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1. BOOLEAN AIGEBRAS OF PROJECTIONS

The purposé of the present paper is %o sketch the structural influence
which the existence of a spectral-operator has on the underlying Banach-
space. We are going to represent the Banach-space as a function space,
closed under complex conjugation, and with limitations on its topology.
Under more restricted conditions we also obtain a representation as an 1P~
space, where the measure is finite.

We give first a couple of definitions:

Definition 1. A Boolean algebra (B.A.) of projections

-

L) in a Banach-space X is said tobe (G~) complete if

(1) fj is (g -) complete as an abstract lattice,

(2) for every family (sequence)

{P% }' < Jj 3 K &I ( = some index set) we have:

EE = (V)X

i.e. the least closed manifold containing all PD(.(_X) is equal to the range
of the supremum of all the P %s . For all alternate definition, see ((‘I?).
The characterisation above is given in ((6)) . For general information -
about spectral-measures and spectral-operators we refer to Dunford ((2))

and ((3)) . Very little of it will be needed here. We point out that if,

N

;’:“, is the range of a spectral-measure P , which is the resolution of the
identity of some spectral-operator, then JE is G -complete. It is,
however, always possible to comsider a < ~complete B.A. of projections

as the range of a countably additive spectral-measure P , defined on the

field of Baire-sets in the Stone-representation of ﬁ.

Definition 2. A B.A. of projections -B is of
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cyclic type if there is an element x € X , such that the linear

manifold spanned by all Pxo ;s P = B , 1s dense in X ¢ We say then that

x, isa cyclic element of X . Our basic tool is the following

theorem of Bade ((1))

Theorem 1. Ir .75 is a g -complete B.A. of projections
in & Banach-space X , ahd x, & X is an arbitrary element ,' then there ex-

ists a linear functional xox =X* so that

(1) (P ,x*> 30 Pe B

(11) (Px,x *

il

O :..'> PXO = 0

We outline the argument of a new and simplified proof of this theorem,
taking time to develop the terminology and concepts needed in the sequel.
(For details, see ((6)) . ) We do this through two lemmas. However, first
we note that we may assume, without loss of generality, that ﬁ is of |
cyclic type. This is a relatively simple consequence of the Hahn-Banach-
theorem., Furthermore, we know that we are allowed to consider B as the
range of a countably additive spectral-measure P , defined on some Boolea@
algebra of sets, Z » Hence, every element xx & XX determines a scala:.r

57 .
measure /,u_},{ on £, defined by:

JhaE) = (Po(\xo,xx> 3 X e > .

Definition 3. A linear functional xxeXX is real

if the corresponding measure is real. It is po s it i v e if the meas-

ure is positive, and then we write xx 2 0,

Let {’}A. I denote the total variation of a measure .« on 2. , and

let /,\ S>> ) dindicate that 1’ 1is absolutely continuous with respect to

AA o
/s
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Lemma 1. Every xxe. X‘X has a decomposition

x _ _x . * . x x
X o= x -x2+1x3—1xh ; xieX
where each xix 2 0, i=1, soe, 4 and | xix Il € K»Hxl‘L H for a positive
L
~ ST
constant K , independent of xx o 1If x X Z xix we have
i=1

~,

~X , ) < . .
x 2 0, //USEX >> )/"{xxl and /L{ix(u() S I/uxx,’ (5‘) s X & Z. e

/

For a proof of this, and other unproved statements in the text, we refer to
((6)) . Tt should be noted that we always can multiply X © with a scalar
without destroying its dominating properties. We will therefore assume that
X x has norm equal to one. The above result now enables us to prove the |

key lemma needed to obtain Bade?s theorem:

Lemma 2. For every ¢ >0 there is a finite set

? [a} (
fxx ...,xxj—_@K ( = the unit sphere in Xx) anda = >0

) ~x : ,

\Px,xo’ X; > 3 1=1,2, eeay n < & 2.
, X x

= (P ¥ D < E ek

(The idea of the proof is essentially the same as in ((4)) , ch. IV. 9.2).
The proof runs as follows: We assume the statement to be wrong, obtaining

thereby the following sequences:



[ X . s L~
Y j SR 1 'xnj = 2.4
so that
~ 1
(1a) (B, % xi’“>< 5 i=1,2 e
Al :
X iy
(1b) l<P-><n Xor Fpr1)| 2 ©

K is compact in the weak X-topology. Thus we can pick out a weakly con-

vergent subsequence, which also is denoted by SY xnx% o The limit <]Z<,X6’an>
L n->\30 ' .
& A
' \ - ~
will then exist for all X & Z . If yx =/, 5‘ % * s then yx €K .
n=1 <
Furthermore, yx and xnx s n=1, 2, cooy will determine measures A

and un , respectively, and /l-&n << /(A. for all n according to the
r.*.efinitionv of yx . Applying the Vitali-Hahn-Saks theorem, we obtain that
/(,L;'_r-’:l- e = l,bLn(sé) —» 0 uniformly in n=1, 2, cco
Finall; +=: ove by means of (1a) that m — o = /,JA (t’vm) —» 0 ,.
which thereby contradicts (1b) , and hence the lemma is true. Q.e.d.
The rest is now simple. In fact, suppose <z > O is given, and let

{X,IX, oooy xnx 2}, be as stated in Lemma 2. We then put

=

ﬁ‘}‘\/l
__A"‘ -

AE) = ek

ME
l
"

0
y

The functional xoiﬁ defined by:




will then fulfil the properties (i) & (ii) in Theorem 1.

2. REPRESENTATION OF BANACH-SPACES

We now ~ssume that :5 is the range of a countably additive spectral-
measure P in X . P can, for instance, be the resolution of the identity
of a spectral-operator A in X . We also assume that b is of cyclic
type, so that the operator A will have simple spectrum. This also impliegs
that the scalar measure /,L(':x,) = P x,x x> ; A& Z s, will dominate

A O o :
the operator-valued measure P , and hence every measure /LLX defined by

4 x . N ) . .

/Rx(cu) = <Po( X, X, > ; X &), , xeX. This, together with the fact

that every x& X has a continuous decomposition like the functionals,

(Lemma 1), makes it poésible to prove the following:

Lemma 3. There is a one to one linear and continuous map of X

1 o . 475
onto a dense subspace of L },\(S) « The map is given explicitly by x-» il
v

It is not difficult to see that this lemma also holds true for the duai

* % At
space X~ when the map is given by x —> e With these results at

hand we now can prove:

Theorem 2. If y& L‘I/*(S) is the element corresponding to

y e Xx then for every x< X :

Gty = | ey

S

(xe 1] (8) is the element corresponding to x& X . ) We indicate the

/A.
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From the last theorem we then get:

<mf> = kgm%ﬁgﬂ&nw'K
S

Hence we have:

EHEH, < Uxl e Ko nd il kK >o
for ;<E ﬁtf(S) » This implies that the topology of X also has an upper
bound . Thé X~topology and the LQCD-topology can, however, not coalesce,
because the spectral-measure P then will stop being countably additive.

We conclude this paper by mentioning a éouple of results in the direction
of the Kakutani-representation O;t;Lstract I-space. Doing this, we restrict
ourselves to r e a 1 Banach-spaces, and note that it is then an easy
consequence of Lemma 3 that X becomes a vector-lattice with the order inf
herited from its real representation space. We now ask when the map
X = L%(s) is a map not only into, but onto L A(8) . The following

conditions turn out to be sufficient:

(Ao) fxm +x I = JIx |l where x = x -x e X,
and x,x >0
T)xy 20 => llx+y{ = ixi+ Iyl xyeX

Here Xo is the class of step-elements in X . The same conditions with

X, replaced with X are denoted by (A) and (L) , respectively.

Theorem 3. If X is a real Banach-space where (AO) and

—

(L) hold, then there is a measure (. on . so that X is isometric-
o —~
/
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ally isomorphic to the real space L1#((S) ° X is therefore a vector-

T (s) is

lattice where (A) and (L) hold, and the congruence X —> L
also a lattice-isomorphism.

This representation of X is the same as obtained by Kakutani ((5)) »
Compared to his proof ours is rather simple. This is, of course, due to the
fact that we a s s ume the existence of a B.A. of projections in X ,
while the essential content of Kakutani?s proof is the construction of a

suitable Boolean algebra. We finally study the consequences of a modified

axion (Lop) :

CP) xay = 0 = |[x+y§® = 4=+ vl =x7eX,

The corresponding condition with X = replaced with X is denoted (P) .

Theorem 4L . If X is a real Banach-space where (Lop) holds,

Tth=n wher= i3 a measure At on so that X is isometrically isomorphic

s
witlh tr. ::2l space kaA(S) . The congruence is also a lattice-isomorphism
/

and (IY) holds in X .
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