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It has since long beer known that a positive linear functional defined
on a cofinal linear subspace of a vector space admits a positive, algebraic
extension (see for instance the book by Shohat and Tamarkin ((6)) ). The
problem to find when such an extension is continuous poses itself. This
problem is a special case of a more general extension problem which we have
treated in ((3)) . However, the present case where the subspace is cofinal
exhibits so many properties not valid in general that a special inquiry ceems
to be justified.

Notation. E denotes a locally convex topological vector space
over the real numbers R , P a convex cone in E , F a linear subspace of
E, and f #0 a positive linear functional on F , that is f(p) 20 for
any p€§PnF . F iscalled cofinal if for any x€§E there exists
y&F such that y - x¢P , or otherwise stated,_if E=F+P . Usually F
is assumed cofinal but sometimes we shall only require that F + P 1is a
linear subspace. The subspace generated by an element x in E is denoted

['= X, ]o

1.  SOME GENERAL RESULTS

Since we assume that f # O and that f is a positive linear functienal,
it follows that f-1(0) + P is a convex cone different from E . More pre-

cisely, we state

Lemma 1 . Assume that E=F + P ., Then if f(e)> 0 for some

e€PAF , it follows that e is an order unit of £ (0) + P . On the

other hand, if f =0 on PmF , then £ (0) + P is a hyperplane in E .

Proof . For any aiF\f_1(O) , we have E=F + P = f_1(0)+P~rf§C.a, -,{.
L -

In particular, if e € EP:\EE‘\f—1(O) , then for any x in E ,
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Ae - xéff-1(0) + P for some real A . Since e%if—1(0) + P, the same
assertion is true with |[A} instead of A . This proves the first state-
ment. To prove the second one, it suffices to show that f-1(0) +P is a
linear subspace. Let z =y + p be given, where yééf_1(0), péP . Since
-z&E =F + P, we have -z = Y4t Py with y1E:F, p1€~P « Therefore
O=y-2z+p=y+ 74 + Py + p, and so Py + pge PnF . Consequently

0]

]

f(y) + f(y1) + f(p1 +p) = f(y1) . Hence —zé;f—1(0) + P, and there-

fore f-1(0) + P is a linear space.

Proposition 1. Assume that E=F +P . Then f admits

a positive and continuous extension f to E if and only if f_1(0) + P

is non-dense in E .

Proof. If f exists, then f—1(0) + P is contained in the closed
halfspace {; : f(x) 2 OE’ , and is therefore non-dense. Assume conversely
that f-1(0) + P is non-dense. By a basic separation theorem, there exists
a continuous linear functional g # O such that g2.0‘ on f—1(0) + P, If
we can find an e€¢ PnF such that f(e)>O0 , then it follows from Lemma 1
that g(e)>0 . Put in this case f = f(e)/g(e)eg . If £=0 on PNF,
we conclude, again using Lemma 1, that g~1(0) = f—1(0) + P . Choose
aEF\\f—1(O) . Then g(a) £ 0 , and we define f = f(a)/g(a)*g . In either
cases f is an extension of f of the desired kind.

It is easy to show that if P admits an interior point, then F + P =E

if and only if F contains an interior point of P . Hence the following

corollary includes a result of Krein ((1, p. 75))

Corollary 1. If E=F+P ,and £ (0) +P has a non-emty

interior, then f admits a positive and continuous extension.

Proof . Let e be an interior point of f—1(0) + P . Then
—eé;f—q(O) + P, because f_q(O) +P#£E . But neither can -e belong to

the closure of f_1(0) + P, because if so, it would follow ((1, p. 54))
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that -ze was an interior point of P and therefore -~ecP .

The next corollary is just the statemont seferred to in the introduction.

b

Corollary 2. 7 BE=F+ P, then £ admitg a positive,

algebraic extension to E .,

Proof . It follows from Lemma 1 that in the finest locally convex
topology on E f_1(O) + P is either a closed hyperplane or admits an in-

terior point.

2. USE OF AN OPEN MAPPING THECREM

s

From now on E 1is assumed to be metrizable and complete.

Lemma 2 . Tet S be a closed convex cone in E . L a topolog-

ical vectorspace, and let uw : S - L be additive and continuous. Assume

further that uiSr\Uj is a gero-neighbourhood in L for each member U

of a_fundamental system for the zero-neighbourhoods in E . Then u(erUl

is a zero=neighbourhood for each U .

Proof . The argument given in Grothendieck?s book ((2, p. 69))

applies with only minor modifications.

Corollary . Assume that A and B _ are two closed convex

cones in B such that E=A -B . Then A~V - BnV is a zero-neighbour-

hood whencver V is a zerguneighbourhoodo

o T

Proof . A=B is & clesed convex cone in EXE ¢« Define
u?: AXB->E by (a,b) > a=Dh . Then

u( AxB! ~ [¥xV) ) = A~V - Bav.
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We call this set K . Then K n-K 1is convex and symmetric. Since
E=A~-B=B- A, it is also easily seen that K/ ~K 1is absorbing.
Hence K -K is a barrel, and therefore a zero-neighbourhood.
Remark: Incase A =B, the above corollary is due to Klee
((4)) . He applied in the proof another kind of an open mapping theorem

than our Lemma 2.

Proposition 2 . Assume that F and P are closed, that

E=F+ P, and that f is continuous. Then f admnits a positive and

continuous extension to E o

Proof. Let f bea positive, algebraic extension of f . Let

Is
.

—

<o

£ >0 be given, and choose a neighbourhood V such that if(y)a =
whenever y£¢FMWV . Using the positivity of T we find that if
x;, =x€F NV - PAV , then i?(x)\‘é Z . In virtue of the corollary of
Lemma 2, we can conclide that T 1is continuous.
Our next aim is to show that the proposition above can be extended to

the case where we only assume that F + P 1is a subspace of finite codimen-

sion. We need the following result, which has an interest on its own.

Propesition 3. If F and P are closed end F +P is a

linear subspace of finite codimension in E . then F + P dis closed.

Proof . First we assume that F + P is a hyperplane in E ; say

E=F+P+] a {. Let M=F +{ 'a .]. Then M is a closed subspace of

[

Ld

E . Define g on M by g(a) =1, g=0 on F. g is continuous,

since F is closed. We have that g(p) = O whenever p&PnM . Because

let p= Aa+y , with yéF . Then Ja=p-y&(P+Fnl a j? and

therefore > = 0 , and this means that g(p) = 0 » According to Proposi-

tion 2, g admits a positive and continuous extension to E . Hence, by
Proposition 1, g—1(0) +P=F + P is non-dense in E , and being a hyper-

plane F + P has to be closed.
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Asstme now that codim. (F +P) >1 . If F + P is not closed, then we

can find an a, & F + P\F + P . We shall show that this entails a contra-

diction, Put F =F +P , and let F, =7 a, J+F . Then F, cannot
be closed, because otherwise the hyperplane FO =F +P in F1 had to be

closed by the first part of the proofg Now { a, inP = -{O}- , and there-

fore P, = a, J+P isclosed ((1, p. 78)) . We also notice that

1 1

F1 =F + P1 « Assume that we have succeeded in the construction of elements

Bys ees 5 B closed cones P1, coe Pk and non-closed subspaces

Fo’ F1, ceo Fk such that

a.c F. \F 3 Fo=l a ]+.Fi_1 3 F.=F+P ; i=1, coo, ko,

- _T o —
Choose € Fk\Fk s and put Fk+1 i e Fk . Hence Fk =F + Pk

is a hyperplane in Since Pk is closed, we conclude as above that

F o
k+1

Fk+1 cannot be closed. The cone Pk+1 =1 8y }+ Pk is, however,

. T D) r
closed, since L a J/)Pk = -{O} «  Furthermore Fk+1 =

k+1

[ Beq :}+ F+ Pk = F+ Pk+1 o Thus the induction step is possible, and

we have constructed a strictly increasing sequence éFk§ of linear sub-
L

spaces F, of E such that FCF This contradicts the assumption that

k

F has finite codimension in E .

,l a

Corollary. If F+P is a subspace of finite codimension in

E and f dis continuous, then f admits a positive and continuous extension

to E .

Proof . Since F +P is closed, it follows from Proposition 2
that f admits a positive and continuous extension to F + P . Any con-

tinuous extension from F + P to E will then suffice.
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3. TWO COUNTEREXAMPLES

In this section we show that even if F is two-dimensional and F is
locally compact, the conclusion of Proposition 3 and its corollary is not
valid if we drop the assumption that F + P has finite codimension. As in

section 2 we require E to be complete and metrizable.

Proposition L4 . Assume that E is infinite dimensional.

Then E contains a closed, locally compact convex cone P with an e<P

r 3 . .
such that i e _J+ P is a non-closed linear subspace.

Proof. E contains an infinite dimensional convex and compact

subset K with O & K . We can for instance construct K in the follow-

-

ing way: Choose a sequence <x : such that x —> O and with
i n

x ¢ n=1, ...t infinite dimensional. Then JO[ 0 {x :n=1,...}

is compact, and hence ((1, p. 81)) the closed convex hull K~ of this set

is compact. In particular we can find an x in E such that —x:&;KO °
Then K = Ko + x has the stated properties. Let Q Dbe the cone generated
by K, thatis Q= {Ak: A2 0, k&K}| ,andput L=Q-Q . Since
K is a compact subset of the linear space L , it is well known ((5, po
341)) that Q is closed and locally compact in L . Choose V as a sym-
metric and convex zero-neighbourhood in L such that V nQ is ccmpacts
Put T=VNQ-VN"Q. Then T is a compact barrel in L . Therefore

L cannot be closed in E , because if otherwise, L had to be finite dimen-
sional. Choose e& L such that O& T + e , and let P be the cone gene~-
rated by T + e « Then P is closed and locally compact in E . Further-
more, [ e }+ P=1L since e is an order unit of P in L . This proves

our assertion, since L is not closed.

Corollary . Assuue that E is infinite dimensional. Then E

contains a closed locally compact convex cone P and a twe dimensional sub--

space F such that L =F + P is a non-closed linear subspace. Furthermore,




- =

- L3 . L’-v
there exicts a positive (snd continuous) linear functional £ or_ £, Such

. aumits no positive and continuous extension to L =

Proof. Let e and F be as in Propositiou ), and choose
a€] e 1+ P\(el*P). Let F be the space spanned by e and a , and
define f on F by f(a)=1, f(e)=0. Then £f=0 on P nF . Put
L= a4 e J+P. L is a linear space and L =F + P . Since
-il_‘ﬁ. j+PAL=L and [ e J+P= f—1(0) + P , the desired conclusion

follows from Proposition 1.
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