A NORM PRESERVING COMPLEX CHOQUET THEOREM

Otte Hustad

Introduction. We consider a compact Héusdorff space X and a linear
subspace B of the normed space C(X) consisting of all continuous,
complex valued functions on X . Assume that B separates pointé on
X and containg the constant functions. Let 1 be a continuous linear
functional on B . Then the Bishop~de|Leeuw.version of the Choquet |
theorem (see e.g. [5]) states that there exists a complex‘measure m
on X whioch is quasi-supported by the Choquet boundary of B and
which represents 1 in the sense that 1(f) =ngﬂm whenever f ¢ B .
In the case where 1 is non-negative, the measure m is.obtained
from the geometric Choquet theorem with help of the evaluation map
v 3 X —>8" (where S is the unit ball in the dual of B and where,
by definition, v(x)(f) = f£(x) for any f € B)s 1In this case it is
even true that m and 1 have the same norm. The genéral case fol-
lows from the non-negative case by decomposing 1 in the form
1= (l1 - 12) + i(l3 - 14) ; but it does not follow from this de~
composition that the representing measure has the same norm aé the
functional 1 .

It is the aim of the present paper to prove that such a repre-
senting measure indeed exists. In outline, the idea behind the proof
is as follows: Let T Dbe the set of all complex numbers of absolute

value one, and define the map
VeTxX-38 5 (t,x) = tv(x) .

Applying the geometric Choguet theorem to 1 € SiE (we can assume that
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Il =1), we get with help of V a measure q on T x X .

Then the meagure m on X , defined by the formula

n(g) = Sta(x)dalt,x) , g€ o(x),

will have the sought for properties.

1. Terminology and statement of the theorem. We retain the notation

of the introduction. A measure m is always a Radon measure on
gome compact space Y , i.e. a bounded linear functional on c(Y)
(ory, if m is a real measure, on the space CR(Y) of all real con-
tinuous functions). The norm of m is denoted llm\l » Observe

that |Im|l = |m|(Y) , where |{m| denotes the total variation of m .

We say that m is quasi-gupported by a subset M of Y if

{m{(G) = 0 whenever G i a compact Gy-sot in Y disjoint from M .
If X is a convex sect, then ext K is the set of the extreme points
of K. We lot K(B) denote the set of all L Ex s* such that

B
1l =1 =1(1) . The Choguet boundary of B, /is’then, by definition,

the set v_1(ext K(B)) .

We can now state the theorem we are going to proves

THEOREM. Let X be a compact Hausdorff space, let B € C(X) be a

linear subspace which separates points and contains the constant func-

tions. Let 1 be a continuous linear functional on B . Then there

exlsts a complex measure m on X with the following properties:

(i) m is quasi-supported by the Choquet boundary of B

(ii) The norm of m equals the norm of 1 .

(1i1) Sfam =1(2) , f£¢3B.

The proof is given in section 3.
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2, Three lemmata. We shall always assume that ¢ is equipped

with the weakﬁmtopology. Hence S is a convex compact set, and,
since B separates points, the evaluvation map v 3 X > s* is a

homeomorphism into s* . It is an immediate consequence that also
T:PxX=38"  (4,x) > tv(x)

is a homeomorphism into s* . (Here we have used the fact that B
containe the constant functions.) The main reason for introducing
tho map V is the fact, to be found for instance in {4, p. 441,

proof of Lemma é], that
(1) ext & C V(T x X)

with
In analogy/the definition of the Choquet boundary, we define

(2) o(B) = v (ext, s%) .

The connection between r(B) and the Choquet boundary of B is given

by the following elementary
LEMMA 1.
(3) r(B) =T x?)Bx .

PROOF. We first want to establish the following, probably well

known, relation
(4) ext K(B) = K(B) N ext 8~ .

Since the relation 2D is clearly true, we have to show that

ext K(B) C oxt s* .
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Let k € oxt K(B) , and assume
(5) k=ra+ (1-2)b, a,be s, 0« 1r<i.,
Then we get
1= Il € wilall + (1-) |l Bl

and since 0 <41« 1 and Nall , IIbll 41, we can conclude that

1.

u

fall = {l il

Now k € X(B) and henco we get from (5)

-

1= k(1) = ra(1) + (1-r)u(1)
< rla(1)] + (1=x)lv(1)]
It follows that Ja(1)| = |b(1)l =1, and since 1 is a convex

combination of a(1) and b(1) , we can conclude that a(1) = b(1) =1 .
Therefore a,b € X(B) s ond hence a = b . This shows that
k€ ext 5 , and (4) is thus proved., We next want to prove the

relation

(6) <{tp st & T, p € ext SE} C oxt s* .

In facty; let t &€ T and pé€ oext Sh s and assume

tp =ra + (1-r)b , a,be 8, 0<xr<1.
Since It! =1, we get that

p = r(t_1a) + (1-r)(t_1b)

where + 'a , ™' €s® . Hemce t'a = 47'p , and this shows that

tp € ext S .
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We are now rcady to prove (3). Assume first that (t,x) & T x'aBK .
Then v(x) € oxt K(B) , and it follows from (4) and (6) that

tv(x) € oxt §° . This means that (%,x) € r(B) + Assume converscly
that (t,x) € »(B) , or equivalently that tv(x) € ext S o It
follows from (6) that v(x) = t-1tv(x) € oxt S© . BSince clearly
v(x) € X(B) , wo get from (4) that v(x) € ext XK(B) . This implies
that (t,x) € T x 05X -

As an immediate consequence we get the following

COROLLARY. If A is a subset of X\ EEX y then T x A is a

subset of T x X \r(B) .

Now let £ € C(X) , and define
Lf ¢ Tx X—=>C & (t,x) = t£(x) .
Then Lf is continuous, and

(7) Hoell = sup  |wo(x)) = Wl o
(t,x)eTxX

It follows that the map
Ls X)) =0(rxXx): £f—=L(£)

is linear and isometrice. Consider the adjoint map

I s (T xX) D¢™(X) tm—=>ILm=moL,

% . .

Hence I'm is a complex measure on X whenever m is a complex
.. E . .

measure on T x X ., To be more explicit, L'm ig given by the

formula

(8) 1¥n(g) = § te(x)am(t,z) , £ € o(x) .
TxX
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Applying (7) we get, for any measure m on T x X

(9) B %mll € dnmll o

LEMMA 2. Let m be a complex or real mcasurc on T x X ; and

let Gc X be a compact G,-set o Then

(10) [2¥ni(¢) ¢ Iml(T 2 Q) .
PROOF, Let f € C(X) and define

p(m)(2) = § 2(x)aim|(t,x)

TxX

Then the map

p(m) s C(X) =3 C ¢ £~ p(m)(£)

is a bounded positive lincar functional on G(X) « This means that

p(m) is a positive measure cn X . Notice that for any f € C(X)
(11) |2*n(e)] =1 § e(x)am(t,x)|
TxX

¢ S leol afnf (4yx) = p(m)(1 1) »
TxX

We now make appeal to a lemma in CB; Pe 54 Lemmg é] to assert that
IL*m}(m) = sup{fL*m(hf)! : h € ¢(X) & lnll ¢ 1} .

When we combine this equation with (11) we get

(12) 5% (121) € p(m)(1£1) , £ 6 o(x)

It follows, in particular, that p(m) - 11¥m| is a positive measure
on X .

Let {Gn} be a decreasing sequence of open sets in X such

m ———
that G =0\ Gn « Choose continuous functions fn : X =2 [0, such
1
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that fn =1 on G and fn = 0 outside Gn « Applying the
dominated convergence theorem to the positive measure p = p(m) ;

we get

(13) p(m)(@) = Llim Sf dp = lim g f o pr,dlm] ,
n n 2
n= oo n-y oo

where pr, is the second projection
pr, + T x X —>X : (t,x) = x

Obgerve that the sequence {fn o pr2} converges boundedly pointwise

to the characteristic funotion of T x G » Hence we get from (13)
p(m)(a) = Iml(T x @) .

From this equation, together with (12), we get
| 1%l (@) ¢ p(m)(@) = Inml (T x @) .

Thus we have proved (10).

LEMMA 3. If m is a measure on T x X guasi-supported by =(B) ,

then L'm is quagi-gupported by EBX .

PROOR. Let G be a compaoct Gd~set in X disjoint from z%X .
It follows from the Corollary of Lemma 1 that T x G is disjoint from
r(B) . Since T x G is a compact Gd~set , we get from Lemma 2

0% {1%ml(a¢) € Iml(T x @) =0 .

3. Proof of the theorem. We can assume without loss of generality
that tho given 1 satisfies 1] =1 . Honce 1€ §*, and it

follows from the geometric Chogquet theorem (see o.ge [5, pe 3¢} ) that
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. # . .
ere oxists a probability moas p on 8 which vanishes o
there at probabilit asure 3 hich i n any

Gduset digjoint from ext g* , and such that

(14) 1(u) = { a(g)aple) , we B,

where we have defined for any u & B

]

s 8 ~-30:g—glu) .

Q

We can oven assert that

(15) p(8° \ V(T x X)) = 0,

02
b4

becauso it follows from (1) that ozt 8" is contained in tho compact
set V(T x X) .

As a oconscquence of (15) we can and shall congider p as a mcasuro
on V(T x X) « Dofinc the moasure q on T x X as the image of

p by v Hence, by definition,
a(f) = pl£ 0V ), fe c(rxX).

Then g is a probobility measure on T x X , and it ie known (see
e.ge 12, Do 75]) that o subsot A of T x X is g-integrable if and

only if V(A) is p-integroble, anl in that case

(16) a(a) = p(v(a)) .

We now claim that ¢ i1is quasi-supported by r(B) o In fact, let
G< T x X bea compact Gy~sot disjoint from r(B) . Choose open
sets Gn, n=1y2yeee in T x X such that G<=?§ Gn « It follows
that '

w(e) = A(a,)
1

where V(Gn) is open in V(T x X) . Hence therc cxists open sots
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e o2
U, in S such that V(Gn) =V(T x X)N U, . Put U= r\Uh . Then

1
%

U dis a G,-set in S and

d

(17) v(g) = V(P xX)NT .,

Since V(@) is disjoint from ext 8 , we get from (17) that U is
disjoint from ext S—

Applying (16) and (17) we therefore get
0 £ q(6) = p(v(c)) € p(V) =0 .

This shows that q is quasi-supported by =(B) .
Put m = Lﬁq « It follows from Lemma 3 that m is quasi-supported

by DBX , and (9) shows that

(18) Mol € Naf] =a(1)=1.

Let uwé& B . Since U o V(t,x) = tu(x) , we get from the definitions,

and from (14) that

1

m(u) = L¥q(u) = & i 0V dgq = S foVoV ' dp-=1(u).

This means that m is equal to 1 on B . In particular, we get
1= il ¢ Umll .

This shows, together with (18), that {lml\ = W 1H . The measure m

has thus all the required properitics.

RIMARK. Let P C.QEX be a compact set with the following properiy:s
If m 1is a measure on X orthogonal to B and quasi-supported
by 'DBX , then |m|(F) =o0 .

It is then true that F is an interpolation set, which means

that every continuous function on P can be extended to a function




on X
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which belongs to B . This is a sharpening of a theorem of

Bishop [{]. To prove this statement one has only to replace the

Hahn=Banach theorem in Bishop's original proof with the theorem above.

Te

2
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