A NORM PRESERVING COMPLEX CHOQUET THEOREM

Otte Hustad

Introduction. We consider a compact Hausdorff space X and a linear subspace B of the normed space C(X) consisting of all continuous, complex valued functions on X. Assume that B separates points on X and contains the constant functions. Let 1 be a continuous linear functional on B. Then the Bishop-de Leeuw version of the Choquet theorem (see e.g. [5]) states that there exists a complex measure m on X which is quasi-supported by the Choquet boundary of B and which represents 1 in the sense that $l(f) = \int f dm$ whenever $f \in B$. In the case where 1 is non-negative, the measure m is obtained from the geometric Choquet theorem with help of the evaluation map $v : X \longrightarrow S^{\sharp}$ (where S^{\sharp} is the unit ball in the dual of B and where, by definition, v(x)(f) = f(x) for any $f \in B$). In this case it is even true that m and 1 have the same norm. The general case follows from the non-negative case by decomposing 1 in the form $1 = (1_1 - 1_2) + i(1_3 - 1_4)$; but it does not follow from this decomposition that the representing measure has the same norm as the functional 1 .

It is the aim of the present paper to prove that such a representing measure indeed exists. In outline, the idea behind the proof is as follows: Let T be the set of all complex numbers of absolute value one, and define the map

$$V : T \times X \rightarrow S^{*} : (t,x) \rightarrow tv(x)$$
.

Applying the geometric Choquet theorem to $1 \in S^{\frac{1}{2}}$ (we can assume that

||1||=1), we get with help of V a measure q on T x X. Then the measure m on X, defined by the formula

$$m(g) = \int tg(x)dq(t,x)$$
, $g \in C(X)$,

will have the sought for properties.

1. Terminology and statement of the theorem. We retain the notation of the introduction. A measure m is always a Radon measure on some compact space Y , i.e. a bounded linear functional on C(Y) (or, if m is a real measure, on the space $C_R(Y)$ of all real continuous functions). The norm of m is denoted ||m|| . Observe that ||m|| = |m|(Y), where |m| denotes the total variation of m. We say that m is quasi-supported by a subset M of Y if |m|(G) = 0 whenever G is a compact C_d -sot in Y disjoint from M. If K is a convex set, then ext K is the set of the extreme points of K. We let K(B) denote the set of all $1 \in S^{\#}$ such that ||1|| = 1 = 1(1). The Choquet boundary of B, is then, by definition, the set $v^{-1}(\text{ext } K(B))$.

We can now state the theorem we are going to prove:

THEOREM. Let X be a compact Hausdorff space, let $B \subset C(X)$ be a linear subspace which separates points and contains the constant functions. Let 1 be a continuous linear functional on B. Then there exists a complex measure m on X with the following properties:

- (i) m is quasi-supported by the Choquet boundary of B.
- (ii) The norm of m equals the norm of 1 .

(iii)
$$\int fdm = l(f)$$
, $f \in B$.

The proof is given in section 3.

2. Three lemmata. We shall always assume that $S^{\#}$ is equipped with the weak topology. Hence $S^{\#}$ is a convex, compact set, and, since B separates points, the evaluation map $v:X \longrightarrow S^{\#}$ is a homeomorphism into $S^{\#}$. It is an immediate consequence that also

$$V : T \times X \rightarrow S^{*} \quad (t,x) \rightarrow tv(x)$$

is a homeomorphism into $S^{\frac{\pi}{2}}$. (Here we have used the fact that B contains the constant functions.) The main reason for introducing the map V is the fact, to be found for instance in [4, p. 441, proof of Lemma 6], that

(1)
$$\operatorname{ext} S^{\mathfrak{H}} \subset V(T \times X) .$$

In analogy/the definition of the Choquet boundary, we define

(2)
$$r(B) = V^{-1}(ext. S^{\Re})$$
.

The connection between r(B) and the Choquet boundary of B is given by the following elementary

LEMMA 1.

(3)
$$r(B) = T \times \partial_B X.$$

PROOF. We first want to establish the following, probably well known, relation

(4)
$$\operatorname{ext} K(B) = K(B) \cap \operatorname{ext} S^{\sharp \sharp}$$
.

Since the relation \supset is clearly true, we have to show that ext K(B) \subset ext S[#] .

Let $k \in \text{ext } K(B)$, and assume

(5)
$$k = ra + (1-r)b$$
, $a,b \in S^{\#}$, $0 < r < 1$.

Then we get

$$1 = ||k|| \le r ||a|| + (1-r) ||b||,$$

and since 0 < r < 1 and ||a||, $||b|| \le 1$, we can conclude that ||a|| = ||b|| = 1.

Now $k \in K(B)$, and hence we get from (5)

$$1 = k(1) = ra(1) + (1-r)b(1)$$

$$\leq r |a(1)| + (1-r)|b(1)|.$$

It follows that |a(1)| = |b(1)| = 1, and since 1 is a convex combination of a(1) and b(1), we can conclude that a(1) = b(1) = 1. Therefore $a,b \in K(B)$, and hence a = b. This shows that $k \in \text{ext } S^{\text{st}}$, and (4) is thus proved. We next want to prove the relation

(6)
$$\{ tp : t \in T, p \in ext S^{\#} \} \subset ext S^{\#}.$$

In fact, let $t \in T$ and $p \in ext S^{m}$, and assume

$$tp = ra + (1-r)b$$
, $a,b \in S^{\#}$, $0 < r < 1$.

Since |t| = 1, we get that

$$p = r(t^{-1}a) + (1-r)(t^{-1}b)$$

where $t^{-1}a$, $t^{-1}b \in S^{\mathbb{H}}$. Hence $t^{-1}a = t^{-1}b$, and this shows that $tp \in \text{ext } S^{\mathbb{H}}$.

We are now ready to prove (3). Assume first that $(t,x) \in T \times \partial_B X$. Then $v(x) \in \text{ext } K(B)$, and it follows from (4) and (6) that $tv(x) \in \text{ext } S^{\frac{1}{2}}$. This means that $(t,x) \in r(B)$. Assume conversely that $(t,x) \in r(B)$, or equivalently that $tv(x) \in \text{ext } S^{\frac{1}{2}}$. It follows from (6) that $v(x) = t^{-1}tv(x) \in \text{ext } S^{\frac{1}{2}}$. Since clearly $v(x) \in K(B)$, we get from (4) that $v(x) \in \text{ext } K(B)$. This implies that $(t,x) \in T \times \partial_B X$.

As an immediate consequence we get the following

COROLLARY. If A is a subset of $X \setminus \partial_B X$, then $T \times A$ is a subset of $T \times X \setminus r(B)$.

Now let $f \in C(X)$, and define

Lf : T x X
$$\rightarrow$$
 C : (t,x) \rightarrow tf(x).

Then Lf is continuous, and

(7)
$$||Lf|| = \sup_{(t,x) \in TxX} ||tf(x)|| = ||f||$$
.

It follows that the map

$$L : C(X) \rightarrow C(T \times X) : f \rightarrow L(f)$$

is linear and isometric. Consider the adjoint map

$$L^{\sharp\sharp}: C^{\sharp\sharp}(T \times X) \longrightarrow C^{\sharp\sharp}(X): m \longrightarrow L^{\sharp\sharp}m = m \circ L$$
.

Hence $L^{\Re}m$ is a complex measure on X whenever m is a complex measure on T x X . To be more explicit, $L^{\Re}m$ is given by the formula

(8)
$$L^{\#}m(f) = \int_{TxX} tf(x)dm(t,x), \quad f \in C(X).$$

Applying (7) we get, for any measure m on T x X

$$(9) \qquad ||L^{\overline{m}}|| \leq ||m|| .$$

LEMMA 2. Let m be a complex or real measure on T x X , and let $G \subset X$ be a compact $G_{\underline{d}}$ -set . Then

(10)
$$|L^{\mathfrak{M}}|(G) \leq |m|(T \times G)$$
.

PROOF. Let $f \in C(X)$ and define

$$p(m)(f) = \int_{T \times X} f(x)d[m](t,x) .$$

Then the map

$$p(m) : C(X) \rightarrow C : f \rightarrow p(m)(f)$$

is a bounded positive linear functional on C(X). This means that p(m) is a positive measure on X. Notice that for any $f \in C(X)$

(11)
$$\left| L^{*}_{m}(f) \right| = \left| \int_{TxX} tf(x) dm(t,x) \right|$$

$$\leq \int_{TxX} |f(x)| d|m|(t,x) = p(m)(|f|).$$

We now make appeal to a lemma in [3, p. 54 Lemme 5] to assert that

$$\left| L^{\mathcal{H}}_{m} | (|f|) = \sup \left\{ |L^{\mathcal{H}}_{m}(hf)| : h \in C(X) \& \|h\| \le 1 \right\}.$$

When we combine this equation with (11) we get

(12)
$$\left|L^{\mathcal{H}}m\right|(|f|) \leq p(m)(|f|), \quad f \in C(X).$$

It follows, in particular, that $p(m) - \frac{1}{4}L^{\frac{24}{1}}m$ is a positive measure on X .

Let $\{G_n\}$ be a decreasing sequence of open sets in X such that $G = \bigcap_{1}^{\infty} G_n$. Choose continuous functions $f_n : X \to [0, \overline{1}]$ such

that $f_n=1$ on G and $f_n=0$ outside G_n . Applying the dominated convergence theorem to the positive measure p=p(m) , we get

(13)
$$p(m)(G) = \lim_{n \to \infty} \int f_n dp = \lim_{n \to \infty} \int f_n \circ pr_2 d|m|,$$

where pro is the second projection

$$\operatorname{pr}_2 : \operatorname{T} \times \operatorname{X} \longrightarrow \operatorname{X} : (\operatorname{t}, \operatorname{x}) \longrightarrow \operatorname{x} \ .$$

Observe that the sequence $\{f_n \circ pr_2\}$ converges boundedly pointwise to the characteristic function of T x G . Hence we get from (13)

$$p(m)(G) = ImI(T \times G) .$$

From this equation, together with (12), we get

$$\left| L^{\mathfrak{M}} \right| (G) \leq p(m)(G) = |m|(T \times G).$$

Thus we have proved (10).

LEMMA 3. If m is a measure on T x X quasi-supported by r(B), then L*m is quasi-supported by $\partial_B X$.

PROOF. Let G be a compact G_d -set in X disjoint from O_BX . It follows from the Corollary of Lemma 1 that $T \times G$ is disjoint from r(B). Since $T \times G$ is a compact G_d -set, we get from Lemma 2 $O \leq L^{\#}m!(G) \leq m!(T \times G) = O$.

3. Proof of the theorem. We can assume without loss of generality that the given 1 satisfies ||1|| = 1. Hence $1 \in S^{*}$, and it follows from the geometric Choquet theorem (see e.g. [5, p. 30]) that

there exists a probability measure p on S^{Ξ} which vanishes on any $G_d\text{-set}$ disjoint from ext S^{Ξ} , and such that

(14)
$$l(u) = \int \hat{u}(g)dp(g)$$
, $u \in B$,

where we have defined for any u & B

$$\hat{\mathbf{a}}: \mathbf{S}^{\mathbf{m}} \to \mathbf{C}: \mathbf{g} - \mathbf{g}(\mathbf{u})$$
.

We can oven assert that

$$(15) p(s^{**} \setminus V(T \times X)) = 0,$$

because it follows from (1) that $\text{ ext } S^{\Xi\Xi}$ is contained in the compact set $V(T \times X)$.

As a consequence of (15) we can and shall consider p as a measure on $V(T \times X)$. Define the measure q on $T \times X$ as the <u>image</u> of p by V^{-1} . Hence, by definition,

$$q(f) = p(f \circ V^{-1})$$
, $f \in C(T \times X)$.

Then q is a probability measure on $T \times X$, and it is known (see e.g. [2, p. 75]) that a subset A of $T \times X$ is q-integrable if and only if V(A) is p-integrable, and in that case

(16)
$$q(A) = p(V(A)).$$

We now claim that q is quasi-supported by r(B). In fact, let $G \subseteq T \times X$ be a compact G_d -sot disjoint from r(B). Choose open sets G_n , $n=1,2,\cdots$ in $T \times X$ such that $G = \bigcap_{n=1}^\infty G_n$. It follows that

$$V(G) = \bigcap_{1}^{\infty} V(G_n)$$

where $V(G_n)$ is open in $V(T \times X)$. Hence there exists open sets

 U_n in S^{Ξ} such that $V(G_n) = V(T \times X) \cap U_n$. Put $U = \bigcap_{1}^{\infty} U_n$. Then U is a G_d -set in S^{Ξ} and

$$V(G) = V(T \times X) \cap U .$$

Since V(G) is disjoint from ext $S^{\frac{1}{2}}$, we get from (17) that U is disjoint from ext $S^{\frac{1}{2}}$.

Applying (16) and (17) we therefore get

$$0 \le q(G) = p(V(G)) \le p(U) = 0.$$

This shows that q is quasi-supported by r(B) .

Put $m = L^{\frac{\pi}{4}}q$. It follows from Lemma 3 that m is quasi-supported by $\partial_{R}X$, and (9) shows that

(18)
$$\| \mathbf{m} \| \leq \| \mathbf{q} \| = \mathbf{q}(1) = 1$$
.

Let $u \in B$. Since $\hat{u} \circ V(t,x) = tu(x)$, we get from the definitions, and from (14) that

$$m(u) = L^{\frac{4}{3}}q(u) = \int \hat{u} \circ V dq = \int \hat{u} \circ V \circ V^{-1} dp = l(u)$$
.

This means that m is equal to 1 on B. In particular, we get

$$1 = ||1|| \le ||m||$$
.

This shows, together with (18), that $\|m\| = \|1\|$. The measure m has thus all the required properties.

REMARK. Let $F \in \partial_B^X$ be a compact set with the following property: If m is a measure on X orthogonal to B and quasi-supported by ∂_B^X , then |m|(F)=0.

It is then true that F is an interpolation set, which means that every continuous function on F can be extended to a function

on X which belongs to B. This is a sharpening of a theorem of Bishop [1]. To prove this statement one has only to replace the Hahn-Banach theorem in Bishop's original proof with the theorem above.

REFERENCES

- 1. Bishop, E. A general Rudin-Carleson theorem,
 Proc. Amer. Math. Soc. 13 (1962), 140-143.
- 2. Bourbaki, N. Intégration, Chap. 6 (Act. Sci. Ind. 1281),
 Paris, 1959.
- 3. Bourbaki, N. Intégration, Chap. 5 (Act. Sci. Ind. 1244), Paris, 1956.
- 4. Dunford, N. and Schwartz, J. T. Linear operators, Part I, Interscience, New York, 1958.
- 5. Phelps, R.R. Lectures on Choquet's theorem, Van Nostrand, Princeton, 1966.

UNIVERSITY OF OSLO, NORWAY