Otte Hustad

Introduction. We consider a compact Hausdorff space X and a linear subspace B of the normed space $C(X)$ consisting of all continuous, complex valued functions on X. Assume that B seperates points on X and contains the constant functions. Let 1 be a continuous linear functional on B. Then the Bishop-de Leeuw version of the Choquet theorem (see e.g. [5]) states that there exists a complex measure m on X which is quasi-supported by the Choquet boundary of B and Which represents 1 in the sense that $I(f)=\int f d m$ whenever $f \in B$. In the case where I is non-negative, the measure m is obtained from the geometric Choquet theorem with help of the evaluation map $v: X \rightarrow S^{35}$ (where S^{31} is the unit ball in the dual of B and where, by definition, $v(x)(f)=f(x)$ for any $f \in B)$. In this case it is even true that m and 1 have the same norm. The general oase follows from the non-negative case by decomposing 1 in the form $I=\left(I_{1}-I_{2}\right)+i\left(I_{3}-I_{4}\right)$; but it does not follow from this decomposition that the represerting measure has the same norm as the functional 1 .

It is the aim of the present paper to prove that such a representing measure indeed exists. In outline, the idea behind the proof is as follows: Let T be the set of all complex numbers of absolute value one, and define the map

$$
V: T x X \rightarrow S^{\text {IT }}:(t, x) \rightarrow t v(x)
$$

Applying the geometric Choquet theorem to $1 \in S^{\text {T }}$ (we can assume that
$\|I\|=1$), we get with help of V a measure q on $T X X$. Then the measure m on X, defined by the formula

$$
m(g)=\int \operatorname{tg}(x) d q(t, x), \quad g \in C(x),
$$

will have the sought for properties.

1. Terminology and statement of the theorem. We retain the notation of the introduotion. A measuro m is always a Radon measure on some compact space Y, i.e. a bounded linear functional on $C(Y)$ (or, if m is a real measure, on the space $C_{R}(Y)$ of all real continuous functions). The norm of m is denoted $\|m\|$. Observe that $||m||=|m|(Y)$, where $|m|$ denotes the total variation of m. We say that m is quasi-supported by a subset M of Y if $|m|(G)=0$ whenever G is a compact G_{d}-sct in Y disjoint from M. If K is a convex set, then ext K is the set of the extrome points of K. Wo let $K(B)$ denote the set of all $I \in S^{F i}$ such that $\|I\|=1=1(1)$. The Choquet boundary of $B_{9} /{ }_{B}$ is $^{\prime}$ then, by definition, the set $\mathrm{v}^{-1}(\operatorname{ext} K(B))$.

We can now state the theorem we are going to prove:

THEOREM. Let X be a compact Hausdorff space, let $B \subset C(X)$ be a linear subspace which separates points and contains the constant functions. Let 1 be a continuous linear functional on B. Then there exists a complex moasure m on X with the following properties:
(i) m is quasi-supported by the Choquet boundary of B.
(ii) The norm of m equals the norm of 1 .
(iii) $\quad \int f d m=I(f), \quad f \in B$.

The proof is given in section 3.
2. Three lemmata. We shall always assume that $S^{\text {Fi }}$ is equipped with the weak ${ }^{\text {TH}}$-topology. Hence $S^{\text {W}}$ is a convex, compact set, and, since B separates points, the evaluation map $v: X \rightarrow S^{F}$ is a homeomorphism into S^{5}. It is an immediate consequence that also

$$
V: \mathbb{T} x X \rightarrow S^{¥} \quad(t, x) \rightarrow t v(x)
$$

is a homeomorphism into $S^{\text {en }}$. (Here we have used the fact that B contains the constant functions.) The main reason for introducing tho map V is the fact, to be found for instance in [4, p. 441, proof of Lomma 6], that

$$
\begin{equation*}
\operatorname{ext} S^{j i} \subset V(T X X) \tag{1}
\end{equation*}
$$

with

In analogy/the definition of the Choquet boundary, we define

$$
\begin{equation*}
x(B)=V^{-1}\left(\text { ext } \cdot S^{x}\right) \tag{2}
\end{equation*}
$$

The connection between $r(B)$ and the Choquet boundary of B is given by the following elementary
lemma 1.

$$
\begin{equation*}
r(B)=T \times \partial_{B} X \tag{3}
\end{equation*}
$$

PROOF. We first want to establish the following, probably well known, relation
(4) $\quad \operatorname{ext} K(B)=K(B) \cap \operatorname{ext} S^{\text {FI }}$.

Since the relation \supset is clearly true, we have to show that $\operatorname{ext} K(B) \subset \operatorname{cxt} S^{3 x}$.

Let $k \in \operatorname{ext} K(B)$, and assume

$$
\begin{equation*}
k=r a+(1-r) b, \quad a, b \in S^{z}, \quad 0<r<1 . \tag{5}
\end{equation*}
$$

Then we get

$$
1=\|k\| \leqslant r\|a\|+(1-r)\|b\| \text {, }
$$

and since $0<r<1$ and $\|a\| l,\|b\| \leqslant 1$, we can conclude that $\|a\|=\|b\|=1$.

Now $k \in K(B)$, and hence we get from (5)

$$
\begin{aligned}
1=k(1) & =r a(1)+(1-r) b(1) \\
& \leqslant r|a(1)|+(1-r)|b(1)| .
\end{aligned}
$$

It follows that $|a(1)|=|b(1)|=1$, and since 1 is a convex combination of $a(1)$ and $b(1)$, we can conclude that $a(1)=b(1)=1$. Therefore $a, b \in K(B)$, and hence $a=b$. This shows that $k \in \operatorname{ext} s^{3 i}$, and (4) is thus proved. We next want to prove the relation
(6) $\quad\left\{\operatorname{tp}: t \in \mathbb{T}, p \in \operatorname{ext} \mathbb{S}^{\tilde{\pi}}\right\} \subset \operatorname{ext} \mathrm{S}^{\boldsymbol{F}}$.

In fact, let $t \in \mathbb{T}$ and $p \in$ ext $\mathbb{S}^{(1)}$, and assume

$$
\operatorname{tp}=r a+(1-r) b, \quad a, b \in \mathbb{S}^{3 \pi}, \quad 0<r<1 .
$$

Since $|t|=1$, we get that

$$
p=r\left(t^{-1} a\right)+(1-r)\left(t^{-1} b\right)
$$

where $t^{-1} a, t^{-1} b \in S^{5 \pi}$. Hence $t^{-1} a=t^{-1} b$, and this shows that $\operatorname{tp} \in \operatorname{ext} \mathrm{S}^{\mathrm{Zx}}$ 。

We are now roady to prove (3). Assume first that $(t, x) \in \mathbb{X} \partial_{B} X$. Then $v(x)$ E oxt $K(B)$, and it follows from (4) and (6) that $t v(x) \in$ ext $S^{j z}$. This means that $(t, x) \in r(B)$. Assume conversely that $(t, x) \in r(B)$, or equivalontly that $t v(x) \in$ ext $S^{\text {br }}$. It follows from (6) that $v(x)=t^{-1} \operatorname{tv}(x) \in$ oxt $S^{5 x}$. Sinco clearly $\mathrm{V}(\mathrm{x}) \in \mathrm{K}(B)$, wo get from (4) that $\mathrm{V}(\mathrm{x}) \& \operatorname{ext} \mathrm{~K}(B)$. This implies that $(t, x) \in \mathbb{X} \partial_{B} X$ 。 As an immodiate consequence we get the following

COROLLARY. If A is a subset of $X \backslash \partial_{B} X$, then $I x A$ is a subset of $T \times X \backslash r(B)$.

$$
\begin{aligned}
& \text { Now let } f \in \mathbb{C}(X), \text { and define } \\
& \text { Lf }: T X X \rightarrow C:(t, x) \rightarrow t f(x) .
\end{aligned}
$$

Then Lf is continuous, and

$$
\begin{equation*}
\left\|\mathrm{Le}^{2}\right\|=\sup _{(t, x) \in T x X}|t f(x)|=\|f\| . \tag{7}
\end{equation*}
$$

It follows that the map

$$
L: C(X) \rightarrow C(T X X): f \rightarrow L(f)
$$

is linear and isometric. Consider the adjoint map

$$
\mathrm{L}^{\overline{\mathrm{F}}}: \mathrm{C}^{\mathrm{jE}}(\mathrm{~T} \times X) \rightarrow \mathrm{C}^{\mathrm{II}}(\mathrm{X}): \mathrm{m} \rightarrow \mathrm{~L}^{\mathrm{F}} \mathrm{~m}=\mathrm{m} \circ \mathrm{~L} .
$$

Hence $\mathrm{L}^{{ }^{\text {F }} \mathrm{m}}$ is a complex moasure on X whenever m is a complex measure on $\mathbb{T} X$. To be more explicit, $L^{\mathrm{Fx}_{\mathrm{m}}}$ is given by the formula

$$
\begin{equation*}
L^{I^{\prime \prime} m} m(f)=\int_{T X X} t f(x) d m(t, x), \quad f \in C(X) \tag{8}
\end{equation*}
$$

Applying (7) we get, for any moasure m on $T \times X$

$$
\begin{equation*}
\left\|L_{m}\right\| \leq\|m\| \tag{9}
\end{equation*}
$$

IEMMA 2. Let m be a complex or real moasuro on $T \times X$, and let $G \subset X$ be a compact G-set - Then
(10) $\quad\left|L^{F} m\right|(G) \leq|m|(T \times G)$.

PROOF. Let $f \in C(X)$ and define

$$
p(m)(f)=\int_{T X X} f(x) d|m|(t, x) .
$$

Then the map

$$
\mathrm{p}(\mathrm{~m}): \mathrm{C}(\mathrm{X}) \rightarrow \mathrm{c}: \mathrm{f} \rightarrow \mathrm{p}(\mathrm{~m})(\mathrm{f})
$$

is a bounded positivo linear functional on $C(X)$. This means that $p(m)$ is a positive measure on X. Notice that for any $f \in C(X)$

$$
\begin{align*}
& \left|L^{F} m(f)\right|=\left|\int_{T \times X} t f(x) d m(t, x)\right| \tag{11}\\
& \quad \& \int_{T x X}|f(x)| d|m|(t, x)=p(m)(|f|) .
\end{align*}
$$

We now make appeal to a lemma in $[3, p .54$ Lemme 5$]$ to assert that

$$
\left|L^{\prime z}\right|(|f|)=\sup \left\{\left|L^{F} m(h f)\right|: h \in C(X) \&\|h\| \leq 1\right\} \text {. }
$$

When we combine this equation with (11) we get

$$
\begin{equation*}
\left|L^{F i} m\right|(|f|) \leqslant p(m)(|f|), \quad f \varepsilon C(X) \tag{12}
\end{equation*}
$$

It follows, in particular, that $p(m)-\left|L^{35}\right|$ is a positive measure on X.

Let $\left\{G_{n}\right\}$ be a decreasing sequence of open sets in X such that $G=\bigcap_{1}^{\infty} G_{n}$. Choose continuous functions $f_{n}: X \rightarrow[0, \overline{1}]$ such
that $f_{n}=1$ on G and $f_{n}=0$ outside G_{n}. Applying tho dominated convergence theoreri to the positive measure $p=p(m)$, we get

$$
\begin{equation*}
p(m)(G)=\lim _{n \rightarrow \infty} \int f_{n} d p=\lim _{n \rightarrow \infty} \int f_{n} \circ p r_{2} d|m| \tag{13}
\end{equation*}
$$

where pr_{2} is the second projection

$$
\mathrm{pr} \mathrm{r}_{2}: \mathrm{T} \times \mathrm{X} \rightarrow \mathrm{X}:(t, \mathrm{x}) \rightarrow \mathrm{x} .
$$

Observe that the sequence $\left\{\begin{array}{lll}f_{n} & \circ & p_{2}\end{array}\right\}$ converges boundedly pointwisc to the characteristic function of \mathbb{T} X . Hence we get from (13)

$$
p(m)(G)=|m|(T \times G)
$$

From this equation, together with (12), we got

$$
\left|L^{F m}\right|(G) \leqq p(m)(G)=|m|(T \times G)
$$

Thus we have proved (10).

Lenaid 3. If m is a measure on $T \times X$ quasi-supported by $r(B)$, then $L^{*} m$ is quasi-supported by $\partial_{B} X$.

PROOF. Let G be a compact G-set in X disjoint from $\partial_{B} X$. It follows from the Corollary of Lemma 1 that $\mathbb{T} X G$ is disjoint from $r(B)$. Since $T X G$ is a compact G_{d}-set, we get from Lemma 2 $0 \leqq\left|\mathrm{I}^{\mathrm{Fx}} \mathrm{m}\right|(G) \leqslant|m|(T x G)=0$.
3. Proof of the theorem. We can assume without loss of generality that the given 1 satisfies $\|I\|=1$. Hence $I \in S^{z E}$, and it follows from the geomotric choquet theorem (see o.g. [5, p. 30]) that
there exists a probability moasure p on $S^{3 \pi}$ which vanishes on any G_{d}-set disjoint from ext $S^{3 E}$, and such that

$$
\begin{equation*}
I(u)=\int \hat{u}(g) d p(g), \quad u \varepsilon B, \tag{14}
\end{equation*}
$$

where we have defined for any $u \in B$

$$
\hat{a}: S^{\bar{x}} \rightarrow c: g-g(u)
$$

We oan oven assert that

$$
\begin{equation*}
p\left(S^{W \prime \prime} \backslash V(\mathbb{X} X)\right)=0 \tag{15}
\end{equation*}
$$

becauso it follows from (1) that oxt $S^{\# i}$ is contained in the compact sot $V(T \times X)$.

As a consequence of (15) we can and shall consider p as a moasure on $V(T \times X)$. Dofinc the measure q on $\mathbb{T} X$ as the image of p by V^{-1}. Henoc, by definition,

$$
q(f)=\underline{p}\left(f \circ \mathrm{~V}^{-1}\right), \quad f \in C(T \times X) .
$$

Then q is a probability measure on $T X X$, and it is known (see e.g. [2, p. 75]) that a subsot A of $T \times X$ is q-integrable if and only if $V(A)$ is p-integrable, and in that case

$$
\begin{equation*}
q(A)=p(V(A)) . \tag{16}
\end{equation*}
$$

We now claim that q is quesi-supported by $r(B)$. In fact, let $G \subset \mathbb{C} \bar{X}$ be a compact G_{d}-sot disjoint from $r(B)$. Choose open sets $G_{n}, n=1,2, \ldots$ in $\mathbb{T} X X$ such that $G=\bigcap_{1}^{\infty} G_{n}$. It follows that

$$
V(G)=\bigcap_{1}^{\infty} V\left(G_{n}\right)
$$

where $V\left(G_{n}\right)$ is open in $V(T X X)$. Hence there exists open sets
U_{n} in $S^{3 i}$ such that $V\left(G_{n}\right)=V(T \times X) \cap U_{n}$. Put $U=\bigcap_{1}^{\infty} U_{n}$. Then U is a G_{d}-set in S^{*} and

$$
\begin{equation*}
V(G)=V(T \times X) \cap U . \tag{17}
\end{equation*}
$$

Since $V(G)$ is disjoint from ext $S^{\text {Fin }}$, we get from (17) that U is disjoint from ext $S^{\text {EF }}$.

Applying (16) and (17) wo therefore get

$$
0 \leqq q(G)=p(V(G)) \leqq p(U)=0 .
$$

This shows that q is quasi-supported by $r(B)$. Put $m=L^{\mathrm{Fin}} q$. It follows from Lemma 3 that m is quasi-supported by $\partial_{B} X$, and (9) shows that

$$
\begin{equation*}
\|m\| \leq\|q\|=q(1)=1 . \tag{18}
\end{equation*}
$$

Let $u \in B$. Since $\hat{u} \circ V(t, x)=t u(x)$, we get from the definitions, and from (14) that

$$
m(u)=L^{\text {FI }} q(u)=\int \hat{u} \circ V d q=\int \hat{u} \circ V \circ V^{-1} d p=I(u) .
$$

This means that m is equal to 1 on B. In particular, we get

$$
1=\|I\| \leq\|\mathrm{m}\|
$$

This shows, together with (18), that $\|\mathrm{m}\|=\|I\|$. The measure m hes thus all the required properties.

REMARK. Let $F \subset \partial_{B} X$ be a compact set with the following property: If m is a measure on X orthogonal to B and quasi-supported biy $\partial_{B} X$, then $|m|(F)=0$.

It is then true that F is an interpolation set, which means that every continuous function on F can be extended to a function
on X which belongs to B. This is a sharpening of a theorem of Bishop [1]. To prove this statement one has only to replaco the Hahn-Banach theorem in Bishop's original proof with the theorem above.

RHPERRENCES

1. Bishop, E. A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143.
2. Bourbaki, N. Integration, Chap. 6(Act. Sci. Ind. 1281), Paris, 1959.
3. Bourbaki, N. Intégration, Chap. 5 (Act. Sci. Ind. 1244), Paris, 1956.
4. Dunford, N. and Schwartz, J. T. Linear operators, Part I, Interscience, New York, 1958.
5. Phelps, R.R. Lectures on Choquet's theorem, Van Nostrand, Princeton, 1966.
