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A Jordan homomorphism of a ring into another ring is a linear 

map with the two multiplicative properties i) ~(a2 ) = ~(a) 2 , 

ii) ~(aba) = ~(a)%(b)~(a) for all a,b in the ring. :Jacobson and 

Rickart [2] studied such maps and showed in particular that a Jordan 

homomorphism of an n x n matrix ring Dn ( n ~ 2) over an arbitrary 

ring D with an identity is the sum of a homomorphism and an anti-

homomorphism. In operator theory one makes the following assumptions 

on a Jordan homomorphism ~' 1) ~ is a linear map over the complex 

numbers, 2) ~ is self-adjoint i.e~ 
* -)(-

~(A ) = ¢(A) , 3) 

~(A) 2 , with A a self-adjoint operator. Such maps ·are also called 

C*-homomorphisms, and have been stud.ied by Kiadison [3 -1 and [.4 J. He 

showed in particular that a C*-homomorphism of a C*-algebra is a 

Jordan homomorphism and by use of von Neumann algebra tech11iques and 

Jacobson and Richart's result that a C*-homomorphism of a von Neu-

mann algebra is the sum of a homomorphism and an anti-homomorphism. 

In l8] it was shown that a C*-homomorphism of a C*-algebra onto 

anc!>ther C*-algebra is "locally" either homomorphism or an anti-homo­

morphism (see also l9J). It is the purpose of the present note to 

generalize this result (Theorem 1) and to show that for a large class 

of C*-algebras - GCR-algebras - every C*-homomorphism is "locally" 

either a homomorphism or an anti-homomorphism. 

By a C*-algebra we mean a uniformly closed self-adjoint algebra 

of operators on a Hilbert space. A state of a self-adjoint family 



-2-

of ,operators is a positive linear self-adjoint functional of norm 1. 

The states form a convex set the extreme points of which are called 

pure states. A vector state is a state of the form ~x : A --~(A~,x). • 

A representation of a C*-algebra is a self-adjoint homomorphism of it 

into another 0*-'algebra~ An irreducible C*-algebra is one the commu­

tant of which equals the scalar operators, i.e. those of the form 

)._I with I the identity operator and 
I 

a complex number. If 

f is a state of a C*-algebra CH. then there exist a canonical repre-

sentation ft of 07. and a vector state u~x of Cff(()Z) such 

that f = L.U lff• X, 
f is a pure state if and only if cpf is irredu-

cible l7]. 

Definition. Let ¢ be a C*-homomorphism of a C*-algebra 

into another C*-algebra. We denote by (¢(~)) the C*-algebra ge­

nerated by ¢(~). We say ¢ is regular if for each irreducible re~ 

presentation ~of (¢(CQ)) each pure state of ~(¢(CQ)) has a 

uni~ue pure state extension to ~((¢(~))). 

Remark: A C*-homomorphism of a C*-algebra onto another C*-

algebra is regular, 

Theorem 1. Let uZ and :J3 be C*-algebras and ¢ a C*­

homomorphism of OZ into J3. Suppose :lJ = (¢(0()). Then the 

following three conditinns are e~uivalent: 

i) ¢ is regular 

ii) If C1f) is an irreducible representation of ;jj then 'If' o¢ 

is either a homomorphism or an anti-homomorphism. 

iii) There exists a closed (not necessarily proper) ideal N in CQ 

such that 6~/N is abelian and ¢ restricted to N is re-

gular and the sum of a homomorphism and an anti-homomorphism. 
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A couple of consequences of Theorem 1 are worth mentioning. 

Corollary 1. tet ¢ be a regul~r 

algebra 01_ . into another C*~algeb~a.. It 

tainad in OZ then ¢ rest±-icted to ,:23 

C*-homomorphism of a C*­

Jj is a C*-algebra con­

is regular. 

Corollary·2. Let ¢ be a regular C*-homomorphism of a. C*­

algebra C/~ into another C*~algebra. Then the following identities 

hold:. 

1 ) If ii~ eft i ::t 1,2,.1~,n then, 

n 1 11 1 
,0( lT A. + Jf. Ai) = 1T yf(Ai) + -~~ ¢(A.) • 

i=1 ~ 
~=n i=1 i=1il ~ 

2) If A,B,C,D are in then 

(yf(AB)-,0(A)¢(B))(yf(CD)-9f(D)yf(C)) = O. 

Corollary 2 is immediate from Theorem 1 ii) and the fact that the 

irreducible representations separate points of a C*-algebra. 

The difficult part of Theorem 1 is i) -:;'>ii). It is trivial 

that i i ) -:::=!!> i ) • 

Lemma 1. If ¢ is a C*-homomorphism of a C*-algebra CQ into 

a C*-algebra J3 then the nullspace ~ of ,0 is a closed two-sided 

ideal in OZ • 

Proof: If f is a state of 02 then J f = {A e cJZ: f(A*A)= 

0 J is a left ideal in OZ Thus J ={A ~:Ol: ¢(A*A) = 0} = 

(/ J fo¢ where f ranges through the states of OZ • Hence :J 
is a left ideal in OZ ,_ If A is self-adjoint in ~ then 

¢(A2 ) = ¢(A) 2 = 0 so A E :J Thus with Be {Jl) 0 = JO(B*A) = 

¢(B*A)* =¢{(B*A)*) = ,0(AB). Since Jf' is self-adjoint, ,){' is a 

twosided ideal. 

The key lemma is the next, which is a restatement of t8, Theo­

rem 5 and Corollary 5.9]. See also [9]. 



Lemma 2. Let % be a positive linear map of a C*-algebra 

with identity I into the bounded operators on a Hilbert space .Je 
such that ¢(I) is the identity operator I on >f • Suppose that 

for each unit vector x in ~ the state A --->(%(A)x,x) is pure 

on Ol Then either ¢ is of the form A ~f(A)I with f a 

pure state of 02 or there exist an isometry V of }(_,_ into a Hil­

bert space J< ahd an irredudible homomorphism or anti-homomorphism 

~ of OZ. on)( such that ¢ == i/1<-~V~ Mo:reover, if ¢ is also 

a C*-homomorphism then ¢ is either a homomorphism or an anti-homo-

morphism. 

In order to prove i) ~>ii) it is straightforward to show that 

we may assume OZ has an identity I. Then ¢(I) is the identity 

in cD == (¢(0Z)). 

Lemma 3. Let f be a state of J3 which is pure when restric­

ted to ¢(CQ). Then cpfo¢ is either a homomorphism or an anti-homo­

morphism. 

Proof. f = k"x Cff with ff irreducible. The map ff 0 % 

is a C*-homomorphism of C5l. with nulls pace :; By Lemma 1 d is 

a closed two-sided ideal in 02 . Replacing ¢ by 'ff0¢ and [)2 
by OZ /:;; we may assume % is a C*-isomorphism, (...L)x 

¢(0{), and J3 is irreducible on the Hilbert space £ . 
is pure on 

Then LD% 
X 

is a pure state of m ' hence of the form ~·~yo tf' ' 
where ~ is 

/--·~ 

an irreducible representation of c_;ii on a Hilbert space :J<. and y 

is a unit vector in x [1]. Making use of the fact that % is regu-

lar and that an irreducible C*-algebra is algebraically irreducible 

[5) we now contruct a linear isometry W of )( onto the subspace 

[¢C0Z)x] (= the subspace of J{ generated by vector of form ¢(A)x 

with A E (J?J such that if z is a unit vector in ¢(0l)x , then 
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CD off = z 4-Dz I o 1-' 
for s·ome z' in X with Wz 1 = z. Hence c.v off is a pure state z 

of OZ, and the map A ->E,0(A)E, where E is the projection on 

the subspace fffC~)x] satisfies tlie conditions of Lemma 2, hence 

is of the form It is not difficult to show v is a unitary 
I 

map and then to show E = I, hence that ¢ is unitarily equivalent 

to The proof is complete. 

Every pure state of ff(CQ) has a pure state extension to 13 
[7]. Hence states like f in Lemma 3 separate ff(OZ), hence by 

Lemma 3 representations like cpf separate ¢([~). Again using 

that ¢ is regular, we can now complete the proof of i) ~ii). 

It remains to show ii)~ iii). Recall that the structure 

space of a C*-algebra is the set of primitive ideals (i.e. kernels 

of irreducible representations) equipped with the hull-kernel topo-

logy. 

Lemma 4. Let 6Z and 
C) 

JJ be C*-algebras. Suppose ¢ is 

a regular C*-homomorphism of OZinto .J5 such that 15 = (,0(02)). 

J5(.") • Let Z denote the structure space of Suppose the set of 

kernels of 1-dimensional representations of :J3 is open in Z. Then 

¢ is the sum of a homomorphism and an anti-homomorphism. Moreover, 

if Z is connected then % is either a homomorphism or an anti-

homomorphism. 

Proof of ii) =?'iii). ,J5 has .no 1-dimensional representations 

if OZ. has none, in which case iii) follows from Lemma 4 with N = 01. 

Otherwise let N be the intersection of the kernels of 1-dimensional 

representations of ~ • Then C7LjN is abelian and N has no 1-

dimensional representation. By Corollary 1 (which is a consequence 
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of ii) and therefore applicable) ¢ restricted to N is regular. An 

application of Lemma 4 completes the proof. 

The proof of iii) --=> ii) is an easy consequence of the next 

two lemmas, with J = N in Lemma 6, and the fact that a C*-homo-

morphism from an abelian C*-algebra is regular - in fact is a homo-

morphism. 

Lemma 5, Let ¢ be a C*~homomorphism of the C*-algebra CR 

into the C* .... algebra :B . Suppose ,3 = (¢(01)). Let d be a 

closed two-sided ideal in 02. Then (¢(J)) is a closed two-sided 

ideal in J3 . 

Lemma 6. Let ¢, 02' .J3, :t be as in Lemma 5. Let :J( = 

(¢(d')). : 02;;; .J3 
Then induce a C*-homomorphism Q -i> l:x_ • If 

¢ restricted to d & Q are regular so is ¢. 

The nice C*-algebras are the so called GCR-algebras. A GCR-

algebra is a C*-algebra all irreducible representations of which 

consists of completely continuous (compact) operators~· A C*-algebra 

CJZ is GCR if it has a composition series { Z.] o(. e I of closed 

two-sided ideals with J = ( 0) and 
0 

U'1 
o(_ E I 0<.. = Cfl... such 

that J ~+ 1 / J~ is 

is uniformly dense in 

-QCR and if o<., is a limit ordinal then U Ja.. 
B<«. \-

If CJZ is separable then CJ2 is . 

GCR if and only if each irreducible representation of (~ contains 

the compact operators [1]. 

Theorem 2. Every C*-homomorphism from a GCR-algebra into a 

C*-algebra is regular. 

To prove this we make the following 

Definition. A C*-homomorphism ¢ of a C*-algebra is said 

to be semi-re~lar if it satisfies the identity 1) of Corollary 2. 

A uniformly closed self-adjoint (complex) linear family CJZ.. of 
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operators on a Hilbert space is a Jordan algebra if A,B E ~ implies 
n 1 

A2 E OZ, ABA E CfZ. OZ. ie semi-regular if -1 J A. + lT A. E (}2 wh:en-
. 1 l . l 
l= l=l11 

ever We then denote 
m. 

by ... R ( 61.) the uniform 

closure of the set of operators 
n 

:2: 
i=1 

l 
lT Aij 
j=1 

with A .. 
lJ 

self-adjoint 

in OZ • Then J( (02) is a real algebra and the self-adjoint ope­

rators in cR (CJ() are those in (}{_ when 0?... is semi-regular. In 

m. n 1 

fact, if A = ~ ~ Aij is self-adjoint in :l (62) J A = ;(A+A*) = 

n mi 1 

21 2 ( T1 A .. + TT A .. )e /YIJ, lJ . lJ L/( 
i=1 j=1 J=m. 

l 

A partial converse of Corollary 2 

is obtained in Lemma 7. Let LJZ be a C*-algebra and ¢ a semi-

regular C*-homomorphism of CJZ into the bounded operators on the 

Hilbert space d( . Let ti3 = .¢(0() and assume 1) J3 ' is the scalar 

operators on df.. 2) d = J< ( J3) n i J( ( ) =f.= {0 }. Then ¢ is 

either homomorphism or an ·~nti-homomorphism. 

Proof. :/ is a non zero ideal in X (l3) + i ~ (,.J3) & 

hence in (.,3). Thus :J is an irreducible C*-algebra. If A is 

self-adjoint operator in ~ then A E ~(J3) hence in J3 since 

.J3 is semi-regular. Thus ::B :::::> ';! , and every vector state is pure 

on 23 . An application of Lemma 2 completes the proof. 

Definition. If ~ is a Jordan algebra and E is a pro-

jection =F 0 in 02 we say E is abelian if is an abelian 

C*-algebra. 

Lemma 8. Let ~- be a Jordan algebra over the Hilbert space 

J( such that CJ2 1 is the scalars. Let E be a projection in 

and x a unit vector in E. Then the following are equivalent: 
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i) E is abelian. 

ii) c...uxis pure on OZ. and E~I- [CZx] + [x]. 

If ~.is semi-regular the inequality in ii) is equality. 

As the proof of this lemma has nothing to do with C*-homo-

morphism I will not go into it. By approximation and an application 

of [2J we obtain 

Lemma 9. Let {; (J{) denote the compact operators on the 

Hilbert space d{ Let % be a C*-homomorphism of lt;(Jf.) into 

a C*-algebra :[) Then % is semi-regular. 

Lemma 1 0. Let ¢ be a C*-homomorphism of (6(J() into the 

bounded operators on Hilbert space. Let OZ = y1( ~ (~)), and assume 

(]l..' is the scalars. Then ¢ is either a homomorphism or an anti­

homomorphism. 

Proof. We show ¢ satisfies the conditions of Lemma 7. By 

Lemma 9 ¢ is semi-regular. Hence L1( is a semi-regular Jordan 

algebra. Let F be a 1-dimensional projection in ~ (~). Then 

F is abelian, hence E = ¢(F) is abelian in CJZ • Let G be a 

2-dimensional projection in ~ (j{) containing :B1 • Then G ~(.X, )G --. 

2 x 2 matrices. Thus ¢/G~CK)G 

and en anti-homomorphism ¢2[2]. 

is the sum of a homomorphism ¢ 1 , 

In order to show .f: (G2) ni..~(a')=t{o] 

it suffices to show ¢ 1 = 0 or ¢ 2 = 0. This follows from an appli­

cation of Lemma 8 to the projection E. 

Proof of Theorem 2. Let ~ be an irreducible representation 

of :6= (¢(CJZ)). Replacing J3 by 0f(.3),% by ~o¢, and factoring 

out the kernel of ~o¢, we may assume ¢ is a C*-isomorphism and 

J3 irreducible. Then /J3 has no ideal divisors of zero [6, Lemma 

2.5], hence ~ has no ideal divisors of zero, as follows from 
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Lemma 5. Since the homomorphic image of a GCR-algebra is GCR 

(6, Thm. 7.4], and a GCR-algebra with no ideal divisors of zero 

is isomorphic to an irreducible GCR-algebra f 6, Lemma 7. 4 i we 
~ ~ 

may assume 0?_ is irreducible over the Hilbert space Jf.... • This 

argument together with Lemma 10 shows incidentally that a C*­

homoriorphism of a GCR~algebra is regular. cQ has a composition 

series { Jo( } ol- E I with J 0 = ( 0 ) and d 1 = f% ( £) . To 

complete the proof we now use transfinite induction and all our 

available techniques. 

Corollary. Let CJl be a GCR-algebra and ¢ a C*-homomorphism 
of 02 into a c~~-algebra. 

Then (¢(02J) is a GCR-algebra. 
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