

use below,.

REMARK, In the rest of this paper we shall assume that all occurring
algebras A  are denumgrable and that the index set I can be identi-

fied with the set of natural numbers.

IV, POLYADIC PROBABILITIES.

Let {A,I,S,?"} be a denumerable polyadic algebra. A proba-
bility function ¢ on A dis amap ¢ ¢ 4 —>[0,1] which satisfies

the following conditions.
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(1) c(p)20 for all p €4i.
(1) c(1) =1, ¢(0) = 0.
(1i1) clpva) + elpaa) = clp) + cla).

We do not assume that ¢ 1is continuous. (See, however, a remark fol-
léging the theorem given below.) In this paper we do not enter into
eiementary axiomatics showing in more derail how ¢ can be related to
tﬁe palyadic structure of A, In a subsequent section we shall make
90@6 preliminery remark on symnetry conditions which plausibly could
be .;»;impos_gd on ¢, e.g. requiring that c(p) = c(S(« )p) for all trans-
forma’clans T .
S ﬁﬁprobability ¢ can be introduced on A if there is given a

G'1additive probability measure X on S (-more precisely, & @ -
additjzve probability measure N on {3,0L> , where Cl is the T - -
algebga generated by the sets Aq, q a sentence of A-) and for each
.Dﬁeﬁ§;ﬁhere is given a probability measure My on the sets ;pUﬂQQX& . |
Wheref'" %X, 1s the set of individuals of the model M and

pW]:{xeXé; pM&)=1},bym&msoftm;ﬂmmﬂa
e{p) = SS)JM(p[MDd A1)

We omit the elementary calculations that ¢ so defined satisfies the
requirements (i) - (iii), but remark that the probability of an element
p&L is obtained by first giving for each model I +the probability
of the set of sequences of individuals of M that satisfy p in I,
and then taking a suitable average over the set S of 2ll models using
the méasure A on S. The main purpose of this section is to prove

the converse of this result.

THECREM. Let < 4,I,S,3> be a denumerable polyadic algebra and let
¢ be 2 probsbility on 4. Then there exists a ¢ -additive probability
measure ) on the set of models S of A and for each model MES

a probability  py on the sets p[M] ={:{€Xﬁ: 5 py(x) = 1} such that
c cen be given by the formula

o(@) = | pyleldana .
S
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PROOF: The proof will be given in several steps:

(1) ILet q Dbe a sentence of A, i.e. supp(q) = @. Define the set:
A, by MEAq iff gy = 1. Let (|, Dbe the collection of all sets
A, On 0{,1 define a setv function )\ by

q
Alsy) = e(@)

Q\(Aq) is well-defined as Aq = A implies that p = g by the re-
prescentation theorem of section 11T, 011 is an algebra, and N is
an additive set function on this algebra. We shall prove that A is

continuous on 61.1. Thus assume that Aq = L)Aq . By the compactness
n

of .S this implies that Aq = Aq-1 O ee uﬁan = Aq"\/ ceiy a, for
some number n. Hence q = o Vo oeie WV Qe Thus A(Aq) = ¢(q) = |
elag v vuv vay) = A (A%u R (A,‘11 U ees qun)s Ahy).
This proves the continuity, thus A may be uniquely extended to a

g~ -additive probability measure on the J -algebra ol generated by
the algebra UL1. ( A is a probability measure as A(S) = 9\(A1) =

c(1) =1.)

(2)., Next define for each pel a measure %p on 0],1 by
Aplig) = clpAa).

AS above Ap is well-defined, and it is immediate that each >‘p

extends to a probability measure on (L . Purther c(pAq)¢c(q), thus
each measure Ap is absolutely continuous with respect to the measure
9\ . Hence the Radon-Nikodym theorem applies, i.e. there exist non-
negative measurable functions fp, p € A, such that

A_(B) = Xf (mya 2 ,
P b
B

for all sets B € UlL. This gives

c(p) = clpa1) = A_(8) = Kf (myai (m) ,

- - b J P

S

for each pé&€4i., It remains to convert fb(f-ﬁ) into a probability measure
on the sets pl[N]. i
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(3), LAs a preliminary we shall investigate the properties of the
functions fp’ pe A, Each fp can be chosen such that

i Osf_<1.

(1) ,
(ii) £, =1 end f_ =0,
(iidi) fp\rq + fp‘\q = fp + I

The prooof is by calculations, we indicate a few instances: Let Aq e[ﬂ1,
then
[rjomanm = A = ciaa) = ela) =A@y = [ aam ,
A

A
43

a

[a]

thus f1(M) = 1, except for a subset of & of A‘—measure 0. 1In the
gsame way we obtain fo = 0 for slmost all MgS. Next let Pqs pzeii

and Ay€ OL1 ;

{ (£, +2, ) ()AA () :ffp“(l\ﬂ)d)\(i‘i‘) . f fpg(m)dmm _

yan £

“q g q

N
Ap, o)+ sz(“q) = c(pyAa)+elp Ae) =

c(pyAaa) vip,Aaa)) + cllpgra) Ao, Aa)) =

cl(pyvrpy)Aa) + cl(pyApy) Aa) =

S fP1Vp

j N ""\'/"\ I =
: 2(‘/I)d§\(-.1) + 5 fp1/\p2(11)d>\(11)
1 A

a a

s 3 o
J (fp1vp2 + qu/\pg)(“./d A1)

A
q
T f = f + f for almost all Mg S, And finall
VA b AD, 5, b, alrio £ nd finally

we obtain O <f_ <1 almost everywhere. Thus we have a countable set;

thus +

of equalities or inequalities In each true except for some set Bng S
such that  A(B.) = 0. 4s A(UB)S Z AE,) = 0, the set I is
valid except for & set B of A -measure 0. But then by choosing
some MOE S - B we may redefine the functions fD by setting fD(M) =
fp(Mo) if Me&B  thus obtaining the validity of (i) - (iii) for all
MeS.
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(4). Before proceeding with the proof proper we shall pause to prove
the following lemma which has a very plausible interpretation.

LEMMA. Let pE€A and MES. If py(x) =1 for all x€X, , then
fp can be chogen such that fp(M) = 1.

. X T
Define Bp =-{Me S pM(x) = for all XZEXM}. Let q be

1
the universal closure of p, di.e. g = (3A(I)p')'. Then gy = 1 1iff
MﬁeBp, hence B_ = Aq. We note that o <p, hence q = pAq.
If A(Aq) = 0, we may modify f_ = on a null-set such that
fp(M) =1 for MeBp. Hence assume that ')\(Aq))O. We have

Aphy) = gfp(m)d (1),

L

q

But jXp(Aq) can also be evalugted in aenother way

A lay) = clpaa) = ela) = Alny) = §d’\“‘”'
a

Therefore

{ (-2 aam =o,

1L

q

and as 1 - £ 20 and A(Aq)‘>0, we obtain 1 = fp = 0 for almost
all N[eﬂqf Thus we may modify fp on & null-set so that fp(M) =1

for all NIEBp. The lemma is thus proved.

(5), We want to use the functions fp to introduce probabilities

My on the models WM. Tor each M&S consider the algebra of sets

T )
p[M]QZ&& , PeA, defined as pEM]z%XEjX* ; pM(X) = 1}. We may try-
to define Mg by setting

My(e[i]) = £, ().

The main difficulty is to verify that the dzfinition is legitimate,
i.e. p[M] = q[M] must imply that fP(M) = fq(M).

Suppose there are elements p,q€ A and a model N%ESS such that
q[MO] but fp(Mo) =k fq(MO). Consider the element pAQEA

]

o[,

defined by
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pag = (pva')A(p'va).

Using the formulas of section (3) we have

f + f1 =T + T

pag pva' p'Vag

From p[MO] = QKMO] we conclude that either py (x) = qy (x) =1 or
0 0
-
pMo(x) = qMO(X) =0 for XE;XMO. Thus

(pag)y (x)
0O

for all XIEX% . Trom the lemmz of section (4) we conclude that

0
p&q(M ) = As f (MO) = 1 we obtain fpvg (T + fp,\/q(Mo)
i.e. 0\/q (M ) = '\/q(do) = 1, We shall further need the equalities
fp + fq? = fp\,q, + fp/\q, R
fp, + fq = quv,q + fp,ﬁ\q .
0s fp, =1 = fp and fq, =1 - fq , we have
fqu'*'prq'+ %ﬂvq_+fp'Aq::2’

Combining this result with the values of f (MO) and fp,\/ (MO)

pwvq' a
obtained above, we may conclude that fp/\q'(Mo) = fp,,\q(Mo) = 0. But
then we have

fp(Mo) +fq,(Mo) =1+ 0 =1,

and as fq, =1 - f%, we get f (M ) = , (M o)’ contradicting our assump-
tion above. Thus unidueness is proved n[M 1= q(Moj] implies that

fp(Mo) = fq(MO).

(6). Some rather trivial calculations remains in order to finish the
proof. We must show that HM(p[M]) defined on the algebra CRM =
sp1M] 3 peal is a probability measure, We give a sample calculation:
PM( p IM] ) + HM( QU'{[] )
Tova + f5 40 = py(p~valil) + py(pAgfitl) =

w0 val)) + py(pl o)),

£ (M) + £ (M) =
p G
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uging for the last equality the fact that interpretations in models
are Boolean homomorphisms. Thus from section (2) we obtain

o(p) = S uy (e MDA (D)

S
S

and the proof is completed.

We shall meke several remarks in connection with this theorem.
First, using the identity 3A(J)p = \/%S(gn)p : (yna*g%,
where J may be chosen finite as A 1s locelly finite, and L0y is
an enumeration of all transformations which are the identity outside
of J, it can be proved that if ¢ satisfies the assumption

c(3()p) = Lin c(8(aylov .. v S(a,)p) ,
n->w

then each ‘AM can be chosen so that

il = 11 dar )] | cas .
tar( 3(pl)) = Lim puy,(5C gy )] U .o u sCay)e(u])

However, if ¢ i1s continuous, we have not been able to conclude that
each M can be extended to a continuous probability on the J -alge-
bre generated by the sets p{M], pPE 4y, a3 1n this case we may need
more than a countable number of modifications concerning the functions

fP
Next we may combine the above theorsm and the theorem on fair

gambling to conclude that a function ¢ on the set of sentences to the
interval [0,1] is a probability iff it is a fair betting function
when we are betting on whether or not a sentence ¢ 1is true. Thus
"rational betting" gives us a provciblity measure on the "possible
states of the world", i.e. the mezsure A , whereas a probability ¢
also introduces a probability fLM within each model (-or possible
gtate-) M., If p has non-empty support, then p can be considered
as a certain predicate or property. We shall later show that under
suitable restrictions pM(piM]) measures the relative frequency of
the property p in the model M.

Finally we remark that the work above was portly inspired by
the work of Carnap on inductive logic ([2], [3], [4]). More direct
technical inspiration has been derived from the lecture J. Fos gave to
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the International Congress of Mathematicians in Stockholm ({j9]).
However, we believe that our set up is more natural, working with a
well-defined algebraic entity, the polyadic algebra, which in turn
determines a well-defined set of models, the maximal ideal space., Further
it seems that the proof indicated by %o is not complete. (Parts (4)
and (5) of the above proof concerning the admissibility of the definition
pM(p[M]) = fp(M) are lacking.) Z%o0$ also assumes that ¢ 1is con-
tinuous, thus the compactness argument of section (1) seems to be an
improvement, However, the idea of using the Radon-Nikodym theorem in

section (2) is taken from him,.

V. BSOME REMARKS ON SYMMETRY, EFFECTIVE COMPUTABILITY
AND CONDITIONAL PROBABILITIES.

In this section we shall briefly touch upon some further topics
in the theory of polyzdic probabilities,

Pirst we shall give a very simple result bearing on the prin-
ciple of ingufficient reason., Let I be the free polyadic algebra
generated by n elements py, ..., p, such that supp(pi) =g,
i=1, oo, n. (Thus F is essentially a Boolean algebra as S(T)p=p
and J(J)p=p for 211 pePF and all T and J.) We shall formalize
the requirement that "the states of nature'" does not depend upon the
way we name thewm, Thus let ¢ (p) denote the eclement obtained from

P, where p 1is any element of T, i.e., 2 word in the generators Pys

by substituting Pe 5 for each constituent Py in p. O 1is to be

regarded =s a permutation

,1 2 ¢ o0 n ‘
o) =(
W61 62.,. 6n
which by the above definition operates on F +to produce the element

¢ (p) from p. Our substitution principle now says that c(p) =
c(o(p)) for all p€F. This principle entails a version of the prin-

7/

ciple of dncufficient reason.

Tet p, i = 0,1, denote p if i =0 and p' if i = 1. It

9
is easily seen that the element p
i i i
p= Z_—' p11f\p22/\-‘; /\pnn

(ialgnao;in
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where (i1,...,i ) is running over all n~termed sequences of O and

n
1 and S denotes repeated unions, equals 1. It thus follows that
i i
2 e A A = 1.
(11900091n

For each pair (11,...gi and (j1,...,jn) one easily constructs a

n>
1, in 31
6~ such thet 0‘(p1 A .. ﬁ\pn“) =Dy A was AD

conclude that

jn i
, Hence we may
i i

1 n, _ »=n
eloy  Aeee AD,T) =2

H

for all seguences (11,...,ip). Thus each "'"atomic™ or "irreducible'

fact is equiprobable, By additivity one immediately calculates that
g(pi) = % for 211 i = 1,...,2. This is of course a very simple re-
sult, and it remains to investigate more realistic versions (e.g.
uniform distributions over infinite sets, see Jeffreys [10] and Renyi
99]). But we want to emphezise one point: Symmetry principles within
polyadic probgbilities are rules of languege, and as such, may be de-
fended and even considered fairly intuitive, Our algebra F was
supposed free, this seems to be & precise version of the notion of
ignorance, There are no factual assumption invalved.

Another topic of great importance is the effective computatility

of c¢c. It seems most reasonable to discuss this for languages g7 .
Let the associated set of axioms be [ and the derived algebra be 9T

r

Define the function ¢ on Sf' by

<

ela) = ol [adp),

where o is any formula of ﬁT'. Then under any notion of effective
computability of the function ¢, we would reguire that the set

oy cley) = r'} is recursive for each r in the range of c. (We,
of course, are assuning a suitable gddelnumbering of 57 .) The situ-
ation is analogous to the discussion of the word problsm for groups. 3T

i " ‘o : g .
is the set of words, | the defining relations and \fr the derived
algebraic system.

Simple cardinslity arguments yield non-computable functions c.

i somewhat more interesting, explicit example 1s as follows:
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Let Spy, be the set of finite models of TF .

set for N[ESFin' (We assume that (" contains no axiom of infinity.)
Each by as a function depends upon & finite number of variables, i.e

i.e. XM is a finite

there are natural numbers i,,...,1~ such that pN(X) = pM(y) if
Xi1 = yi1, ooy Xim = yim, where X,yéélm. Thus we write more simply

pM(Xi1,..,,Xi ) for pM(X). Note that card supp(p) = m. ILet
1 m

n = card XM’ we shall define the relative frequency function of p in
M by

(%

1
fr(p,M) = o ZpM(ki 9°°~9ki )
n

1 m
where the sum is taken over all (ki ,...,ki )EIX%. This done define
c on F vy ! m
r o) fr(p,Mn)
elp) = ) —2
o1
where M1, M2, oo is some enumeration of SFin‘ It is easily seen

that c¢(p) = 1 iff fr(p,Mn) =1 for 2ll n, i.e. p 1is valid in
every finite model, If the logic éf and the axioms | are com-
prehensive enough, this entails by a well-known result of Trachtenbrot
(36] that the set {o(eér; clal) = 1 } is not recursive. Hence the
simple function ¢ defined above is not effectively computable. Again,

this i1s just a starting point for further investigations.

However, the point made above nay have some relevance for the
discussion of whether "subjective® probaebilities can be unknown or not.
sevage ([31], [32], ['53}, [34]) =and de Finetti ({5]) maintain that
they always can be determined by & kind of "introspection" (i.e. by
reflection on how you would be willing to bet in certain imaginrned
situations). Robbing (e.g. in EBQ] argue that a priori probabilities
may exist but be unknown., As every "subjective" probability can be
considered 2s a probability on some suitable polyadic algebra, we
believe that our remarks above may have some relevence for this discus-
sion, and that one ought to meke 2 distinction between "pure" existence

and effective constructibility.
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A further topic which it would be of interest to treat within
our framework concerns the pfoblem of how arbitraery can a probability
aSSignment be? Of course, the assignment depénds upon the eVidence
offered In our framework this means that given the language ‘97 and
a;z;lom sets [, and [ s it may well happen that c,(a) = ¢, ([a] f‘1)

differs from gf(ai)z (PN [oL]kﬁ )s But if the evidence offered is the

eme,'must then the probﬁbﬂ11+y assignment be the same; i.e., is there
for a given polyadic algebra a’preferred, or "objective", or "rational"
prpbqbility function ¢? Here opinions differ sharply, we shall indi-
caﬁe'somq possibilities within our framework. Hvery polyadic algebra
A Ris thé homomorphic image of some free algebra T, the kernel being
determlned by some set of sentnnces of ¥/ If there exists some pre-
Terred probability on P, e.g. determined by suitable symmetry condi~
tiong (remember that T dis iggg), then this probability would determine
a bf?ferﬁed one on A by some sort of formula

e (P(p)) = cplplkerd) ,

Where ‘EP is the probability on F, ds is the homomorphism
d; w% A, kerC% is the kernel of the map (which determines the
"facotual assumptions" adopted in passing from F to A) and gF( -l )
1”' hm conditional probability derived from Cpe (We shall give a short
1qtroducnlon to conditional probabilities below.) This approach would
perh s oorrespond to the point of views of Jeffreys [10] (see also
uarnab [2] [4]).
g; thus determined might not be effectively known., What we

ugy know is probability functions on certain homomorphic images L' of
L;‘iée. By adding assumptions we may effectively determine functions
S ‘for certain images A', - if the situation is sufficiently simple
we may succeed in determining Cis by "introspection". The problen
isvwhethér the various ¢,, determine the ¢c,. This may be so if we
kn@WfSufficiently meny Cn: s otherwise there may be some indeterminacy
left, giving us a "subjective" ¢,. This may be the situation envisaged
by Savage, and, 1f so, the difference between the subjectivists and the
objectivists is not so important after 2ll, Their special points can
21l be expressed within a single framework. Of course, this is yet

2 speculation.
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Having once applied the Radon-Nikodym theorem we may now define
conditional probabilities in the following way. Let B be some set
of sentences of A and denote by B* +the following A -measurable

subset of S:
B* =O{Aq 3 ge B‘)}.

If A(B*)>O0 we now define c(p|B) for any peL by

c(p|B) =

1
WA ¢ Wi M a M )
A (B#) B{ By (plM] )a A (1)

An elementary calcultaion then shows that if B consists of one sentence

g and c(g)>0:

alole) = S2hal

This definition can be used to state a formula for gA(Cb(p))
as discussed above, where CF: F — A 1s a homomorphism onto. Denote

by «#f =fﬁ){Ag ; @ sentence in F and q'e ker*#)}, then

e (D) = A (é wlold a0 .

Renyi hes in [29] introduced the notion of conditional proba-
bility algebra, several of his ideas (especially in connection with
unifcrm prior distributions) ought to be investigated within the frame-

work of this report.

VI. INTERPRETATIONS OF THE THEORY: 4
LIMIT THEOREM,

The probability calculus, i.e. the formal rules, is universally
agreed upon, either in the form of a probability algebra in the sense
of Kolmogorov [15] (with later refinements due to Renyi [29]), or in
the form of a confirmation function - both are essentially an additive
set function. The interpretation, however, of the formai rules is a

highly controversigl issue, and we shall not in this paper try to give
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any serious discussion of this topic. We shall instead present a limit
theorem for polyadic probabilities, which we believe may be of rele-
vanceffor any attempt of interpretation. As a preliminary a short

(and very inadequate) catalogue of various foundational schools may
have some interest Tor the non-exypert.

Pirst there is the frequency school up to now almost universally
adopted after the ihadequacy of the "classical" conception was clearly
demonstrated, Main proponents are von Mieses [22], (23] and Reichen-
bach [28]. Their views as regard interpretations are essentially
accepted without much questioning by e.g. Feller (6] and Weyman [247],
although most probabilists and statisticians base their formal develop-
ments on the axiomatics of Kolmogorov. One verszion of this school
interpret probability as the limit "in the 1ong'run" of observed fre-
guency. This notion has obious intuitive appeal, seems to be rather
objective, but involves great difficulties. (Consider the complexity
of the axioms of von Mieses. For a philosophers critique see Kneele{1§.)

The necessary, logical or objective view (there exists one and
only one "correct" or "rational" ¢ for a given language (which then
incorporates the given evidence)) are held by a succession of writers
such as Keynes [12], Jeffreys [10]and also Carnap [2], [3] and [4] who
in addition to the logical concept, probability1, also recognizes the
frequency concept, probabilityz.

The pure subjectivists consist of people such as Ramsey [27],
de Finetti [5] and Savage [31], [32], (33], [34]. Savage also argues
that the subjective concept has immediate applications to statistical
techniques (see e.g. the text of Raiffa, Schlaifer [26]), and indeed
there seems to be a tendency among people working in general decision
theory to adopt a subjective concept of probability. We note that
the subjectivists are severely criticized by Carnap [2], [4] who main-
tains that probability is a relative concept depending upon our know-
ledge, but it is not subjective; imposing sufficient rationality re-
quirements one is led to a "preferred" confirmation function for a

given language. (See also our remarks toward the end of section V.)

The limit theorem given in this section may have some relevance
for the relationship between the logical view and the frequency con-
ception. (For = physicist interpretation of "frequency" see Feynman

L8, p.6 - 1].)
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To state our results we shall need some definitions., An n-place
predicate of a polyadic algebra LA i1is a map P : 1" — 4 such that

S(TIP(iq,eeesiy) = P(Tig,eee, Tiy)

for all <:i1,...,in>-€ " and transformations T¢I —1I., An equali-
ty I for a polyadic algebra . 1is a binary predicate Which satisfies:
(1) E(i,i) =1 for ell 1i€I, and (ii) pAL(i,3)< 8(7/y)p vhen-
ever 1i,jel and p&€ A. Here S(i/j) denotes the substitution which
replaces the variable 1 by the variable Jj. For elementary proper-
ties of equality algebras we refer to Halmos [9].

An equality model M 1is a 0O-valued functional algebra with
equality Eo defined in the following weay:

1 4if Xi=Xj

Eo(isj)(x) =

0 if Xi——Xj 5

for all x:€X§¢ The basic representation theorem of section IIT may

be extended to assert that every locally finite simple equality alsgebra
of infinite degree is isomorphic to an 2quality model. (Halmos [9 R
p.228].)

Let A Dbe an algebra with equality E. We shall assume that
A contains elements Vis Vos eees Vs eae which, in a sense to be
made precise, denote constants., As I can be identified with the set
of natural numbers, we shall denote variables by naturel numbers, We

now assume that for sll n, supp(vn) = {1}, further that
(4) 3 vy, A V2D [(s(/)v) ve(1,2)]] = 1

hold in A for all n. Next we shall by tp express that there is

exactly n individuals, i.e. tn is the following element of A

(B t, =30L2,.mD[ AN BT AV )]V B(1,0+1)]] .
Tsi,jsn Tsisgn
id=]
Here /\ snd V denote: repeated intersections and unions. Finally
we want to express that if s model has n individuals, they are all
named by sone Vs i.e. we assume that the following inequalities are

satisfied
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(c) . < /\
n . .

1€ 1,3}

j_:':'

| N v! '.]
<n\v’( /[Vl\l VJ

~

It is not at all difficult to verify that such algebras 4 exist:
take any equality model over & finite domain and interpret suitably
the functions Vs 0= Ty 25 400

Let ¢ %be a probability on A, we shall impose the following
requirements on ¢. First, ¢ shall make individuals in models equi-
probable (a "sampling-type" model), and next, no axiom of infinity
shall receive positive probability. The first requirement is made pre-
cise through the following set of identities

(I) elvina) = elvyna)

for all sentences q€4A and pair of indices 1i,jel. Next, if B is
some set of sentences of A, B ='{pn}, we define )

c(B) = 1lim g(p1/\ ces ﬁ\pn), a definition which makes ¢(B) = A(B*),
n-300 _
where B¥ =(f1{gq; qegB}. Our second requirement is then rendered by

(11) For any set B of sentences of L, if ¢(B) »0, there
shall exist a tn such that for all
q-lgoo»gqu'Bg q1/\ e 0 Aqm:/\tn :};' OO

This means, by use of the representation theorem, that 1f a set of
sentences in A has positive probability, it is satisfied in some
finite model.

One further remark, S denotes in the present context the class
of equality models of A. But because of the representation theorem
for equality algebras, the development of section IV remains valid, so

that any ¢ on /4 can be represented in the form

o) = [ pyeDhara ,
S

where each M&€ S 1is an equality model,
Let SO be the set of finite models in S, i.e. 1if PHEE%V then
card(XM) is finite., We shall prove that ‘%(SO) = 1, Obviously,

So :lyjﬂtn’ hence
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A(SO) = 1im (A‘t

U e uAt ) = lim_c_(t1\, oo V‘tn) .
1n->00 1 n

. n=00

Now 1lim e(by v +vv v ) = 1 = 1im e(6) A cow AY) = 1 = c(§85, t5,...1)
Suppose that g({t%,té,..%-)}(h then by (II) there is a t, consistent
with ﬁhe set {tﬁ,té,...}, which is impossible. Hence

3({t‘,té,...}) = 0, and the validity of :R(SO) = 1 follows, But then
A(S—SO) = 0 and we may instead of integrating over S, restrict the

domain of 1integration to SO; thus for peg A we have
e(») = { pyelianc .
So

- We shall next evaluate FLM(vith) for MGQSO. From the re-

quirement (I) on ¢ we obtain

g vy [M})aA () = e(vi;Aq) = elvyAa) = S 'l.LM(Vj[M])dA (m)
“q by

hence, by modifying on null-sets we obtain the set of ecualities
9 1

Moy(viiud) = }LM(vjimj)

for all 1 and j. Let M{;SO, then XM = ékq,...,kﬁ}. Define the
following equivalence relation on the set Xﬁ s Xy 1ff X1 =¥

Then we have

I 1
Xy = ;Jﬂ ES

a disjoint union where XG:[ki] iff x, = k;. From the definition of
t, we conclude that (tn)M = 1, Hence the inequality (C) implies
that (V1)M!£5,,(VH)M all are different functions of M, in fact, use
of (&) tell$ ug that there is some permutation of the set %Ik1,...,kn%
such that

(viyx) =1 iff = =Xk

for all :cexﬁ: and j =1, ..., n. Hence we conclude that

Vj(.M] = [kijj 5

=1y v0s, n. Applying this result to the above we obtain



|
= y
M
=
E/\
<
LA
=y

From this and the equality }im(viIM]) = PM(Vj[M])’ we conclude that

. =1
My (v TM]) = card(Z,)™ ,
i=1, «..,n, Not to complicate our notation unduly we shall state a

special case of our limit theorem. ILet pE4L  and suppose that
supp(p) = {1}. Define the function fr(p,M), MES,, by

£r(p,M) = card(X,)”" + 2 py(x) ,

where we sum over one representative from each of the equivalence classes
[k{]""’[kn]’ n = card(XM). Thus fr(p,M) gives the relative fre-
quency of the "property" p 1in the finite model M, We propose to
show that 11M(p[M]) = fr(p,M). This follows because p[M} = L}[ki},
where we take the union of those [ki] such that x¢€ fki] implies

— - e - [ —
that py(x) = 1, hence pu(p[M]) = jo(Ulk]) =2 py( k1) = frip,m).
Define the following random variable X on SO:

X(11) = fr(p,M) .

It is then an obvious calculati on that

E|X| = BX = Sfr’(p,l‘«l)d;\(M) =§ HM(p[M])d?\(I‘ﬂ) = c(p).

5o 5o

Hence the conditions of the Kolmogorov strong law of large numbers is
satisfied [18], and we may state the following result.

THEOREM. Let 4 Dbe a polyadic algebra with equality and let the special
elements v, and t , n=1,2,..., satisfy the requirements (4), (B)
and (C) above. Let further ¢ Dbe any probability on A satisfying

(I) and (II). If S, 1is the set of finite models of A and p 1is

any element of 4 of support one, then
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1
n

2 (1)
> X ——)_0_(13) 2,5«
i=1

1) £(2)

models", i.e. each X

is an independent sequence of "observations of
(1) is distributed as X = fr(p,M) and inde-

9 & o 0

where

pendently observed.

The precise content of the above convergence assertion is as
follows, Let ©S* ='TTSO be a countable product where each factor
equals SO and consider on S* the product measure A¥, each factor
having the measure :X . Then for almost all sequences <fX(l{>ES*,
where X(i) = fr(p,},’li), for some M.ES, %EX(i) —> c¢(p) 1in the
usual sense. Thus the convergence assertion is true except possibly
for a A*-null set in the product space S*,

Interpreted the theorem says that for a property p of indi-
viduals, g(p) is our estimate of the long range relative frequency
of p in models ("possible worlds"), and if A is "adequate", then
our estimate is consistent. Thus the above theorem is to be inter-
preted as a consistency requirement on the theory of a specific function
Ce

This result has also some connection with the views of Réichen-
bach [28] on how to interpret probability assertions concerning single
statements. Our space of models, S, is a precise version of the rather

vague notion of "all possible worlds".

VIT. THE GENERAL STATISTICAL DECISION PROBLEM.

To conclude the discussion we outline briefly the general sta-
tistical decision problem following mainly Raiffa, Schlaiffer [26] and
Raiffa [25], indicating a possible connection with our approach.

The general formulation of the problem originates with Wald [371,

[38]. We assume given a set 4 of acts, a set of possible states ®
a family of experiments E, a sample space Z and a utility evaluation
us: ExZ2xix® -—> MR . The situation can be described as decision
making under uncertainty: We do not know which state €€ ® obtains,

but we may perform an experiment e ¢ to obtain further information
z € 2Z on which to base our decision about which act a€ A we shall

perform,
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The further assumption is made that there is given a proba-
bility measure PQ’Z(},. le) on ®x Z. This probability often can
be determined by a probability PZ(.(@,e) on 72 and an a priori
probability Py on & .

If we have selected an experiment e&E and observed the outcome

z€ 7, the expected utility when performing the act a€ A will be

u*(e,z,a) = gu(e,z,a,@)dP@(G]z,e) ,
®
where PQ(.lz,e) is the a posteriori measure on @) calculated from
P, and PZ(.l@,e) by means of Bayes formula,

The decision maker seeks to maximoze his utility, hence he will

o

choose an act a maximizing u*(e,z,a). Define

u*(e,z) = max u*(e,z,a) ,
o
(to simplify we assume that such an act always exists). The expected

utility of an experiment e 1is defined by

u*(e) = Su*(e,z)dPZ(z)e) ,
Z

and the maximum utility is

u* = max u*(e).
e

Hence the decision maker wants to select an eOEZE such that
u*(eo) = u¥*, and, after performing the experiment e  and observing
the outcome, say Zys wants to select an act a, such that
u*(eo,zo,ao) = u*(eo,zo) .
This is the general problem and its optimal solution. But any
actual solution is dependent upon our knowledge of the measure
ngz(.,.le). Usually the measure PZ(.,@,e) is "objective", e.g.
based upon extended frequency observations. (But even at this point
assumptions of mathematicel convenience enter which help to simplify
the problem but which are not always Justifiable form the point of
view of a strict frequency interpretation of the probability concept.)
The real difficulty is felt to be the determination of the a priori

measure Py on ) .



Y

At this point we can perhaps make a contact with our previous
discussion: If it were possible to determine an "adequate" language 97
(and hence a derived algebre A) corresponding to our decision problem
such that the models of this algebra in some sense determined the state
space ED , then a probability ¢ on the algebra 4 would induce a
probability PQ on ® . And there is no reason why the determination
of ¢ should proceed upon frequency reports alone, all previous know-
ledge is of relevance in determining the actual c. (Compare heré the
duscussion toward the end of section V.) |

Thus, considering the close relationship between the "states of
the world", C) , and the space of models, 5 , 1t does not seem unreason-
able to suppose that the conceptual frame-work provided by polyadic
probabilities may give some insight into the foundation of the general
theory of decision making. In fact, some of our remarks in section
IV - VI nay be taken to support this point of view. However, the a2im
has never been to supply efficient means in actual decision making.
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