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Jordan homomorphisms of operator algebreas,

by

Eriing Stermer

A Jordan homomorphism of a ring into another ring is a linear

map with the two multiplicative properties i) ﬁ(az) = ﬂ(a)z,

ii) @(aba) = @(a)@(b)@(a) for all a,b in the ring., Jacobson and
Rickart f2] gtudied such maps and showed in particular that a Jordan
homomorphism of an nxXn matrix ring D/ (n>2) over an arbitrary
ring D with an identity is the sum of a2 homomorphism and an anti-
homomorphism. In operator theory one makes the following assumptions
on a Jordan homomorphism @, 1) @ is a linear map over the complex
numbers, 2) @ is self-adjoint i.e. ﬁ(A*) = ﬁ(A)*, 3) ﬁ(Az) =

ﬂ(A)Q, with A a self-adjoint operator. Such maps ‘are also called

C*-homomorphisms, and have been stu@}ed by Kedison (3| and [4]. He
showed in particular that a C¥-homomorphism of a C*-algebra is a
Jordan homomorphism and by use of von Neumann algebra techniques and
Jacobson and Richart's result that a C*¥-homomorphism of a von Neu-
mann algebra is the sum of a homomorphism and an anti-homomorphism.
In §8] it was shown that a C¥-~-homomorphism of a C*-algebra onto
andther C¥-algebra is "1oéally" either homomorphism or an anti-homo-
morphism (see also [9])). It is the purpose of the present note to
generalize this result (Theorem 1) and to show that for a large class
of C*-algebras - GCR-algebras - every C¥-homomorphism is "locally"
either a homomorphism or an anti-homomorphism.

By a C*-algebra we mean a uniformly closed self-adjoint algebra

of operators on a Hilbert space. A state of a self-adjoint family
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of operators is a positive linear self-adjoint functional of nopm 1.
The states form a convex set the extreme points of which are called

pure states. A vector state is a state of the form w_  : A —>(AX,X)s *
A representation of a C¥-algebra is a self-adjoint homomorphism of it

into another C*~algebra. An irreducible C*-algebra is one the commu-

tant of which equals the scalar operators, i.e. those of the form

AI with I +the identity operator and X\ a oompiex numﬁef. If

f dis a state of a C¥-algebra (J{ then there exist a canonical repre~
sentation %% of (J{ and a vector state o, of %?(Cﬁ) such

that f = c&JXCff. f 1is a pure state if and only if q%. is.irredu—

cible [7].

Definition. ILet @ be a C*~homomorphism of a C¥-algebra

into another C*-algebra. We denote by (Z((?)) the C*-algebra ge-
nerated by @((]l). We say @ is regular if for each irréducible re=~
presentation 7 of (8(C?)) each pure state of q#(ﬁ(CQ)) has a

unique pure state extension to QP((%(C?))).

Remark: A C*¥-homomorphism of a C*-algebra onto another C¥*-

algebra is regular,

Theorem 1., Let \JZ and 55 be C*-algebras and @ a C*-
homomorphism of (J into QB. ‘Suppose QB = (#(C¢))., Then the
following three conditions are equivalent: '

i) 4 is regular

ii) If QF is an irreducible representation of QB then ‘%ﬂoﬁ
is either a homomorphism or an anti-homomorphism,

iii) There exists a closed (not necessarily proper) ideal N in (JC
such that (jZ/N is abelian and @ restricted to N is re-

gular and the sum of a homomorphism and an anti-homomorphism.,




A coupie of comnsequences of Theorem 1 are worth mentioning.

Cdrollary 1, Let @ be a reguiér O*~homomorphism of a C¥-

algebra (J{ into another C*-algebra. If & is a C¥-algebra con-
tained in (] then [ resthicted to 3 is regular.

Corollary 2. Let @ be a régular C¥-homomorphism of a C*-

algebra CZ into another C*-glgebra., Then the following identities
holds.
1) If Aiégz ) i= 1;2;.&‘;&,1’1 Jchen,

BT Troa) = T, + 1o
T oA+ 11 Ay) = T4 + T g,
i=1 *  i=n 1 i=1 1 i=n
2) If A,B,C,D are in then

(B(AB)-g(L)F(B)) ((CD)-B(D)F(C)) =

Corollary 2 is immediate from Theorem 1 ii) and the fact that the
irreducible representations separate points of a C*-algebra.

The difficult part of Theorem 1 is i) =>ii). It is trivial
that ii) ==1).

Temma 1, If @ is a C*-homomorphism of a C¥-algebra (J( into
a C¥-glgebra JB then the nullspace A of @ is a closed two-sided
ideal in C?Z

Proof: If f is a state of (J¢ then j ={Ae@?: £(A*A)=

0f is aleft ideal in (7 . s J = = jaell: plama) = 0} -
(7 Jfoﬁ where f ranges through the states of Cjz Hence ;7

is a left ideal in C?Z . If A 1is self-adjoint in UVQ then
ﬂ(A2) = ﬁ(A)2 =0 so Ae Y . Thus with Be CQ/O = @(B*A) =
F(B*a)* =g((B*A)*) = F(AB)., Since W is self-adjoint, A is a
twosided ideal,

The key lemma is the next, which is a restatement of [8, Theo=-

rem 5 and Corollary 5.9]. See also [97.
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Lemma 2, Let @ ©be a positive linear map of a C*-algebra
with identity I 1into the bounded operators on a Hilbert space ’){
such that @(I) dis the identity operator I on > . Suppose that
for each unit vector x in ¢ the state A —(@(4)x,x) is pure
on (J/ . Then either @ is of the form A —=f(A)I with f a
pure state of OZ or there exist an isometry V of > into a Hil-
bert space 3{ and iétn irreducible homombrphism or anti-~-homomorphism
@ of Ol on K such that & = V*G)Vi. Moreover, if @ is also
a C*~homomorphism then @ is either a homomorphism or an anti-homo-
morphism,
In order to prove i) =>ii) it is straightforward to show that
we may assume (Ol nas an identity I. Then @(I) dis the identity
in B = (BXR)).

Lemma %, Let f be a state of B3 which is pure when restric-
ted to @(7). Then choﬂ is either a homomorphism or an anti-homo-

morphism,

Proof. f = co @, with ¢, dirreducible. The map C‘Ofoﬁ
is a C¥*-homomorphism of OZ with nullspace J . By Lemma 1 J is
a closed two-sided ideal in (4. Replacing # by Cffoﬁ and O/
by O?/J we may assume @ is a C*-isomorphism, co_ is pure on
(1), and J3 is irreducible on the Hilbert space JC . Then wxﬁ
is a pure state of 0? , hence of the form t@yo l}) , Where '\]l/ is
an irreducible representation of l::./z on a Hilbert space K and ¥y
is a unit vector in :1( [7]. Making use of the fact that @ is regu-
lar and that an irreducible C¥-algebra is algebraically irreducible
[5] we now contruct a linear isometry W of /X onto the subspace
[ﬁ(OZ)X] (= the subspace of o€ generated by vector of form Z(A)x
with Ae () such that if =z is & unit vector in @(C7)x , then
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Lbzoﬁ = w0 Y

for some z' in K with Wz' = z., Hence uazoﬂ is a pure state
of (X , and the map A —=EJ(A)E, where E is the projection on
the subspace [ﬂ(Cﬁ)x} satisfies the conditions of Lemma 2, hence
is of the form V*EDV’ It is not difficult to show V is a unitary
map and then to shéw E =1, hence that g is unitarily equivalent
to €> « The proof is complete,

Every pure state of @(C!) has a pure state extension to JB
{7]. Hence states like f in Lemma 3 separate @((J/), hence by
Lemma 3 representations like Cff separate ¢(£@). Again using
that @ is regular, we can now complete the proof of i)=>1ii).

It remains to show ii)«=>> iii)., Recall that the structure

space of a C*-algebra is the set of primitive ideals (i,e. kernels

of irreducible representations) equipped with the hull-kernel topo-

logy.

Lemme 4, Let (J( and \13 be C*-algebras. Suppose £ 1is
a regular C*-homomorphism of (J7 into J3 such that B = (4(C7)).
Let Z denote the structure space of 23 . Suppose the set of
kernels of 1~dimensional representations of cii is open in Z. Then
@ is the sum of a homomorphism and an anti-homomorphism, Moreover,
if % is connected then @ is either a homomorphism or an anti-

homomorphism.,

Proof of ii)=>iii). (25 has no 1~dimensional representations
if Cjz has none, in which case iii) follows from Lemma 4 with N =%,
Otherwise let N be the intersection of the kernels of 1-dimensional
representations of CQ . Then C?/N is abelian and N has no 1-

dimensional representation., By Corollary 1 (which is a consequence
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of ii) and therefore applicable) @ restricted to N is regular. An
application of Lemma 4 completes the proof,
The proof of iii) ==>1ii) is an easy consequence of the next
two lemmas, with J = N in Lemma 6, and the fact that a C¥*-homo-
morphism from an abelian C¥*-glgebra is regular - in fact is a homo-~

morphism,

Lemma 5, Let # be a C*<homomorphism of the C*-algebra (¢
into the C*~algebra B, Suppose B = (B(R)). TLet & Dbe a
closed two-sided ideal in ¢ . Then (Z(/)) is a closed two-sided
ideal in JB .

Lemma 6. Let @,0), B, & be as in Lemma 5., Let K =
(#(¥)). Then induce a C*-homomorphism © : CQ/y ——€>Jgé;< . If
@ restricted to & & 6 are regular so is f.

The nice C*-algebras are the so called GCR-algebras. A GCR-
algebra is a C¥-algebra all irreducible representations of which
congists of completely continuous (compact) operators. A C¥-algebra

C?Z is GCR if it has a composition series {:Z.}oLf:I of closed

. . Ay ) |
two-sided ideals J with 3% = (0) and uﬁgll‘ = (J! such
. . ‘ . ) . . . [y
that °Q+1/3LL is GCR and if « d1s a limit ordinal then ra?efj~

is uniformly dense in Qf -[6]. If (jz is separable then C]Z is

K
GCR if and only if each irreducible representation of Ol contains

the compact operators [1],

Theorem 2. Every C*-homomorphism from a GCR-algebra into a
C*-algebra is regular.

To prove this we make the following

Definition. A C*-homomorphism @ of a C¥-algebra is said

to be semi-regular if it satisfies the identity 1) of Corollary 2.

A uniformly closed self-adjoint (complex) linear family Cjz of
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operators on a Hilbert space is a Jordan algebra if A,B e e/ implies

n 1
1le O , ABA e (. (] is semi-regular if || Ay + T A; € (7 when-
i=1 i=n

l
ever A1,...;AﬁeOZ , 121, We then denote by K g 07) the unj_;form

m.
closure of the set of operators i T]"lAij with Aij self-adjoint
1=1 j=1
in_OZ . Then j? (%) is a real algebra and the self-adjoint ope-

rators in £ ((?) are those in Oz when (J{ is semi-regular. In

m.
n 1
fact, 1f A= 27 TI A;y is self-adjoint in K (O1), 4 = T(athr) =
) &, i 1=1LJ=1
2 f:—:"(jL Aij * ij.Aij)e (7. A partial converse of Corollary 2

i
is obtained in Lemma 7. Let (JC be a C*-algebra and § a semi-

regular C*¥-homomorphism of Oz into the bounded operators on the
Hilbert space dC . Tet B = #(R) and assume 1) B' is the scalar
operators on &C 2) & = FE(B)M i X( ) o= {O} Then @ is

either homomorphism or an -anti-homomorphism.,

Proof, o is a non =zero ideal in K (@') + iRP(R) &
hence in (2 ). Thus <7 is an irreducible C*-algebra. If A is
self-adjoint operator in o then A e K (AB) hence in I3 since

;B is semi-regular. Thus 51335, and every vector state is pure

on 3 . An application of Lemma 2 completes the proof.

Definition., If (] 1is a Jordan algebra and E 1is a pro-

jection 2= 0 in (/ we say E is abelian if E(JE is an abelian
C*-algebra,
Lemma 8, Let C?_ be a Jordan algebra over the Hilbert space

/
& such that 0? is the scalars., Let E be a projection in

and x a unit vector in E. Then the following are equivalent:



i) E is abelian.
o« . . - r 57 rt
ii) w._is pure on ! and BeT - b¢¢x_}+ [X}.
If ()Z:is semi-regular the inequality in ii) is equality.
As the proof of this lemma has nothing to do with C¥-homo-
morphism I will not go into it. By approximation and an application

of (2] we obtain

Lemma 9, Let 5?(3{) denote the compact operators on the
Hilbert space o€ . ILet @ be a C*-homomorphism of 7 (M) into

a C*-algebra 3 . Then £ is semi-regular,

Lemma 10, ILet @ Dbe a C¥-homomorphism of & (J¢) into the
bounded operators on Hilbert space. Let () = B(Z (¥)), and assume
CY' is the scalars. Then @ is either a homomorphism or an anti-

homomorphism.,

Proof., We show @ satisfies the conditions of Lemma 7. By
TLemma 9 @ is semi-regular. Hence Cjz is a semi-regular Jordan
algebra, Let F be a 1-dimensional projection in & (}). Then
F 1is abelian, hence E = ﬁ(F) is abelian in C}Z. Let G De a
2-dimensional projection in & (X ) containing PF. Then G&(X)G =
2 x 2 matrices. Thus ﬁ!GEﬁ(&ﬁ)G is the sum of a homomorphism ¢1,
and en anti-homomorphism ¢2[2]. In order to show X (Cﬂ)r1i£3«?%¢{ﬂ
it suffices to show ¢1 =0 or ¢2 = 0, This follows from an appli-

cation of Lemma 8 to the projection BE.

Proof of Theorem 2. Let ’HD be an irreducible representation

of B = (4(C7)). Replacing J3 by ‘y/(ia), g by ﬂfoﬁ, and factoring

out the kernel of Qkoﬁ, we may assume @ is a C¥-isomorphism and

Q% irreducible. Then QB has no ideal divisors of zero {6, Lemma

2.5], hence <52 has no ideal divisors of zero, as follows from
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Lemma 5. Since the homomorphic image of a GCR-algebra is GCR

[6, Thm, 7.4], and a GCR-algebra with no ideal divisors of zero

is isomorphic to an ifreducible GCR-algebra [6, Lemma 7.4J'We

may assume (jz is irreducible over the Hilbert space o . This

argument together with Lemma 10 shows incidentally that a C¥-

homoriorphism of a GCR-algebra is regular. Cjz has a composition

series {Zé}of.el with :]O= (0) and ;71 = (f(af). To

complete the proof we now use transfinite induction and all our

available techniques.

Corollary., Let (Ol ve a GOR-algebra and @ a C*-homomorphism

of (O into a C*~algebra.

1)

2)

3)

4)

5)

6)

7)

8)

9)

Then (Z(0)!)) is a GCR-algebra.
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