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This paper contains some rather easy observations on the Bohr compactific-
ation of a topological group and might be considered as a supplement to the
work ((1)) . Its excuse is that several of the resﬁits, while trivial to
prove in the preseﬁt context, have earlier been labourously verified by meth—
ods of functional analysis or by deep-lying structure theorems, sometimes un-
der much too strong conditions. In this connection we strongly want to point
out the importance of treating the Bohr compactification as the solution of a
particular "universal problem’, even if other modes of definition are pos?ible
(cfe theorem 2).

The paper is divided in two sections. In 1. we establish a connection
between the Bohr compactification of an arbitrary topological group and ﬁhe
dual of its discrete character group together with some consequences of this.
We also observe that the operation of forming Bohr compactifications commutes
with that of forming quotients and products but not in general with that‘of
taking subgroups, hence neither with the forming of projective limits. In
2. we extend the notion of Bohr compactification to arbitrary topological-
algebraical systems and consider in particular the Bohr compactifications of

topological rings.

1. By the Bohr compactification of a topological group G is meant an
A A )
ordered pair (@ ,G) consisting of a compact group G and a continuous

representation ) of G onto a dense subgroup of G ; such that:

Given a continuous representation E, of G onto a dense subgroup of

some compact group H there exists a (necessarily uniquely determined

z

~ N
. . >
continuous representation & of G onto H such that S =

~
2
S-Opo

The definition is conveniently memorized by the following commutative

diagram



G
¢ AN
\, h\‘:‘;

Usually we drop designations of arrows if no confusion arise. Also, by abuse
of language, we speak of G rather than ( g,é) as the Bohr compactifica-
tion of G . Ordered pairs (§,H) defined as above are briefly termed com-
pact representations of G .

It is obvious that the Bohr compactification of a topological group G
is determined up to a canonical isomorphism (algebraic and topologic), leav—
ing the images of G invariant, by the preceeding definition. Clearly
( ?,8) can be realized as the (separated) completion of G with respect teo

the finest uniform structure Qﬁ such that

a) U 4is precompact.
b) ‘lﬁ is compatible with the group structure, i.e. the mappings
X e x| and (x,y) ———> xy are uniformly continuous.
c) 'LQ defines a topology coarser than the initial topology on G .
This uniform structure and its associated topology are called the Bohr struc-

o

N g N
ture and the Bohr topology of G , written L(B and ‘JB , respectively, .

Note that the one determines the other ((1, p. 128, prop. 1)) . In ((1)}-

~—

an explicit construction of S in terms of the initial group topology

B
were given. (To prove the existence of a , however, no construction is

required once realized that G is determined by a structure ng as aboves
Indeed, the family of uniform structures on G satisfying a), b), c) is
non-empty since it contains the coarsest uniform structure on G . Hence
its supremum is well defined and easily seen to satisfy a), b),c) . This

structure must then be QJCB o)

The Bohr compactification of an abelian group is clearly an abelian
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group. By means of the commutator subgroup of a group the category of
topological groups is retracted onto the category of abelian topological
groupss Moreover, this transmission commutes with the operation of taking
Bohr coémpactifications. Indeed, if [G:E denotes the commutator of the
topological group G then the guotient group G/ LG] together with the
canonical surjection G — = G/ EGi is characterized up to canonical

isomorphism by the universal factorization property

G —L o a
! i
\5/ / . ‘-P -(

A being any abelian topological group and %9 any continuous representa-
tion of G into A . Using this definition and the definition of é , an
ordinary diagram chasing shows that 75;{§?h and 6/{&3 are identical (cf.
theorem 7). In particular {&1 is closed hence compact, since ’67{5}' is

Hausdorff. Hence we have as an amusing application of the definition of

Bohr compactifications:
Theorem 1. The commutator of a compact group is compact.

Consider the commutative diagram

O] Ao f o a0 e
A A A
| 5| i
(1 7 |
0 ....-._-A..>{G}' -.._.,,_:.L. D G e =G / 11 G} 0

Clearly 2( [G} ) = iGE , since  #(G) dense in G implies ¢(i(1G]}))
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» A

dense in  [G] and since i([G]) = ?5?;??5?33 . This shows that the
diagram (1) is exact in the horisontal lines. Here and in the
following we use the term exact in the topologic as well as in
the algebraic sense. The kernel of one map is equal to the image of the

preceeding, and all maps are s tr i ct morphisms in the sense of

((3)) .

N A
It is natural to conjecture that the map 2G3 ~---> G is one-to-one,
/"“§ A -
i.e. that [Gj = LGJ . However, it is not obvious that this should be

Py

true. In fact [Gl is equal to {é'} if and only if the Bohr topology
on IG} considered as a topological group coalesce with the topology in-
duced from the Bohr topology on G . It is true that the former is always
finer than the latter (since f&i~-~~e> G is continuous), so it is enough
to establish the converse. In any case we have not been able to prove the
result.

Anzai and Kakutani has shown, using structure theory and functional
analysis techniques, that if G is a locally compact abelian group, then
G coalesces with the dual of its discrete dual ((2)) .

In his book ((7)) Rudin takes this theorem as a definition of the Bohr
compactification of a locally compact abelian group. As we shall see, how-
ever, the characterigation is in fact valid for a 11 abelian groups.
This has also been observed by E. Alfsen. The key point in his proof is thgt
on a compact group the characters separate points. The following proof, ho?L
ever, is by far the shortest one:

Let G be any abelian topological group and ch G its character group
(i.e. the group of continuous representations of G into the circle group

T ), always equipped with the compact-open topology if nothing is said to be

contrary. Direct use of the definition gives the following diagram

AN

N,

™,

A\

G~ T

>
/

(2)
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showing that the character groups of G and G are algebraically isomor-
phic¢ = or equivalently -~ diBomorphic as discr et e topological
gfdﬁp (in particular every character on G is almost periodic since it can

be lifted to G ). But from

cth = ch.G
we get

ch cth = G

by the duality theorem for discrete/compact abelian groups. Hence the re~

sult.

If G is not abelian we may of course factorize the characters via

G/{G] , exchanging (2) with

PR
G/G)
AN
SN
? N
(2) G/iG} \
A SR
! R
G e T
and getting
" \\

ch chyG = G/[G]

We note this as

Theorem 2. If G is a topological group, then

G/[GJ = G/!_G:' = c¢h Cth °

Corollary 1. G/[G} b
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From theorem 2 we get immediately the following result due to Hewitt

and Zuckerman ((6)) . The proof is modelled after ((7)) .

Corollary 2. Let G be a topological group. For any

Qﬂs ((32, coey \’)ﬁh ech G, for any & > 0 and for any representation
¢ ¢chG —>T
there exists an element x of G such that

1x(f) - Slp)f< € { = 1,2 e n

~

where x ¢ ch G ———» T is defined by x(zf’)) = CF(X) .

. T
Proof . Clearly q, & ch ch G = G/[G] . Since the set of all
maps ﬁ%- in ch cth for which l’\l) (<Fi) - ¢ (chiH Z z is open,

it must contain an element x from the (dense) image of G by the map

A

G > G/IG] —> (ﬁ ﬁ}j . Obviously the elements x thus obtained
operates on ch G as defined.
Since the maps 12 is really characters on ch G , we may also formulate
corollary 2 by saying that any representation of c¢ch G into T is the 1)
Recall that a subset A of agroup G is 1l e ft relative.ﬁ_{.y‘

dense if G is covered by a finite number of left translates A g ;

A is invariant if xAx—1=A for every x in G .

Theorem 3. Every group G admits a finest precompact uniform

structure 'UPM compatible with the group operations. If J M denotes

7
the associated topology, then L/M is the common left and right structure
—
of J M The system of neighbourhoods of the neutral element for the
latter consists of the sets V which admit a sequence of subsets (Vn)

such that:

1) pointwise limit of characters on ch G, 1i.e. of continuous

2w 2L LA 1 — A FAmn Avrorv v in (.
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2
1 1

ii) Each Vn is a symmetric invariant and left relatively dense subset

i) V C:V a-nd V ZC;V for n=1, 25 0o a o
n+ n

containing the neutral element.

e

G &dmits a meximally almost periodic group topology if and only if f M

is Hausdorff.

Proof . Let GpC denote the group G equipped with some pfeco@r
pact uniform structure (compatible with the group operations) and Gd £h§
group G with the discrete structure. Since every compact representatiqn
of G can be factorized via its (separated) completion (ipc, Epc) 5 we
must have (ipc’.E;c) equal to ( §%o’ épc) . This means that the given
precompact structure on G ( = the inverse image by ipc of the structure
on E;C ) is its own Bohr structure ( = the inverse image by 'YEC of the
structure on épc ). Now, since the identity mapping Gy ——> Gpc is
uniformly continuous, it is also uniformly continuous with respect to the
Bohr structures on Gd and Gpc . By the first part of the proof this
means that the precompact structure ?ﬁf on G deduced from the discrete
one is finer than the initial precompact structure given G . The fact that
{&éﬂ is the common left and right uniformity of its associated topology
follows from ((1, prop. 1)) . Finally the characterization of ‘E:Q fol-
lows from ((1, theorem 1)) . This proves the first part of the theorem,

Suppose J n is Hausdorff. Then ,?d H Gd —_— Gd is injective, being

the completion imbedding of G with respect to the Hausdorff structure 1%% o
It follows that the 1yM -uniformly continuous functions ( = the almost
o

periodic functions) on the topological group (G, M)

—
JM is maximally almost periodic. Conversely, suppose that G admits a

separate points. Hence

maximally almost periodic group topology, converting G into a topological

-~

o . D : - « .o . s -
group Gmap Since Ymap Ghmq;~———:> Gmap is injective, the Bohr struc
ture on G induced from G by is Hausdorff. But then the finer

map {” map

2

structure ‘LPM , hence also 5~M must be Hausdorff.



the Maak structure and the Maak topology

hp i
We shall term '¥ and | M

M

of G . The reason for this is the following

Theorem 4 . A complex valued function f on G 1is uniformly
continuous with respect to ILFM if and only if it is almost periodic in
the sense of Maak, i.e. if and only if each & > O admits a finite cover-
ing (Ai) of G such that |f(xay) - f(xavy)ﬂ < F for all x,y when-

9
ever a,a belong to a common Ai o

In fact the result follows from ((1, theorem 1 and theorem 2)). An-

other corollary is the following (cf. ((1, theorem 3)) ) :

Theorem 5. A family of complex valued functions on G 1is
uniformly equicontinuous with respect to !LPM if and only if it is uniform-

ly almost periodic in the sense of Maak.

Clearly Maak's theory of almost periodic functions on groups is included
in the theory of almost periodic functions on topological groups. However,
theorem 3 tells us that the converse statement is also true, i.e. that the .
%topologic" theory can always be deduced from the "abstract®™ one. To make
the statement precise we introduce the notion of B-equivalence, saying that
two group topologies on a group are B-equivalent whenever the Bohr topology
defined by the one coalesce with the Bohr topology defined by the other. Thé
notion of B-equivalence on a group G is obviously an equivalence relationi
in the set of group topologies on G . Each equivalence class contains ex-
actly one precompact topology (i.e. one topology derived from a (uniquely
determined) precompact uniform structure on G compatible with the group
operations) which is the common Bohr topology of all members of thé class,
The collection of equivalence classes thus obtained is organized to a com~-
plete lattice QSB(G) if it is equipped with an ordering < such that

:fﬂi ’j”/ wheneverl iré < :Té? o In fact the collection of precompact

group topologies on G form a complete lattice with respect to inclusion.
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(It is closed under ordinary supremums of arbitrary families (i?%(i)) and
the infimum of such a family is simply the supremum of the family of pre-
compact group topologies coarser than all C?JB(i) ). According to theorem
3, however, this lattice coalesce with the laftice :E!M(G) of subtopolo-
gies of i?M(G) compatible with the group structure. Each such topology
determines has a common left and right uniform structure and hence an alge-
bra of complex valued uniformly continuous functions. In particular ir&:
determines the algebra AM(G) of Maak almost periodic functions on G
(theorem 4), and every other algebra constructed in this way is a uni formly
closed subalgebra of AM(G) . Conversely, every such is the algebra of ex-
actly one precompact group uniformity, namely the "structure initiale®™ it
defines. In fact any precompact uniform structure is uniquely determined
by its algebra of complex valued uniformly continuous functions, and the
fact that this particular one is compatible with the group‘operations is a
trivial consequence of the Maak almost periodicity. Finally we note that
the collection of uniformly closed subalgebras of AM(G) form a complete
lattice (jZM(G) with respect to inclusion. |

L

—_1 - , . _
Let J ,A and J  Dbe arbitrary members of BM(G), OZ.M(G) and

-

A ~ . .
‘i}B(G) , respectively, and write (jiA and 5\5 for the inverse image

topology defined by A and the unique Bohr topology of J . With these

notations our considerations can be expressed in the following form

Theorem 6 . There exists a canonical lattice isomorphism be-

£

- - - v o~
tween HE}M(G), C;ZM(G) and JSB(G) such that if 7 ,A and are
—~1 . —— ‘
corresponding members, then = :7; = J_ and A is the algebra of

complex valued functions on G wniformly continuous with respect to

Wy (= U, =14,

%
A continuous representation Qs G —~——=> G of one topological

group into another can always be lifted to a continuous representation

A~ ~ -~ ?\

q): G —=G giving the commutative diagram
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~
PN
~ 2 [
¢ Lo
A _;I\
© ] i':>/
7 i \
[dn) t
G ———> G
Obviously the correspondence G ——= G, - -———> (ﬁ defines a covari-
1

ant functor retracting the category of topological groups (and continuous

representations) onto the full subcategory of compact groups.

Theorem 7 . The functor ,\ 1is right exact and commutes with

the operation of forming products.

Proof: Consider an exact sequence of topological groups

My i1
l
/‘T a ;/\
Gy L £ Gy
i ;’{\ ,‘i\
F-:T ? B,
S 5] 2
| . : !
ﬁ(z 5

(Since Imcp, = Ker ¢p, is an invariant subgroup of G, Imég’\

2 is by a
continuity argument invariant in G , hence G/Im :i:‘l is well defined.)

Clearly (:FZ is surjective and both /\0\1 and (?32 are strict morphisms
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being continuous representations between compact groups. By commutativity

N\ A i ) \ ; .
D ) = 0 c) = (0 . -
¢, is constant on O (Ker Vs > (Im ch) ¢, (Im (31 ) , and by contin

P

. . . -/—:\:\_—__‘_u_.. - o\; —— _ ~~ f‘;
uity it is then constant on tﬁ(lm ‘\D‘l) ) C“(Im (7J1) = ImC[/1 . Hence <,

give rise to a representation G/Im Ef\‘l —= G, such that
G/In
N
i N
! P \'\\
L ING

commutes. On the other hand the composite vertical map of (5) is constant

. . . e = A~ .
on ImCP,] = Ker L{;z hence defines a representation G'2 G/Im Yy s @1ch
EAN A P :
can be lifted to give a representation G, —->> G/Im {F‘I making
G,/Im {;}1
RN
i AN
AN
P2 N
G - T G2

commutative. Clearly the two representations being surjective are inverse
to each other, proving the first part of theorem 7.
Let (Gi)i - 1 be a family of topological groups, E: G, its direct
. bl
in Z‘\ Gi . Sup-

Gi s We get com~

sum and G, ———% >~ Gi the canonical imbedding of

.

P-—

M

J
pose Zi Gi ——-=. H 1s a compact representation of

mutative diagrams
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?

%
."1\ \\'\\
| o~
! L -.'-\.\.
i S
i
GJ e G:L ——— H
1 Pomm .
hence a compact representation Z T H . However, ./Z,, Gi is
——— T AN
dense in the direct product _H é\l o Consequently Z/__ Gi ~—--> H defines
a compact representation _N Gi ———>> H giving the commutative diagram
N ~ ——~
6, —— 28 —T8,
A ‘{\ i
| | |
| o v
Gj —— ->,ZJG1_,_-..._>7 H

M ). £ 7 G, int
oreover, the canonical representation (3 (e 31 ie1 o i into
—— AN

> G, clearly respects the maps of (6) , hence completes (6) to

N == N TN

Gj > 2, G >| G

$ | |

| | |

| | v

GJ ———— ZG:L e H

= <' 2 77 o .

Since 2., Gi —_— Gi e S l G. is a compact representation of

Z‘ G; and since by (7) every compact representation of Z’ G, lifts

to W/G\l s Z G, ———> t j/C:l must be the :Lmbeddlng of 7 G,

its Bohr compactification. In particular ZG ‘”‘

into

o The second

part of theorem 7 now follows from the fact that Z Gi is dense in “ Gi 5

and therefore have the same Bohr compactification as TGi o
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2. Let @ be a category with finite products and € = a full sub-
category of { , also with finite products. By definition we have: Any
object of { o is &n object of 4. . Any object of {  isomorphic to
an object of :ifo is gn objest of {:o . If AO,BO are two objects of

C

o 9 Hom.d;(Ab;Bo) is equdl to Hom{i(Ao’Bo) o The composition law of
- . .

morphisms in G:g is induced from that in ( .
Let A and Lo’ Mbﬁ ceoy Qo be objects of  and ié , respective-

ly. We suppose that to A there is associated a finite sequence of natural
a.
. : i
numbers a, = 15 85 eess B and to each a, a morphism o(i T A —-~«ﬁ.§ .

It is convenient to suppose that <£., is the identity morphism 1A t A—>A

1

In the same way LO is supposed to be endowed with a structure given by a

- : .1 J Lo, =
sequence l1 =1, 12, aooy ls and morphisms 'Xj : Ib ~»«me>-LO, Aﬂ = 1LO 0
Finally we are given a finite sequence of pairs of natural numbers

»

? ? ? ? T ? ¥ ?
), (12,a2), coay (1t’at) , and to each (lj’aj) a morphism -Aj :

122
t ?

(1

. a,
LOJ xAYJ —.~ 4. Similar requirements are attached to Mb, No’ cooy Qo °

1
The sets A, L, «.., Q and the morphisms ol,, oo, A1, oo X1 oo

together with a set of | axioms (to be defined below) constitutes an
example of a ((:,dfo) -algebra. A isthe carrier and

Lo’ Mo’ coay Qo the operator domains for the particular
algebra considered. The sequence (no, 85 eeey Lyy eoe, (l;,a;), coo )
where ng is the number of operator domains, is called its similarity d@ta.
By abuse of language we speak of A rather than (A’Lo’ ceey By, eoo) és
the ({f,ﬁio) -algebra. The morphisms o, 5&2, soey A, and

8 ? ; .
: are called the internal and external operations

Aqs }\2, coos /u:,
on A , respectively. Any meaningfui composition of these gives an a d -
missible function. Clearly, if A and B are two (O, Eé) -
algebras with the same similarity data then there exists a bijective cor-
respondence between the admissible functions of A and those of B . In

fact, the collection of all such algebras form the equivalent of a similari-
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ty class or a homology class in the sense of ({(5}) . A set of axioms

for an algebra A is an ordered set of identities

w, = ’l?i i=1,2, ces, 1
where U«'Di, ’Ii are admissible functions for A . From now on we restrict
our attention to a fixed but arbitrary class of algebras whose members are
subject to the conditions that they belong to one fixed similarity class
and share a common set of operator domains and a common set of axioms. In
the sequel we reserve the expression ({, (LO) -algebra (or just algebra)
exclusively for the members of this class, which we write /A (C, 0:0) o

Within /A (G:"‘A‘:o) the notion of a (C ,G;O) ~-representa-
tion )3' ¢ A ——>B is well defined. It is a morphism respecting
the structure of A and B in the obvious sense. With the representation;
as morphisms our class of algebras is transformed into a category also writ-
ten A (C, CO) . In the same way the subcollection of ., —algebras
(i.e. with Q:O -carriers) and representations form a category A ((fo) 5

which is clearly a full subcategory of /A ((C, G:o) .

Definition. Let (K and jK_ bea category and a full
subcategory and let K be an object of ‘l/ « By the solution foi' K of
the universal problem posed by ({l{,IK o) is meant an ordered pair (§,K)

consisting of a iKO -object K and a morphism ? ¢t K ——= K such that

U.1s For any object KO of IK o and any morphism ’§ + K —— Ko
there exists a morphism § ¢ K Ko uniquely defined by the

AN
equation g = g’ o L.
rd
The requirements in the definition may briefly be refrased by saying that
@ is a uniquely factorizing morphism for X . Clearly (= (and K ) is
determined up to functorial isomorphism by U.1 .

We now return to the categories /A (C, dfﬁo) and /A (0:0) o
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Theorem 8. If (_ is the category of topological spaces and
C o the subcategory of compact spaces, then the universal pfoblem}posed

by (A (‘I:,lfo), A ( G:O)) admits a solution for any ({, Q:o) -algebra A .
In fact if A is any such algebra then the solution can be realized as the

separated completion of A with respect to the finest uniform structure

14 such that

a) @J' is precompact,
b) ‘¢ is compatible with the algebra operations on 4 ,

c) 7ffdefines a topology coarser than the initial topology on A . .

Proof . The verification runs along the same lines as in the case

of topological groups. The structure Z£‘ considered in the theorem is

/X

constructed as the supremum 2{ of structures on A satisfying a), b),

B
c). The proof that @{g really satisfies a), b), c) itself is straight-
forward, and we omit it. Let ( ©,A) denote the separated completion of
/7
P a.
A with respect to L(B and consider any two operations c&i s A l~~e> A
7 3
‘ q . a,
and Aj : LoJ xAJd A, According to what has been said these

two operations are uniformly continuous with respect to the relevant pro-
duct structures on their domains of definitions. Consequently they may be

extended to the associated completed spaces, i.e. we get operations

AN Aa A
;{i s AT oA 5
and
? t
A 1. .a,
;\j-LJxAJ ........ > A

({3 ))
(since L, 1is compact, hence complete, cf.ch. II, § 3, prop. 15 and prop.
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18, cor. 2). In the same way the other operations are extended. Obviously

A\
—~ n T

(K,LO, coey Qs 0(ys ooey ;\1, ..,.,,11, eos ) has the similarity data of the
members of /A (E;,Q:O) , and its admissible functions are extentions of
admissible functions for A . Moreover, if (u = 1L 1is any axiom of A
then by the principle of extension of identities (¢f. ((3, ch. I, p. 87)) )
Cs = 1ﬁi o« It follows that K is an AA\(G:O) -algebra. Finally, suppose
E ¢t A ——==B is a continuous representation (i.e. a (Q:,G:O) ~-represent-
ation) of A into a compact algebra B . Then the inverse image of the
uniform structure on B is a uniform structure on A which is obviously
precompact and defines a topology on A coarser than the given one. More-
over, direct verification shows that the algebra operations on A are uni-
formly continuous with respect to the new structure. Hence the inverse

image of the uniform structure on B satisfies all three requirements a),

b), c¢). Consequently it is coarser than Qj o It follows that E is

B
{LFB -uniformly continuous, and since B is complete g may be extended
to 9 s A ——~ B such that & = % . Clearly, (¢ K) is
‘g : % 3 © /@ . LY s )):

the solution for A of the universal problem poséd‘by' (ﬁ\((:,d:o),4K (G:O?)g
In the rest of this paper we write A for ﬁﬁ\((:,djo) -and TT; /A

for fqt({:o) when {: -and Q:o is the category of topological spaces

and of compact spaces, respectively. The objects of ,nfiav and TR:%A

are termed topological algebras and compact algebras. Besides we shall fol%

low previous practice and speak about compact (but not necessarily dense)

‘representations and Bohr compactifications.

Theorem 9. Suppose that A and ﬂc /A both admit in-
finite direct products and ‘Trﬂ§~ infinite direct sums (in the categorial
sense), and that every compact representétion of a sum can be lifted to a
uniquely determined compact representation of the corresponding product.
Then the functor A A——>- A retracting |{ /A onto Trc /A commute with

the operation of forming productse.

In fact, with the conditions imposed on }lé& and TR:J\ the second
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part of the proof of theorem 7 with nominal changes works also in the general
case. In particuiar theorem 9 applies tb topological rings and topological
semigroups. Under proper restrictions on TT#\ and }I; M\ one should
also be able to generalize the first part of thecrém 7 We do not attémbt
to carry out this.

Before we leave the general aspects of theory, we return for a moment
to our categories W and (F(O o Consider the functor Ko A =52 Hom(K,Kb)
of ﬁ<b into £ MM %, the category of sets and maps, for a given ob-
ject K of [ . This functor is representable in the sense of Groten-
dieck ((5, p. 8)) if it is isomorphic to any functor K_ Af~>Hom(K;,Ko) ,
where K; is an object of Ehfo o The representative K; is then dete;—
mined up to a unique isomorphism. It follows that if (j?,ﬁ) is a solution
for K of the universal problem posed by (ﬂ{;}K%) , then Kon«4>-Hom(K,Ko)
is in fact representable with R as representative. The concept of repre-
sentable functor, however, does not seem comprehensive enough to express the
morphism © ¢ K ——— K , the part of the solution which is of prime in-

>

terest, nor to express the functor N\ .
Let R Dbe any topological ring and ) the topology of R . Accorg-
ing to theorem 9 R admits a Bohr compactification @ : R-—>R . We

—

¢ T
want to express the Bohr topology . B in terms of J .

—_—
Theorem 10 . Let R be any topological ring and <4 the
topology of R . The system of neighbourhoods of O for the Bohr topology

of R consists of those subsets Vo of R which admit a sequence

(Vn)n=1’2,°°° of sets such that

d) 2V

n+1 RC_Vn fOI‘ n=1, 2, coo

1

<V, RV <V and VU,

e) Each V,n=1,2 eco, is a symetric relatively dense

neighbourhood of O .

Proof. We first show that the collection Z/' of subsets VO

satiéfying d) and e) is a filter. It is enough to show that U7 is
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closed with respect to finite intersections. Let UO,VO be members of Z/P
with corresponding sequences (U ) and (V) . Then

nn=1 2,aoo nn=1,2,oon

8} Vn is relatively dense (with respect to the additive struc-

ture of R , of course), cf. 1, prop. 1 and proof of theorem 1. Moreover,

2(U, NV )20 N2V cUnV , R(U_,.AV )IRU ARV CU NV
and (U a1 D) n+1) S U RNV R U NV Hence the sequence
(U Nnv.) have the required properties d), e) relatively to

n'n=1,2;000
UNV, ie. UAV e L7,

To see that (/” defines a ring topology whose associated uniform
structure is compatible with the ring operations we notice that for given

v, e 7% there exists, according to d), e) , v, e 0/~ such that

Consequently )«/ ; is compatible with the underlying additive group structure
of R . In a commutative topological group, however, the group operations y
are in fact uniformly continuous with respect to the associated uniform
structure. Hence it remains to prove that multiplication is a uniformly

continuous operation in R . Let VO be an arbitrary member of Z/b . Then

?

there exists a V1 = Z/P such that V1R C.Vo and RV1 CVO o Suppose X,X

? 7 9
and y,y are elements of R such that x € x + V1 s,y &yt V1 o Then
?

9

= + i
Xy & Xy JcV1 + V1y + V1V1cxy + RV1 + V1R + V1V1 Xy + BVO s which
shows that multiplication is uniformly continuous.

We next observe that since the members of "Z/L’ are relatively dense,
the uniform structure L[ defined by L is precompact. It follows that
this structure satisfies the requirements a), b), c¢c) of theorem 8.

/
Finally, let ?// be some uniform structure defined on R satisfying
A e
the requirements a), b), ¢) and let (. be the corresponding filter of
b

?
neighbourhoods of O . Then for any Vo & L/ there exists a sequence

o/
(V >n-1 5 of members of {/ such that

,000
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? ? ?

d) 2Vn+1c:,Vn n=0, 1, X
7 v ‘

e ) Each V , n= 1,3, «.., is & symmetric relatively dense

neighbourhood of O .

/ ' . o : ! '
Moreover, since U is supposed to defihe a rirl topology we can find
2

oL Wl . G'“ / ) .
c:v; . The collection é» of LV -members

)2 ] / ] .
contained in U forms a base for (.~ . By the continuity of the multi-

, \,.A/ 7
U e 77" such that U

xS
plication in R with respect to the topology of ‘Z/P we can find to each

?
1 1

continuity at O of the functions y - xy and y-—> yx for given x?').

? \ ?
xeR a U e Y5 such that XUV, and UxcC7V, (thisis just the

? / .
Because U as a member of L/ is relatively dense in R there exists

n ?
a finite number of elements Q15 8Byy ecey B such that R = |} (ai + U ) o
i=1 ’
n n

? SR | ? ¢ ? . i v 9 7)_.‘ ? f
We form U ={ \U, . Then U g {7, hence URC .Uani U UCA,CY
i=1 1 i=1
% 9
Similarly RUCC V0 « It follows that R is bounded and hence that the

sequence (V;l) could have been chosen so as to satisfy the re-

n=1 ’2, 000
? 9 ] 3 5=f_ 6.
- ¢ -
maining property RV? qCV, and V. +1R €V, . But then we have (< U
and therefore (4 ‘c . Consequently ?,Z is the Bohr structure of R .
This completes the proof of theorem 10.
We shall say that a topological ring with identity contains arbitrarily

-inq :
small regular elements if each neighbourhood of O differ' &om 0 con-

tains an element which has a (multiplicative) inverse. Trivial examples are
provided by function rings containing the constant . As an application of
theorem 10 we give the following result: g
Theorem 11 . Let R be a topological ring with identity con-
taining arbitrarily small regular elements. Then the Bohr topology of R

is trivial (i.e. equal to the coarsest or the finest topology on R .

We shall say that R is minimally almost periodic if the Bohr topology

of R 1is the coarsest possible topology on R . This is clearly equivalent
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to saying that the ZéyB -uniformly continuous functions on R reduce to

the constants only, or to saying that R reduce to one point. Then we have

Corollary 1. Let R be a topological ring with identity
containing arbitrarily small regular elements. Then R is either a finite

field with discrete topology or minimally almost periodice.

In particular any topological ring with identity having arbitrarily small
regular elements has a finite Bohr compactification.

Since a compact ring is its own Bohr compactification, we also get

Corollary 2. Any compact ring with identity containing ar-

bitrarily small regular elements is a finite field.

In particular any compact ring with identity which algebraically is a
division ring, is finite. This is a well known result due to Kaplansky.
The proof of theorem 11 with corollaries runs as follows: If the Bohr

topology of R does not separate the identity 1 from O , i.e. if every

A

J B -neighbourhood of O contains the identity 1 , then 1 1is mapped

onto O by §>: R ——=> R, hence Im¢> reduces to the O element of
-y } r—\d

} . Since J B is the inverse image by 53

must be the coarsest topology on R , i.e.

R « It follows that R = {O
of the topology on R , (Tg

R is minimally almost periodic.

(S

On the other hand, suppose that there exists a J B -neighbourhood VO

of O in R such that 1#& VO o According to theorem 11 we can find a

o

~neighbourhoo such tha - Suppose o en
J g ~neighbourhood V, h that RV, <V . S V£ O Th

there would exist regular elements x in V1 , which would imply 1 =

x x &RV (ZTVO - The contradiction shows that V., = .{O‘Z , hence that
- J

1 17
:Ejé is discrete. But then ifg = |/  (the original topology on R ).

a0
Moreover LfB is discrete, hence complete. But a complete precompact

—

Hausdorff structure is certainly compact, i.e. defines a compact topology.
= arad
Hence = jB is compact and discrete. But then R must be finite.
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Moreover, sihce any discrete ring containing arbitrarily small regular el-
ements is a division ring and since it is known that finite division rings
are fields R must be a finite field. This completes the pfoof.

Finally we remark that for theorem 11 with corollaries to hold it is
really enough for the ring R to contain regular elements which are ar-

bitrarily small with respect to the Bohr topology of R .
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