
Matematisk Seminar 
Universitetet i Oslo 

Nr. 7 
April 1963 

ON REPRESENTATION OF BANACH-SPACES 

By 

Johan Aarnes 



- 1 -

1. BOOLEAN ALGEBRAS OF PROJECTIONS 

I 

The purpbs~ 6f the p~esent paper is to sketch the structural influence 

which the existence of a spectral-operator has on the underlying Banach-

space. We are going to represent the Banach-space as a function space, 

closed under complex conjugation, and with limitations on its topology. 

Under more restricted conditions we also obtain a representation as an Lp-

space, where the measure is finite. 

We give first a couple of definitions: 

D e f i n i t i o n 1 0 A Boolean algebra (B.A.) of projections 

J) in a Banach-space X is said to be (a--) complete if 

( 1) '"":< ) Dis (a-- complete as an abstract lattice, 

(2) for every family (sequence) 

,?( E I ( = some index set) we have: 

== (\iP)(X) rr><' (X)\ 
.... \ ....... ~· 

i.e. the least closed manifold containing all Po((X) is equal to the range 

of the supremum of all the P Ys • For all alternate definition, see ((1~). 

The characterisation above is given in ((6)) • For general information 

about spectral-measures and spectral-operators we refer to Dunford ((2)) 

and ( (3)) • Very little of it will be needed here. We point out that ii'. 

]j is the range of a spectral-measure P j which is the resolution of the 

identity of some spectral-operator, then ~t::: . 
J..J 1.s CT -complete. It is, 

however, always possible to consider a CJ -'complete B.A. of projections 

as the range of a countably additive spectral-measure P , defined on the 

field of Baire-sets in the Stone-representation of 13. 

D e f i n i t i o n 2 • A B.A. of projections J3 is of 
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c y c 1 i c t y p e if there is an element x e X , such that the linear 
0 

manifold spanned by all 

x0 is a c y c 1 i c 

theorem of Bade ((1)) : 

Theorem 1. 

Px ; P E J3 , is dense ih X • We say then that 
0 

element of X • Our basic tool is the following 

If .J3 is a (]'-complete B.A. of projections 

in a Banach-space X , ahd x EX is an arbitrary element, then there ex
o 

ists a linear functional x x Ex* so that 
0 

(i) (Px x )' ., 0 
o'xo '/ 

(ii) = 0 

p E :J3 

Px 
0 

= 0 

We outline the argument of a new and sirnplified proof of this theorem, 

taking time to develop the terminology and concepts needed in the sequel. 

(For details, see ((6)) • ) We do this through two lemmas. However, first 

we note that we may assume, without loss of generality, that J3 is of 

cyclic type. This is a relatively simple consequence of the Hartn-Banach

theorem. Furthermore, we lmow that we are allowed to consider ,]3 as the 

range of a countably additive spectral-measure P , defined on some Boolean 

v algebra of sets, ,L.., Hence, every element xx EXx determines a scalqr 

measure j\..L, 
) X 

on defined by: 

; o(EL: 

D e f i n i t i o n 3 • A linear functional xxE XX is r e a 1 

if the corresponding measure is real. It is p o s i t i v e if the meas

ure is positive, and then vve write xx ~ 0 • 

Let t JA- I 
/ 

~ , and denote the total variation of a measure _ ... ..~. on 
·' 

let /"· >> v indicate that Y is absolutely continuous with respect to 
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Every xxE x* has a decomposition 

. 
' 

x Xx x. E 
l 

where each x 
x. ?- 0 ~ 

l i = 1, ···~ 4 and li x. x II ~ K·Uxx !I for a positive 
l 

4 
constant K , independent of x 

X o If 
,__, x L x 
X = x. we have 

i=1 
l 

and }1 ""x(.:X.) ~ I r X I c~J 
1 X . X 

. 
' 

For a proof of this, and other unproved statements in the text, we refer to 

((6)) • It should be noted that we always can multiply xx with a scalar 

w~thout destroying its dominating properties. We will therefore assume that 
,.._, x 
x has norm equal to one. The above result now enables us to prove the 

key lemma needed to obtain BadeVs theorem: 

Lemma 2. For every E. / 0 there is a finite set 

QOO' 
x" X L c K 

n j -
( = the unit sphere in XX ) and a -S>o 

such that 

. , j 

x _.. K 
X= 

(The idea of the proof is essentially the same as in ((4)) , ch. IV. 9.2). 

The proof runs as follows: We assume the statement to be wrong, obtaining 

thereby the following sequences: 
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. , 

so that 

( 1a) <p-x "" x) i 
X xi < -;n . i = 1, 2, n 

o' ' 0 0 • ' 

.. ·n ,<_, 

( 1b) I (Px: xo, 
x '\ :> ~ 

xn+1 (I t. 
n 

K is compact in the weak X-topology. Thus we can pick out a weakly con-

vergent subsequence, which also is denoted by < x x 7 The limit <P1 X ,x x)· 
l n r .,,.,.,__ 0 n 
. n~,:;e 
.:;X::J 

will then exist for all :>( E L . If x 9 .1_ ,._. x th X c K y = / '•'1 x , en y c • 
~'1 !?~ 

Furthermore, n=1, 2, ••• , will determine measures ~
/ 

and /.lh respectively, and /"b << r for all n according to the 

definition of yx • Applying the Vitali-Hahn-Saks theorem, we obtain that 

r~- ;:.-.~:: --> ).-L (X-) ·-'> 0 u n i f 0 r m l y in n = 1' 2, • 0. 
, n 

Final)_~ (· ._ 
.:.~~·ove by means of ( 1a) that m ->- . .;>C: > )A (:.:vm) --;.'2-. 0 

·'' 
, 

which thereby contradicts (1b) , and hence the lemma is trueo 

The rest is now simple. In fact, suppose ~ ~ 0 is given, and let 

be as stated in Lemma 2. We then put 

n >-, "-X 
t.~--..1 xk 

xx(t ) k=1 
K ~-

n 

I{ L: "-'X 'I 
xk \1 

I k=1 fl 

The functional x0~ defined by: 
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will then fulfil the properties (i) & (ii) in Theorem 1~ 

2. REPRESENTATION OF BANACH-SPACES 

We now ~ssume that J) is the range of a countably additive spectral-

P can, for instru1ce, be the resolution of the identity 

of a spectral-operator A in X • We also assume that J3 is of cyclic 

type, so that the operator A will have simple spectrum. This also impli~s 

( ) < :t '\ that the scalar measure ).A. :,;, = P?(. x0 , x0 ) 
. , 

the operator-valued measure P , and hence every measure 

will domina:te 

,Lt defined by 
/ X 

/-x(i..'~:,) = (Po( x, x0* > ; :;<.. E. L , x EX • This, together with the fq.ct 

that every x € X has a continuous decomposition like the functionals, 

(Lemma 1), makes it possible to prove the following: 

Lemma 3. There is a one to one linear and continuous map of X 

onto a dense subspace of Ly.(S) • 
d ).>. 

'/ ~ 

The map is given explicitly by x_:,,.... ~ 
I ··. 

It is not difficult to see that this lemma also holds true for the dual 

d,....:t 
space x* when the map is given by x*-?- ...:.lL 

d 

hand we now can prove: 

With these results at 

T h e o r e m 2 • 
A 1 

If y ~ L~(S) is the element corresponding to 

y e. r then for every x E X : 

:t 
(x,y > = 

(' A A 

j x(s)y(s)d?-

S 

"" 1 (xE L~(S) is the element corresponding to xE X.) We indicate the 
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From the last theorem we then get: 

<x,y*) = 
. I 

Hence we have: 

? I' A I/ 
K d X ~ 1 L. II X II 

" : f 

~ K • ii X II '*'1 k,k > 0 

#\ ~¥-) 

for x E L ,:_(s) • This implies that the topology of X also has an upper 
' 

bound. The X-topology and the 
<>0 

L -topology can, however, not coalesce, 

because the spectral-measure P then will stop being countably additive. 

We conclude this paper by mentioning a couple of results in the direction 
0-'? 

of the Kakutani-representation ofvabstract L-space. Doing this, we restrict 

ourselves to r e a l Banach-spaces, and note that it is then an easy 

consequence of Lemma 3 that X becomes a vector-lattice with the order in-

herited from its real representation space. We now ask when the map 

X -> L ~ (S) is a map not only into, but onto L 1/-A (S) • The following 

conditiond turn out to be sufficient: 

(A ) llx 
+ II II X II + - e:X +x = where X = X -x 

0 0 

+ -and X ,x ~ 0 

(L ) x,y ~0 > II X + y li = j[ X II + II y II x,y 6 X0 0 

Here X is the class of step-elements in X • The same conditions with 
0 

X replaced with X are denoted by (A) and (L) , respectively. 
0 

T h e o r e m 3 • If X is a real Banach-space where (A ) 
0 

and 

(L ) hold, then there is a measure !-'-· on 
I 

so that X is isometric-
0 



- 8-

ally isomorphic to the real space L1 tA (S) 
I -

X is therefore a vector-

lattice where (A) and (L) hold~ and the congruence X -->- L 1 (S) is 

also a lattice-isomorphism. 

This representation of X is the same as obtained by Kakutani ((5)) • 

Compared to his proof ours is rather simple. This isj of course~ due to the 

fact that we a s s u m e the existence of a B.A. of projections in X , 

while the essential content of KakutaniYs proof is the construction of a 

suitable Boolean algebra. We finally study the consequences of a modified 

axiom (L P) : 
0 

1 .c.:_ p < 90 

The corresponding condition with X replaced with X is denoted (LP) • 
0 

T h e o r e m 4 . 

t l1 ~-J ·-,~--::·.2 ~'t '-_' ·i. 'J a measure 

wic,h "- - c 
.1 space Lp A..\ L-.· ..• - -~.L 

I 

and (LP) holds in X • 

If X is a real Banach-space where (L P) holds, 
0 

.0 ... on 
/ 

~ so that X is isometrically isomorphic 

(s) The congruence is also a lattice-isomorphism 
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