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This paper contains some rather easy observatiohS Oh the Bohr compactific-

ation of a topological group and might be considered as a supplement to the 

work ((1)) • Its excuse is that several of the results, while trivial to 

prove in the present context, have earlier been labourously verified by metp-

ods of functional analysis or by deep-lying structure theorems, sometimes lfl-
, 

der much too strong conditions. In thi~ connection we strongly want to point 

out the importance of treating the Bohr campactification as the solution of a 

particular "~"~universal problemw'l, even if other modes of definition are pos~ible 

( cf. theorem 2). 

The paper is divided in two sections. In 1. we establish a connection 

between the Bohr compactification of an arbitrary topological group and ~he 

dual of its discrete character group together with some consequences of ~his. 

We also observe that the operation of forming Bohr compactifications commutes 

with that of forming quotients and products but not in general with that of 

taking subgroups, hence neither with the forming of projective limits. In 

2. we extend the notion of Bohr compactification to arbitrary topological-

algebraical systems and consider in particular the Bohr compactifications of 

topological rings. 

1. By the Bohr compactification of a topological group G is meant an 
,. .... 

ordered pair ( p ,G) consisting of a compact group G and a continuous · 
' 

"' representation ') of G onto a dense subgroup of G 
~ such that: 

\ 

Given a continuous representation of G onto a dense subgroup of 

some compact group H , there exists a (necessarily uniquely determined) 
.... 

continuous representation of G onto H such that 0 

The definition is conveniently memorized by the following commutative 

diagram 
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G 

'I (;'I 
I 

Usually we drop designations of arrows if no confusion arise. Also, by abuse 
~ A 

of language, we speak of G rather than ( ?,G) as the Bohr compactifica-
' 

tion of G • Ordered pairs (~,H) defined as above are briefly termed .£2!!!.~ 

~ct representations of G • 

It is obvious that the Bohr compactification of a topological group G 

is determined up to a canonical isomorphism (algebraic and topologic), leav¥ 

ing the images of G invariant, by the preceeding definition. Clearly 

"' ( ))~G) can be realized as the (separated) completion of G with respect to 
! 

the finest uniform structure such that 

a) t( is precompact. 

) (L o b ~ is compatible with the group structure, i.e. the mappings 

-1 x ~-·--> x and (x,y) ··-·--~-·;;;- xy are uniformly continuous. 

c) 'Lt defines a topology coarser than the initial topology on G • 

This uniform structure and its associated topology are called the Bohr str~c~ 

ture and the Bohr topology of G , written 1~} B and <""J ~ , respectively~.;· 

Note that the one determines the other ((1, p. 128, prop. 1)) • In ((1)~ 

an explicit construction of '( 
~ B in terms of the initial group topology 

,.. 
were given. (To prove the existence of G , however, no construction is 

required once realized that G is determined by a structure 
·) ,1 
L-t. as above;. 

Indeed~ the family of uniform structures on G satisfying a), b), c) is 

non-empty since it contains the coarsest uniform structure on G • Hence 

its supremum is well defined and easily seen to satisfy a), bJ,c) • This 

structure must then be 'L£B • ) 

The Bohr compactification of an abelian group is clearly an abelian 
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group. By means of the commutator subgroup of a group the category of 

topological groups is retracted 6nto the category of abelian topological 

group's" Moreover, this transmission cornlnutes with the operation of taking 

Bohr cOihJ>abtificatibns. Indeed, if [ G '] denotes the commutator of the 

topological group G then the quotient group G/ [GJ together with th~ 

canonical surjection G ·-·-·-> G/ j" G \ 
,_ ,.J 

is charaoteri~ed up to canonica;t 

isomorphism by the universal factorization property 

G -~£-:>-A 
l 
I 

A being any abelian topological group and ~ any continuous representa-

tion of G into A • Using this definition and the definition of G , an 
. ...-· .. _ ;.. ,., 

ordinary diagram chasing shows that G/CGl and G/[Gj are identical (cf o 

theorem 7). In particular [G] is closed hence compact, since ·-Gj}Gj is 

Hausdorff. Hence we have as an amusing application of the definition of 

Bohr compactifications: 

T h e o r e m 1 • The commutator of a compact group is compact. 

Consider the commutative diagram 

( 1) 

/"''.;'" '-........ ..... 
-"G/1 Gl -······'> 0 ,. L .J. • 

t 
l 
! 

~ - i 
0 ···----> Gj ---··-- ·- ·:.> G -- ····~ G/ f G .. i -·-···--- 0 / !. J ~ 

Clearly 1 ( fGj ) = [ G 1 , since 
.... 

. :?'(G) dense in G implies <?(i(lG))) 
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A _.... ..... , 

dense in and since i( [GJ) = ? (i(fGj)) • This shows that the 

diagram ( 1) is e x a c t in the horisontal lines. Here and in the 

following we use the term exact in the t o p o 1 o g i c as well as in 

the algebraic sense. The kernel of one map is equal to the image of the 

preceeding, and all maps are s t r i c t morphisms in the sense of 

((3)) • 
..-'",.,..............._ A 

It is natural to conjecture that the map i:GJ ---·-'> G is one-to-one, 
____ ... , 

i.e. that [Gj = l_(} J However, it is not obvious that this should be 

true. In fact is equal to r " l 
G] if and only if the Bohr topology 

on YG) ,_ considered as a topological group coalesce with the topology in-

duced from the Bohr topology on G • It is true that the former is always 
_.................. ,.. 

finer than the latter (since [G 1--------::>- G is continuous), so it is enougll 

to establish the converse. In any case we have not been able to prove the 

result. 

Anzai and Kakutani has shown, using structure theory and functional 

analysis techniques, that if G is a locally compact abelian group, then 

G coalesces with the dual of its discrete dual ((2)) • 

In his book ((7)) Rudin takes this theorem as a definition of the Boqr 

compactification of a locally compact abelian group. As we shall see, ho~ 

ever, the characterization is in fact valid for a 1 1 abelian groups. 

This has also been observed by E. Alfsen. The key point in his proof is th~~ 

on a compact group the characters separate points. The following proof, how-

ever, is by far the shortest one: 

Let G be any abelian topological group and ch G its character group 

(i.e. the group of continuous representations of G into the circle group 

T ), always equipped with the compact-open topology if nothing is said to be 

contrary. Direct use of the definition gives the following diagram 

G 

(2) 

ft.. "' 
I-~ 
I ,~ 

G --·-· ·--;::... T 
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showing that the oharat:tei' groups of G and G are algebraically isomer-

phi'd .:... or squi v-alently ..:. ieornorphic as d i s c r e t e topological 

group (in particUlar every character on G is almost periodic since it can 
A 

be lifted to G ) • But from 

we get 

by the duality theorem for discrete/compact abelian groups. Hence the re~ 

sult. 

If G is not abelian we may of course factorize the characters via 

G/lGJ , exchanging (2) with 

and getting 

..... --~~. 
ch chdG = G/lGJ 

We note this as 

T h e o r e m 2 • If G is a topological group, then 

C o r o 1 1 a r y 1 • 
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From theorem 2 we get immediately the following result due to Hewitt 

and Zuckerman ((6)) • The proof is modelled after ((?)) • 

C o r o 1 1 a r y 2 • Let G be a topological group. For any 

rc' h G ... , ln e c ' for any <: > 0 and for any representation 

0 ch G --;::,.T 

there exists an element x of G such that 

A 

! x( cD. ) - cP ( (.o . ) t < f. 
I \1 ' J l 

i 1, 2, ••• , n 

,.. 
where x ch G -------> T is defined by x( f) = fCx) • 

. .------...__ 
P r o o f • Clearly c? c::· ch chdG = 6/[G J- • Since the set of all 

maps "y in ch chdG for which I 'f ( cpi) - 4) ( f i) \ < E is open, 

it must contain an element x from the (dense) image of G by the map 
__.--.-..__ 

G -·-;> G/[G J ---·-> G/[GJ • Obviously the elements x thus obtained 

operates on ch G as defined. 

Since the maps x is really characters on ch G , we may also formulat~ 

corollary 2 by saying that any representation of ch G into :r is the 1 ) 

Recall that a subset A of a group G is 1 e f t r e 1 a t i v e l ~ 

d e n s e if G is covered by a finite number of left translates xA • 

A is i n v a r i a n t -1 if xAx = A for every x in G • 

T h e o r e m 3 • Every group G admits a finest precompact uniform 

structure compatible with the group operations. If 'j ~ denotes 

the associated topology, then 
(l (' 

LPM is the common left and right structure 
r;-' 

j M • of The system of neighbourhoods of the neutral element for the 

latter consists of the sets V which admit a sequence of subsets (V ) 
n 

such that: 

1) pointwise limit of characters on ch G, i.e. of continuous 

1.!--- !..C ,.,f\...,_..-1- 1\ +l""t."\"\ 1::'\'\TO'l"',l V in r,_ 



i) 

ii) 

V 2~- v 
1 '--
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for n = 1, 2, ••• 

Each V is a symmetric invariant and ieft relatively dense subset 
n 

containing the neutral element. 

G &ctmits a maximally almost periodic group topology if and only if '~ 

is Hausdorff. 

P r o o f o Let G denote the group G equipped with some preco~-pc 

pact uniform structure (compatible with the group operations) and Gd the 

group G with the discrete structure. Since every compact representation 
,_. 

of G pc can be factorized via its (separated) completion (i , G ) , we 
pc pc . 

"' must have (i .. G ) equal to ( 0 G ) This means that the given. pc' pc Jpc' pc • 

precompact structure on G ( = the inverse image by ipc of the structure 
,..._ 

on G ) is its own Bohr structure ( = the inverse image by 5~ of tl}e 
~ ~ 

"' structure on G ) • Now, since the identity mapping G --·'> G i::? pc d pc 

uniformly continuous, it is also uniformly continuous with respect to th~ 

Bohr structures on Gd and G pc 

means that the precompact structure 

By the first part of the proof this 

r/ (/ 
t..t. on G deduced from the discrete 

one is finer than the initial precompact structure given G • The fact that 
r;!l 
elM is the common left and right uniformity of its associated topology 

follows from ((1, prop. 1)) • Finally the characterization of 
("'( 
·' fol-..... M ' 

lows from ((1, theorem 1)) • This proves the first part of the theorem. 

"' Suppose I 
·J M is Hausdorff. Then Jd : Gd -----> Gd is injective, being 

the completion imbedding of G with respect to the Hausdorff structure 1fM • 

It follows that the 'lfM -uniformly continuous functions ( = the almost 

periodic functions) on the topological group (G, 'T~) separate points. HFlnce 

~M is maximally almost periodic. Conversely, suppose that G admits a 

maximally almost periodic group topology, converting G into a topological 

group G o Since 9 : G ---::> G is injective, the Bohr struc-map ) map map map 

ture on G induced from G by map 

structure tLp c-· M , hence also J M 

p is Hausdorff. 
1 map 

must be Hausdorff. 

But then the finer 
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We shall term 11 V .-·. M and ~~ the Maak structure and the Maak topology 

of G • The reason for this is the following 

Theorem 4 0 A complex valued function f 

continuous with respect to 'l 'i ~11 if and only if it is 

the sense of Maak, i.e. if and only if each ? .. > 0 

ing (A.) 
l 

of G such that !f(xay)- f(xa 9 y)\ < E 

ever 
y 

a, a belong to a common A. o 
l 

on G is uniformly 

almost periodic in 

admits a finite cover-

for all x,y when-

In fact the result follows from ((1, theorem 1 and theorem 2))o An­

other corollary is the following (cf. ((1, theorem 3)) ) : 

T h e o r e m 5 o A family of complex valued functions on G is 

uniformly equicontinuous with respect to '1.J M if and only if it is uniform.., 

ly almost periodic in the sense of Maak. 

Clearly MaakYs theory of almost periodic functions on groups is includeq 

in the theory of almost periodic functions on topological groups. However, 

theorem 3 tells us that the converse statement is also true, i.e. that the 

Vitopologic" theory can always be deduced from the wwabstract'i one. To make 

the statement precise we introduce the notion of B-equivalence, saying that 

two group topologies on a group are B-equivalent whenever the Bohr topology 

defined by the one coalesce with the Bohr topology defined by the other. Th~ 

notion of B-equivalence on a group G is obviously an equivalence relation 

in the set of group topologies on G • Each equivalence class contains ex-

actly one precompact topology (i.e. one topology derived from a (uniquely 

determined) precompact uniform structure on G compatible with the group 

operations) which is the common Bohr topology of all members bf the class~ 

The collection of equivalence classes thus obtained is organized to a com­

plete lattice ~B(G) if it is equipped with an ordering L. such that 

T' :=.. ·j- 1 whenever 'I ,_. 'Ty ,. B '·- ,_, B o In fact the collection of precompact 

group topologies on G form a complete lattice with respect to inclusion. 
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( l'(-- (i)) 
(It is closed under ordinary supremums of arbitrary families .J B and 

the infimum of such a family is simply the supremum of the family of pre-

compact group topologies coarser than all r'"f (i) 
.J B ) • According to theorem 

3~ however, this lattice coalesce with the lattice J6M(G) cf subtopolo-
,-.-

gies of J M(G) compatible with the group structure. Each such topology 

determines has a common left and right uniform structure and hence an alge-

bra of complex valued uniformly continuous functions. In particular 

determines the algebra ~(G) of Maak almost periodic functions on G 

(theorem 4), and every other algebra constructed in this way is a unifor~y 

closed subalgebra of ~(G) • Conversely, every such is the algebra of e~­

actly one precompact group uniformity, namely the iVstructure initialeiY it 

defines. In fact any precompact uniform structure is uniquely determine~ 

by its algebra of complex valued uniformly continuous functions, and the 

fact that this particular one is compatible with the group operations is a 

trivial consequence of the lYiaak alm.ost periodicity. Finally we note that 

the collection of uniformly closed subalgebras of ~(G) form a complet~ 

lattice G!2M(G) with respect to inclusion. 

Let T 9 ,A and 'J- be arbitrary members of . 
. )3 B(G) , respectively, and write 'I 

.J A 
r:--' 

and J B for the inverse image 

topology defined by A and the unique Bohr topology of 
-.--;--

J With these 

notations our considerations can be expressed in the following form 

T h e o r e m 6 • There exists a canonical lattice isomorphism be-. . 
tween 

_,., 
,1) B (G) such that if r.-J v A '{ , and ,_, are 

r--~· 

corresponding members, then JB and A is the algebra of 

complex valued functions on G m1iformly continuous with respect to 

lfB. ( = ?__.fA = 7.£ 1
). 

A continuous representation 
9 

cp : G -----> G of one topological 

group into another can always be lifted to a continuous representation 

'""· "" /'?' cp : G ---';> G giving the commutative diagram 
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,........_ 
----!'-"' <.f G --···--·'> G 

A j~ 

(<J j r:/ 
·, 

! \ ) ; . 
co ' G ---i·-·> G 

Obviously the correspondence G --:> G , /' . -f --·- ----7-- <P defines a covarl-
' 

ant functor retracting the category of topological groups (and continuous 

representations) onto the full subcategory of compact groups. 

T h e o r e m 7 • The functor -~ is right exact and commutes with 

the operation of forming products. 

P r o o f Consider an exact sequence of topological groups 

f1 f2 G ---> G -~ 2 --->- 0 

From this sequence we get the commutative diagram 

G1 
~~ 

5:11 

('.. 
l2 

---->-G2 

/~ 
p,l 
>2i 

w I 
12 

----·------:::> G2 

(Since Im cf1 = Ker cp2 is an invariant subgroup of 

"' continuity arg'llt.llent invariant in G ~ hence G/Im ;f1 
_,, ./' 

G 1m G> is by a 
' \ 1 

is well defined.) 

Clearly 'f'2 is surjective and both cf 1 and ·''· Cf2 are strict morphisms 
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being continuous representations between compact groups. By commutativity 
6 ~ ' 4)2 is constant on ? (Ker 'f2) = ~? (Irn c.p1) = <f1 (Im ~ 1) , and by contin-

. .-"""-.--- ,...-....... ............... 

uity it is then constant on f~1 (Im e1) :J Cf1 (Im (?1) = Irn f 1 • Hence cf'2 
;1.. ""' "' give rise to a representation G/Im ~~ -----> G2 such that 

commutes. On the other hand the composite vertical map of (5) is constant 
A ..................... 

on Im cp1 = Ker cr-::2 hence defines a representation G2 -------~ G/Im (f1 , which 
.............. ...-"'..., /""" 

can be lifted to give a representation G2 --..;.> G/Im (f1 making 

commutative. Clearly the two representations being surjective are inverse 

to each other, proving the first part of theorem 7. 

Let (Gi)i E I be a family of topological groups, )-t G. its direct 
"-----~ l 

sum and G. '"> G. the canonical imbedding of G. in 2: G. Sup---·-·---~~L . 
J l ., l u 

~· ~-, 

pose / G. -~·-> H is a compact representation of ' G. We get com-
L..:. l ~ l 

mutative diagrams 
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hence a compact representation L, Gi ----··-~» H • However' z~ G~ is 

dense in the direct product -:-]"""" 
l i G .• 

..I l 1. 
Consequently defines 

a compact representation -~ r G. ------;.:> H 
. 1. 

giving the commutative diagram 

-""' G. 
J 

t 
I 

I 

---->- 1 G. -----~TT~ 
~ 1. . 1. 

I 
I y 

G j --~···---> i Gi -·---·-""?" H 

Moreover, the canonical representation ~ == ( ~ i) i e I of 
-- ,..._ 
~ Gi clearly respects the maps of (6) , hence completes 

"""""' G. 

f 
I 
I 

-,1··"""' ·-·--» I G 
I i 

I 
I 

Gj ·----> L Gi ·---··-->- H 

L G. into _, 1. 

(6) to 

Since '>G. ---->· >' G. ·-·---> -jl G. is a compact representation of 
L--'1. .{........_,1. '1. 

,--; G 
and since by (?) compact representation of 'I G lifts / . every L i "--• l --- LG. -jiG. ?: Gi to II G. 
' 

·--.. -~>- must be the imbedding of into 
I l 1. 1. I 1. __ _.............__ 

'ZGi 
---· ......... 

its Bohr compactification. In particular = I! Gi The second 

part of theorem 7 now follows from the fact that G. is dense in )I G. 
1. . 1. 

and therefore have the same Bohr compactification as lTGi • 
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.~ 

2. Let (l. be a categdry with finite products and ([ a full sub-
0 

category of f!' 
•L also with finite products. By definition we have: Any 

object of ·f" is an object tjf /,-
Any object of ~r. isomorphic to t.l,. (L • 0 

an object of tr is ~ object of c 
' ' 0 0 

0 If A B o' o are two objects of 

Homd:..(A0 ~B) 
0 0 

is equ~i to Hom . (A ,B ) 
' ((. 0 0 

The composition lairr of 

morphisms in 4: is induced from that in 
0 

f 0 

Let A and 1, H ~ ••• , Q be objects of ([ and 
0 0 0 

ly4 We suppose that to A there is associated a finite sequence of natural 

numbers a , and to each 
r 

a. 
l 

a morphism .:1_. 
l 

It is convenient to suppose that oc 1 is the identity morphism 1A : A ->A o 

In the same way 1 is supposed to be endowed with 
0 

a structure given by a 
l. 

sequence 11 = 1, 12, ••• , ls and morphisms '\ . 
A. • 

J 
J . .. 

Lo ··---> 1o' ""1 = 11 
0 

Finally we are given a finite sequence of pairs of natural numbers 

and to each 
y 'i 

(l.,a.) 
J J 

a morphism 

Similar requirements are attached to H, N , ••• , Q o 
0 0 0 

'\ '\ y The sets A, 10 , ••• , Q0 and the morphisms .:-x_,1, ••• , ,-\ 1, ••• A 1 ••• 

together with a set of ax i om s (to be defined below) constitutes an 

example of a ( (, C ) -algebra. 
0 

A is the c a r r i e r and 

L , M , ••• , Q the o p e r a t o r d o m a i n s for the particuJ,ar 
0 0 0 

~ y 
algebra considered. The sequence (n0 , a1, ••• , 11, ••• , (11,a1), ••• ) 

where n is the number of operator domains, is called its similarity da,ta. 
0 

By abuse of language we speak of A rather than (A,10 , ••• , a1 , ••• ) ~s 

the (C,() -algebra. The morphisms o(_1' c(2' 0 0 0, :_;(~ and 
0 r 

" ' A' ·- y operations A 1' 
• ... ~"' are called the internal aJ.'ld external 2!1 0 0 0' ?1' • 0 • 

on A , respectively. Any meaningful composition of these gives an a d -

m i s s i b 1 e function. Clearly, if A and B are two (;:[,1~)-
0 

algebras with the same similarity data then there exists a bijective cor-

respondence between the admissible fQ~ctions of A and those of B • In 

fact, the collection of all such algebras form the equivalent of a similari-
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ty class or a homology class in the sense of ((5)). A set of axioms 

for an algebra A is an ordered set of identities 

<...0. = ll. 
~ ~ 

i = 1, 2, ••• , n 

,._ 
where u.)., !L. are admissible .functions for A • From now on we restrict 

~ ~ 

our attention to a fixed but arbitrary class of algebras whose members are 

subject to the conditions that they belong to one fixed similarity class 

and share a common set of operator domains and a common set of axioms. In 

the sequel we reserve the expression ( ([ , (( ) -algebra (or just algebra) 
0 

exclusively for the members of this class, which we write /A, ( ([, Q0 ) • 

Within /A (f ,(0 ) the notion of a (([, ([. 0 ) - r e p r e s e n t a-

t i o n $ : A --->-B is well defined. It is a morphism respecting 

the structure of A and B in the obvious sense. With the representationp 

as morphisms our class of algebras is transformed into a category also writ~ 

ten /A. ( (_, ([' 0 ) • In the same way the subcollection of (. -algebras 
0 

(i.e. with ~ -carriers) and representations form a category 
0 

which is clearly a full subcategory of /A((", ( 0 ) • 

D e f i n i t i o n • Let !k. and IK 0 be a category and a full 

subcategory and let K be an object of II( • By the solution for K of 

"" the universal problem posed by ( IK, JK 0 ) is meant an ordered pair ( y ,K) 

consisting of a !K -object K and a morphism 
0 

u .1. For any object K 
0 

of and any morphism 

such that 

there exists a morphism K ---:;::.- K uniquely defined by the 
0 

equation 

The requirements in the definition may briefly be refre;sed by saying that 
A 

p is a uniquely factorizing morphism for K • Clearly f (and K ) is 

determined up to functorial isomorphism by U.1 • 

We now return to the categories lA ( <[, (['0 ) and II\. ( ( 0 ) • 
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T h e o r e m 8 • If ,f: is the category of topological spaces and 

~ 0 the subcategory of compact spaces, then the universal problem posed 

by admits a solution for any ( ([, Q~ 0 ) -algebra A • 

In fact if A is any such algebra then the solution can be realized as the 

separated completion of A with respect to the finest uniform structure 

·)j_i 
't. ,_. such that 

'l.U· a) is precompact, 

b) 1Lf1 is compatible with the algebra operations on A , 

c) ?...f defines a topology coarser than the initial topology on A • 

P r o o f • The verification runs along the same lines as in the case 

of topological groups. The structure 
'J I) CZ considered in the theorem is 

constructed as the supremum lfB of structures on A satisfying a), b), 

c). The proof that 
I)/) 
~B really satisfies a), b), c) itself is straight-

A 

forward, and we owit it. Let ( ? ,A) denote the separated completion of 
J a. 

/7 /' l A with respect to t/ and consider any two operations c.;(.. . A ----->- A ~, B . 

and 

7 v 
7 1. a. 

A . : L J X A J ------'> A 0 

J 0 

l 

According to what has been said these 

two operations are uniformly continuous with respect to the relevant pro, 

duct structures on their domains of definitions. Consequently they may be 

extended to the associated completed spaces, i.e. we get operations 

and 

(since L 
0 

.... a. 
l A ----;,.. A 

v y 
1. ....a. .... 

L J x A J -----'> A 
0 

(:' ::1 ) ) 
is compact, hence complete, cf.vch. II, § 3, prop. 15 and prop. 
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18~ cor. 2). In the same way the other operations are extended. Obviously 

has the similarity data of the 

members of /A ( ([, ([ 0 ) , and its admissible functions are extentions of 

admissible functions for A • JV1oreover, if LU = 1 L is any axiom of A 

then by the principle of extension of identities (cf. ((3, ch. I, P• 87)) ) 
~-... 

= Tt. • It follows that A is an Finally, suppose 

~ : A -->B is a continuous representation (i.e. a ( <[ , t1 0 ) -represent­

ation) of A into a compact algebra B o Then the inverse image of the 

uniform structure on B is a uniform structure on A which is obviously 

precompact and defines a topology on A coarser than the given one. More-

over, direct verification shows that the algebra operations on A are uni-

formly continuous with respect to the new structure. Hence the inverse 

image of the uniform structure on B satisfies all three requirements a), 

b), c). 1 n 
Consequently it· is coarser than ·u B o It follows that is 

'{j B -uniformly continuous, and since B is complete ~ may be extended 
-"'.. "' \.. A 's : ----->- B . such that 

""" 
Clearly, ( J ,A) is to ' ---... 

1 = ·'3 a 'f . • 
the solution for A of the universal problem posed by (/A (C , ([, 0 ), JA. ( a_:o~)! 

In the rest of this paper we write TI /A. for /A, ( (, ([ 0 ) ·and Tfc /A. 

for /A .. ( ( 0 ) when <[ ·and C is the category of topological spaces 
·0 

and of compact spaces, respectively. The objects of ITA and Ti lA. c . 

are termed topological algebras and compact algebras. Besides we shall fol~ 
·~: 

low previous practice and speak about compact (but not necessarily dense) 

·representations and Bohr·compactifications. 

T h e o r e m 9 • Suppose that and ·-/ T i'r. both admit in-\ c !1""\. 

finite direct products and TT/1\ infinite direct sums (in the categorial 

sense), and that every compact representation of a sum can be lifted to a 

uniquely determined compact representation of the corresponding product. 

Then the functor A ~~- A retracting 

the operation of forming products. 

onto T- tA .! c /n commute with 

In fact, with the conditions imposed on JT lA and TI~ /A the second 
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part of the proof of theorem 7 With nominal changes works also in the genera~ 

case. In particular theorem 9 applies tb topological rings and topological 

semigroups. Under proper restrictions.dn Tf1A and lT ;.,'6. one should 'c , 

also be able to generalize the first part of theorem 7~ We do not attempt 

to carry out this. 

Before we leave the general aspects of theory, we return for a moment 

to our categories IK and H< . Consider the functor K ''···-,'-? Hom(K,K ) 
0 0 0 

of IV · t ~~"o 1.n o \[ nv1 ~ , the category of sets and maps, for a given ob-

ject K of l' .. i< . . ' This functor is representable in the sense of Groten- · 
9 

dieck ((5, P• 8)) if it is isomcrphic to any functor K r-r-:>Hom(K .K ) , 
0 0' Oi 

'i 
where K is an object of !I< 

0 0 
The representative 

9 
K is then deter­

a 
A 

mined up to a unique isomorphism. It follows that if ( j?,K) is a solution 

for K of the universal problem posed by ( IJ.(, IK0 ) , then K0 ,..,__'> Hom(K,;K0 ) 

is in fact representable with K as representative. The concept of repre-

sentable functor, however, does not seem comprehensive enough to express the 

morphism ~,) : K -·-> K , the part of the solution which is of prime ip­

terest, nor to express the functor /~ • 

Let R be any topological ring and J the topology of R • AccorP,-

ing to theorem 9 R admits a Bohr compactification We 

want to express the Bohr topology .J B in terms of 

T h e o r e m 10 Let R be any topological ring and <! 
·_! the 

topology of R • The system of neighbourhoods of 0 for the Bohr topology 

of R consists of those subsets V of R which admit a sequence 
0 

(V ) 
n n::::1,2, ••• of sets such that 

e) Each V , n = 1 , 2, ••• , 
n 

neighbourhood of 0 • 

is a symmetric relatively dense 

P r o o f • We first show that the collection 7_)--' of subsets V 
0 

sati.sfying d) a...11d e) is a filter. It is enough to show that U is 
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closed with respect to finite intersections. Let U ,V be members of 
0 0 

with corresponding sequence.s (U ) n n==1,2, ••• and (V ) n n==1,2, ••• 
Then 

u () v is relatively dense (with respect to the a d d i t i v e struc-n n 

ture of R , of course), cf. 1, prop. 1 and proof of theorem 1 • Moreover~ 

2(Un+1 n Vn+1 )c 2Un+1n 2Vn+1c Unfi Vn , R(Un+1 ~'-1 Vn+1): RUn+1n RVn+1 C Un!) Vn 

and (Un+1 !1 Vn+1 )R c Un+1R n Vn+1Rc Un n Vn • Hence the sequence 

(U n V ) have the required properties d), e) relatively to n n n==1, 2, ••• 

U () V ~ i.e. U ;'") V c [}-' . 

To see that 2/~ defines a ring topology whose associated uniform 

structure is compatible with the ring operations we notice that for given 

V 0 E 'V'' there exists, according to d), e) , V 1 E~ z._..r- such that 

Consequently 
•) ,_. 
c/ is compatible with the underlying additive group structure 

of R • In a commutative topological group, however, the group operations 

are in fact uniformly continuous with respect to the associated uniform 

structure. Hence it remains to prove that multiplication is a uniformly 

continuous operation in R • Let V be an arbitrary member of [)-'. Then 
0 

y 
and RV1 cV0 • Suppose x,x 

y y y 
and y,y are elements of R such that x E. x + v1 , y ;;:: y + v1 o Then 

y y 
x y E x:y + xV1 + V1y + v1v1 c::: x:y + RV1 + V1R + v1v1 c x:y + 3V0 , which 

shows that multiplication is uniformly continuous. 

We next observe that since the members of Lr· are relatively dense, 

the uniform structure U defined by 
1Y-
(./ is precompact o It follows that 

this structure satisfies the requirements a), b), c) of theorem 8o 
I 

Finally, let 21. be some uniform structure defined on R satisfying 

the requirements a), b), c) and let 
., 'j-- I 

{.- · be the corresponding filter qf 

neighbourhoods of 0 • Then for an;y- y Q 'I-'( 
V0 E G/ there exists a sequence 

of members of 
(] ._ { 

LJ such that 
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n = 0, 1, • o o 

is a symmetric relatively dense 

neighboUrhood of 0 • 

Z/,_. I 

Moreover, since 

T 11 "·'I U E U such that 

is supposed to defihe a tirl~ tdpology ~e can find 

U 9 2 C V ~ o The coliectib11 fO of z_f" 1 -members 
y 'J "-' I 

contained in U forms a base for (./ By the continuity df the multi,-
r;. ~I 

plication in R with respect to the topology of L/ we can find to each 

xE.R a 
y 

such that xUx c V 1 (this is just tqe 

continuity at 0 of the functions y -· "> x:y and y ->- yx for given x :) • 

v n_1rl Because U as a member of C/ is relatively dense in R there exists 

n ' 
a finite number of elements a1, a2, •• o, a such that R = U (a. + U ) • 

n i=1 ~ · 
n 

9 -- y 
We form U = ( \ U o Then 

o . 1· a. 
~= ~ 

v 9 

n , u· , , v , , 
URC Ua. +UUC2V1cV 

0 . 1 0 ~ 0 0 
~= 

Similarly RU C: V • It follows that R is bounded and hence that the c 0 

sequence (vv) could have been chosen so as to satisfy there~ 
n n=1,2, ••• 

v 
maining property RV' 1 C V n+ n 

a...'ld therefore U r C Z.f • 

y 9 
and vn+1Rc. Vn. 

'l /) Consequently u:.. 

This completes the proof of theorem 10. 

But then we have 
r'i~_.f r\~ 

(j c u 
is the Bohr structure of R • 

We shall say that a topological ring vnth identity contains arbitrari~ 

small regular elements if each neighbourhood of 0 
-ir.4" 

differ from 0 con-

tains an element which has a (multiplicative) inverse. Trivial examples ~re 

provided by function rings containing the constant • As an application of 

theorem 10 we give the following result: 

T h e o r em 11 • Let R be a topological ring with identity con-

taining arbitrarily small regular elements. Then the Bohr topology of R 

is trivial (i.e. equal to the coarsest or the finest topology on R o 

We shall say that R is minimally almost periodic if the Bohr topology 

of R is the coarsest possible topology on R • This is clearly equivalent 
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to saying that the 2.[ B -uniformly continuous functions on R reduce to 

the constants only, or to saying that R reduce to one point. Then we have 

C o r o 1 1 a r y 1 • Let R be a topological ring with identity 

containing arbitrarily small regular elements. Then R is either a finite 

field with discrete topology or minimally almost periodic. 

In particular any topological ring with identity having arbitrarily small 

regular elements has a finite Bohr compactification. 

Since a compact ring is its own Bohr compactification, we also get 

C o r o 1 1 a r y 2 • Any compact ring with identity containing ar-

bitrarily small regular elements is a finite field. 

In particular any compact ring with identity which algebraically is a 

division ring, is finite. This is a well known result due to Kaplansky. 

The proof of theorem 11 with corollaries runs as follows: If the Bohr 

topology of R does not separate the identity 1 from 0 , i.e. if every 
('--

) B -neighbourhood of 0 contains the identity 1 , then 1 is mapped 

"" onto 0 by P: R -->R, hence Im (,) reduces to the 0 element of 
) ) ,.. 

{o} T R Q It follows that R= . Since is the inverse image by 0 
B ) 

of the topology on R , 
r.-

_J B must be the coarsest topology on R , i.e. 

R is minimally almost periodic. 
,.-.-.. 

On the other hand, suppose that there exists a .J B -neighbourhood V0 

of 0 in R such that 1 dt V • According to theorem 11 we can find a 
\ 0 

r:-
J B -neighbourhood V 1 such that RV 1 c. V 0 • Suppose V 1 f=. 0 • Then 

there would exist regular elements x in V 1 , which would imply 1 = 

x-1x ~::: RV1 C V0 The contradiction shows that v1 = {o J , hence that 

T~ is discrete. But then ·J B = J (the original topology on R ) • 

Moreover 
/) , .. 
{ i _A:B is discrete, hence complete. But a complete precompact 

Hausdorff structure is certainly compact, i.e. defines a compact topology. 

Hence 
'I (-r--' 

j = J B is compact and discrete. But then R must be finite. 
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I.foreover, sihce an;v discrete ring containing arbitrarily small regular el­

ements is a division ring ihd since it is known that finite division rings 

are fields R must be a finite fieldo This completes the proof. 

Finally we remark that for theorem 11 with corollaries to hold it is 

really enough for the ring R to contain regular elements which are ar~ 

bitrarily small with respect to the Bohr topology of R • 
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