Matematisk Seminar Universitetet i Oslo

Jordan homomorphisms of operator algebras.

bу

Erling Størmer

A Jordan homomorphism of a ring into another ring is a linear map with the two multiplicative properties i) $\emptyset(a^2) = \emptyset(a)^2$, ii) $\emptyset(aba) = \emptyset(a)\emptyset(b)\emptyset(a)$ for all a,b in the ring. Jacobson and Rickart [2] studied such maps and showed in particular that a Jordan homomorphism of an $n \times n$ matrix ring D_n $(n \ge 2)$ over an arbitrary ring D with an identity is the sum of a homomorphism and an antihomomorphism. In operator theory one makes the following assumptions on a Jordan homomorphism \emptyset , 1) \emptyset is a linear map over the complex numbers, 2) \emptyset is self-adjoint i.e. $\emptyset(A^*) = \emptyset(A)^*$, 3) $\emptyset(A^2) = \emptyset(A^2)$ $m{\emptyset(A)}^2$, with A a self-adjoint operator. Such maps 'are also called C*-homomorphisms, and have been studied by Madison [3] and [4]. showed in particular that a C*-homomorphism of a C*-algebra is a Jordan homomorphism and by use of von Neumann algebra techniques and Jacobson and Richart's result that a C*-homomorphism of a von Neumann algebra is the sum of a homomorphism and an anti-homomorphism. In $\{8\}$ it was shown that a C*-homomorphism of a C*-algebra onto another C*-algebra is "locally" either homomorphism or an anti-homomorphism (see also [9]). It is the purpose of the present note to generalize this result (Theorem 1) and to show that for a large class of C*-algebras - GCR-algebras - every C*-homomorphism is "locally" either a homomorphism or an anti-homomorphism.

By a C*-algebra we mean a uniformly closed self-adjoint algebra of operators on a Hilbert space. A state of a self-adjoint family

of operators is a positive linear self-adjoint functional of norm 1. The states form a convex set the extreme points of which are called pure states. A vector state is a state of the form $\omega_x:A\longrightarrow (Ax,x)$. A representation of a C*-algebra is a self-adjoint homomorphism of it into another C*-algebra. An irreducible C*-algebra is one the commutant of which equals the scalar operators, i.e. those of the form λ I with I the identity operator and λ a complex number. If f is a state of a C*-algebra $\mathcal O$ then there exist a canonical representation $\mathcal C_f$ of $\mathcal O$ and a vector state ω_x of $\mathcal C_f(\mathcal O)$ such that $f = \omega_x \mathcal C_f$, f is a pure state if and only if $\mathcal C_f$ is irreducible 171.

<u>Definition</u>. Let \emptyset be a C*-homomorphism of a C*-algebra into another C*-algebra. We denote by $(\emptyset(\mathcal{O}))$ the C*-algebra generated by $\emptyset(\mathcal{O})$. We say \emptyset is <u>regular</u> if for each irreducible representation ψ of $(\emptyset(\mathcal{O}))$ each pure state of $\psi(\emptyset(\mathcal{O}))$ has a unique pure state extension to $\psi((\emptyset(\mathcal{O})))$.

Remark: A C*-homomorphism of a C*-algebra onto another C*-algebra is regular.

Theorem 1. Let \mathcal{O} and \mathcal{B} be C*-algebras and \emptyset a C*-homomorphism of \mathcal{O} into \mathcal{B} . Suppose $\mathcal{F} = (\emptyset(\mathcal{O}))$. Then the following three conditions are equivalent:

- i) \emptyset is regular
- ii) If ψ is an irreducible representation of $\mathcal D$ then ψ o \emptyset is either a homomorphism or an anti-homomorphism.
- iii) There exists a closed (not necessarily proper) ideal N in \mathcal{O} such that \mathcal{O} /N is abelian and \emptyset restricted to N is regular and the sum of a homomorphism and an anti-homomorphism.

A couple of consequences of Theorem 1 are worth mentioning.

Corollary 1. Let \emptyset be a regular C*-homomorphism of a C*-algebra $\mathcal O$ into another C*-algebra. If $\mathcal B$ is a C*-algebra contained in $\mathcal O$ then \emptyset restricted to $\mathcal B$ is regular.

Corollary 2. Let \emptyset be a regular C*-homomorphism of a C*-algebra \mathcal{O} into another C*-algebra. Then the following identities hold:

1) If $A_i \in \mathcal{O}$, i = 1, 2, ..., n then,

$$\emptyset(\frac{n}{11} A_{i} + \frac{1}{11} A_{i}) = \frac{n}{11} \emptyset(A_{i}) + \frac{1}{11} \emptyset(A_{i}).$$

2) If A,B,C,D are in then

$$(\emptyset(AB)-\emptyset(A)\emptyset(B))(\emptyset(CD)-\emptyset(D)\emptyset(C)) = 0.$$

Corollary 2 is immediate from Theorem 1 ii) and the fact that the irreducible representations separate points of a C*-algebra.

The difficult part of Theorem 1 is i) \Longrightarrow ii). It is trivial that ii) \Longrightarrow i).

Lemma 1. If \emptyset is a C*-homomorphism of a C*-algebra $\mathcal O$ into a C*-algebra $\mathcal B$ then the nullspace $\mathcal W$ of \emptyset is a closed two-sided ideal in $\mathcal O$.

Proof: If f is a state of \mathcal{O} then $\mathcal{J}_f = \{A \in \mathcal{O}: f(A*A) = 0\}$ is a left ideal in \mathcal{O} . Thus $\mathcal{J} = \{A \in \mathcal{O}: \emptyset(A*A) = 0\} = \{A \in \mathcal{O}: \emptyset(A*A) = 0\}$ where f ranges through the states of \mathcal{O} . Hence \mathcal{J} is a left ideal in \mathcal{O} . If A is self-adjoint in \mathcal{N} then $\emptyset(A^2) = \emptyset(A)^2 = 0$ so $A \in \mathcal{J}$. Thus with $B \in \mathcal{O}$, $0 = \emptyset(B*A) = \emptyset(B*A)* = \emptyset(B*A)* = \emptyset(AB)$. Since \mathcal{N} is self-adjoint, \mathcal{N} is a twosided ideal.

The key lemma is the next, which is a restatement of [8, Theo-rem 5 and Corollary 5.9]. See also [9].

Lemma 2. Let \emptyset be a positive linear map of a C*-algebra with identity I into the bounded operators on a Hilbert space $\mathcal H$ such that $\emptyset(I)$ is the identity operator I on $\mathcal H$. Suppose that for each unit vector $\mathbf x$ in $\mathcal H$ the state $\mathbf A \longrightarrow (\emptyset(\mathbf A)\mathbf x,\mathbf x)$ is pure on $\mathcal O$. Then either \emptyset is of the form $\mathbf A \longrightarrow \mathbf f(\mathbf A)\mathbf I$ with $\mathbf f$ a pure state of $\mathcal O$ or there exist an isometry $\mathbf V$ of $\mathcal H$ into a Hilbert space $\mathcal H$ and an irreducible homomorphism or anti-homomorphism $\mathcal O$ of $\mathcal O$ on $\mathcal H$ such that $\emptyset = \mathbf V * \mathcal O \mathbf V$. Moreover, if \emptyset is also a C*-homomorphism then \emptyset is either a homomorphism or an anti-homomorphism.

In order to prove i) \Longrightarrow ii) it is straightforward to show that we may assume $\mathcal O$ has an identity I. Then \emptyset (I) is the identity in $\mathcal B = (\emptyset(\mathcal O))$.

Lemma 3. Let f be a state of $\mathcal B$ which is pure when restricted to $\mathscr O(\mathcal O)$. Then $\varphi_f \circ \mathscr O$ is either a homomorphism or an anti-homomorphism.

Proof. $f = \omega_x \varphi_f$ with φ_f irreducible. The map $\varphi_f \circ \emptyset$ is a C*-homomorphism of $\mathcal O$ with nullspace $\mathcal F$. By Lemma 1 $\mathcal F$ is a closed two-sided ideal in $\mathcal O$. Replacing \emptyset by $\varphi_f \circ \emptyset$ and $\mathcal O$ by $\mathcal O$ / $\mathcal F$ we may assume \emptyset is a C*-isomorphism, ω_x is pure on $\emptyset(\mathcal O)$, and $\mathcal F$ is irreducible on the Hilbert space $\mathcal F$. Then $\omega_x \emptyset$ is a pure state of $\mathcal O$, hence of the form $\omega_y \circ \psi$, where ψ is an irreducible representation of $\mathcal F$ on a Hilbert space $\mathcal F$ and $\mathcal F$ is a unit vector in $\mathcal F$ [7]. Making use of the fact that \emptyset is regular and that an irreducible C*-algebra is algebraically irreducible [5] we now contruct a linear isometry $\mathbb F$ of $\mathcal F$ onto the subspace $[\emptyset(\mathcal O)x]$ (= the subspace of $\mathcal F$ generated by vector of form $\emptyset(A)x$ with $A \in \mathcal O$) such that if z is a unit vector in $\emptyset(\mathcal O)x$, then

for some z' in $\mathcal K$ with Wz' = z. Hence ω_z o \emptyset is a pure state of $\mathcal O$, and the map $\Lambda \longrightarrow \mathbb E \emptyset(A)E$, where E is the projection on the subspace $\left[\emptyset(\mathcal O) \times \right]$ satisfies the conditions of Lemma 2, hence is of the form V* ρ V. It is not difficult to show V is a unitary map and then to show E = I, hence that \emptyset is unitarily equivalent to ρ . The proof is complete.

Every pure state of $\emptyset(\mathcal{O}(\mathbb{C}))$ has a pure state extension to \mathcal{B} [7]. Hence states like f in Lemma 3 separate $\emptyset(\mathcal{O}(\mathbb{C}))$, hence by Lemma 3 representations like $\mathcal{C}_{\mathbf{f}}$ separate $\emptyset(\mathcal{O}(\mathbb{C}))$. Again using that \emptyset is regular, we can now complete the proof of i) \Longrightarrow ii).

It remains to show ii) iii). Recall that the structure space of a C*-algebra is the set of primitive ideals (i.e. kernels of irreducible representations) equipped with the hull-kernel topology.

Lemma 4. Let \mathcal{O} and \mathcal{B} be C*-algebras. Suppose \emptyset is a regular C*-homomorphism of \mathcal{O} into \mathcal{B} such that $\mathcal{B}=(\emptyset(\mathcal{O}))$. Let Z denote the structure space of \mathcal{B} . Suppose the set of kernels of 1-dimensional representations of \mathcal{B} is open in Z. Then \emptyset is the sum of a homomorphism and an anti-homomorphism. Moreover, if Z is connected then \emptyset is either a homomorphism or an anti-homomorphism.

<u>Proof of ii) \Rightarrow iii)</u>. \mathcal{B} has no 1-dimensional representations if \mathcal{O} has none, in which case iii) follows from Lemma 4 with $\mathbb{N} = \mathcal{O}$. Otherwise let \mathbb{N} be the intersection of the kernels of 1-dimensional representations of \mathcal{O} . Then \mathcal{O}/\mathbb{N} is abelian and \mathbb{N} has no 1-dimensional representation. By Corollary 1 (which is a consequence

of ii) and therefore applicable) \emptyset restricted to N is regular. An application of Lemma 4 completes the proof.

The proof of iii) \Longrightarrow ii) is an easy consequence of the next two lemmas, with $\mathcal{J}=\mathbb{N}$ in Lemma 6, and the fact that a C*-homomorphism from an abelian C*-algebra is regular - in fact is a homomorphism.

Lemma 5. Let \emptyset be a C*-homomorphism of the C*-algebra $\mathcal O$ into the C*-algebra $\mathcal B$. Suppose $\mathcal B=(\emptyset(\mathcal O))$. Let $\mathcal F$ be a closed two-sided ideal in $\mathcal O$. Then $(\emptyset(\mathcal F))$ is a closed two-sided ideal in $\mathcal B$.

Lemma 6. Let \emptyset , \mathcal{O} , \mathcal{B} , \mathcal{J} be as in Lemma 5. Let $\mathcal{K} = (\emptyset(\mathcal{J}))$. Then induce a C*-homomorphism $\Theta: \mathcal{O}/\mathcal{J} \longrightarrow \mathcal{B}/\mathcal{K}$. If \emptyset restricted to \mathcal{J} & Θ are regular so is \emptyset .

The nice C*-algebras are the so called GCR-algebras. A GCR-algebra is a C*-algebra all irreducible representations of which consists of completely continuous (compact) operators. A C*-algebra \mathcal{O} is GCR if it has a composition series $\{\mathcal{I}_{\mathcal{A}}\}_{\mathcal{A} \in \mathcal{I}}$ of closed two-sided ideals $\mathcal{I}_{\mathcal{A}}$ with $\mathcal{I}_{\mathcal{O}} = (0)$ and $\mathcal{I}_{\mathcal{C}} = \mathcal{O}$ such that $\mathcal{I}_{\mathcal{A}+1}/\mathcal{I}_{\mathcal{A}}$ is CCR and if \mathcal{A} is a limit ordinal then $\mathcal{I}_{\mathcal{A}} = \mathcal{I}_{\mathcal{A}} = \mathcal{I}_{\mathcal{A}} = \mathcal{I}_{\mathcal{A}} = \mathcal{I}_{\mathcal{A}}$ is uniformly dense in $\mathcal{I}_{\mathcal{A}} = \mathcal{I}_{\mathcal{A}} =$

Theorem 2. Every C*-homomorphism from a GCR-algebra into a C*-algebra is regular.

To prove this we make the following

Definition. A C*-homomorphism \emptyset of a C*-algebra is said to be <u>semi-regular</u> if it satisfies the identity 1) of Corollary 2. A uniformly closed self-adjoint (complex) linear family $\mathcal O$ of

operators on a Hilbert space is a Jordan algebra if $A,B \in \mathcal{O}$ implies $A^2 \in \mathcal{O}$, $ABA \in \mathcal{O}$. \mathcal{O} is semi-regular if $\prod_{i=1}^n A_i + \prod_{i=n}^n A_i \in \mathcal{O}$ whenever $A_1, \ldots, A_n \in \mathcal{O}$, $n \ge 1$. We then denote by $\mathcal{R}(\mathcal{O})$ the uniform closure of the set of operators $\sum_{i=1}^n \prod_{j=1}^m A_{ij}$ with A_{ij} self-adjoint in \mathcal{O} . Then $\mathcal{R}(\mathcal{O})$ is a real algebra and the self-adjoint operators in $\mathcal{R}(\mathcal{O})$ are those in \mathcal{O} when \mathcal{O} is semi-regular. In fact, if $A = \sum_{i=1}^n \prod_{j=1}^m A_{ij}$ is self-adjoint in $\mathcal{R}(\mathcal{O})$, $A = \frac{1}{2}(A + A^*) = \frac{1}{2} \sum_{i=1}^n \prod_{j=1}^n A_{ij} + \prod_{j=m_i}^n A_{ij} \in \mathcal{O}$. A partial converse of Corollary 2 is obtained in Lemma 7. Let \mathcal{O} be a C*-algebra and \mathcal{O} a semi-regular C*-homomorphism of \mathcal{O} into the bounded operators on the Hilbert space \mathcal{H} . Let \mathcal{O} into the bounded operators on the Hilbert space \mathcal{H} . Let \mathcal{O} into the bounded operators on the either homomorphism or an anti-homomorphism.

<u>Proof.</u> \mathcal{J} is a non-zero ideal in $\mathcal{R}(\mathcal{B})$ + $i\mathcal{R}(\mathcal{B})$ & hence in (\mathcal{B}) . Thus \mathcal{J} is an irreducible C*-algebra. If A is self-adjoint operator in \mathcal{J} then $A \in \mathcal{R}(\mathcal{B})$ hence in \mathcal{B} since \mathcal{B} is semi-regular. Thus $\mathcal{B} \supset \mathcal{J}$, and every vector state is pure on \mathcal{B} . An application of Lemma 2 completes the proof.

<u>Definition</u>. If \mathcal{O} is a Jordan algebra and E is a projection \neq 0 in \mathcal{O} we say E is <u>abelian</u> if $E\mathcal{O}(E)$ is an abelian C*-algebra.

Lemma 8. Let \mathcal{O} be a Jordan algebra over the Hilbert space \mathcal{H} such that \mathcal{O} is the scalars. Let E be a projection in and x a unit vector in E. Then the following are equivalent:

- i) E is abelian.
- ii) ω_{x} is pure on \mathcal{O} and $\mathbb{E} \leq \mathbb{I} [\mathcal{O}(x)] + [x]$.
- If \mathcal{O} is semi-regular the inequality in ii) is equality.

As the proof of this lemma has nothing to do with C*-homomorphism I will not go into it. By approximation and an application of [2] we obtain

Lemma 9. Let $\mathcal{E}(\mathcal{H})$ denote the compact operators on the Hilbert space \mathcal{H} . Let \emptyset be a C*-homomorphism of $\mathcal{E}(\mathcal{H})$ into a C*-algebra \mathcal{B} . Then \emptyset is semi-regular.

Lemma 10. Let \emptyset be a C*-homomorphism of $\mathcal{E}(\mathcal{H})$ into the bounded operators on Hilbert space. Let $\mathcal{O} = \emptyset(\mathcal{E}(\mathcal{H}))$, and assume \mathcal{O}' is the scalars. Then \emptyset is either a homomorphism or an antihomomorphism.

Proof. We show \emptyset satisfies the conditions of Lemma 7. By Lemma 9 \emptyset is semi-regular. Hence $\mathcal{O}_{\mathbb{C}}$ is a semi-regular Jordan algebra. Let F be a 1-dimensional projection in $\mathcal{C}(\mathcal{H})$. Then F is abelian, hence $\mathbb{E} = \emptyset(\mathbb{F})$ is abelian in $\mathcal{O}_{\mathbb{C}}$. Let G be a 2-dimensional projection in $\mathcal{C}(\mathcal{H})$ containing F. Then $\mathcal{C}(\mathcal{H})\mathcal{C} \cong 2 \times 2$ matrices. Thus $\emptyset(\mathcal{C}(\mathcal{H})\mathcal{C})$ is the sum of a homomorphism \emptyset_1 , and en anti-homomorphism $\emptyset_2[2]$. In order to show $\mathcal{R}(\mathcal{O})\cap i\mathcal{R}(\mathcal{O})=\emptyset$ it suffices to show $\emptyset_1=0$ or $\emptyset_2=0$. This follows from an application of Lemma 8 to the projection $\mathbb{E}_{\mathbb{C}}$

Proof of Theorem 2. Let ψ be an irreducible representation of $\mathcal{B} = (\emptyset(\mathcal{O}))$. Replacing \mathcal{B} by $\psi(\mathcal{B})$, \emptyset by $\psi(\emptyset)$, and factoring out the kernel of $\psi(\emptyset)$, we may assume \emptyset is a C*-isomorphism and \mathcal{B} irreducible. Then \mathcal{B} has no ideal divisors of zero [6, Lemma 2.5], hence \mathcal{O} has no ideal divisors of zero, as follows from

Lemma 5. Since the homomorphic image of a GCR-algebra is GCR [6, Thm. 7.4], and a GCR-algebra with no ideal divisors of zero is isomorphic to an irreducible GCR-algebra [6, Lemma 7.4] we may assume $\mathcal O$ is irreducible over the Hilbert space $\mathcal H$. This argument together with Lemma 10 shows incidentally that a C*-homomorphism of a GCR-algebra is regular. $\mathcal O$ has a composition series $\{\mathcal I_{\mathcal A}\}_{\mathcal A\in \mathbb I}$ with $\mathcal I_0=(0)$ and $\mathcal I_1=\mathcal E(\mathcal X)$. To complete the proof we now use transfinite induction and all our available techniques.

of \mathcal{O} into a C*-algebra. Then $(\emptyset(\mathcal{O}))$ is a GCR-algebra.

Bibliography.

- 1) J. Glimm, Type I C*-algebras, Ann. of Math., vol.73, 1961,
- 2) N. Jacobson and C. Rickart, Homomorphisms of Jordan rings. Trans. Amer.Math.Soc., vol.69, 1950.
- 3) R.V. Kadison, <u>Isometries of operator algebras</u>, Ann of Math., vol.54, 1951.
- 4) R.V. Kadison, A generalized Schwarz inequality, Ann of Math., vol.56, 1952.
- 5) R.V. Kadison, <u>Irreducible operator algebras</u>, Proc.Nat.Acad.Sci. (U.S.A.) vol.43, 1957.
- 6) I. Kaplansky, <u>The structure of certain operator algebras</u>, Trans. Amer. Math. Soc., vol. 70, 1951.
- 7) I.E. Segal, <u>Irreducible representations of operator algebras</u>, Bull.Amer.Math.Soc., vol.53, 1947.
- 8) E. Störmer, <u>Positive linear maps of operator algebras</u>, Acta Mathematica, vol.110, 1963.
- 9) E. Störmer, <u>A certain class of maps between operator algebras</u>,
 Matematisk Seminar, Universitetet i Oslo, nr.11 (1963).