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Introduction. We consider a compact Hausdorff space X and a linear 

subspace B of the normed space C(X) consisting of all continuous, 

complex valued functions on X • Assume that B separates points on 

X and contains the constant functions. Let 1 be a continuous linear 

functional on B • Then the Bishop-de.Leeuw version of the Choquet 

theorem (see e.g. [5]) states that there exists a complex measure m 

on X which is quasi-supported by the Choquet boundary of B and 

which represents 1 in the sense that l(f) = S fdm whenever f E:. B • 

In the case where l is non-negative, the measure m is obtained 

from the geometric Choquet theorem with help of the evaluation map 

v 1 X~ s* (where s* is the unit ball in the dual of B and where, 

by definition, v(x)(f) = f(x) for any f ~ B). In this case it is 

even true that m and 1 have the same norm. The general case fol

lows from the non-negative case by decomposing 1 in the form 

1 = (11 - 12 ) + i(l3 - 1
4

) ; but it does not follow from this de

composition that the representing measure has the same norm as the 

functional 1 • 

It is the aim of the present paper to prove that such a repre

senting measure indeed exists. In outline, the idea behind the proof 

is as follows: Let T be the set of all complex numbers of absolute 

value one, and define the map 

V : T x X-? s* : ( t,x) ~ tv(x) • 

Applying the geometric Choque·h theorem to 1 E: s* (we can assume that 
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11111 = 1) , we get with help of V a measure q on T x X • 

Then the measure m on X , defined by the formula 

m(g) = ~tg(x)dq( t ,x) , g ~ C (X) , 

will have the sought for properties. 

1. Terminology and statement of the theorem. We retain the notation 

of the introduction. A measure m is always a Radon measure on 

some compact space Y , i.e. a bounded linear functional on O(Y) 

(or, if m is a real measure, on the space CR(Y) of all real con-

tinuous functions). The norm of m is denoted II m \1 • Observe 

that \lm\1 = \m\(Y) , where lmt (lenotes the to·bal variation of m • 

We say that m is .9...uas:i.-su;pported by a subset M of Y if 

I ml (G) = 0 v-1henever G iu a compact Gd-sot in Y disjoint from M • 

If K is a convex set, then ext K is thG set of tho extreme points 

of K • Wo lot K(B) denote the set of all 

H1!/ = 1 = 1(1) • The Choquet bound.ary of 

the set -1 ( v ext K(B)) • 

;ll: 

1 E: s~· such that 
(;}B~ ? 

~j2s then, by definition, 

We can now state the theorem we are going to prove~ 

THEOREM. Let X be a compact Hausdorff space, let B CC(X) be a 

linear subspace whioh separates ;points and contains the constant func

tions. Le·b 1 be a continuous linear functional on B • Then there 

exists a complex moasu:re m on X with the follovving properties g 

(i) m is quasi-supported by the Choquet boundary of B • 

(ii) The norm of m equals tho norm of 1 • 

(iii) sfdm = l(f) , f ~ B , 

The proof is given in section 3. 
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2. Three lemmata. We shall always assume that s* is equipped 

with the weak*-topology. Hence s* is a convex
1
compact set, and? 

since B separates points, thG evaluation map v g X --1 s* is a 

homeomorphism into * s . It is an immediate consequence that also 

v T x x -7 s* ( t ,x) -t tv(x) 

is a homeomorphism into s* • (Here we have used the fact that B 

contains the constant functions.) Tho main reason for introducing 

tho map V is the fact, to be found for instance in 8-, P• 441, 

proof of Lemma~' that 

( 1 ) ext s* c V(T X X) • 

wj.th 
In analogyjthe definition of the Choquet boundary, we define 

(2) ( ) -1 * r B = V (ext. S ) • 

The connection between r(B) and the Choquet boundary of B is given 

by tho following elementary 

LEMMA 1. 

(3) 

PROOF. We first want to establish the following, probably well 

known, relation 

(4) ext K(B) = K(B) (\ext s* • 

Since the relation :> is clearly true, we have to show that 

ext K(B) C ext s* • 
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Let k E. ext K( B) , and assume 

(5) k = ra + ( 1-r )b ' a' b ~ s* ' 04. r<1. 

Then we get 

1 = /lkll ' r ll all + ( 1-r) \\ b\1 , 

and since 0 ~- r <. 1 and 1\ all , ll bll 1:, 1 , we can conclude that 

ll all = II b\1 = 1 • 

Now k E K(B) , and hence we get from (5) 

1 ~ k(1) = ra(1) + (1-r)b(1) 

~ rla(1)1 + (1-r)lb(1)( • 

It follows that I a( 1 )! = lb( 1 )I = 1 ~ and since 1 is a convex 

combination of a(1) and b(1) 9 we can conclude that a(1) = b(1) = 1 • 

Therefore a,b ~ K(B) , and hence a= b • This shows that 

kE ext s* and (4) is thus proved. We next want to prove the 

relation 

(6) { tp ~ t E: T , p E ext s*} C ext s* • 

In fact, let t t T and * p 6 ext S , and assume 

tp = ra + (1-r)b , 

Since ltl = 1 , we get that 

* a, b E: S , 0< r<-1. 

-1 -1 * -1 -1 where t a , t b ~ S • Hence t a = t b , and this shows that 

tp E ext s* . 
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We are now ready to prove (3). Assume first that ( t ,x) E T x dBX • 

Then v(x) E oxt K(B) , and it follows from (4) and (6) that 

tv(x) Ei: ext SB'! • This means that ( t,x) f r(B) • Assume conversely 

that (t,x) 'i:; r(B) , or equivalently that tv(x) E. ext S!!E • It 

follows from ( 6) that v(x) "" t - 1 tv(x) E. oxt s* • Since clearly 

v(x) E. K(:S) , wo get from (4) that v(x) E ext K(:S) • This implies 

that ( t , X) ~ T X 0 BX • 

As an immediate consequence we get the following 

COROLLARY. If A is a subset of X '- OBX , then ~· J: A is a -
subset of T x X '\. r(B) , 

Now let f t C(X) ~ and define 

Lf : T x X --70 ~ (t,x)-? tf(x) • 

Then Lf is continuous, and 

(7) tl Lf!l "" sup I tf(x)l "" H fll 
( t ,x)~TxX 

• 

It follows that the map 

L : C(X) --? C(T x X) : f --1 L(f) 

is linear and isometric. Consider tho adjoint map 

L!!E c*(T x x) ~ c*(x) : m -7 r/'\n =moL 

* Hence IJ m is a complex measure on X whenever m is a complex 

measure on T x X • To be more explicit, L*m is given by tho 

formula 

(8) L*m(f) = 5 tf(x)dm(t,x) , f E C(X) • 
TxX 
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Applying (7) we get, for any measure m on T x X 

(9) • 

L:EMMA 2. and Let m be a complex or real measure on T x X , -
let G c X be a compact Gd-set • Then 

( 1 0) ! L *m \ ( G) ' I m l ( T x G) • 

PROOF. Let f ~ C(X) and define 

Then the map 

p(m)(f) = £ f(x)dlml(t 1x) • 
TxX 

p(m) : c(x) -i c : f --1 p(m)(f) 

is a bounded positive linoa:r. functional on C(X) • This means that 

p(m) is a positive measure on X • Notice that for any f t C(X) 

(11) IL:lem(f)/ "'I S tf(x)dm(t,x)l 
T.x.X 

G j lf(x)l dfml (t,x) = p(m)(j fl) • 
T.x.X 

We now make appeal to a lemma in [3; P• 54 Lemme ~ to assert that 

'When we combine this equation with ( 11) we get 

' 
( 1 2 ) I L *m j (If I ) " p ( m) ( I f l ) , f 6 C ( X) • 

It follows, in particular, that p(m) - tL*ml is a positive measure 

on X • 

Let { Gn} be a decreasing sequence of open sets in X such 

<P 

that G =n G • 
. 1 n 

Choose continuous functions f : X~ [o,TI 
n 

such 
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that fn = 1 on G and fn = 0 outside Gn • Applying tho 

dominated convergence theorem to the positive measure p = p(m) , 

we get 

(13) p(m)(G) = lim Sfndp "" lim 5 fn o pr2dlml , 
n-?- oo n-> C>O 

where pr2 is tho second projection 

pr 
2 

: T .x X ~ X g ( t , x) ~ .x • 

Observe that the sequence { fn o pr
2

} converges boundedly pointwise 

to the characteristic function of T .x G • Hence we get from (13) 

p(m)(G) = \m\(T x G) • 

From this equation, together vrith (12), we got 

\L2 m!(G) ~ p(m)(G) = imi(T x 0) • 

Thus we have proved (10). 

LEMMA 3. 

then * L m 

If m is .:t, measure on T x X quasi-supported by r( B) , 

is quasi-supported by OBX 

PROOF. Let G be a. compact Gd-set in X disjoint from VBX . 

It follows from the Corollary of Lemma. 1 that ~~ x G is disjoint from 

r(B) • Since T x G is a. compact Gd-set 1 we get from Lemma 2 

0 ~ l L *m l (G) ' I ml ( T .Y.: G) = 0 • 

3· Proof of tho theorem. We can assume without loss of generality 

that tho given 1 satisfies \\111 = 1 • Hence * 1 E s , and it 

follow~s from the geometric Uhoquot theorem (see e.g. [5, P• 30]) that 
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;:.:: 

there exists a probability measure p on s·~ wh:i.oh vanishes on any 

"'~ Gd-sGt disjoint from ext S"" , n.nd such that 

(14) l(u) = S u(g)dp(g) 1 u f. B , 

whore we hn.vo defined for any u f. B 

u ~ s* ~ c g g - g( u) • 

We oan oven assort that 

(15) p(S*' V(T x X)) ~ 0 , 

because it f0llows from (1) that ext S::e is contained in tho compact 

sot V(T x X) • 

As a consequence of (15) we can and shall consider p as a measure 

on V(T x X) • Defino the measure q on T x X as tho image of 

-1 p by V • Hence, by definition, 

f ~ C (T X X) • 

Then q is a probability measure on T x X 
' 

and it is knovm ( see 

e.g. [2, p. 75]) that a subset A of T x X is q·-intograble if and 

only if V(A) is p-in-tegrable, c.n.:!. in that caoe 

(16) q(A) = p(V(A)) • 

Wo now claim that q is quasi-supported by r(B) • In faot 1 lot 

GC.T X X be a compo.ot ad-sot disjoint from r(B) • Choose open 
oa 

sets Gn' n ~ 1,2, ••• in T X X such that G=r\G 
1 n 

• It follows 

that 
IX) 

V(G) = (\ V(G ) 
1 n 

where V(G ) is open in V(T x X) • Hence thoro exists open sots 
n 
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un in s* such that V( G ) = V(T x X)(\ U n n 

* in S and 

(17) V(G) = V(T x X)~ U • 

Put 
()0 

U=r1U 
1 n 

Then 

Since V(G) is disjoint from ext s* we get from (17) that U is 

* disjoint from ext S • 

Applying (16) and (17) wo therefore get 

0 ~ q(G) = p(V(G)) ~ p(U) = 0 • 

This shows that q is quasi-supported by r(B) 

* Put m = L q • It follows from Lemma 3 that m is quasi-supported 

by dBX , and (9) shows that 

( 18) II mil s ll ql) = q( 1 ) = 1 • 

Let u f B • Since u o V(t,x) = tu(x) 

and from (14) that 

we get from the definitions, 

m(u) = L*q(u) =Suo V dq = ~ u o V o v-1 dp = l(u). 

This means that m is equal to 1 on B • In particular, we get 

1 = 1\ 1 \I ~ t\ m \I • 

This shovvs, together with ( 18), that Hml\ = l11W • Tho measure m 

has thus all tho required properties. 

REMARK. Let F C 0Bx be a compact set with the following property: 

If m is a measure on X orthogonal to B and quasi-supported 

by UBX , then I m I (F) = 0 • 

It is then true that F is an interpolation set, which means 

that every continuous function on F can be extended to a function 
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on X which belongs to B • This is a sharpening of a theorem of 

Bishop [ 1] • To prove this statement one has only to replace tho 

Hahn-Banach theorem in Bishop's original proof with tho theorem above. 
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