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1. Introduction. The main object of study in abstract harmonic 

qhalysis is the algebra L1 (G) consisting of ell the complexr 
c 

valued Haar~integrable functions on a locally compact abelian 

group G. Along with this algebra one also considers the larger 

algebra Mc(G) of all complex-valued bounded Radon measures pn G. 

T/Iuch less attention has been paid to the real counterparts of these 

algebras: The subalgebra L~(G) consisting of all the real func­

tions in L6(G) and MR(G) ~consisting of all the real measures 

in Mc(G). These two algebras &6:uires the additional structure 

of an ordered ring via the concepts of a positive function and a 

positive measure. The building stones of these algebras will 

accordingly be the convex ideals since these are exactly the kernels 

of order preserving homomorphisms. This gives rise to the following 

general question: What can be said about convex ideals of L~(G) 
and MR (G) in comparison with vvell-"known results from the ideal 

theory of 16(G) and Mc(G) ? 
We showed in [3] that there is only one convex ideal among 

1 the regular maximal ideals of LR(G) - namely the kernel of the 

Haar measure. We here restate this result in Theorem 1 as well 

as a more striking formulation of it in terms of order-preserving 

homomorphisms. This latter formulation shows that the theorem 

contains more than what can immediately be deduced from the unique­

ness of the Haar measure. The main result of the present note 

is Theorem 2 which represents a considerable strengthening of 

Theorem 1. In fact, this theorem shows that the "ordered" versions 

of spectral analysis (Wiener's Tauberian theorem) and spectral 

synthesis are of a rather trivial nature because of the scarcity 

of closed convex ideals in L~ (G), vVe also offer a quite ele­

mentary approach to Theorem 1 in case of a rather wide class of 

groups which does not seem to be defined in the literature and 



which may prove to be of independent interest. Ih conclusion we 

g~ve some remarks which seem· to indicate that there are no easy 

counterparts to the theorems 1 and 2 in case of MR(G). 

2. Convex maximal ideals in 1~(G). We shall first give the 

relevant definitions. As remarked ih the introduction 1 1 is R 
the orde!ed group algebra of El.ll real-valued integrable functions 
on G under the ordering f.~ g whenever f(x) ~ g(x) a. e. on G. 

16 shall denote the usual gtoup algebra ~f all cbmpiex-valued 

integrable functions on G. We recall that an ideal or.., in a 

commutative ring R is called regular whenever R/c;:t has an 

identity. The ideal Ot ~- 1~ is said to be convex if f, g 1F. (Y{_ 

and f ~h.:;. g implies h ;:~ en: When dealing with maximal ideals 

one should carefully distinguish between the following two state­

ments 

A. OL is a maximal ideal having the :property P 

B. :JL is maximal among the ideals having the property P. 

It is clear that A:.::>B. By means of Zorn's lemma it is trivial 

that A{:.::;B in case P stand for "regular". It will be e_n 

immediate consequence of our main theorem (Theorem 2) that this 

equivalence also holds for the property "closed and convexn. 

The solution to the problem of finding all regular and convex 

maximal ideals is given by the following 

Theorem 1. The only regular and convex maximal ideal in 1~ is 
the maximal ideal consisting of all. func.tions in-~1ri with zero 

inte_gral. Otherwise ex:presse_q._~ If /·"..- is an order-preseJ;':ving, 

homomorphism of 1~ onto an ordered field F then F is iso­

morphic to the field of real numbers and <.L is the Haar measure 
_.l 

of G. 

The proof is accomplished by using standard techniques from 

Fourier analysis. For details the reader is referred to [3]. 

See also the :proof of Theorem 2. 

3. Convex closed ideals in .1~(G), 
stronger result than Theorem 1. 

We shall now prove a condirerably 

The essential step in the proof 

is the following lemma which may also have some independent 

interest. 



Lemma ALe t f ;£ L~ 

g L~ such that 
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&1h J f(x)dx =f-= 0. 

f*g > o. 

Then there exists a 

Proof~ Since \ f(x)dx =!== 0 we have f( ¢!_) =I= 0 for all c,E,_ in 
f . 

'"'.:;, 
a certain compact neighbourhood K of the identity in G. Let 

p be a non-zero positive definite function on G with support 

contained in K. The function 

p(x) = 
r A 

J(x, d.. )p( d. )de( 
" 
G 

will by Bochner's theorem be a non-zero positive function in 

By a well-known theorem of Wiener (see Godement [~] Theoreme 

we can further determine a function 1 
F? L ,_ c such that 

( 1 ) 
A 

F(cZ) = 1 
A 

f( d. ) 

for all ~. E K. We now put F * p = g + ih and get 

( 2) 

.---·'---... 
~ ------
. f * ( g + ih) = f F.p 

Inserting (1) in (2) we obtain f F p = p on K and since 
A 

p(cx.) = o for K this shows that f F p = p holds for all 
A 

<:{ Ec G. By inversion we thus have 

f * (g + ih) = f * g + i1 * hf= p 

Since f, g, h and p all belong to L~ this gives the desired 

result 

f*g=p 70 

We are now ready to prove 



Theorem 2. Any proper closed convex ideal in is contained 

in the kernel of the Haar measure. 

Proof: The proof is a repetition of the last part of the proof 

of Theorem 1 in LJ: Assume that (f'c, is a proper closed convex 

ideal which is not contained in the kernel of the Haar measure. 
(' 

Tpe ideal Gt must then contain a function f such that \f(x)dx~e. 
'4 c., 

By the above lemma u~ must therefore also contain a non-zero 

positive function p. Being translation invariant 0! will further 

contain a positive function h which is :::, ::_ > 0 on a neighbour-

hood of the identity element e € G, Now nh also belongs to C~ 

for any positive integer n and we can choose for any sufficiently 
' .1 

small neighbourhood I .l of e 

O< h < nh u 

a function h 

on U 

•I .._, 
such that 

for a suitable n and such that the hU 's constitute an approxi­

mate identity for L~ , i.e. 

lim ( h 1~ f ) = for any f E LR1 
u l) 

Since C~ is supposed to be convex we have 

(Y[ is closed we get 

h E: 0"7_ and since 
u 

f = lim (h 1 * f) u u 

contradicting that 0L is proper. 

1 
E CJL for all f E; LR 
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±~ Groups with flat integrable functions. The crucial step in 

the proof of Theorem 2 was Lemma A. The proof of this lemma was 

accomplished by using a couple of classical but rather deep results 

from harmonic analysis. The usual proof of Bochner's theorem 

relies among several other things on the uniqueness of the Haar 

measure and the Riesz representation theorem. It is therefore of 

some interest to remark that one can give an entirely elementary 

proof of a weaker fo~m of Lemma A which nevertheless is sufficient 

to prove for instance Theorem 1 on the real line. 

·we shall say that G is a group with flat integrable functions 

if it has the following property; Given E / 0 and a compact 

neighbourhood K of the origin in G we can find a function 

f -~ 1 1 (G) such that f(x) > 0 for all x~ G and R 

f(x ) 
1 c·· .-· 1 ·' 1 + .r· :-;_.. ·,, f(x2 ) 

,, ( 

for all pairs x 1 9 x 2 c G such that x 1 - x 2 E K. We call such an 

f a flat integrable function of type ( E 9 K). The real line is 

for instance a group with faat integrable functions. If K is 
x= 

contained in the interval {:-a, +a} the function 

will be a flat integrable function of type (E ,K). 

- 2~1x1 
e 

We shall now give an elementary proof of the following weakened 

version of Lemma A. 

Lemma B. If f is a function in L~(G) with compact supportt 

and non-vanishing integral on a group G with flat integrable 
1 functions then there exists a gE .. LR(G) such that f * g/0. 

Proof~ Let K be the support of f. We c~n suppose without loss 

of generality that 

lf(x)dx 
!" 
' f(x)dx 1 = i = 

,.I ~J 

(' 

and .) jf(x) \ dx = M 

G K K 
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Let g b' a flat integrable function of type (E. ,K). Then 

"' 
f * g(x) = sg(x-y)f(y)dy 

K 

= g(x)- \(g(x)- g(x-y))f(y)dy 
J 
K 

which gives 

( 
f * g ( x) ~ g ( x) ... j{g ( x) - g ( x-y) J ! f ( y) I dy 

K 

or 
;'") 

f * g(x) ~· g(x) - ' g(x) 
I. 

.J 

f1 - g~(~)")) I f(y) I dy ~ g(x) - g(x) E .M 
t<; 

By choosing g of type ( [ 'K) wj_th :- < 1. 
s iVf we therefore get 

the desired inequality f * g;>O. 

Remarking that any maximal ideal in L~(G) contains a function 

with non-vanishing integral and compact support we obtain a new 

proof of Theorem 1 in case of groups with flat integrable functions. 

On the basis of Lemma B we can proceed in the same way as in the 

proof of Theorem 2 . 

.2.· Convex ideals in I'.1R (G). It is well kno111m that the id_eal theory 

of rv.r0 (G) is quite a bit of a mystery. Even the maximal ideals 

of M0 (G) have not been described in a satisfactory way. It seems 

that one has a similar increasing complexity when passing from 

L~(G) to MR(G). What corresponds to the kernel of the Haar 

measure in case of lVIR (G) is the convex ideal m0 consisting;; 

of all measures j-0 with t.otal mass equal to zero~ 
/ 

"' 
/;._(G) = j ~~ = 0 
, G 

But m0 is not the only convex maximal ideal in MR(G). In fact 

using the Lebesgue decomposition 

when fAa is discrete, 

conyinuous the set 

is singular and /)ka is absolutely 
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will form a convex maximal ideal in MR(G) which is in general 

different froo m0 • We therefore have no immediate counterpart 

to Theorem 1 in the case of MR(G). It is also easy on the basis of 

the Lebesgue decomposition to exhibit several closed non-maximal 

convex ideals of MR(G). 
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