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1. INTRODUCTION 

The theory of r-ideals of PrUfer-Krull-Lorenzen ((1)) , ((2)) , ((3)) 

was developed in order to study the aritlnnetics of integral domains and or­

dered groups. It is a curious fact that until recently there has been made 

no serious attempt to pursue the success of this theory into the domain of 

general commutative algebra. In the book of Jaffard ((4)) there are a 

few scattered results in this direction, but we believe that ((5)) re­

presents the first systematic step in carrying out such a project. The 

article ((5)) only presented a selection of very elementary and classical 

results of commutative algebra within the framework of the theory of x­

ideals. But the results of that paper already indicated considerable fur­

ther possibilities as well as a gain in the understanding of the scope of 

some of the most basic results of commutative algebra. On the other hand 

it was equally clear that new axiome had to be added if further substantial 

progress was going to be made. One main obstacle seemed to be the lack of 

an appropriate substitute for the usual congruence modulo an ideal in a 

ring. The congruence introduced in ((5)) is a fairly natural one, but it 

does not reduce to the usual one in the case of rings. It therefore came 

as a considerable surprise when it turned out that this congruence combined 

with an extra condition is nevertheless able to take c~re of crucial addi­

tive arguments as well as argurr£nts involving residue class rings. The pur­

pose of the present comm~~cation is to exhibit some of the first consequen­

ces of this extra condition, which we shall term the additivity axiom. 

In the first section we recall some of the most fundamental definitions 

concerning x-systems. We give in particular the definition of a homomorphism 

and relate this notion with that of a congruence modulo an x-ideal. We 

next exhibit the verious forms of the additivity axiom and show its intimate 

connection with the canonical homomorphisms, with the operations on x-ideals, 
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with modularity, with the second isomorphism theorem and with Noetherian-

ness. As an example of a slightly more advanced application of the addi-

tivity axiom we prove a wide generalization of Matusita9 s basic result on 

Dedekindian rings. 

2. SYSTEMS OF IDEALS, HOMOlviORPHISMS AND CONGRUENCES 

We shall say that there is defined an (integral) x-s:v..st~ or an ideal 

_!wstem in a commuta.ti ve semi-group S if to every subset A of S there 

correaponds a subset 

I A £A 

A of S 
X 

X 

such that 

II A c B ::===:::} A ~- B 
-X X X 

III AB c B ('I (AB) 
x- X X 

We shall sometimes use the letter x as name of the given ideal system as 

for instance in Theorem 2A below. If A = A we shall say that A is an 
X 

x-·-ideal and we shall refer to the passage from A to A as an x-operation 
X 

and say that A is generated by A • 
X 

All the x-systems considered here 

are supposed to be of finite ~racter in the sense that the x-ideal gener-

ated by A equals the set-theoretic union of all the x-ideals generated 

by finite subsets of A • The operations of x-union (resp. x-product) de-

noted by V (resp. o ) are defined by Au B = (AuB) (reap. Ao B = 
X X X X X 

(A•B)x ) • The given x--system is said to be principal if {a fx = S•a 

for every a E. S • If S is a semi-group with cancellation we can define 

a fractionary x-s:\rstem in the group of quotients of S • 

Let s1 and s2 be two semi-groups each of which is equipped with an 

x-system denoted respectively by x1 and ~ • A mapping ~ of s1 into 
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s2 is called an (x1 ,x2 )-homomor~hism or shortly a homomorphism if 

'f(ab) ---"(a) O(b) 
! I 

20 is equivalent to saying that the inverse image of an x2-ideal in s2 

is an x 1-ideal in s1 Given an x-system in s and an x-ideal A c s x-

we say that b and c are x-congruent or simply congrue~ modulo A and 
X 

lNI'ite bsc(mod A ) whenever (A ,b) = (A ~c) • In the case of ordinary 
X X X X X 

ideals in rings this congruence is coarser than the usual one and it is 

therefore somewhat surprising that it can nevertheless be used to establish 

generalizations of ring-theoretic results. The essential properties of this 

congruence and its relation to the notion of an (x1,x2)-homomorphism is given 

by the following 

Theorem 1 • 1. The relation t: c(mo~oAx) is a congrgence re­

lation in S i, thus giving_rt§e to a quotient" semi-groul2...-.§LAx and a canon-

ical multiplicative homomorphism Cf : S ~ S/A • 
x--

2. The ~~mi-groS2 

S = 9.fA has a zero element and Ker'-P =A o 
X I ---:x:-- J. The fami],x of all sets 

B ~S such that 'f-1 (B) is an x-ideal in S define§ an ideal sy_§_t;em in 

s denoted by~ Relative to this igeal syste~ SD is an (x~J-homomor-

homomorphism. :X is called the cano_l~d§..§-1 s_ystem i;t:L.E .. ...:, 

canonical homomorRhisnL 1P ~~2£lishes a bij§ction between the x-id§als 

of _ S __ containing Ax ~e :X:;ideals of S in th,e wa;y_ that B i s an 

~~al in S if a~y if_it is_:the_di~_j,m.~...1..Y:._ cp of an x-ideal 

A 
X 
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3· ADDITIVE IDEAL SYSTN~ 

If R is a commutative ring and Ot. and l::r are two ideals in R 

then any element in the ideal·- theoretic union ( s1.-un) of Ol. and /:- is 

congruent to a suitable element in ii 
for the ordinary congruence modulo QZ 

modulo Of.., • Since this is valid 

it is also valid with respect to 

the coarser d-congruence obtained by specialization from the general defini-

tion of an x-congruence in the preceding paragraph. This leads us to the 

following 

D e f i n i t i o n An x-system is said to be additive if the follow-

ing condition is satisfied: 

A. To any element c E- A v B there corresponds an element bE:. B such 
X X X X 

that c=:b(modA). 
X 

Most of the usual ideal systems in rings, semi-groups and lattices are addi-

tive. In order to show the existence of ideal systems which are not additive 

one can take the m-system in certain finite multiplicative lattices. 

T h e o r e m 2 o With the same notations as in Theorem 1 the follow-

ing p!2£erties are equivalent 

A. x is additive. 

B. dJ (A U B ) = CD (B ) T X XX T X 
for all A 

X 
and corresponding canonica±_ )0 

Co The direct image of an x-id~l in S by any canonical homomorphism 

is_ an x-ideal in S • 

D. Th~Q12eration commutes with all canonical homomorphisms. i.e. 

CO(B ) = (<P (B)) 
I X I -, . X 

E. Every canonical homomorphism is distributive with respect_}o the 

x-union of x-ideals: <j?(B t.! C ) = cO(B ) V c(I(C ) • 
J x xx T x xl x 
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x-union of arbitrary sets: 90 (B uxC) = Cf (B) vx 'f(C) • 

G. Every canonical homomor~hi~m is distributive with res ect to the 

~~cation of x-ideals: CV(B o C ) = oJ(B )o C£1 (C ) • 
! X X X T X x_7 X 

x-multiRlication of arbitrary ~bsets of S : <f(Bo C) = 
I X 

cp (B)o_f(C) • 
, X 

I. A Ax \.JxB1Bx The canonical map x/A n B ·---) is a sur .j ection. 
r X X 

The A 
~ 

A x vxBx/B canonical maR xjA "B is a bi iection. 
X X ' . -, X 

J. 

Remark. We can of course also formulate the additivity axiom 

without using congruences or canonical homomorphisms in the following way? 

If cEA v B there exists a bEB such that (A ,b) =(A ,c) • In 
X XX X X X X X 

this form the additivity condition was also discove:.rsd independently by 

Azriel Rosenfeld and Erling Hansen. 

4. MODULARITY AND NOETPJt~IA1~ESS 

An x-system is said to be modular if its family of x-ideals forms·~ 

modular lattice under inclusion. The property of m)dularity is of i.;11port,-

ance in various connections, but is not satisfied for all x-systems. It 

is therefore of interest that we have the following 

T h e o r e m 3 • 

P r o o f If B c.A we have to show that A 0 (B v C ) S 
x- X X X X X 

B v (A nC). Suppose that aE.A f'.(B uC). From aEB v C and 
X X X X X X XX X XX 

additivity we conclude that there exists an element c E. C such that 
X 

as: c(mod B ) • This ii11plies c E (B 9 a) and c E.: A f\ C 
X X X X X 

Using this 
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together with a -;;. c (mod B ) ._ X we obtain ae-(B ,c) c.B u (A nC). 
X X- X X X X 

In ( ( 5)) we defined S as x-Noethe:r.io.r~ (we shall in this case also 

say that x is Noetherian) if x is of finite character and the following 

two conditions are v,:.~,lid. 

I. S satisfies the ascending chain condition for x-ideals. 

II. Every irreducible x-ideal in S is prlinary. 

It is a fundamental fact in ordinary ideal theory of rL~gs that I 

implies II • This i~ not valid for all x-systems of finite character as 

was shown by an example in ( ( 5)) • But we ha.ve the following 

T h e o r e m 4 • The impJi..~ion I ~ II is valid for an;L_"Qr:!n-

_q_i§l and add:jj:,iv~ x-sy_stem of finite _E,;,haract\2!-! 

In view of the results of ((5)) , the decomposition theorems of E. 

Noether therefore hold for all principal and additive x-systems of finite 

chara,cter. 

5. MATUSITA SYSTEMS 

Let S be a semigroup with cancellation. We define an x-system as a 

lhtusit.a~tem if every x-·ideal in S can be written as an x-product of 

prime x-ideals. We then have the following 

T h e o r e m 5 • An additive and fr2ctional M.-1.tu~.ta sy:stem is Dede--

P r o o f : The present proof follows closely that of Zariski-Sa.muel 

in the ca;;oe x = d • The five simple preparatory lemmas given in Zariski-

Samuel are all of a multiplicative nature and their proofs apply verbatim 

to the general case of x-ideals (prop. 27 in ((5)) generalizes Lemma 3). 
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We refer below to these lemmas by using the same numbering as in Zariski-

SamuelG We first show that every invertible proper prime-ideal in S is 

max:i..mal. Denoting the quotient semi-group 

class of a by a we claim that 

( 1) {P ,a)~ X X 
X 

= Sa 

s lp 
I X by S ru!d the residue 

wbenever af-P • Let cE(P ,a) • From the fact that X is supposed to 
X X X 

be principal and additive it follows that there exists an s t S such that 

c:: sa{mod P x) , i.e. c = 8 a • This shows that the left-hand side of ( 1) 

is contained in the right-hand side. The reverse inclusion is a consequence 

of Sa = (P ,a) • Since x is supposed to be a Matusita system we have 
X X 

the decompositions 

(2) (P ,a) 
X X 

and = 1i Q(j) 
. 1 X J= 

where the p(i)vs and Q(j)9s are prime-x-ideals and the product sign de-
x X 

notes the x-product. 

(3) S•a = 

where the ideals 

n p(i) n X /P 
. 1 X l= 

and 

p(i) (•) 
x /Px = 'fp (Pxl ) 

X 

x-ideals in S (by Theorem 3 C). Since 

(4) --2 S a 

and 

·nm Q(j) 
X /P 

, 1 X J= 

Q(j) ( •) 
x /PX::::: cpp (~J ) 

X 

are prime 
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it follows from Lemma 5 on comparing (3) and (4) that the x-ideals 

Q(j) 
x /P are the x-ideals 

X 

p(i) 
x /P each repeated tvdce. Thus m = 2n and 

X 

we can renumber the ~j) such that 
Q(2i) 0(2i-1) p(i) 
x /P = 1c /P = X /p and 

X X 1 X 

Q(2i) = Q(2i-1) = p(i) 
X X X 

thus also since any x-ideal containing P is 
X 

a union of equivalence clasoes modulo p 
X 

(Theorem 1). Applying this to 

(2) we obtain (P ,a2 ) = (P ,a)2 which implies 
X X X X 

P2 v (Po la't) v {a2} = (P2 ,a) • If therefore 
X X X l_.J X X X 

p = 
X 

C£ p 
X 

2 (P ,a) = 
X X 

the assumption 

in the theorem implies the existence of an s E.. S such that 2 c-:::::. sa(mod P ) • 
- X 

Hence c·:: sa(mod Px) and saE:Px • Since Px is prime and arf.Px we 

have sEP • We obtain (P2 ,c) = (P2 ,sa) c;: (P2 ,aP ) for all c~P , 
X X X X X X XX X 

i.e. P ~ (P2,aP ) • Since the reverse inclusion is obvious we have 
X X XX 

P = (P2 ,aP ) = P o(P 1.1 {al) • If P is invertible we can multiply 
X X XX X X X :J X 

this equality by P-1 and we obtain S = (P ,a) which shows that P is 
X X X X 

maximal. According to Lemma 5 we only need to prove that every proper prime 

x-ideal P 
X 

is invertible. Let bEP and write (b) = Sb = 
X 

TrP(i) ~ p 
.' 1 X X 
l= 

This implies p(i)c P for a suitable i 0 By Lemma 4 
X -X 

every P(i) is invertible and hence maximal according to the first part of 
X 

the proof. Thus p(i) = p 
X X 

for some and P is invertible. 
X 

The 

theorem now follows from Lemma 5. 

C o r o l l a r y 1 • (Hatusita) If every pro~r ideal in an in-

tegral domain R can be written as a product of prime ideals then thi,s 

C o r o l l a r y 2 • ll every proper s-ideal in an integral domain 

R can be writt~l:L..§.§._CJ. r.roguct of prime_.§.::ideals then R is a discrete 

va.luatiqn ring of rank one. 
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Using the results on x-Dedekindian semi-groups which was established 

in ((5)) the following result is now immediate. 

T h e o r e m 6 _1.et S be a semi-group with cancellation law i_g_ 

which there is ..Ki.ven an additive fr§ctions..ry x-system. Then the following 

J2rOperties m:e equivalent 

1. x i.s a Jl.iatusita systP-m. 

2. Eve1::y x-iden.l in S can be written uniquely as an x-product of 

prime x-ideals. 

3. The fractionary x-ideals form a group under x-multiplicat.i£!l.:, 

4. S is x~Dede1indian (i.e. satisfies the three Noetherian axioms)~ 

P r o o f : 1 ~ 2 has been established above. 2 -=-~ 3 : The 

first part of the proof of Theorem 11 p. 274 in Zariski-Samuel carries over 

verbatim to the present case. 

and 4 ~ 1 is obvious. 

3 -~ 4 follows from Theorem 25 in ((5)) 
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