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More than 20 years have passed since H. Cartan gave hid constructive
proof ((5)) avoiding the axiom of choicé and proving existence and unique-
ness simultaneously. In spite of this, his proof has not been generally ad-
opted in subsequent preéentations of the subject. It is considered to be
more complicated and less intuitive than the traditional proofs going bacg
to A. Haar ((6)) and A. Weil ((20)) . (Cf. e.go ((13, p. 113)) ). The
aim of this lecture is to sketch a version of the constructive proof which
is as simple and intuitive as the traditional non-constructive proofs, if
not equally short.

The papers ((1)) ((2)) appeared after the presentation of this lecture
at the Seminar, but before the preparation of the notes. Some slight modific-

ations have been made in the original manuscript in this connection.

In the sequel, G 1is an arbitrary locally compact group, L is the
class of continuous real valued function with compact support on G and for
every member V of the neighbourhood filter 2}/ of the identity e ,; LV
is the class of all f & L wvanishing off V . For every f € L the
conjugate function f- is defined by (%) = f(x71) . For every
fEL and s€G ,the left and right translat els
£ and £° are defined by f_(x) = £(s"'x) and £°(x) = f(xs) . (These

s
are the conventions of ((17)) ). For f,ﬁp-éf 1t and 39 #£0 , we define:

' n n \
("”N’ <
(1 F:o) = inf4 /2 L 04 |15/ C%igpg x}
i=1 i=1 i
m m
. _ oo S 2 A
(2) (L__,CQ,) = sup S—‘/JJ lé‘*‘ /jJ\iQo.gf



-2 =

By the local compactness, these expressions are well defined (and finite).
If £#0, then (f :99)>-o for all 50 , and (£ :<2) >0 for all P
in some L; s, V& ?}1 o
It is an elementary fact that for a fixed U, the mapping f —% (f :cio)
; ,

is isotone , sub-linear , sub-transitive

(i.e. (f:gﬂé(f:t;r)(y;:go) ), and left-invariant

(i.e. (fs 2 ) =(f : @) ). It is"nearly additive™ when @ is "con-
/ /

centrated around e ". Specifically, if f., .., £ €L and A=>1,

1’
then there exists a V& ¢/ , such that
- n
- . < A .Q - +
(3) = (£ 7@) = A, 5 :F) , forall PE Iy

For proof cf. e.g. ((13, p. 114)) »

It is easy to prove ((1)) that if f?,CE L, ?y —> f uniformly,

:c;_v))/(f Q) —> 1

and spt(f) < K where K is compact, then (fy

) +
uniformly in ?9 o By the Dini Lemma, this entails that if :5/6514,

14

Rl

£, 2t L, then (% :('D)/(f :cto)'r 1 wnifornly in @ . (In the
theory of integration in completely regular spaces such properties are re-
ferred to as "uniform tightness® and "uniform ¢~ -continuity®, respective-
ly.)

It should also be noticed that from the property (3) one can easily
deduce that (_:r-_:_{cp_)&ﬁ@ for all @, f€L1°, w0 () .

The existence and uniqueness of left Haar measure will follow from the
existence and uniqueness, up to a positive factor, of a non-trivial, left-
invariant, positive linear functional on L . In this connection we observe
that such a functional I is determined up to a positive factor by its

associated pre-ordering:
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(L) f Tg(modI) = 1(£) € I(g)

In fact one has the following, somewhat stronger statement:

Proposition 1. Iwo non-trivial left-invariant, positive

linear functionals on L with comparable (finer—coarser) pre-orderings

differ only by some positive factor.

The pr oo f is a simple calculation based on homogeneity and
strict positivity (i.e. f£>0 == I(f) >0 ) which follows from non-

triviality by a compactness argument ((1)) .

Propositior 1 is also easily obtained from the fact that the kernels of
positive linear functionals on L are the maximal order i1 deals.
Following Bonsall ((3)) one may apply Zorn's Lemma to yield a maximal or-
der ideal containing all differences f-f_ , fEL, sgC. (The
elementery properties of the mapping f —> (§—??¥;) are then used to
prove that there e x i st s any proper order ideal containing these
differences.) It is also possible to proceed along these lines obtainigg a
simultaneous proof of the existence and uniqueness without the axiom of
choice. In fact, one may prove that the strong closure J
of the order ideal J spanned by the differences f - fs , 1s maximal. (The
strong topology on L is the inductive limit of the uniform norm topologies
on LK , for K compact.) Now the existence is immediate, and the unique-
ress follows by the strong continuity of Radon measures. However, the proof
that J is a proper maximal ideal, depends on the Cartan Lemma or the close-
ly related separation axiom (S) of this lecture; and so the suggested pro-
cedure will hardly be any simpler than ours. On the other hand it is worth
mentioning that the above setting admits an interesting improvement of fhe

uniqueness theorem. K.E. Aubert has proved by the methods of abstract har-

monic analysis ((4)) that the kernel of Haar measure is not only the
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unique maximal order ideal in L containing all differences fs - T, but
it is in fact the only maximal, regular, convex ideal occurring in L1(G) o
It would be of some interest to know if this result could be obtained direct-

ly from the separation property (S) of the present lecture.

Proposition 1 shows the importance of the pre—érderings associated
with non-trivial, left-invariant, positive linear functionals and proves it
sufficient to find one such relation compar able with any other.
(It is not difficult to characterize such pre-orderings axiomatically, the
crucial wxiom being that of a 1 inear pre-ordering. However, since
our construction yields the numerical value of the functional together with
the pre-ordering, there will be no need for such a characterization.)

There is a natural definition of "relative size™ on L’ (which is easily

extended to L ):

(5) £ E g <> (:) = (% :‘c,[)) for all C,DGL+,ClD;éO

This type of definition is of course not new. In principle it is iden~
tical with Eudoxos? definition of relative size for incommensurable propor-
tions. (Properly speaking, the latter relates to the negation of f = g ,
which may be pronounced % g is of strictly smaller size than f %, and
defined by ® (E_?TFT) < (£ :@ ) for some SD‘?.)

The definition (5) is equ;_valent to G..Bredon's definition of £ <g
in ((2)) , and his exposition is closely related to our presentation in
((1)) - Similar notions of ¥relative size™ for functions have been studied
in an extremely abstract setting by H. Hadwiger, A. Kirsch and W. Nef ((7))
((8)) ((12)) ((16)) -

In the present context, the definition (5) gains importance by virtue

of the following

Proposition 2. The relation (5) is coarser than the pre-
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ordering associated with dny non-trivial, left-invariant, positive linear

functional on L

The proof is not difficult and is given in ((1)) -

e e e ot

Now it is sufficient to prove that the relation (5) is itself a pre-

ordering associated with some non-trivial, left-invariant, positive linear

functiondal. To this end we claim that for all non-zero f,g Lt

(6)  ang EiP) limtp(g: Vg 29D
P ) (£:0) TP

where the indices QDE535+ R Sp # 0 are ordered by inclusion of the sets
{-x fgﬂ(x) # Oi} . By the eleméntary properties of the mapping g-ﬁ;(gj?gﬁ .
the limit at the right hand side of (6) would define a functional with the
desired properties, and by the alternative expression at the left hand éide
of (6) , its associated pre~-ordering would be exactly the one defined hy

(5) . Hence it suffices to prove the claim (6) .

Proposition 3. Theclaim (6) follows from the following

separation property

(s) f,e & i , f(x) < glx) for x € spt(f)

= EVEU',VL;OEL; s J sy eees 5, €C,

X n
3069 eoo,Mn>O:f§Zi:1 Ocl%lég o

The proof is given in ((1)) .
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An immediate consequence of (S) is that if f,g EL+ , f(x) < glx)

for x & spt(f) , then for every C’C' £ 0 in some L; :
(7) (f: )< (g:P)

(One may state this as follows: If f,g@& Lt , f(x) < g(x) for xespt(fj s
then f is of "strictly smaller size" than g .)

Our motivation for introducing the lower estimates (_f_‘___C‘ﬁ ) and not
confine our attention to (-f—_(?—) , is the possibility to define the rela-

tion (5) and state the crucial claim (6) .

We are now approaching the hard part of the proof, the verification of
(S) + The latter is easily transformed to a uniform approxima -

,_‘—\n
tion of some h between f and g by functions Z_J i—'lOdiCPS' This
a i

in turn could be obtained by means of the Haar 1in-

tegral. The existence of (right) approximate identities in the con-
volution algebra would yield an approximation of h & LY vy I(Cl.f))—1h xC'D s
where 90 is "sufficiently concentrated around e . In the next step one

n
—
should write h 22—«i=1 hi where each hi is sufficiently concentrated

around some point s, (decomposition of unity). Now the existence of (left)
approximate identities yields an approximation of I(C’D)—1h xCP by

n
Zi=1 I(hi)/I(\p) Clei , and we are through.

The obvious defect of this procedure is its dependence on the Haar in-
tegral. This defect, however, is not so severe as it may appear at first
sight. What is required, is an approximation theorem, and so it is natural
to expect that an approximative Haar integral would suffice in the proof.
This in fact, is the underlying idea in either of the two known proofs.

One of these two (historically the first one valid in the completely

general case) is the proof of H. Cartan, who sketched it in a brief note in
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1938 ((5)) » It is written out in greater detail in ((17)) (as far as we
can see, this presentation i1s somewhat obscure at one point), and there is‘
a complete presentation in ((115) . The viewpoints #tated above, are ex—‘,'
pressed very explicitly in our recent note ((1)) . The “appr'o:dl_mate integ-
ral® in question is simply f —> (?—(7—0") for some (‘70 Wsufficiently cén—
centrated around e ®*. The convolution relatively

t o CP is defined on L' by

@ [ fxe] ) = () (s7'x) = P(o))

It is easily verified that the functions [f * g]r are continuous
G 3
(when multiplied by a suitable "normalization factor®, they become equi-
continuous in the parameter CP ((1)) ). The relative convolution is

approximatively additive in the sense that if f’l’ osos fn = L+ s
. hn
f = Z—‘i:‘] . gE—'L+ and &> 0, then there exists a V& rD’ such

that for all ¥ € L"} :
!

n

(9) [fxgjm'g};_;[-fixg]soé[‘fxg]w+ (fC’D)é
] i

Now the remaining proof proceeds in a few steps. (For detailed proofs

and also for the proof of (9) one may consult ((1)) . )

Proposition 4 . (Existence of approximate identities.)

Let g & L' and £> 0 be arbitrary. Then there exists a U eD‘

such that
(10) [0 ng - (i D)e, “ = @rD)E
; o0

whenever tEG,hE—L+ , S04 0O,
— v tU +
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An analogous expression is obtained for the reversed convolution product

[g *® h]c{? when hEL e 1t involves the r i gh t translate gt s

il
and the con jugate function hx appears at the right hand side.
The result (10) is used in the proof of Proposition 5, and the correspond-

ing reversed formula (specialized to t =-e ) is used in conjunction with

Proposition 5 to prove Proposition 6.

Proposition 5. (Approximation of ['f *® g] by left trans-
e2]

1
lates of g .) Let f,g &L and &E£>>0 ., Then there exists a VE U

coo, tnE spt(f) ,

such thau for every L & L\'; , L £ 0 and suitable by
= i

and ., ..., OC >0 :
1 n

[fxg] T—rw gt

(11)

‘ g(f:CP)E
lpas]

Proposition 6 . (Cartan.) For every fEL and £3>0

there is a V &€ LY such that for every g © L; , there exist group elements

t’l’ coosy tnE spt(f)  and positive numbers 061, 0oa, D(;n such that:

¥ n
(12) !ff-,g,cxgt % < &,
i i=

Corollary. The separation property (S) is valid in any

locally compact group.

In virtue of the previous results, the above Corollary completes the

proof of the existence and uniqueness of Haar measure.

The other existing proof goes back to J. von Neumann, who used it to

prove the existence and uniqueness of Haar measure in compac t
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groups and applied the same methods to prove the existence and uniqueness

of the mean value for almost periodic functions on a group ((18)) ((19)) .
As far as we know, G. Bredon was the first who succeeded in épplying this
technidue to arbitrary locally compact groups ((2)) .
Wnile the Cartan proof makes use of an approximate integral which is invari-
ant, but only approximately additive, the other proof makes use of an in-

tegral which is additive, but only approximately invariant. It is merely a

n ;
finite sum of function values ZE:i_1 f(xi) , where the approximate invari-

ance is obtained by choosing the points Kis woes X (left) %equally ;
spaced”. This expression is rendered precise by the notion of a "minimal
covering®. A covering {-Uij}1§i§n of a compact set K by open setg Ui
which are small of some order V& 2% with respect to the left unifor@
structure on G , is said tobe minimal (wer.to V) if thefe
exists no other covering of the same kind with a smaller number of con-
stituents. In the compact case the "equally spaced points® Xys vees Xy
areto forma set of representatives  (i.es

x, ZU; ,i=1, «eoy n ) for a minimal covering {Ui} 1=, ©°f G ’by
open sets which are small of some order V . The crucial property of

minimal coverings of compact groups, on which the approximative invariance

is founded, is the fact that any two minimal open coverings of the same or-

der admit a common set of representatives. This result follows from a com-

binatorial lemma of P. Hall and W. Maak ((9)) ((14)) . A very short proof
was given by P. Halmos and H. Vaﬁgham, who introduced the term "marriagé
lemma® ((10)) (cf. also ((15)) ). In this context we prefer to stat; the
lemma in the relevant mathematical form, and we leave it to the reader to
find out whet it has to do with marriages.

Let 2 and dB be two finite collections of subsets of a set S

and suppose that for any subcollection {A1, o.n,jﬁli’ofﬁgﬂ the number of

sets B €& 03 meeting A’I U .00 L) Ak is greater than or equal to k .
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then it is possible to establish a one-one correspondance between <%t and

-

2 i
a_subcollection ﬁéJo of dfg such that any pair of corresponding sets

will meet.,

G. Bredon has adopted the "marriage lemma®™ to minimal coverings of com-
pact subsets of a locally compact group (Lemma 3 of ((2)) ).
By means of this, he has established the following "almost invariance proper-

ty™s

Proposition 7. Let K be a compact subset of G , let

E=>0 mdbtgéf,g%O,TMnmweamtmmw y,“”%ﬁg

such that:

] n

n n
(13) % 2,? g (x;) - Z; glx) | < & Z{g(xi)
i= i= i=

for all x& K . Moreover, the points Xi can be chosen so that the above

inequality is simultaneously true for any finite number of given functions

E =

Now the proof of the Cartan Lemma (our Proposition 6) is comparatively
easy, since the "relative convolutions® in question are simply finite sums.
(Cf. proof of Corollary 2 to Lemma 5 of ((2)) . Here the theorem is stated
for right translates instead of left translates, and the proof is a simple

application of Proposition 7, stated above.)

Finally we wish to mention a problem which turns out to be surprisingly
difficult, namely to give a constructive proof based on Haar's original
approximations (C : K) for compact sets C,K (K° # @) , rather than the
similar approximations (Er?jiy) for functions. The difficulty comeg from
the fact that the content function ;L , obtained as

limit of a subnet of {j(C : K)/(CO : K)}K (e.g. by using the axiom of
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choice in the form of the Tykhonov Theorem), is not outer regular. Thus the

associated measure FL is not necessarily an extention of ;k . Hence the

uniqueness of /L does not entail the uniqueness of ;L , and the original

net need not be convergent. Thus the passage to a subnet seems to be necess-

ary to get convergence in this case, and it would be of some interest to know

if such a subnet can be described without the axiom of choice.
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