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The purpose of this paper is to present a new and essentially simplified 

proof of the representation theorem for polyadic algebras (locally finite 

and of infinite degree). The paper is divided in two parts. In part I we 

have included a certain amount of background material on polyadic algebras 

for the double purpose of ~irst showing the relevance of the concept and 

second to prepare the reader for the study of part II, where the new proof 

is presented. It is hoped that sufficient information on algebraic logic 

is contained in part I and enough details are made explicit in part II to 

make the reading of that part intelligible. 

PART L 

Algebraic logic is the algebraic study of first order theories. Roughly, 

a first order language is formed from a class of individual variables and a 

class of predicates by means of the usual connectives of logic. In more 

detail: Let V be the class of variables, Y. = { vi j i E I } , where 

I is some non-empty set, u.sually the natural numbers, and let P be the 

class of predicates, P = {IT} With every 7\ E f there it.. as so-

ciated a natural number n(7l) giving the rank of the predicate, i.e. the 

number of argument-places of 7\ The atomic formulas of our language are 

Q Q Ql , v. ) 
ln(1T) 

The class of all formulas is defined inductively as usual by means of 

the logical connectives .1\ (and) , v (or) , 1 (not) , 3 (there exists). 

If r is any class of formulas, ~ove denote by 
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the relation that the formula 0( is deducible from the formulas of r 
as assumption formulas. (We assume that r includes a set of axioms for 

pure first order logic.) 

The deducibility relatiun makes it possible to introduce the following 

equivalence relation in the class of formulas: 

01. "-1 p 
r 

iff \-1 (ex ~B). 

Let Fr denote the set of equivalence classes according to this rela­

tion. In an obvious way it may be considered as a Boolean algebra, defining 

e.g. as [ l 01v J , etc. 

But our set F r can be given additional structure, in fact we may in-

troduce algebraic equivalents of the logical operations of existential quan-

tification and substitution of variables for variables. As the analysis is 

a little tricky, we omit the details and sketch the results. 

Basically a substitution is a Boolean endomorphism of Fr , e.g. the 

substitution in a conjunction ex A ~ is performed by substituting in ~ 

and 0 separately and taking the conjunction of the resulting formulas. 

If \3 is obtained from 0\ by substituting variables V. for variables 
J 

v. , we may associate a map 'C : I -4 I ( I the index set of Y. ) , such 
l 

that ~L ( v. ) = v . and 
. l J 1:: = identity on variables not involved in the 

substitution. Denote the substitution derived from tt by S('"[) • In 

general we may associate with each 1::; E II a substitution S('"[) which, 

being a substitution, satisfies the endomorphism formulas: 

S(t"f, )(p 1\ q) = S("t )p A S('t )q 

? y 
S(1; )p = (S(~)p) 
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where p,q denotes elements of Fr , i.e. equivalence classes of formulas. 

Roughly we may introduce a quantifier on Fr by defining 

(It may be necessary at some places to rename bound variables, a fact which 

can easily be taken care of, but which makes our exposition at places some-

what inexact. ) 

Existential quantifiers commute with each other and it is convenient to 

introduce them several at a time. Omitting the details, we assert that it 

is possible to introduce on Fr an operator 3(J) associated with each 

J c I such that 3(J) has the usual properties of the logical quantifier: 

( 3 ) 
1 3(J)O = 0 

p <; 3(J)p 

, 

, 

3(J)(p A 3(J)q) = 3 (J)p 1\ 3 (J)q • 

(Here 0 denotes the equivalence class of a logically false formula, e.g. 

C(, 1\ 10(, ; 1 denotes the class of formulas deducible from r· ; ( 3 2) 

expresses the usual logical axiom CX.(v.) ~ 3v.D{,(v.) .) 
l J J 

Our resulting algebra Fr is locally finite in the sense that each 

p=[c<,J depends upon a finite number of variables, which is equivalent 

to saying that for every p E F r there exists a cofinite set J C I such 

that 3(J)p = p • ( J consists of the indices of those variables ~ich 

do not occur free in 0(. • I - J is then called the support of p and 

denoted supp(p) .) 

To recapitulate: Fr, is a Boolean algebra with some additional struc-

ture. S is a map from transformations 1: of I to substitutions on 
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Ffl and ::J is a map from subsets J c. I to quantifiers on F1 (a 

quantifier being defined thro·ugh ( 31) - ( j 3) ) • The maps S and 3 

satisfy certain obvious rules: 

j(¢)p = p and s(6 )p = p if 6 = identity , 

(P2) 3(Ju K) = .:\(J) 3(K) and S(tr'L) = S(cr)S(1:) • 

Here (P1) is a t1iviality: if we donYt quantify or substitute, we 

donit. And (P2) expresses that combined substitutions and quantifications 

can be performed one Hfter another. 

Of the many other prope~ties of S and we put down: 

(P3) If cr = rc on I - J ' then s(v)3(J) = S('"()] (J) 

(P4) If rc is one-to-one on the subset ,..,...-1J v of I , then 

3 (J)S( 'C) = S(l,) j ( CC-1J) 

The reason why w6 put down these properties is that they characterize 

our algebraic entity Fr in the following sense. 

A polyadic algebra (A, I, S, 3 ) consists of a Boolean algebra A 1 

a non-empty set I and two maps S . and 3 , where S is a map from 

transformations CC E II to Boolean endomorphisms on A (i.e. S(~) 

3 is a map from subsets J C I to 

quantifiers on A (i.e. 3(J) is an operator on A satisfying 

( 31) - ( 33) ) o The maps S and .3 are required to satisfy conditions 

(P1) - (P4) • 

If we suppose that our polyadic algebra has infinite degree (i.e. the 

set I is infinite) and ie locally finite (i.e. for every p ~ A there is 

0 

some cofinite set J c I such that 3(J)p = p ), then our polyadic algebra 

is isomorphic to some algebra of formulas F r . 
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In a locally finite algebra of infinite degree one has the following 

important identity. Let () Jx 'L denote the relation that <ri = <Li for 

all i E. I - J , then 

(1) S(T)3(J)p = v{s(cr)p \a-Jx<t 1 · 

The general algebraic theory of polyadic algebras is not too difficult, 

giving the easy, but important result that each polyadic algebra is semi-

simple. 

The other chief example of a polyadic algebra is derived from the notion 

of interpreted language or model. Our fornrulas are then supposed to say 

something about a set X and certain relations defined on X • Our vari-

ables y now denote elements of X and a predicate 71 is interpreted as 

a n(7r)-termed relation on X, i.e. as a subset of xn(Tr) . It is con-

venient to consider a predicate 1l , or more generally, every formula ~ 

as a map from xn ~ Q ' where n is the number of free variables occurr-

ing in ct.. and £ is the two-elemented Boolean algebra of 0 = false and 

Then ex. (x. , • o o , x. ) = 1 
11 1n 

1 = true • 

of X which satisfy the formula ~ • 

iff • 0 • ' 
x . 

1 
n 

are elementf1 

Instead of associating with each c::J... a map from xn ~ £ ' and thus 

having the inconvenience of considering different cartesian products xn , 
we may introduce ~ as a map 

' 

defined in the following way. 

Let 0(, be anatomic formula TI(v., ••• , v. o If xE ~we 
1 1 1 n(T\) 

define cx(x) = 1 
' 

iff x. , 0 0 0 , x. satisfy T\ , i.e. 
11 1n(7\) 

(x. ' • 0 0 

' 
x . ) E 'IT , when the latter is considered as a subset of 

11 1 ncrn 
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The maps associated with the formulas , and 

-, Cl..t are defined by the obvious pointwise operations making the set of 
y 

maps, F , into a Boolean algebra. 

Coming to the substitution operator and the quantifier, we proceed in 

the following manner. Let ~:J? denote the following element of XI : 

xl'('i , 

we then define the map S('l: ) ex in terms of <X. by 

(2) 

This squares with our intuition.. If D{. is the formula 

~(v. , ••• , v. ) , then S(~ )~ should correspond to the formula 
J.1 J.n 

D(. ( v . , ••• , v,..... ) • And a sequence x € XI ought. to satisfy S( rc )Ol 
't"J.1 -~,.J.n 

y 
if it comes from a certain sequence x which satisfies 0(.. , i.e. such 

7 
that (x . , ••• 

J.1 
y 

t 
,x. )EO... 

l 
n 

y 
Hence we must have x . 

J.1 
9 

= 

~i1' ••• ' x in= ~in which is true if X = C'(' XX • 

To define the quantifier we need the following auxiliary relation: 

xJ"i! , iff xi = yi for all i € I - J • Then we define .3 (J)ot. : XI ---7 g 
by 

(3) 3(J)a~.(x) = v{~<y)lxJi!'} • 

we are concerned with a forrrrula -3 v. c(.( v., v. , ••• , v. ) , 
J. J. J1 Jn -

and we have to show that the above definition corresponds to our conception 

of how the satisfiability of .3 vp;., ought to be defined in terms of the 

satisfiability of ~ If a sequence x shall satisfy 3 v. D(, , there 
J. 
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must be some sequence y such that y. 
J1 

such that y satisfies cJ.v _, i • e • c(, (y. , y . , • • • , y . ) = 
1 J1 Jn 

if y is identical with x except at y. , then ( 3 v .a_ ) (x) 
1 1 

1 

and 

Hence 

v C:l..,(y) 
y 

and this is just the definition of the map ~(J)~ given above. 
9 

It is not difficult to verify that F , a set of maps 

as defined above, satisfies the axioms of polyadic algebras. This particular 

species will be called functional polyadic algebras or models, the last be-

cause they correspond to models of formal languages. It is easy to show 

that each model is simple (in the algebraic sense). The converse of this 

assertion is the representation theorem for polyadic algebras (locally 

finite and of infinite degree). 

Theorem. Every locally finite polyadic algebra of infinite 

degree is isomorphic to a subdirect product of models. 

The representation theorem for polyadic algebras has important logical 

significance - it is, in fact, the algebraic counterpart of the Godel 

completeness theorem. 

This theorem asserts that any consistent set Li of formulas has a 

model. For simplicity assu~e that we have one formula_, ~ (v. , ••• , v. ) • 
11 1n 

The consistency assumptions signifies that p = [ 0( ( v. , • • • , v. ) ] ~ 0 
11 1n 

in the polyadic algebra Fr obtained from the provability relation in 

first order logic (i.e. r contains only the usual axioms for first order 

logic). As polyadic algebras are semi-simple, p ~ 0 implies that there 

exists a ma.ximal polyadic ideal M in Fr such that L. 
p~l\1. Then p 

does not map onto the 0 of Fr/M • As every si~ple polyadic algebra is 
'l 

isomorphic to a model, we have a further map p --:,0 p of p into some 
v y 9 

model F ov~r a set X such that p ~ 0 in F i.e. there exists a 
'l 

sequence such that p (x) = 1 • But this is the same to say that 

the elements 
0 0 0 ' X. E. X 

l n 
satisfy in the model 
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Thus we have obtained Godelis theorem~ 

PART II. 

In this part we are going to sketch a new proof of the representation 

theorem. 1Nhatever is needed from the elementary theory of polyadic algebras 

which is not contained in part I or explained in part II, will be found in 

Halmos, Algebraic logic II, Fund. Math. 43 (1956), p. 255-325. 

The proof is divided in four parts. First we give a construction of 

free polyadic algebras using well-know< techniques of general algebra. In 

the next part we study local representations, and in the third section we 

transcribe a part of the theory of ultraproducts as a method of building a 

general representation from local ones. In the last part we obtain the full 

representation theorem. 

1. Free algebras • 

Let X and I be non-empty sets and let j be a map from X to 

finite subsets of I • Then a locally finite polyadic algebra (F ,I,S, 3) 

is called f r e e on (X, j) if for every cp : X -----) B where B is a 

locally finite algebra with index set I and supp( cp(x)) c j (x) , there 

exists a polyadlc homomorphism f F ~ B such that f o i = qp , where 

i : X ~ F is a fixed injection. 

Free polyadic algebra exist. The proof is almost standard. Let W be 

a set of cardinality equal to the polyadic ~vwordsif on X , consider all 

pairs A = (A 'A , cp-" ) where A-x c W and supp( c?:>. (x)) c j (x) for all 

x EX • Take the cartesian product of all AA and consider the subset 

F 
0 

of all families 

finite subset J of I 

where supp(aA) is contained in some fixed 

for all A Under the pointwise operations F 
0 

is easily shown to be a polyadic algebra which is locally finite. Take for 

F the subalgebra generated by the elements i(x) = ( ~~(x)) • 
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It is now immediate that F with the injection i is a free algebra 

on (X,j) and that every locally finite polyadic algebra with index set I 

is a homomorphic image of some free algebra F • 

2. L o c a 1 r e p r e s e n t a t i o n • 

Let A be any I-algebra (i.e. A is an algebra (A,I,S, 3) ) • Then 

A is the homomorphic image of a free algebra F • The set 

M = {p E F; f(p) = 1 1 where f F ~A is a polyadic filter in F • 

Let p E M , we want to construct a model A and a homomorphism 
0 0 

f F ~ A such that f (p ) I= 0 o 
0 0 0 0 

A preliminary reduction is necessary. Denote by J the support of p0 

and let I be an infinite countable subset of I such that J C I C I o 

Define 

algebra. 

0 0 

Further considering F 
0 

then F 
0 

can be considered as an 

as a subset of F , it is easily see~ 

I -
0 

that F generates F as an I-algebra. This is so because for any x E X 
0 

there is a one-to-one f[ such that, S( "( )x € F • Further one may verify 
0 

' ~ 
that the con"truction of a homomorphism f 

0 
of F into a model A will 

0 0 

give a homomorphism f of F into a model A , where A is V'lgenerated~~ 
0 0 0 

by the 
? 

A 
0 

in the sal'Il.e wc.y as generates F • F 
0 I 

will be a subset of the ~et of all functions from I 0 
0 

into 0 0 

As I is denumerable there exists in F an ultra-filter M (in the 
0 0 0 

Boolean sense) such that p0 E. M0 and s:.1ch that if S('t ) 3 (J)p £ M0 , 

there exists a transformation or such that rrJfl: 
::t 

( M 
0 

is an ultra-filter preserving co~~table unions.) 

<1: 
..J... 

F ~ .Q the map defined by ~ (p) = 1 if and 
o - ~ I 

consists of all functions fy(p) from I 0 ~ 0 
0 0 = 

(4) 
y 

f (p)('C) 
0 

<& (s(cr )p) 
J.. 

v 

and S( Cf )p E M • 
0 

Denote by 

only if PE M 
0 

• Then 

given by 

We do not prove in detail that f is a homomorphism, but show as an 
0 
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y 

example that f 0 connnutes with 3 

y 

= 3 (J)f0 (p)(T) • 

Here the first equality follows from definition (4) , the second from (1) , 

the 1niddle equality follows from the special property of M , the next one 
0 

from (4) , and the last one from definition (3) • The calculation 

f:(p0 )(d) = cp (S(~ )p0 ) = q? (p0 ) = 1 (because p0 € M0 ), shows 
y 

that f (p ) p 0 • 
0 0 

3. P r i m e e x t e n s i o n s • 

Let F be a free polyadic algebra and let { AN ; N E ~ ~ be a 

family of 2-valued algebras. Assume that we have given for each N € N a 
= 

homomorphism fN : F -i' AN • Let X be the product set TI XN • On N 
= 

choose an ultrafilter D and define an equivalence relation in X by xrvy 

iff -{ N ; xN = yN 1 € D • Denote the equivalence class corresponding to 

x by x/D and let ~ be the set of equivalence classes. 

define xD = (xi/D) E ~ and x(N) = (prNxi) E. ~ • 

I 
If x E. X we 

These preliminary definitions are used to construct a map f : F ~AN , 

where ~ is a set of functions from ~ to g . Let 4 = 
denote the map 

= 
from subsets of N to Q taking the value 1 on the sets belonging to the 

ultrafilter D , then the definition of f reads 

(5) 

Let us as an example show that f(S(<"[ )p) = S('l )f(p) , vJhich in particular 

gives that ~ is closed under S(T) : 
= 
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Using the fact that each fN is a polyadic homomorphism and that D is an 

ultrafilter, the rest of thE.: proof is very similar to a proof of Kochen. 

4. G e n e r a l r e p r e s e n t a t i o n • 

Let A be d non-trivial simple I -algebra, and let F be a free alge-

bra and fA a homomorphism of F onto A • Denote by M the set of 

elements p such that fA(p) = 1 , and let ~ be the class of finite sub­

sets of M. By local representation we then have maps fN: F ~~, 

NE ~, such that if pEN then fN(p) # 0. (This is not exactly what 

was proved in section 2, but follows immediately.) 

Define the following ultrafilter on N o Let F p = i N E ~ ; p E N } , 

it is then easy to show that ~ Fp } has the finite intersection property~ 

hence there is some ultrafilter D such that F E D • Construct the Q -
p 

valued algebra AN as in section 3 and let 
= 

f be the map there constructed 
0 

of F onto AN o We are going to show that A ~ AN , the isomorphism map 
= = 

f will be defined as follows: For any p A there exists a p1 ~ F such 

that fA(p1) = p , set 

The first thing to verify is that f is uniquely defined. 

Thus let p1,p2 be elements of F such that fA(p1) = fA(p2) • One 

has to show that f(p1) = f(p2) , which is the same to show that f(p0 ) = 1 
y v 

where p0 "" (p1 v p2 ) /\ (p1 v p2) • Now fA (p0 ) = 1 , hence p0 E. M • It 
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is then easily seen that there exists a qE M such that supp(q) = ¢ and 

q ~ p o Hence it is sufficient to show that f(q) = 1 o 
0 

But q E M , thus there exists a N E ~ and a x(N) such that 

fN(q) (x(N)) = 1 , Using the fact that supp(q) = ¢ , we obtain 

Fq £ { N ; fN(q)(x(N)) = 1 ~ But Fq E D and thus f~(q)(xD) = 1 , 

which entails, using the fact once more that supp(q) = ¢ , that fN(q) = 1 o 

= 
Using the fact that A is simple, one easily shows that f is injectiveo 


