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1.  INTRODUCTION

The theory of r-ideals of Priifer-Krull-Lorenzen ((1)) , ((2)) , ((3))
was developed in order to study the arithmetics of integral domains and or-
dered groups. It is a curious fact that until recently there has been made
no serious attempt to pursue the success of this theory into the domain of
general commutative algebra. In the book of Jaffard ((4)) there are a
few scattered results in this direction, but we believe that ((5)) re-
presents the first systematic step in carrying out such a project. The
article ((5)) only presented a selection of very elementary and classical
results of commutative algebra within the framework of the theory of  x-
ideals. But the results of that paper already indicated considerable fur-
ther possibilities as well as a gain in the understanding of the scope of
some of the most basic results of commutative algebra. On the other hand
it was equally clear that new axiome had to be added if further substantial
progress was going to be made. One main obstacle seemed to be the lack of
an appropriate substitute for the usual congruence modulo an ideal in a
ring. The congruence introduced in ((5)) is a fairly natural one, but it
does not reduce to the usual one in the case of rings. It therefore came
as a considerable surprise when it turned out that this congruence combined
with an extra condition is nevertheless able to take care of crucial addi-
tive arguments as well as arguments involving residue class rings. The pur-
pose of the present communication is to exhibit some of the first consequen-
ces of this extra condition,; which we shall term the additivity axiom.

In the first section we recall some of the most fundamental definitions
concerning x-systems. We give in particular the definition of a homomorphism
and relate this notion with that of a congruence modulo an x-ideal. We
next exhibit the various forms of the additivity axiom and show its intimate

connection with the canonical homomorphisms, with the operations on x-~ideals,
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with modularity, with the second isomorphism theorem and with Noetherian-
ness. As an example of a slightly more advanced application of the addi-
tivity axiom we prove a wide generalization of Matusita's basic result on

Dedekindian rings.

2.  SYSTEMS OF IDEALS, HOMOMORPHISMS AND CONGRUENCES

We shall say that there is defined an (integral) x-system or an ideal
system in a commutative semi-group S if to every subset A of S there

corresponds a subset Ax of S such that

II ACTB =—> A B
X X X

IIT ABXg B N (AB)X

We shall sometimes use the letter x as name of the given ideal system as
for instance in Theorem 2A below. If A = Ax we shall say that A is an
x-ideal and we shall refer to the passage from A to AX as an x—operation
and say that Ax is generated by A . All the x-systems considered here

are supposed to be of finite character in the sense that the x-ideal gener-

ated by A equals the set-theoretic union of all the x-ideals generated
by finite subsets of A . The operations of x-union (resp. x-product) de-
noted by i{x (resp. o ) are defined by A\{XB = (AUB)X (resp. onB =
(AoB)X ) . The given x-system is said to be principal if {a}k = Sea
for every agS . If S 1is a semi-group with cancellation we can define

a fractionary x-system in the group of quotients of S .

Let S1 and S

x-system denoted respectively by x

5 be two semi-groups each of which is equipped with an

1 and Xy e A mapping @ of S1 into
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S, is called an (X‘I ,xz)—homomorphism or shortly a homomorphism if

o

1 @lan) = (@) ()

2 gl ) S (@),

2% is equivalent to saying that the inverse image of an x2—ideal in 52

is an x1—ideal in S‘I

we say that b and c¢ are x-congruent or simply congruent modulo Ax and

o Given an x-system in S and an x-ideal Axg S

write b=c(mod A ) whenever (A _,b). = (A ,c) . In the case of ordinary
pd x’ 7 'x x® T 'x

ideals in rings this congruence is coarser than the usual one and it is

therefore somewhat surprising that it can nevertheless be used to establish

generalizations of ring-theoretic results. The essential properties of this

congruence and its relation to the notion of an (X,[ 9Xn )-homomorphism is given

by the following

Theorem 1. 1. The relation b= c(mod AX) is a congruence re-

lation in S , thus giving rise to a guotient semi-group S/’Av and a canon-

ic_al multiplicative homomorphism Cr_'/ : S — S/A)i . 2. The semi-group

S = S/AX has a zero element and Keri? = A] 0 3. The family of all sets

BSS  such that ﬁp‘1(§) is an x-ideal in S defines an ideal system in

S denoted by ¥ . Relative to this ideal system, :?/ is an (x,%)-homomor—

phism and ¥ is the finest ideal system v such that & is an (x.y)-
{

homomorphism. X is called the canonical ideal system in S . Lo The

canonical homomorphism SO establishes a bijection between the x-ideals

of S containing A _and the ¥-ideals of S in the way that B is an

T-ideal in S if and only if it is the direct image by C{J of an x-ideal

containing AX .
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3. ADDITIVE IDEAL SYSTEMS

If R is a commutative ring and U and 4 are two ideals in R
then any element in the ideal-theoretic union (sum) of Ol and é— is
congruent to a suitable element in Z)- modulo Of . Since this is valid
for the ordinary congruence modulo Cz it is also valid with respect to
the coarser d-congruence obtained by specialization from the general defini-
tion of an x-congruence in the preceding paragraph. This leads us to the

following

Definition: An x-system is said to be additive if the follow-

ing condition is satisfied:

A. To any element c&Ax UxBx there corresponds an element be Bx such

that c=b(mod AX) o

Most of the usual ideal systems in rings, semi-groups and lattices are addi-
tive. In order to show the existence of ideal systems which are not additive

one can take the m-system in certain finite multiplicative lattices.

Theorem 2 . With the same notations as in Theorem 1 the follow

ing properties are equivalent

A, x is additive.

B. (F(AX UxBx) = «';D(BX) for all AX and corresponding canonical S(J .

Co. The direct image of an x-ideal in S by any canonical homomorphism

is an x-ideal in S &

D. The x-operation commutes with all canonical homomorphisms, i.e.

P = (FE_ .

E. Every canonical homomorphism is distributive with respect to the

x-union of x-ideals: ?(Bx chx) = ??(BX) US_CC}C?(CX) .
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F. FEvery canonical homomorphism is distributive with respect to the

x—union of arbitrary sets: ~:f} (B UXC) = gp(B) w_ 51)(0) .
| X

G. Every canonical homomorphism is distributive with respect to the

x-multiplication of x-ideals: ¢(BXOXCX) = ?(Bx)o_}_{gﬁ(cx) .

H. Every canonical homomorphism is distributive with respect to the

x-multiplication of arbitrary subsets of S QD(BOXC) =
?

@ (B)o_9(0) .

I. The canonical map Ax/Axn Bx — Ax UXBX)/BX is a surijection.

Je. The canonical map AX/A nB —> Ax UXB:zg/B is a bijection.
x X - 7 X

Remar k. We can of course also formulate the additivity axiom
without using congruences or canonical homomorphisms in the following ways
If ceh uB  there exists a bE&B_ such that (Ax,b)X = (Axsc)x « In
this form the additivity condition was also discoverzsd independently by

Azriel Rosenfeld and Erling Hansén.

L.  MODULARITY AND NOETHERIANNESS

An x-system is said to be modular if its family of =x-ideals forms2a
modular lattice under inclusion. The property of mdydularity is of importr
ance in various connections, but is not satisfied for all x-systems. It

is therefore of interest that we have the following

Theorem 3. Every additive x-system is modular.

Proof: If BeA wehave to show that A n(B v C ) &
x="x X Vx ox X

BXUX(AXN CX) - Suppose that ae€h n (Bx ube) . From a€B_u O and
additivity we conclude that there exists an element Cécx such that

- \ s s . - . . . L
a = c(mod BX/ o This implies c& (Bx9a)x and cLAXn CX Using this
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together with a=c(mod Bx) we obtain ag (Bx,c:)xg__'.Bx \_;X(Axn, Cx) .

In ((5)) we defined S as x-Noetherion (we shall in this case also
say that x is Noetherian) if x is of finite character and the following

two conditions are wvalid.

I. S satisfies the ascending chain condition for x-ideals.

II. Every irreducible x-ideal in S is primary.

It is a fundamental fact in ordinary ideal theory of rings that I
implies II . This i® not valid for all x-systems of finite character as

was shown by an example in ((5)) . But we have the following

Theorem 4 . The implication I == IT is valid for any prin-

cipal and additive x-system of finite character.

In view of the results of ((5)) , the decomposition theorems of E.
Noether therefore hold for all principal and additive x-systems of finite

character.

5.  MATUSITA SYSTEMS

Let S be a semigroup with cancellation. We define an x-system as a

Matugita system if every x-~ideal in S can be written as an x-product of

prime x-ideals. We then have the following

s

Theorem 5. An additive and fractional Matusita system is Dede--

kindien, i.e. the given product representation is uniguce.

Pr oo f : The present proof follows closely that of Zariski-Samuel
in the case x =d . The five simple preparatory lemmas given in Zariski-
Samuel are all of a multiplicative nature and their proofs apply verbatim

to the general case of x~-ideals (prop. 27 in ((5)) generalizes Lemma 3).
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We refer below to these lemmas by using the same numbering as in Zariski-
Samuel. We first show that every invertible proper prime-ideal in S is
maximal. Denoting the quotient semi-group S,’PX by S and the residue

class of a by 3 we claim that

wnl
o

(1) (Px’a)x/Px

whenever aéPx . Let cgg(Px,a)x . From the fact that x is supposed to
be principal and additive it follows that there exists an se&S such that
= sa(mod PX) s ieec T=F T . This shows that the left-hand side of (1)
is contained in the right-hand side. The reverse inclusion is a consequence
of Sa= (Px,a.)x . Since x 1is supposed to be a Matusita system we have

the decompositions

) ua), = TP ama (L) J‘[Qw

i=1

where the P}((l) *s and Q( 3) s are prime-x-ideals and the product sign de-

notes the x-product.

(3) Sa = lﬂP;(cl)/P and TR = JQ x /P,

where the ideals PJ(cl}PX = 79P (PJ({i)) and Qz(cj}PX = S@P (Q;(;j)) are prime
b'e

X-ideals in S (by Theorem 3 C). Since
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it follows from Lemma 5 on comparing (3) and (4) that the T-~ideals

old) p(1)

pd /Px are the X-ideals '"x /Px each repeated twice. Thus m = 2n and
(21) (2i-1)  p(1)

we can renumber the Q}(C‘j) such that Qx /Px = % /Px ='x /PX and

thus also Q}(fl) = Q}(Czl’_” = P}(Cl) since any x-ideal containing P_ 1is

a union of equivalence classes modulo Px (Theorem 1). Applying this to

fl

. 2 2 . . . 2
(2) we obtain (Px,a )x (Px,a.)X which implies Px = (PX,aL)X =

P u (B {a3) u, {7}

in the theorem implies the existence of an s&S such that c= sa(mod Pi) .

I

2 ) .
(Px’a)x . If therefore cg Px the assumption

Hence = sa(mod Px) and saePX . Since PX is prime and a&PX we

. 2 . 2 o o2
have s€P_ . We obtain (Px’c)x = (Px,sa.)X < (Px’an)x for all cgP
ieeo PXG (Pzzc’an)x . Since the reverse inclusion is obvious we have
2 y .. . .
PX = (Px’an)x = Pxo(Px U, { a}) . If Px is invertible we can multiply
this equality by P;1 and we obtain S = (P,,a)  which shows that P_ is

maximal. According to Lemma 5 we only need to prove that every proper prime

x~ideal BX is invertible. Let bgggx and write (b) = Sb =

n . ;
nP(l) € P . This implies P(I)C:P for a suitable i . By Lemma 4
11 X b'd X =x

is invertible and hence maximal according to the first part of

every P}(cl)

the proof. Thus Pil) =P for some Pil) and P_ is invertible. The

theorem now follows from Lemma 5.

Corollary 1. (Matusita) If every proper ideal in an in-

tegral domain R can be written as a product of prime ideals then this

decomposition is unique.

Corollary 2 . If every proper s-ideal in an integral domain

R can be written as a product of prime s-~ideals then R dis a discrete

valuation ring of rank one.
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Using the results on x-Dedekindian semi-groups which was established

in ((5)) the following result is now immediate.

Theorem 6. Let S be a semi-group with cancellation law in

which there is given an additive fractionary x-~system. Then the following

oroperties are equivalent

1o x dis a Matusita system.

2. Hvery x-ideal in S can be written uniquely as an x-product of

prime x-ideals.

3. The fractionary x-~ideals form a group under x-multiplication.

Lo S is x-Dedekindian (i.e. satisfies the three Noetherian axioms).

Proof: 1 == 2 has been established above. 2 ==>3 : The
first part of the proof of Theorem 11 p. 274 in Zariski-Samuel carries over
verbatim to the present case. 3 = I, follows from Theorem 25 in ((5))

and 4 =» 1 is obvious.
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