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Abstract 
Background: A real-time web application is a website that dynamically updates itself  as 
soon as new content is available. This functionality is made possible by different technologies 
and network protocols commonly referred to as transports in this thesis. 

Aim: This thesis compares the real-time transports WebSocket, Server-Sent Events and 
HTTP Long Polling in terms of  performance and programmer friendliness. 

Method: Two distinct test scenarios were created to performance test the transports. The 
first is a unidirectional messaging system with a server broadcasting messages to connected 
clients. The second is a bidirectional chat system where a set of  clients send and receive 
messages to and from a chat server. 

Results: The thesis suggests a two-sided picture of  the transports. WebSocket outperforms 
both Server-Sent Events and HTTP Long Polling under moderate load levels. However, as 
soon as the server is CPU constrained, we see that both WebSocket and Server-Sent Events 
had unexpected increases in response times and memory consumption. 

Conclusion: Under moderate server CPU load levels, WebSocket is recommended over 
Server-Sent Events and HTTP Long Polling, both in terms of  performance and programmer 
friendliness. However, under extreme levels of  server CPU load, HTTP Long Polling is the 
preferred transport. 
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Chapter 1: Introduction 

1.1 Motivation 
The Web started out as a simple document sharing service to make the lives of  researchers at 
CERN simpler. The transition into the Web of  today has been made possible by the fact that 
it became capable of  real-time updates. The real-time web enables a website to update itself  
dynamically when new content is available.  

The following two examples illustrate the meaning of  the term real-time in this thesis: 

1. A stock price application where several clients connect to a server. This stock price server 
subscribes to a broker backend for stock price updates. When the stock price server 
receives price updates from the backend, it broadcasts these to all clients. 

2. A chat room application where several clients connect to a centralized server. The server 
listens for client messages and as soon as a client sends a message to the server, the server 
immediately broadcasts the message to all other connected clients. 

Both examples show that data is handled and distributed immediately after it is received, 
which is what is meant by the term real-time in this thesis. 

The first example requires unidirectional messaging, with stock prices only going server-to-
client. The second example is bidirectional, requiring both server-to-client and client-to-
server messaging. This thesis will focus on both types of  real-time applications. 

Even though real-time capabilities were not considered when the Web was designed, there are 
several ways to use traditional HTTP in order to achieve near real-time updates, such as the 
techniques Long Polling and Streaming. The problem is that these have difficulties, which 
Chapter 2 explains in detail. Recently, with the new protocol WebSocket and the new HTTP-
based technology Server-Sent Events, a true real-time web is possible. This thesis will therefore 
focus on WebSocket, Server-Sent Events, and HTTP Long Polling. 

Server-Sent Events and Long Polling are both unidirectional (server-to-client) while 
WebSocket is bidirectional (server-to-client and client-to-server). These will be presented in 
turn in Chapter 2. 

For simplicity’s sake, this thesis will refer to the real-time delivering technologies as transports. 

It is believed that WebSocket performs better than HTTP [1] [2]. However, it would be 
interesting to see if  that is true when running full performance tests (more on performance 
testing in Section 2.9) while comparing it to Server-Sent Events and Long Polling. Kristian 
Johannessen’s master’s thesis [3] indicates that WebSocket is the most performant, although 
he had a focus on frameworks and not the transporting technologies themselves. 
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In addition to the performance aspect, the transports are different conceptually. Therefore, it 
would be interesting to see how well they fit into a real-time application from a programmer’s 
perspective. 

1.2 Research Questions 
The goal of  this thesis is thus to compare WebSocket to the two HTTP real-time transporting 
technologies Server-Sent Events and Long Polling. They will be compared based on two 
grounds; performance and programmer friendliness in a real-time setting. 

With this basis, the primary research question of  the thesis is: 

• For what types of  real-time web applications does WebSocket provide a benefit over Long 
Polling and Server-Sent Events? 

To substantiate and validate this, I have formed three additional sub-questions: 

1. How does WebSocket perform compared to Long Polling and Server-Sent Events in a 
unidirectional, server-to-client messaging setting with high client load levels? 

2. How does WebSocket perform compared to Long Polling and Server-Sent Events in a 
bidirectional messaging setting with high client load levels? 

3. Does WebSocket provide any advantages over Long Polling and Server-Sent Events in a 
real-time setting, from a programmer’s perspective? 

1.3 Thesis Outline 
Chapter 2 presents all background material needed to understand the methodology and 
research in this thesis. That means all three transports, the chosen software platform and a 
description of  performance testing. The chapter starts with a section on relevant academic 
works. 

Based on the background material, I have developed two distinct real-time scenarios to 
compare the three different transports. Chapter 3 presents these two scenarios and discusses 
parameters and choices made. It also includes a section on how the test results are collected. 

Chapter 4 presents the test results in a descriptive manner, while Chapter 5 discusses and 
analyzes the main observations. 

Chapter 6 contains the thesis conclusion that directly answers the research questions. The 
chapter concludes with a section on further work. 
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Chapter 2: Background 
This chapter will present all technologies that the real-time web involves. That includes the 
protocols TCP, HTTP, and WebSocket, as well as HTTP-based techniques like Long Polling 
and Streaming. This chapter also includes material on the development platform Node.js and 
some basics of  performance testing. First, is a section on related academic work. 

2.1 Related Academic Work 
In the 2007 paper Bozdag et al. [4] compare different real-time techniques for the Web. The 
two concepts in question are server-pull and server-push. Server-push means that server 
updates are pushed from the server to the client, while server-pull means that the client 
actively asks (pulls) for updates. The server-pull approach requires extra server logic as well as 
more network traffic compared to server-push. Because of  this, the authors conclude with 
praise for the push approach if  high data coherence and network performance is desired. But 
they do point out some problems concerning scalability. The push method they tested and 
thus recommended was HTTP Streaming (presented in detail in Section 2.5.2). Server-Sent 
Events and WebSocket are other push techniques, but are not part of  the paper, as they did 
not exist at the time when it was written. 

The bachelor’s thesis by Jõhvik [5] seems to be inspired and motivated by the work of  Bozdag 
et al. Jõhvik points out some drawbacks of  HTTP Streaming, such as the potential for 
memory leaks and the lack of  auto-reconnect. After testing, he determines that HTTP 
Streaming does not perform well enough to justify a choice over HTTP Long Polling, 
conflicting with the views of  the previous article. WebSocket and Server-Sent Events did exist 
at the time of  the article’s writing, but Jõhvik decided not to include them because of  web 
browser incompatibility. 

In the first part of  the thesis of  Kristian Johannessen [3], he compares different real-time 
frameworks for the Web. Some of  the frameworks such as SignalR [6] and Lightstreamer [7] 
support several real-time transporting techniques. Some even provide fallback solutions to 
support the largest possible set of  clients. Based on performance and developer friendliness 
(maturity, web browser support, WebSocket support, and presentation), he recommends 
SignalR as the best real-time framework, closely followed by Socket.IO [8]. 

The second part of  his thesis compares WebSocket to traditional HTTP techniques for real-
time behavior. He concludes by saying “WebSocket is better than HTTP in every aspect of  
real time applications,” although he is surprised by how well Server-Sent Events performs in 
server-to-client communication. 

In contrast to Johannessen’s focus on framework performance under moderate load levels, this 
thesis focuses on the transports themselves under high levels of  load. 

The rest of  this chapter contains a description of  the protocols HTTP and WebSocket, as 
well as HTTP techniques such as HTTP Long Polling for real-time behavior. Node.js, the 
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chosen software platform, is also presented. And finally, there is a section on performance 
testing. I will start with the Transmission Control Protocol (TCP). 

2.2 TCP 
To better understand how HTTP and WebSocket work, it is essential to have a basic 
understanding of  TCP, even though the protocol in itself  is not directly used in this thesis. 
TCP is one of  the most important protocols on the internet, as it forms the foundation of  the 
Internet Protocol Stack [9]. 

The most important aspects of  TCP are: 
• TCP is a transport layer protocol. The transport layer is the layer below the application layer 

where HTTP and WebSocket lie. 
• TCP is connection-oriented. This means that a connection has to be established before any 

exchange of  data. Once the connection is established, users can push data at any time. 
• TCP is reliable. This means that every packet will eventually arrive at the receivers end. 

This is ensured by having the receiver acknowledge of  each received packet. 
• TCP is bidirectional and full-duplex, meaning that both parties can communicate at the same 

time, whenever they want. 

A TCP connection’s endpoints are called sockets. A socket is a data structure abstraction that 
can be written to, read from and treated like a file. Programming with sockets is called socket 
programming. 

The full-duplex feature of  TCP makes it easy to build real-time applications with immediate 
data push behavior. Example 1 shows pseudocode (and a simplification) that demonstrates 
how easy it is to connect to a remote server and immediately send data over a socket. 

!  
Example 1: Socket programming. 

2.3 The Web and HTTP 
2.3.1 The World Wide Web 
The Web was originally designed to fetch static, non-styled, text-only documents. Over time 
style sheets and script files were added and today the Web mainly consists of  these three 
components: 

• HTML - An XML-like markup language that describes a website’s content. 
• CSS - A language that describes styling attributes of  HTML components. 
• JavaScript - The web’s programming language. 

The web still fetches documents, but the “documents” retrieved by a web browser can be 
highly complex and interactive applications, with Google Maps as an example. Google Maps 

var socket = SocketLibrary.connect(remote_host_address); 
socket.send(“data”);
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is completely different from simple websites such as blogs or newspapers but is powered by the 
same technologies. Today it is even likely that HTML, CSS and JavaScript power applications 
running locally on your smartphone. 

As we will see later in this chapter, there is one area where the Web has lagged far behind 
platform-native applications; the networking protocols. HTTP works great for simple 
document fetching but it is not designed for the advanced use cases of  today’s web 
applications. As this thesis will reveal, it is hard and suboptimal to develop real-time 
applications using HTTP. 

HTML5 [10] intends to improve web transports with Server-Sent Events and WebSocket. 
Server-Sent Event extends HTTP and gives the ability to push data natively from the server. 
WebSocket is a new protocol, bringing TCP-like socket programming to the Web. 

2.3.2 HTTP 
HTTP is short for HyperText Transfer Protocol and is the protocol used to deliver web pages 
to a user’s web browser. The protocol is request-response oriented which implies that all 
server-sent messages must be a response to a certain request. HTTP has many types of  
requests, called methods. 

2.3.3 HTTP Methods 
There are several HTTP request methods, but the most important ones are called GET, 
HEAD, POST, PUT, and DELETE. Requests methods are sent as plain ASCII text, and the 
server parses them and responds with the requested information. Each response is marked 
with a status code to indicate whether the request was successful or not. 

GET was the first HTTP method [11] and is the one you send to a web server to request a 
certain file or document. Example 2 shows a simple GET request to http://www.uio.no. 

!  
Example 2: A GET request example. 

The request consists of  a GET followed by the document’s address. The server parses the 
GET request and sends the requested document back as a HTTP response. 

POST requests are used in conjunction with web forms and when a user wants to submit data 
to the server. DELETE is used to inform the server to delete a certain resource. HEAD is used 
as a GET where you do not want the actual response data, but only the response header fields. 

2.3.4 HTTP Header Fields and State 
HTTP is a stateless protocol, which means that the server does not store any information 
about the clients, and each connection is treated equally. This is great in terms of  server 
resources but can also be a problem, as we shall see later on. 

GET /index.html HTTP/1.1 
Host: www.uio.no
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Header fields are an important part of  HTTP. They function as metadata that are added into 
the HTTP requests and responses. The Host line in Example 2 is the Host header field. 
Headers are there for the server and client to give the other part some necessary information. 
As an example, it is useful for the server to know what kind of  language the client 
understands. 

Figure 1, captured by HTTP Scoop [12], shows the entire GET request a web browser sends 
when going to www.uio.no. 

!  
Figure 1: HTTP GET request to www.uio.no. 

The web browser adds several header fields to each request. For example, the User-Agent 
field tells the server what kind of  computer, operating system and web browser the client is 
running, while the Accept header tells the server what file types the client can read. The 
Connection: keep-alive field means that the user wants the server to keep the underlying TCP 
socket open, as it is likely to send more requests soon. HTTP Headers are an important part 
of  the protocol and adds a slight sense of  state to the otherwise stateless protocol. 

The server responds to a request with an HTTP response. The response contains header 
fields followed by the HTML code for the website. As the web browser parses and renders the 
HTML file from top to bottom, it may find link, script and image tags inside the markup. This 
means that the website consists of  additional elements and that the client must request those 
as well. As an example, for http://www.uio.no there was a total of  56 files (JavaScript, CSS, 
and image files) to be fetched, resulting in 56 GET requests and 56 server responses. Figure 2 
shows an example of  a server response with its headers. 

!  
Figure 2: HTTP GET response from www.uio.no. 

!20

http://www.uio.no
http://www.uio.no
http://www.uio.no
http://www.uio.no


2.4 Modern Web 
HTTP was designed to serve static hyperlinked documents, but today you rarely visit a 
website that is static and pure HTML. Most of  the websites you visit are highly interactive 
with JavaScript code running in the background. This development started in the late 1990s 
with Microsoft Outlook and was truly utilized by Google Gmail and Google Maps in 2004. 
These types of  websites started to behave more like platform-native applications and were a 
definite step away from the hyperlinked documents that the Web originally was. With more 
sophisticated websites and much JavaScript code, you needed a faster web browser. It became 
essential for the main web browser vendors Microsoft, Google, Mozilla and Apple to build 
fast JavaScript engines. 

Essential to this development was how HTTP was used in order to achieve dynamic updates; 
using Asynchronous JavaScript and XML (Ajax). 

2.4.1 Ajax 
In 2004, Jesse James Garret introduced Ajax [13]. He stated that Ajax is “several 
technologies, each flourishing in its own right, coming together in powerful new ways”. A 
central aspect of  Ajax is the XMLHttpRequest JavaScript API [14]. It is used to send and 
retrieve data from a server asynchronously, using HTTP. Previously, a web browser typically 
requested the entire website for each GET it sent. With Ajax, this server interaction occurs in 
the background and the client-side JavaScript updates the DOM (Document Object Model: 
the HTML view) with new data. 

Even though Ajax has XML in its name, the data type is not limited to just XML. JSON [15] 
is a format for representing hierarchical key-value data with less overhead compared to XML, 
and is widely used in conjunction with Ajax. 

An example of  an Ajax-powered web application is Google Maps. When you pan around the 
map, the JavaScript running in your web browser initiates Ajax GET requests to the server, 
requesting data of  the area you are now looking at. When new images and map data arrives, 
JavaScript running in your web browser updates the DOM. 

Ajax is essential to web applications, and it brought interactivity to an otherwise static web. 
Together with some techniques (such as Long Polling and Streaming, described in Section 
2.5), Ajax can make the Web real-time. 

2.5 Real-Time HTTP 
For many applications, pushing data between a server and a client is essential. An example is 
a web application displaying stock prices. Stock prices can change very often, many times per 
minute. As soon as the server receives a stock price update from the broker, it would like to 
push the update immediately to the connected clients. Achieving this kind of  push behavior is 
quite trivial for platform-native applications because you can set up a full-duplex TCP socket 
and push updates as they arrive. Even though HTTP utilizes TCP on the transport layer, 
HTTP itself  is just half-duplex. That means only one side can send data at a time, and there 
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is no way to push natively from the server. All server-sent messages must be a response to a 
client-sent request. 

To get the real-time behavior we see today with Twitter’s feed and Facebook’s chat using 
HTTP, developers had to utilize the techniques presented below. 

2.5.1 HTTP Polling 
The first solution (as showed in Figure 3) is having the client-side JavaScript periodically poll 
the server for updates. If  these requests are sent frequently enough, it could be perceived as real-
time. This approach is called HTTP Polling and is quite simple conceptually and 
straightforward to implement. HTTP Polling works ideally if  you know exactly when the 
server updates its data, and you can ask for new values directly after that. This is, however, 
rarely the case. Take a chat application as an example; you do not know when the one you are 
chatting with sends a message. It can vary from a couple of  seconds to several minutes if  the 
message is long. Trying to find the perfect poll rate is difficult and varies greatly from 
application to application. The worst case scenario is that you end up sending a lot of  
requests that return empty responses. This side effect is certainly a bad thing, as it congests 
the network with unnecessary traffic. 

!  
Figure 3: HTTP Polling example. 

2.5.2 Comet 
Comet is an umbrella term for a set of  programming models that achieve server-push 
behavior using existing HTTP technologies. The term Comet was first introduced by Alex 
Russell in a blog post [16] he wrote in 2006. The two most used Comet techniques are HTTP 
Long Polling and HTTP Streaming. 
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HTTP Long Polling 
HTTP Long Polling (Figure 4) is essentially the same as regular HTTP Polling except that the 
server delays the response until new data is ready. By default, the server keeps the request 
“hanging” for 45 seconds [4]. If  the server has no new data to send before the 45 seconds 
have passed, it sends an empty response back, and the client has to reissue a poll request. 
Long Polling gives the impression of  having data pushed from the server, even though, it, in 
theory, is not. 

!  
Figure 4: HTTP Long Polling example. 

HTTP Streaming 
HTTP Streaming, also known as the forever-frame, is another technique that emulates server-
push. Chunked Encoding is a part of  the HTTP/1.1 specification that lets the server push 
chunked data to the client before the response size is known. A forever-frame is an HTML 
iframe that keeps receiving scripts as these chunks. The scripts are immediately executed on 
the client-side, and the server can in practice keep this connection open as long as it wants. 

2.5.3 Why Comet and HTTP is Unsatisfactory 
Both Long Polling and Streaming give web applications real-time push of  data, but are 
lacking in many areas. HTTP Streaming suffers from several problems, such as a potential for 
memory leaks, proxy issues and no support for auto-reconnect [5]. With scripts being 
immediately executed, security is also a concern. The scripts can contain harmful code. 

For HTTP Long Polling, consider the stock application from earlier, but now with clients 
using Long Polling. Between the time when the Long Polling timer runs out and a new 
request is sent from the client, a new price has arrived from the stock broker (example in 
Figure 5). Now the server must remember that this specific client has outdated information 
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and push data as soon as the next polling request arrives. This adds complexity to an 
otherwise simple task. It even breaks the idea that the server should stay stateless. 

!  
Figure 5: Issue with Long Polling requiring server logic. 

Another issue is related to HTTP headers. In The GET example to http://www.uio.no from 
Subsection 2.3.4, the amount of  header data for each request was between 500 and 800 
bytes. Additionally, all 56 response headers were between 300 and 500 bytes each. Many real-
time applications only send small messages, maybe just a couple of  bytes. This vast amount of  
unnecessary header data is repeated for each request and can congest the network. 

And importantly, all Comet techniques are for server-to-client messages only. If  a real-time 
web application requires client-to-server messages as well (i.e., a chat application), you need to 
accommodate for those using other techniques. Because HTTP is stateless, server-to-client 
and client-to-server messages must take place independently of  each other. That adds to the 
server complexity. 

Long Polling and HTTP Streaming accomplish push behavior, but they have several 
disadvantages. HTTP was designed for an outdated web and it does not utilize the full 
potential TCP gives. All the problems presented here, could have been fixed by a connection-
oriented protocol like TCP. 

2.5.4 HTML5 
HTML5 is the fifth revision of  the HTML markup language and the first major update since 
HTML4 was standardized in 1997. Even though HTML5 adoption started many years ago, 
the W3C recommendation was just recently finalized [17]. HTML5 is, despite its name, 
much more than just an updated HTML version. It is a collection of  many technologies that 
intends to clean up the syntax and unify web technologies. It also introduces several new APIs 
that make the Web a platform for full-fledged applications. Because of  the lack of  native real-
time capabilities in HTTP, HTML5 introduces Server-Sent Events and WebSocket. 
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2.6 Server-Sent Events 
Server-Sent Events is a new HTTP technology that solves the issues with server-push from 
Subsection 2.5.3. It does this by providing the concept of  a long-lived connection and a nice 
programmer interface. As its name implies, Server-Sent Events is unidirectional, supporting 
server-to-client messages only. To understand Server-Sent Events, we must understand the 
EventSource API [18] and the Event Stream Protocol. 

2.6.1 EventSource API 

!  
Figure 6: The EventSource API. 

As seen in Figure 6, the EventSource API is small and simple, yet powerful. It provides 
different ready states (CONNECTING, OPEN and CLOSED) to make the connection 
stateful, and it offers three events that a client can listen for (open, message and error). A 
simple close method is added for connection teardown. Example 3 shows how simple it is to 
open up a connection and listen for server messages. 

!  
Example 3: Server-Sent Events connection. 

2.6.2 Event Stream Protocol 
Under the hood, Server-Sent Events is implemented as HTTP Streaming over a long-lived 
HTTP connection. In addition to the simple API, other advantages over regular HTTP 
Streaming include automatic reconnects and message parsing [19]. 

[Constructor(in DOMString url)] 
interface EventSource { 
  readonly attribute DOMString URL; 

  // ready state 
  const unsigned short CONNECTING = 0; 
  const unsigned short OPEN = 1; 
  const unsigned short CLOSED = 2; 
  readonly attribute unsigned short readyState; 

  // networking 
           attribute Function onopen; 
           attribute Function onmessage; 
           attribute Function onerror; 
  void close(); 
}; 
EventSource implements EventTarget;

var source = new EventSource(‘http://example.com/sse’); 
source.onmessage = function(m) { 

// Code to be executed once a message has arrived 
}
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Syntactically, what make Server-Sent Events different from HTTP Streaming are the Accept 
and Content-Type header fields. The new value is text/event-stream. Example 4 illustrates how this 
exchange is done and how data is sent from the server. 

!  
Example 4: Server-Sent Events. 

In Example 4 you can see how the server sets the client reconnect interval to 15 seconds. The 
example is part of  an example found in the book High Performance Browser Networking 
[19] and shows that the data format can be pure text or JSON. The example also shows 
features such as the ability to set an id and a custom event associated with a message. 

2.6.3 Server-Sent Events Problems 
With a simple API and developer friendly features like automatic reconnects, Server-Sent 
Events should be the obvious choice for developers wanting server-push on the Web. Sadly 
that is not the case. The way I see it, there are two reasons for it. First and in some cases, not 
very important; you can only send string data. If  you need to send binary it has to be 
converted using base64 encoding. This adds some overhead. Second, the adoption is not 
perfect. All modern web browsers except Internet Explorer support Server-Sent Events. 
Because Internet Explorer accounts for a large portion of  the web browser market, choosing 
Server-Sent Events alienates many users. 

HTTP Request: 
GET /stream HTTP/1.1 
Host: example.com 
Accept: text/event-stream 

HTTP Response: 
HTTP/1.1 200 OK 
Connection: keep-alive 
Content-Type: text/event-stream 
Transfer-Encoding: chunked 

retry:  15000 

data: First message is a simple string. 

data: {“message”: “JSON payload”} 

id: 42 
event: bar 
data: Multi-line message of 
data: type “bar” and id “42”
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While many applications benefit from Server-Sent Events, some require client-to-server 
messaging as well. Server-Sent Events alone has no answer to that need. But as we shall see, 
WebSocket does. 

2.7 WebSocket 
Unlike Server-Sent Events, WebSocket is an entirely new protocol for the Web. WebSocket is 
an application layer protocol with full-duplex communication support. It utilizes a single TCP 
socket but simplifies some of  the underlying protocol’s rough edges. WebSocket promises to 
be all about performance, simplicity, standards and HTML5 [20]. And it is designed to work 
seamlessly together with HTTP. In order to understand what is unique to WebSocket and 
why it is important, we must dig into two parts; the protocol itself  (RFC 6455 [21]) and the 
API. 

2.7.1 The WebSocket API 
One of  the great powers of  WebSocket is its simple, yet powerful JavaScript API. Figure 7 
shows the entire interface. 

!  
Figure 7: The WebSocket API. 

[Constructor(DOMString url, optional (DOMString or DOMString[]) protocols)] 
interface WebSocket : EventTarget { 
   readonly attribute DOMString url; 

   // ready state 
   const unsigned short CONNECTING = 0; 
   const unsigned short OPEN = 1; 
   const unsigned short CLOSING = 2; 
   const unsigned short CLOSED = 3; 
   readonly attribute unsigned short readyState; 
   readonly attribute unsigned long bufferedAmount; 

   // networking 
             attribute EventHandler onopen; 
             attribute EventHandler onerror; 
             attribute EventHandler onclose; 
   readonly attribute DOMString extensions; 
   readonly attribute DOMString protocol; 
   void close([Clamp] optional unsigned short code, optional DOMString reason); 

   // messaging 
             attribute EventHandler onmessage; 
             attribute DOMString binaryType; 
   void send(DOMString data); 
   void send(Blob data); 
   void send(ArrayBuffer data); 
   void send(ArrayBufferView data); 
};
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Similarly to the Server-Sent Events API, we see several ready states and networking events to 
listen for. We also see the extensions and protocol attributes. What they are will be discussed 
further on. WebSocket is full-duplex, meaning it can send messages as well as receiving, at any 
time. Sending is done with the send methods. These methods accept either String or binary 
data. Because WebSocket is a new protocol, strings are expected to be coded in UTF-8, 
eliminating all encoding problems. You call the close method when you want to terminate the 
connection. 

Example 5 shows how to open a WebSocket connection. 

!  
Example 5: How to open a WebSocket connection. 

2.7.2 The WebSocket Protocol 
The WebSocket protocol was designed to work seamlessly together with HTTP. In fact, 
WebSocket uses an HTTP request’s Upgrade header field to tell the server that it wants to 
upgrade from HTTP to WebSocket. This is all done over the same ports as HTTP to provide 
a simpler rollout of  the protocol. This upgrade is part of  what is called the WebSocket 
opening handshake. 

WebSocket opening and closing handshake 
To open a WebSocket connection, a client sends an HTTP request to the server with the 
header field Upgrade: websocket. The server responds to this request with a 101 status code and 
the same header field in return. The 101 status code indicates that the server is switching 
protocols. Once the client receives this response, the open event is triggered, and the 
connection is established. This short exchange of  HTTP packets is the WebSocket opening 
handshake. Figure 6 shows the opening handshake. The exchange of  keys is happening to 
ensure both parties speak the same WebSocket version. 

var ws = new WebSocket(‘ws://example.com'); 
ws.onopen = function(e) { 

 // Code to be executed once the connection is established 
}
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!  
Example 6: WebSocket opening handshake. 

Similarly to the opening handshake, WebSocket also has a closing handshake. This handshake 
is there to differentiate between intentionally and unintentionally teardowns of  the 
connection. As the API describes, the user can send a status code and a UTF-8 text string to 
tell the server why the connection was closed. 

Message Format 
To keep the API simple, WebSocket abstracts away some of  the roughness of  TCP. When you 
want to send a message over a TCP socket, the message could be divided into several chunks, 
depending on its size. As a developer, you have to deal with the fact that they are delivered as 
chunks and not as whole messages. WebSocket takes care of  this for you, and the message 
event is only triggered once an entire message is delivered. However, even though the protocol 
abstracts away the framing for the developer, messages are indeed sent as chunks (frames). 
Figure 8 shows a WebSocket frame. 

HTTP Request: 
GET /chat HTTP/1.1 
Host: server.example.com 
Upgrade: websocket 
Connection: Upgrade 
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw== 
Sec-WebSocket-Version: 13 
Origin: http://example.com 

HTTP Response: 
HTTP/1.1 101 Switching Protocols 
Upgrade: websocket 
Connection: Upgrade 
Sec-WebSocket-Accept: HSmrc0sMlYUkAGmm5OPpG2HaGWk=
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!  
Figure 8: The WebSocket frame as defined in the RFC. 

For this thesis, most of  the fields in a WebSocket frame are not that important. But I want to 
show it nevertheless because it illustrates a key difference to HTTP. Look at how the payload 
length field is found in three places. This means support for a variable number of  bits 
denoting the payload length. If  the frame is between 0 and 126 bytes, only 7 payload length 
bits are need. For payloads between 126 and 216 an extra two bytes (7 + 16 bits) are added 
and for larger frames an additional 8 bytes (7 + 64 bits) are added. For very small messages, 
only 3 bytes of  header data is necessary. Compare this to HTTP where each message needs 
many header fields, each consisting of  tens of  bytes. 

Subprotocols and Extensions 
With its simple, yet powerful API, WebSocket is built to enable higher level protocols and 
frameworks to be built on top of  it. These higher level protocols are called subprotocols. When 
establishing a WebSocket connection you can pass in an array of  subprotocol names. 

!  
Example 7: WebSocket connection with subprotocols. 

In Example 7, the client tells the server at example.com that it speaks both ‘proto1’ and 
‘proto2.’ If  the server knows these, the server can choose which one to use, but only one at a 
time. There is support for several official protocols [22], such as Microsoft SOAP and 
unofficial open protocols such as XMPP. And it is possible for anyone to create WebSocket 
subprotocols. 

Extensions represent another way to append WebSocket with additional features. Unlike 
subprotocols, you can extend your WebSocket connection with several extensions. An 
extension is a supplement to the already existing protocol, and both web browser and server 
must support it. You add extensions with the Sec-WebSocket-Extension header. Example 8 is an 
extension that compresses frames at source and decompresses at destination. 

      0                   1                   2                   3
      0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
     +-+-+-+-+-------+-+-------------+-------------------------------+
     |F|R|R|R| opcode|M| Payload len |    Extended payload length    |
     |I|S|S|S|  (4)  |A|     (7)     |             (16/64)           |
     |N|V|V|V|       |S|             |   (if payload len==126/127)   |
     | |1|2|3|       |K|             |                               |
     +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
     |     Extended payload length continued, if payload len == 127  |
     + - - - - - - - - - - - - - - - +-------------------------------+
     |                               |Masking-key, if MASK set to 1  |
     +-------------------------------+-------------------------------+
     | Masking-key (continued)       |          Payload Data         |
     +-------------------------------- - - - - - - - - - - - - - - - +
     :                     Payload Data continued ...                :
     + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
     |                     Payload Data continued ...                |
     +---------------------------------------------------------------+

var ws = new WebSocket(‘ws://example.com', [‘proto1’, ‘proto2’]); 
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!  
Example 8: WebSocket extension. 

2.7.3 WebSocket and HTTP 
WebSockets are great, but will not replace HTTP. Instead, the two protocols will work 
together to bring tomorrow’s real-time web applications to market. There are features of  
HTTP which WebSockets do not provide. It does not make sense to download all website 
assets over WebSocket, as HTTP already has caching abilities. Cookies are another part of  
HTTP not available to WebSockets. And, even though HTTP being stateless can be a bad 
thing, it can also be good. Statelessness means there is no need for additional server resources 
beyond the ones already allocated for the HTTP request. 

WebSocket is an easy-to-use, modern and powerful TCP-like protocol. In my opinion it even 
improves upon TCP, with its simple subprotocol scheme and frames being abstracted away. 
The web has finally caught up with platform-native applications in terms of  real-time 
networking capabilities. 

2.7.4 WebSocket vs. Server-Sent Events and HTTP 
One of  the issues with HTTP was the large amount of  header data. With my HTTP GET 
example to http://www.uio.no, every request and response had several hundred bytes of  
metadata. 

Because WebSockets are stateful, message sizes can be tiny in comparison to HTTP’s. To 
illustrate this difference, I have created an example based on the stock price application from 
Section 1.1. The example shows how HTTP Long Polling, Server-Sent Events, and 
WebSocket represent the messages. A stock price update is represented by a 58 byte long 
JSON object with three attributes; the message type, the price update and the time (Unix 
timestamp) the price was updated. Example 9 shows the object. 

!  
Example 9: Stock price example JSON object. 

HTTP Long Polling 
In addition to the 58 byte long JSON object we want to send, an extra 221 bytes are 
consumed by HTTP headers, totaling at 279 bytes per stock price update (see Example 10). 
The headers consume almost four times as much data as the short message we want to send. 

Sec-WebSocket-Extensions: deflate-frame

{ 
 “type”: “priceUpdate”, 
 “price”: “24.45”, 
 “time”: “1429528134” 
}
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!  
Example 10: HTTP response with headers. 

And importantly, HTTP is half-duplex, meaning every HTTP response follows an HTTP 
request. Assume that each HTTP request looks like the 263-byte long Example 11. 

!  
Example 11: HTTP request headers. 

Now every stock price update requires 263 (request headers) + 279 (response headers and 
response body) = 542 bytes. 

Server-Sent Events 
Server-Sent Events is connection-oriented, so there is no need for an HTTP-like request once 
the connection is established. There is not much wasted space on headers either. The server-
pushed message can look like Example 12. 

!  
Example 12: Server-Sent Events message. 

Response Headers 
HTTP/1.1 200 OK 
X-Powered-By: PHP/5.4.0 
Server: Apache/2.4.1 (Unix) 
Date: Mon, 20 Apr 2015 13:33:28 GMT 
Last-Modified: Mon, 20 Apr 2015 12:33:28 GMT 
Content-Type: application/json 
Content-Length: 63 
Connection: keep-alive 

Response Body 
{“type”:“priceUpdate”,“price”:“24.45”,“time”:“1429528134”}

Request Headers 
GET /poll HTTP/1.1 
Host: example.com/stock 
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:12.0) Gecko/ 
  20100101 Firefox/21.0 
Accept: application/json 
Accept-Language: en-us 
Accept-Encoding: gzip, deflate 
Accept-Charset: utf-8 
Connection: keep-alive 
Keep-Alive: 300

id: 1 
data: {“type”:“priceUpdate”,“price”:“24.45”,“time”:“1429528134”}
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Including a blank line at the end, each stock price message totals at 74 bytes with Server-Sent 
Events. Only 16 bytes of  header data is a vast improvement over HTTP. 

WebSocket 
Because the stock price update is just 58 bytes long and well below 126 bytes, WebSocket 
requires only 3 bytes of  header data (see Subsection 2.7.2 under Message Format). As a result, 
each stock price update sent from a WebSocket server requires only 61 bytes. Part of  what 
makes the headers so small is the fact that they are binary encoded compared to the ASCII 
text based HTTP and Server-Sent Events ones. 

2.8 Web Platforms & Node.js 
2.8.1 Web Development 
When developing for the Web, you need to develop on two distinct ends; the frontend and the 
backend. Unlike platform-native applications, the web frontend is limited when it comes to 
development choices. Your code has to be JavaScript, HTML and CSS. 

On the backend however, you can freely choose web frameworks and programming 
languages. Traditionally Java and .NET frameworks such as Spring [23] and ASP.NET [24] 
have been very popular. Even though the clear separation of  front- and backend works fine, a 
new platform called Node.js shows that there was a need for a more unified web development 
process. 

2.8.2 Node.js 
Ajax made web applications more complex, and developers spent more time writing 
JavaScript. The context switch from frontend JavaScript to another language on the backend 
could be cumbersome. When the creator of  Node.js Ryan Dahl introduced server-side 
JavaScript [25] in 2009, many developers found the idea promising. 

Node.js is a JavaScript runtime environment built on top of  Google Chrome’s V8 JavaScript 
engine. V8 is mostly written in C++ [26], meaning Node.js runs directly on the hardware. 
That makes it fast. 

In addition to JavaScript on the server, Node.js brings some new features to server-side web 
development: 

• Non-blocking code. 
• Single threaded development environment. 
• The lightweight package manager NPM. 

With traditional threaded web servers, a new thread is spawned for each newly connected 
client. The server context switches between all threads and runs their code. However, most of  
the time, web servers are doing I/O, typically querying a database or reading a file. I/O 
operations block the running thread, and the server has to wait for the I/O operation to 
finish. This takes up precious CPU cycles, and the server compensates by doing context 
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switches between threads. The problem is that context switches are expensive and threads 
take up memory. 

Node.js breaks the threaded programming paradigm with something called an Event Loop. 
The event loop is an ever-going loop that constantly looks for triggered events. Examples of  
events can be a newly connected client or an answer to a database query. The event loop lets 
you program in a single-threaded environment that takes full advantage of  the CPU. Because 
of  the event loop, Node.js has proven to scale quite well [27]. 

To show how the two different programming styles compare, consider Example 13 and 14. 

!  
Example 13: Blocking code. 

!  
Example 14: Non-blocking asynchronous code. 

In Example 13 you can see that the first line blocks the following lines until the database 
query result is stored in the variable result. This is how it is to program in a threaded and 
synchronous environment. Most programming languages such as Java follow this model. 

Example 14 shows how you typically write Node.js code. The difference here is that we send 
in a callback function to the query function itself. The callback function is called whenever the 
database has responded and is triggered by the event loop. The code following the database 
query can execute immediately. 

Programming in an asynchronous manner is fundamentally different to the synchronous style 
most backend programmers are used to. Frontend developers, on the other hand, have been 
programming like this for some time. Ryan Dahl said during his Node.js introduction that 
JavaScript is the perfect language for a non-blocking environment. The web browser already 
has an Event Loop constantly listening for events such as button clicks. Node.js utilizes this 
and unifies web development around one programming style and one language. 

NPM [28] (Node Package Manager) is another noteworthy feature of  Node.js. NPM makes it 
easy to install packages for you to use in your projects. It works like shown in Example 15. 

!  
Example 15: How to install a package to your Node.js project. 

var result = database.query(“some query”); // Code blocks here 
// Result is fetched 
something else;

database.query(“some query”, function(result) { 
 // Result is fetched 
}); 
something else;

$ npm install <package-name>
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A final part of  Node.js (V8 specifically) that needs to be understood, is how memory is 
managed. V8 employs a garbage collector. Memory allocation and deallocation are therefore 
handled by the runtime. There are two sides to garbage collection. First, it is wonderful for a 
programmer to not worry about memory management. Memory related issues, like leaks, are 
then less likely to happen. Second, a garbage collector introduces a performance penalty. V8 
uses the stop-the-world collection scheme [29]. That means V8 stops all program execution 
once the garbage collector runs. As a result, the user response time will be affected for the 
time the collector runs. That makes the performance to a certain degree less predictable, as 
the garbage collector can decide to run at unpredictable times. 

There are tools to memory profile your Node.js application, but because Node.js is a new 
platform, the tools are not as mature as they are in other environments, such as for the Java 
Virtual Machine. 

2.9 Performance Testing 
2.9.1 Introduction to Performance Testing 
To determine what technology is the most efficient under a set of  defined criteria, we can 
carry out performance tests. As stated in the book Performance Testing Guidance for Web 
Applications, “Performance testing is a type of  testing intended to determine the 
responsiveness, throughput, reliability, and/or scalability of  a system under a given workload” 
[30]. For a product launch on the internet, it is vital to know whether your systems can 
withstand the expected workload, especially on launch day. Testing is therefore, crucial and 
should be an integral part of  software development. Performance testing can also help you 
identify bottlenecks in your system and assist you in building the most efficient solution 
possible. The book introduces two subcategories of  performance testing: 

Load Testing 
Load testing is a type of  performance test focused on determining performance qualities for a 
system that is under normal workloads.  

Stress Testing 
Stress testing is a type of  performance test focused on determining performance qualities for 
a system under unnatural high workloads. That can include limited memory or processor 
resources. 

In addition to the two types above there are other types of  performance tests as well: 
• Soak testing: This type of  test is usually done to determine memory leaks. To get an 

accurate system leakage picture, a soak test usually runs for long periods of  time. 
• Spike testing: Spike tests are conducted to see how a system reacts to sudden spikes of  

workload. 

I will only focus on load and stress tests in this thesis. For simplicity’s sake, I have defined Load 
and Stress testing to mean the following: 

Load testing: As long as the server CPU usage is below the maximum, the test is a load test. 
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Stress testing: When the server CPU load is at a maximum, the test is a stress test. 

Figure 9 shows how a load test “becomes” a stress test once the CPU reaches maximum 
utilization and stops growing. 

!  
Figure 9: Relation between load and stress tests. 

2.9.2 Response Times 
This subsection defines the response time limits I have decided to judge my test results on. 
“Response Times: The 3 Important Limits” is the title of  an article [31] written by Jakob 
Nielsen and is an excerpt from his 1993 book “Usability Engineering”. In this article, Nielsen 
presents three response time limits for all types of  applications, including web applications. 
The article says: 

“0.1 second is about the limit for having the user feel that the system is reacting 
instantaneously, meaning that no special feedback is necessary except to display the 
result. 
1.0 second is about the limit for the user’s flow of  thought to stay uninterrupted, 
even though the user will notice the delay. Normally, no special feedback is necessary 
during delays of  more than 0.1 but less than 1.0 seconds, but the user does lose the 
feeling of  operating directly on the data. 
10 seconds is about the limit for keeping the user’s attention focused on the 
dialogue. For longer delays, users will want to perform other tasks while waiting for 
the computer to finish, so they should be given feedback indicating when the 
computer expects to be done. Feedback during the delay is especially important if  the 
response time is likely to be highly variable, since users will then know what to 
expect.” 

When interpreting and discussing my test results in Chapter 4 and 5, these limits will be 
helpful to separate good results from bad results. 
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2.10 Test Expectations 
As long as the CPU load is below a maximum, and the test stays a load test, I expect all three 
servers to keep the response times fairly low. When the server reaches maximum CPU load, I 
expect the response times to grow slowly and linearly with the client count. Figure 10 
illustrates the expectation. 

!  
Figure 10: Expected response times. 

After reading related academic work and learning about the three different transports, I 
expect WebSocket to perform best. I expect Server-Sent Events to closely follow WebSocket 
and Long Polling to be the worst performer by far. 

On the server-side, headers take time to process. Because WebSocket enables very small 
headers (see Subsection 2.7.4), I believe it will have a much lower response time compared to 
the other two transports, especially compared to Long Polling. The header processing also 
affects the CPU, so consequently I expect CPU load to be lower as well. I expect Server-Sent 
Events to perform well, but not quite on level with WebSocket. This is because WebSocket 
has smaller headers and is the only transport of  the three that was designed from the ground 
up to be performant. 

Another reason why I think Long Polling will perform worst is because of  its response-
request-oriented nature. Each request means more headers and more CPU power used. 

There is, however, one area where I expect HTTP Long Polling to be the best, and that is in 
terms of  memory consumption. Both WebSocket and Server-Sent Events introduce 
connections. These connections will consume more memory than incoming HTTP requests. 
As WebSocket is more advanced (full-duplex) than Server-Sent Events, I expect it to be the 
most memory consuming of  the three. 

!37



!38



Chapter 3: Methodology 
The methods presented in this chapter are designed to answer the research questions from 
Section 1.2. The main research question is composed of  three sub-questions. The first two 
sub-questions are related to performance while the third is related to programmer friendliness 
and ease of  use. 

To answer these questions, I have designed and implemented two test scenarios. They 
performance test WebSocket, Server-Sent Events and Long Polling. The test results will give 
answers to the performance related questions. And the gained experience of  implementing 
the tests, will answer the programmer friendliness related one. 

The thesis introduction presented two types of  real-time applications. The stock price 
application was an example of  a unidirectional messaging system while the chat application 
was a bidirectional messaging system. These two examples are the basis for the two test 
scenarios in this chapter. Each test scenario has three implementations, one powered by 
WebSocket, one by Server-Sent Events, and one by HTTP Long Polling. 

First, I briefly introduce the two scenarios. Then I discuss what data points to collect and 
when to collect them. After that, I present and discuss the hardware and software platform, as 
well as test configurations. Then I go into a detailed description of  the test scenarios and their 
implementations. Finally, I discuss some of  the limitations of  the methodology. 

3.1 Test Scenarios 
This section gives a quick description of  the two test scenarios and the components they 
contain. A more detailed view of  the information flow for each scenario is found in Section 
3.5. 

3.1.1 Test Scenario 1 
Note: There are three implementations of  this test scenario, one with WebSocket, one with Server-Sent Events 
and one with HTTP Long Polling. The text describing this scenario will not distinguish between the different 
versions. For detailed descriptions, see Section 3.5. 

The first test scenario is a real-time message broadcasting system involving three main 
components; a backend, a server and a given number of  clients. All the clients connect to the 
server, and the server connects to the backend system using a long-lived connection. The 
backend regularly sends messages to the server, and it is the server’s job to broadcast these to 
all the connected clients immediately. You can think of  this system as the stock price 
application example from earlier. In a real world scenario, the clients would be web browsers 
and the backend would be the broker. 

Figure 11 shows the main components of  the first scenario. 
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!  
Figure 11: The three components in the first test scenario. 

3.1.2 Test Scenario 2 
Note: There are three implementations of  this test scenario, one with WebSocket alone, one with Server-Sent 
Events (HTTP POST for client-to-server messages) and one with HTTP Long Polling (HTTP POST for 
client-to-server messages). The text describing this scenario will not distinguish between the different versions. 
For detailed descriptions, see Section 3.5. 

The second test scenario is a real-time chat system. It consists of  two main components; a 
server and a given number of  clients. All the clients connect to the server using WebSocket, 
Server-Sent Events or Long Polling. During the test, each client regularly sends a chat 
message to the server. Each and every one of  these chat messages are then broadcasted to all 
connected clients by the server. Figure 12 shows that Client 1 sends a chat message to the 
server. The server then distributes this message to all the other clients. 

!  
Figure 12: The components in the second test scenario. 
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3.2 Test Data 
I have chosen to load and stress test the different transports, to get an accurate picture of  how 
WebSocket compare to Server-Sent Events and Long Polling. Stress testing a server is done by 
gradually increasing the number of  connected clients, to the point where the server is utilizing 
the CPU at a maximum. As long as the CPU utilization is below the maximum, the test is a 
load test. 

This section describes what data is collected and how it is used to compare the three different 
transports on a performance level. 

3.2.1 Two Points of  View 
There are two points of  view in the tests. The first point of  view is the server-side. From a 
server administrator’s point of  view, efficient use of  server resources is important. The most 
interesting metrics on the server-side are CPU load and memory footprint. 

The other perspective is the user’s; the client-side. As a user of  a real-time system, you do not 
care about how much stress the server is under, as long as the system is responsive and quick 
to use. The only interesting measure from a user’s point of  view is the response time. How long 
it takes for the system to respond to an action. 

To summarize, there are three data points that are collected. The CPU load (1) and memory 
footprint (2) on the server-side, and the response time (3) on the client-side. 

3.2.2 Collection through Three Test Phases 

!  
Figure 13: The three test phases and what is measured in each phase. 

I have designed the tests to go through three phases. The first phase is the idle phase. The idle 
phase starts as soon as all clients are connected (polling in the case of  Long Polling) to the 
server and the test is ready to start. In this phase, all three data points are collected. 
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The second phase is the test phase. During this phase, the test is active and running. In the first 
test scenario, this is the phase when the server broadcasts messages received from the 
backend. And in the second test scenario, this is the phase when the chat is live. 

The memory footprint will rise as the test goes on and the server receives messages. But, the 
garbage collector can clean and free memory space as well. When this happens and how it 
affects memory is not easy to say. Because of  this memory related uncertainty, I decided not 
to collect memory footprint in this phase. I can only depend on good results from the CPU 
load and memory footprint in this phase. 

The last phase is the phase right after the test has finished running. CPU and response time 
will be the same in this phase as in the idle phase because the clients are inactive (or 
disconnected), so I will not record them. As already stated, there are uncertainties concerning 
memory. But I decided to collect memory footprint after the test, to make sure I spot any (if  
present) irregularities. 

3.2.3 Collection 
A separate monitoring process running independently on the server machine collects the server-
side data. Every 50th millisecond this process records the CPU load and memory footprint. 
The server process notifies the monitoring process when the different phases start. It is the 
monitoring process’ responsibility to calculate the CPU load and memory footprint average 
when the test is finished. After calculation, the average is sent to the server process for print 
out on the screen. 

The client-side metric, response time, is collected differently in the two test scenarios. In the 
first scenario, there is a separate ping client that every 50th millisecond sends a time stamped 
ping message to the server. The server immediately sends this message back, and the ping 
client calculates the response time. In the second scenario, each chat message going to the 
server includes a timestamp. And each client is responsible for calculating and recording the 
response time of  each message it receives. An average of  those recordings is calculated once 
the test is over. 

3.2.4 Number of  Test Runs 
To minimize any irregular results, I ran each test 10 times for a given number of  clients. An 
average of  those ten test runs was calculated at the end. 

3.3 Testing environment 
3.3.1 Hardware 
It is important that the server runs isolated from other components when running 
performance tests. The server process must not be disturbed by other part of  the system, like 
the clients. There are several ways to isolate the server: 

1. An isolated process running on the same hardware as the clients and the backend. 
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2. An isolated virtual machine running on the same hardware as the clients and the 
backend. 

3. An isolated online server instances from an online cloud provider. 
4. Isolated on a physical machine running in an isolated local network. 

The first alternative is ideal for development as everything runs on a single computer. For 
testing, however, it is not ideal. It is difficult to tell how the operating system context switches 
between processes and how much time it uses on the server. It would be better if  the server 
process is the only process running, except for the operating system processes. Also, since this 
is about testing network protocols, it is not a good idea to run the clients and server on the 
same machine. And, the server should be isolated on a hardware level to get the most 
accurate picture of  server load. As a result, option three and four remains. The two options 
sound both good, but I eventually landed on number four. Most online server instances share 
physical hardware with other instances, and it is hard to tell how the system resources are 
shared between them. Number four is the setup that gives me the most control over the server 
hardware. In addition, I had all the hardware that was needed available at home. 

It is important that the server machine is considerably slower than the client machine (and 
backend for the first scenario). This is because the server must reach its resource limit before 
the client machine for this to be a stress test. Since a resource monitoring process also had to 
run on the server, two CPU cores or more was preferable. This way the server process could 
run independently on one core (Node.js is single threaded; see Subsection 3.3.2) and still be 
monitored without any performance penalty. Of  course, this all depends on how the 
operating system does process control, but that was the basic idea. 

The server ran on the following machine: 

	 Apple MacBook Air 2013 
	 Dual Core Intel Core i5 1.3 GHz 
	 8 GB DDR3 
	 OS X 10.10.1 

The clients (and backend for the first scenario) ran on this machine: 

	 Apple MacBook Pro 2013 
	 Quad Core Intel Core i7 2.0 GHz 
	 16 GB DDR3 
	 OS X 10.10.1 

As I did not want the network to be unreliable or a bottleneck, I decided to have them both 
running on a cabled 1 Gb/s network. 

3.3.2 Programming environment 
The point of  this thesis was to test and benchmark different transports (or protocols). But, 
benchmarking protocols is not possible as a protocol is just a set of  rules. Protocol 
implementations, on the other hand, are possible to benchmark. 
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To get the most accurate picture of  how WebSocket compares to Server-Sent Events and 
Long Polling, I would ideally compare every single implementation of  the transports to each 
other. But that would take a very long time and is not feasible for this thesis. I followed 
Johannessen’s advice from his thesis’ Further Work section [3], where he advises to focus on a 
single platform. 

As previously stated, Node.js is the chosen server software platform. This subsection discusses 
why Node.js is a good match for this thesis. 

Node.js is lightweight, very performant and easy to use 
When PayPal moved from a Java backend to Node.js, they saw incredible results [27]. After 
some tests, they could see that the Node.js server could handle double the requests per second 
compared to the old Java server. They say this was “interesting because our initial 
performance results were using a single core for the node.js application compared to five cores 
on Java”. They also saw a 35% decrease in average response time. 

In addition to being very performant, their Node.js application was “Built almost twice as fast 
with fewer people”. It was also written with 33% fewer lines of  code and 40% fewer files 
compared to the old Java server. 

It is also worth mentioning that JavaScript is an interpreted language. This makes it feel 
lightweight because you do not directly compile the files yourself. Development can be fast, 
especially with tools like nodemon [32]. 

High performance and programmer friendliness makes Node.js a good fit for the one-man 
job this thesis is. 

Node.js is single threaded 
The fact that Node.js uses only one operating system process makes it perfect for monitoring. 
One process for the server itself  and one for the monitor process can run in real parallel, as 
long as the CPU has more than one processing core. 

PayPal wrote that their single-threaded Node.js server performed better than a five threaded 
Java server. That makes Node.js great at scalability; you can just start another instance of  the 
server process. 

Node.js is a platform with cutting edge innovation 
When looking at GitHub’s most trending and starred repositories [33], Node.js is the most 
popular web framework by far. It is also worth noting that most of  the popular GitHub 
repositories are JavaScript projects. Because Node.js is a JavaScript runtime, most JavaScript 
code written for a web browser can also be used on the backend with Node.js. That means 
excellent compatibility with many existing projects. 

Node.js comes with the package manager NPM. NPM makes it simple to instantly fetch new 
pieces of  code and integrate them into your system. 
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I only write code in JavaScript 
Node.js was a breath of  fresh air in the web development world when it arrived. It is not 
necessarily because JavaScript on the server is such a great idea. But because developers can 
focus on a single programming language for their entire web application, backend to 
frontend. I consider it a great thing only having to write JavaScript for this thesis: 

• JavaScript is an expressive and dynamic programming language, meaning I can write 
powerful applications in few lines of  code. 

• It increases the readability in this thesis because there only is one programming language 
in the examples. 

• JavaScript is everywhere. Whatever project you are working on, there is a very high 
probability that the project includes a web component. With the latest edition of  OS X by 
Apple, there is even a JavaScript interface to the operating system [34]. Also, I chose it so 
that I can learn some of  its quirks  [35], as I am likely to work on a web project in the 
future. 

Node.js is well suited for creating command line programs 
Node.js has great support for creating command line utilities with the readline module [36]. 
This makes it perfect for the lightweight clients. 

3.3.3 Command Line Clients 
Because of  similarities to Johannessen’s thesis [3], I had contact with him when working with 
my thesis. He met challenges when using full-fledged web browsers as clients and for that 
reason advised me to use smaller, lightweight command line clients in my tests. Because he 
used web browsers as clients, he could not focus on scalability or stress testing. This thesis 
focuses solely on the transports; not frameworks like he did. I also used smaller command line 
clients that let me spawn clients in the number of  hundreds and see how the server behaves 
when pushed to the limit. 

3.4 Test Configurations 
Because the tests were designed to be load and stress tests, they had to be run in such a way 
that the server reached its resource limit with the chosen hardware. In this section, I will 
present and discuss the parameters for both test scenarios which made that possible. 

3.4.1 Maximum Number of  Clients 
Before tweaking the test parameters, it was important to know what the maximum number of  
clients the client machine could handle. After some testing, it was clear that 500 had to be the 
maximum. As a default, OS X allowed 709 user processes and 220 user processes were always 
running on the client machine. To then spawn 500 client processes was not possible without 
increasing the operating system’s maximum process limit. I increased the limit to 1024 with 
the commands in Example 16. 
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!  
Example 16: How to allow 1024 user processes in OS X. 

Now, 500 additional user processes was not an issue. I could have had more clients, maybe 
600, but then OS X would sometimes freeze and tell me that I had too many user processes. 
It happened even though I was way below the limit I manually set. The only solution was a 
hard restart of  the computer. Because of  that, I decided to keep the maximum number of  
clients at 500. 

3.4.2 Parameters Specific to the First Scenario 
For the first test scenario, there were three different parameters I had to tweak. The fact that 
the maximum number of  clients was 500 meant I had to tweak the parameters so that the 
tests would become stress tests at some point before all 500 clients were used. Furthermore, 
this had to be true for all three transporting technologies I was going to test. 

How long the backend should wait between messages 
Given that I could only have a maximum of  500 client processes, the backend had to quite 
rapidly send new messages, in order to stress the server well before reaching 500. Every 5th 
milliseconds a new message is sent from the backend to the server. 

The size of  each broadcasted message 
This parameter should resemble a real world message size, so I decided to set this to the size 
of  a Twitter message; a tweet. The maximum length of  a tweet is 140 characters. UTF-8 
characters are encoded at different sizes, ranging from 1 byte for standard English characters 
to 4 bytes for Kanji [37]. The minimum byte size of  a 140-character tweet is then 140 bytes 
while the maximum tweet size is 560 bytes. I decided to use a 140-English-character long 
tweet. Including 33 bytes of  header data, each message is then of  size 173 bytes. 

The number of  messages the backend should send per test 
Each test should run long enough to minimize inaccuracies in CPU usage caused by the 
garbage collector. At the same time, a test should not run for too long, as that would make it 
unfeasible for the time I had at hand. Consequently, this number is set to 5000. 5 milliseconds 
between each message mean that each test runs for 25 seconds. 

3.4.3 Parameters Specific to the Second Scenario 
Just as with the first scenario, the 500 client limit worked as a guide for me to find the right 
parameter choices here as well. I wanted to reach full CPU utilization for all three transports 
some time before the 500 client limit. 

The size of  each chat message 
The payload of  each chat message is “Hello! How are you doing today?” That is a very short 
message, but it resembles a real world chat message. In addition to the payload, there are 

$ launchctl limit maxproc 1024 
$ ulimit -u 1024
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header data, consisting of  a timestamp field, a from field and a type field. In total 40 bytes of  
header data and 31 bytes of  payload equals a total message size of  71 bytes. 

How long each test should run 
The first test was designed to run for 25 seconds. That made it run long enough for an 
accurate picture, but at the same time not too long and making it unfeasible to do. I chose 30 
seconds for each test in the second scenario. 

Message spread and frequency 
Each client sends a chat message to the server every three seconds. To have an equal spread 
of  messages, providing an even load on the server, the clients do not start sending chat 
messages at the same time. They are spread over the three seconds. Figure 14 shows an 
example of  five clients sending their first two messages. 

!  
Figure 14: Example showing five clients sending their first two messages. 

3.5 Detailed Information Flow 
In this section, each scenario is expressed in detail both in words and by sequence diagrams. 
The two scenarios share two common concepts: 
• Master client: As a user of  the tests, you never initiate the clients themselves directly, but 

always through a master client. The master client is a process responsible for spawning the 
desired number of  clients and reporting the calculated average response time. 
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• Monitoring process: This is a process responsible for measuring the CPU load and the 
memory footprint of  the server. It is spawned by the server process itself. 

3.5.1 Test Scenario 1 
The first test scenario, the unidirectional broadcast application, has three components; a 
backend, a server and a given number of  clients. Figure 15 shows how the information flows 
during a test. 

!  
Figure 15: Sequence diagram for the first test scenario. 

Server and Backend 
Once the server starts, it immediately connects to the backend. The backend then sends an 
info message to the server, asking how often and how many times messages should be sent. 
The info message triggers the server to prompt the user for these parameters. Once they are 
typed in, they are sent to the backend and the backend awaits a go message to initiate the test. 
It is up to the user on the server to make sure all clients are connected before sending the go 
message to the backend. The go message is sent once the server registers a press of  the return 
key. 

Once the backend receives the go message, it sends a getReady message to the server indicating 
that the broadcast start is imminent. At this point, the server forks the monitoring process. 
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When the backend has sent all of  its messages, it sends a done message, signaling the end of  
the test. This message is also distributed to all clients so that they are aware. 

The monitoring client is also notified when the broadcast is over and calculates the average 
CPU and memory usage before and during the broadcast. This is sent to the server that 
finally prints it out to the console. 

Clients 
The master client immediately forks up the desired number of  client processes and one ping 
client. The client processes instantly connect to the server. When connected, they report to 
the master client. This way the master client knows when all are connected. 

A client is simple; when it receives a broadcast message, it just tosses it away and increments a 
counter to keep track of  how many messages it has received. When the done message arrives, 
the client reports to the master client that the broadcast is finished and details whether it 
received all messages or not. 

The ping client is a process that every 50th millisecond sends a message with a timestamp to 
the server. The server instantly sends this message back, and the ping client calculates the time 
it took to get a response. The server replies with a done message when the ping client pings 
the server after the broadcast is over. The ping client then calculates the average response 
time before and during the broadcast. This is reported to the master client for printing to the 
console. 

3.5.2 Test Scenario 2 
The second test scenario has two main components, a server and a given number of  clients. 
Because the master client is more involved in the second scenario, it is included in the 
following sequence diagram in Figure 16. 
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!  
Figure 16: Sequence diagram for the second test scenario. 

Clients 
When the master client is started, it exchanges information with the server. This exchange 
makes sure that both parties know how many clients are involved and for how long the test 
should run. After that, the master client spawns the desired number of  client processes. 

Each spawned client immediately connects to the server and reports to the master client when 
the server connection is established. Once all clients are connected and ready, the master 
client sends a getReady message to the server. This indicates that the test is about to begin. At 
the same time, the master client does two things; starts a timer, and tells all clients when to 
start chatting with a go message. The timer is there to stop the chat after 30 seconds. 

The clients then start to send chat messages to the server with three-second intervals (details 
regarding the chosen test parameters are discussed in Subsection 3.4.3). Each chat message is 
time stamped when sent so that the clients can calculate response time themselves when they 
receive them. 

Each client sends a timeup message to the server once the test timeout runs out, and the test is 
over. The clients then wait for a done message from the server. The done message includes the 
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number of  messages that have been sent and the clients ensure that all messages have been 
received. The client then calculates response times and reports status to the master client 
before shutting down. 

Once all clients have shut down, the master client tells the server with a finished message that it 
is safe to shut down. 

Server 
After the server and master client information exchange, the server waits for the getReady 
message indicating that the test is about start. When the getReady message arrives, the server 
forks a monitoring process so that it is ready to start measure server resources when the chat 
test is starting. 

The server tells the monitor to start monitoring server resources when the first chat message 
has arrived. For every chat message that comes, the server immediately broadcasts it to all the 
connected or polling clients. 

The server receives timeup messages from the clients when the chat phase is finished. The 
server then tells the monitor to stop collecting data. Lastly, the server waits for the master 
client to send a finished message. The finished message indicates that it is safe to shut down 
the server. 

3.6 Development 
This section discusses the test scenario development. There are three versions (one for each 
transport) of  the first scenario and the three versions of  the second scenario. Even though the 
two scenarios are different, they do share a lot of  common code and libraries. 

3.6.1 Common between Scenarios 
As recommended by Johannessen [3], I chose to focus on a single platform, with as bare-
bones implementations as possible. 

With Node.js being a small JavaScript runtime and not a full-blown web framework, I had to 
rely on some libraries. I wanted the libraries to be as small and bare-bones as possible to have 
the focus on the transports and not their particular implementation. By choosing to do all 
tests on a single platform using small, fast libraries, and lightweight console clients, the focus 
could stay on the transporting technologies. 

WebSocket 
There are no official client or server implementations of  WebSocket for Node.js, so a library 
had to be utilized. I could have implemented it on my own, but that would have been a thesis 
on its own [38]. Thankfully Node.js has a large and dedicated community, so finding 
WebSocket libraries was easy. Socket.IO is one example but offers way more than plain 
WebSockets, so that would mean a test of  a library rather than a protocol. The project ws by 
Einar Otto Stangvik [39] is a server and client implementation of  the WebSocket protocol for 
Node.js. It aims to be as close to the WebSocket API as possible and is one of  the fastest [40] 
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WebSocket implementations, regardless of  the platform, making it perfect for testing. In fact, 
since ws is small and fast, it serves as the low-level WebSocket implementation for Socket.IO. 

Server-Sent Events 
There are no native server or client implementations of  Server-Sent Events for Node.js. On 
the client-side, the choice fell on EventSource by Aslak Hellesøy [41]. The library is small and 
does not add anything on top of  the technology itself. 

I chose to develop the server component myself, as it is just a simple extension to a normal 
HTTP response. To conform to the Server-Sent Events specification, the HTTP header 
timeout is set to infinity and Content-Type to text/event-stream. That is essentially all that is 
needed for a HTTP server to become Server-Sent Events-ready. Example 17 shows how this 
was done in code. 

!  
Example 17: Server-Sent Events Endpoint from the test code. 

HTTP 
There was a need for several routes into the server, and the popular web framework Express 
[42] helped to make that a reality. In addition, the small library request [43] made it easy to 
quickly send HTTP POST and GET requests from the client-side. 

Resource monitoring 
To monitor resource usage on the server, the Node.js package Process Monitor [44] was used. 
It provides a simple interface to get CPU and memory usage of  a process, using the UNIX 
tool ps. 

3.6.2 Software Versions 
To see what version of  Node.js, or any of  the libraries and frameworks used in this thesis, see 
the Appendix under Software Versions. 

httpServer.get('/sse', function(req, res) { 
 var obj = new SSEClient(req, res); 
 clients.connections.push(obj); 
 req.socket.setTimeout(Infinity); 
  
   res.writeHead(200, { 
  'Content-Type': 'text/event-stream', 
  'Cache-Control': 'no-cache', 
  'Connection': 'keep-alive' 
   }); 
   res.write('\n'); 
});
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3.6.3 Scenario 1 Specific Implementation Details 

Backend 
The backend system is essentially a WebSocket server using the same library, ws, as the server 
component. WebSocket was the perfect transport for the backend-to-server communication as 
it is fast and connection-oriented. 

The WebSocket version 
WebSocket is connection-oriented. That means that once the server receives broadcast 
messages from the backend, these can immediately be distributed to all the connected clients. 
This makes the WebSocket server very simple conceptually. It contains just one component 
for the backend communication and one for the client communication. Figure 17 shows this. 

!  
Figure 17: The WebSocket server in scenario 1. 

The Server-Sent Events version 
Once again, the benefits of  having a connection-oriented transport make the server 
development an enjoyable process. The Server-Sent Events server is very similar to the 
WebSocket counterpart and works the same way. Figure 18 shows the architecture. 

!  
Figure 18: The Server-Sent Events server in scenario 1. 
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The HTTP Long Polling version 
HTTP has no concept of  persistent connections, so this server needed to be a bit more 
complex. It needs to store each message that it receives (see the problem described in 
Subsection 2.5.3 to understand why). Each client’s polling request includes an integer to 
signal what message number it wants. Figure 19 shows how the server looks like with an array 
to store incoming messages. 

!  
Figure 19: The HTTP Long Polling server in scenario 1. 

Ping Client 
The ping client is forked by the master client process. Every 50th millisecond, it sends a 
message to the server with a timestamp. The server immediately responds with the same 
message. The ping client calculates the response time when the pong is received. For the 
WebSocket tests, the ping client uses WebSocket. For both the Server-Sent Events and HTTP 
Long Polling tests, it is using standard HTTP. 

3.6.4 Scenario 2 Specific Implementation Details 
In contrast to the first, the second scenario has messages going server-to-client and client-to-
server. Ideally this is developed using a full-duplex, stateful protocol that allows for messages 
going in both directions all the time. However, HTTP is not full-duplex, and Server-Sent 
Events, as the name states, only support messages going server-to-client. To enable client-to-
server messages, traditional HTTP POST routes were used. In a sense, the Long Polling 
version is Long Polling + HTTP POST, and the Server-Sent Events version is Server-Sent Events + 
HTTP POST. For simplicity’s sake, I will only write WebSocket, Server-Sent Events, and Long 
Polling when I refer to the different ones. 

The client spread and message frequency 
As mentioned in Subsection 3.4.3, it was important to have an equal and even load on the 
server throughout the test. A client is programmed to send a chat message to the server every 
three seconds and each client is given an id number starting from 1. The process should start 
sending after (id * (time between each message / client count)). So client number 100 in a test 
with 400 clients, should start sending after (100 * (3000/400)) = 750 milliseconds. 
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The WebSocket version 
WebSocket is an ideal protocol for this scenario as it is a full-duplex and stateful. Figure 20 
shows that both incoming and outgoing messages go straight to and from the WebSocket 
component in the server. This is powerful and enables the server to immediately broadcast 
incoming chat messages. There is no need for local storing on the server-side. 

!  
Figure 20: The WebSocket server in scenario 2. 

The Server-Sent Events version 
Unlike WebSocket, a Server-Sent Events server has no way to receive messages directly. An 
additional POST route was therefore utilized. When a client sends a chat message as a POST 
request, the server immediately broadcasts this message to all clients connected with Server-
Sent Events. There was no need to store messages on the server-side, because the Server-Sent 
Events technique is connection-oriented. Figure 21 shows the server architecture. 

!  
Figure 21: The Server-Sent Events server in scenario 2. 

The HTTP Long Polling version 
Just as with Server-Sent Events, HTTP POST had to be used for the upstream of  chat 
messages coming from the clients. However, unlike Server-Sent Events and WebSocket, Long 
Polling has no concept of  connected clients. Each client “loses” their connection when the 
polling is answered. See Subsection 2.5.3 for an example showing that there is a need to store 
every incoming chat message on the server-side. This leads to a significant increase in 
complexity. Each client’s polling request includes an integer that is the index of  the next 
message to receive. This is done similar to the system used for scenario 1. Figure 22 shows the 
complexity of  the implementation. 
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!  
Figure 22: The HTTP Long Polling server in scenario 2. 

3.7 Limitations 
There are some limitations with the methodology presented in this chapter. This section looks 
into them one by one. 

3.7.1 Performance over Longer Periods of  Time 
How the different transports perform over longer periods of  time can also be interesting. But, 
for a couple of  reasons, I did not measure this. First, it relies heavily on the transport’s 
implementation. A small memory leak, for example, can compromise the results. Second, 
performance testing over time requires very long periods of  testing, possible several days for a 
single test. That would have been another thesis in itself, maybe on soak testing. 

3.7.2 Network Use 
In the background chapter, the difference in packet size between WebSocket and HTTP was 
pointed out. Potentially we could see a significant difference in network use (maybe even 
congestion) between the three transports. For simplicity’s sake, the tests were designed so that 
the network would not be a bottleneck. That makes it easier to find the breakpoint between a 
load test and a stress test, as network factors can be ruled out. 

3.7.3 Quality and Correctness of  the Code 
There is always a chance that the test code is not written in a satisfactory manner. It could 
even be worse, that the implementation is outright wrong. But this uncertainty will always be 
there, as long as humans write the code. Even with bigger projects and frameworks that are 
used by thousands, bugs and errors can occur [45]. I do not believe my tests are written in an 
incorrect or error prone way. As you will see in the next chapter, the results from scenario 1 
are comparable to scenario 2. This backs up my belief  that the code is written in a correct 
manner. 
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3.7.4 Only One Software Platform 
The fact that I have chosen to do the performance testing on a single software platform 
introduces a couple of  limitations to the methodology. 

First, the picture I get of  WebSocket, Server-Sent Events, and Long Polling is a reflection of  
how these transports perform on the Node.js platform, not in general. However, with the 
recommendation by Johannessen [3], and the fact that it is not feasible to test all platforms, 
performing the tests on a single platform was my choice. 

The other limitation is that relying on a single platform for the tests, makes it vulnerable to 
errors or bugs in the chosen platform. A bug or fault in Node.js would to a certain degree 
compromise the results. 

3.7.5 Node.js Event Loop and Garbage Collection 
As discussed previous in this chapter, Node.js is a good fit for the tests in this thesis. However, 
there are some aspects of  Node.js one needs to be aware of. 

The Event Loop is a critical part of  Node.js which needs to be understood. I briefly presented 
it in the background chapter but did not mention the following weakness. When the event 
loop has triggered and called a callback function, it is blocked. Usually not for long, but if  it is 
stuck on a computationally demanding task, it can cause slow response times or connect issues 
[46]. Also, JavaScript is an interpreted and dynamic language, meaning that it cannot be 
optimized in the same way as e.g. Java. This makes Node.js a great platform when each event 
is light, but not so great when events are computational heavy. 

As stated in Subsection 2.8.2, Node.js’ V8 garbage collector also introduces challenges related 
to unpredictable slow-downs and high response times. A consequence of  this is that the 
memory footprint after the test can be inaccurate. Maybe one time the test runs, the garbage 
collector has not yet collected dead objects while another time it has. Because of  these 
uncertainties concerning the garbage collector, I did not want to focus much on memory in 
my results. 
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Chapter 4: Test Results 
This chapter presents the results from the two test scenarios. These results are the foundation 
for the discussion found in the next chapter that aims to answer the performance related 
research questions. 

Each test scenario was run ten times for a given number of  clients and an average of  those 
ten runs was calculated. The client count goes from 1 to 500 with increments of  50. 

Each scenario has three implementations, one for each tested transport. 

For the complete test result records, see the Appendix. 

As stated in Subsection 3.2.2, the tests have three different phases, as Figure 23 shows. The 
results in this chapter are presented using the same division: 

1. Idle phase: CPU load, memory footprint and response time. 
2. Test phase: CPU load and response time. 
3. After test phase: Memory footprint. 

!  
Figure 23: The three test phases and what is measured in each phase. 

4.1 Idle Client Phase 
As discussed in the previous chapter, the first test phase is the phase when all clients are 
connected/polling, but inactive and idle. Idle clients should consume as little server resources 
as possible enabling for short response times for active clients. 
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In this phase, I do not distinguish between the two test scenarios, as they behave similarly 
before the test phase. 

4.1.1 CPU Load  

!  
Figure 24: CPU load in the idle phase. 

All three servers used so few CPU cycles that the Y-scale of  Figure 24 had to be set to a 
maximum of  10% to set them apart. The Long Polling and Server-Sent Events servers 
perform very similar, almost identical, with a CPU load between 2% and 3%. The 
WebSocket server uses even less CPU power and stays around just 1%. 

Even as the client count rises all the way up to 500, the CPU usage stays low and it seems 
unaffected by the increase in idle clients. This is true for all three servers. 

The fact that the Long Polling and Server-Sent Events servers perform so similarly, can be 
explained by their implementation. Both servers use the same library for HTTP support, 
Express. 

These results show that all three servers support 500 inactive clients with no issues related to 
CPU use. The WebSocket server is the best performer, but the results from the other two 
servers must also be considered good. 

Section 2.10 proves that these results were expected. They were expected because idle clients 
are no work for the server. The only area where I expected idle clients to have an effect on the 
server was in memory consumption. 
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4.1.2 Memory Footprint 

!  
Figure 25: Memory footprint in the idle phase. 

In Figure 25, we see the HTTP Long Polling and Server-Sent Events servers both start off  
just below 30 MB. Their memory footprint then slowly rises as the client count increases. The 
Server-Sent Events version consumes more memory than the Long Polling variant, but not by 
much. 

The WebSocket server starts off  at a very small footprint of  only 17 MB, but sees a larger 
growth as the client count increases. When the client count reaches 500, it has overtaken the 
Long Polling versions and is just barely lower than the Server-Sent Events counterpart. 

The similar starting point for the Long Polling and Server-Sent Events servers can be 
explained by their common use of  the Express library. As the client count increases, they start 
to differ because a Server-Sent Events connection is taking up more space than a hanging 
Long Polling request. 

These results clearly show that a hanging HTTP Long Polling request consume less memory 
than a Server-Sent Events or a WebSocket connection. We can also see that a WebSocket 
connection is considerably more costly than a Server-Sent Events connection. Section 2.10 
shows that these results were expected. 
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4.1.3 Response Time 

!  
Figure 26: Response times in the idle phase. 

Figure 26 shows the server response times in the idle phase. Once again, we see that the Long 
Polling and Server-Sent Events servers have very similar results. Both servers respond to ping 
messages within 3 to 4 milliseconds, well below any of  the response time limits presented in 
Subsection 2.9.2 (1.0 and 0.1 seconds). The WebSocket server is even more impressive, with 
response times always below 2 milliseconds. 

Similarly to the CPU load, the response time is unaffected by the increased number of  clients. 

The almost identical results between the Long Polling and the Server-Sent Events servers 
might be explained by two factors. First, they both use an HTTP ping route by the same 
HTTP library. Second, they are both “pinged” by the same client. The WebSocket version, 
on the other hand, has a WebSocket based ping client. 

These results are in line with my expectations found in Section 2.10. I predicted that the 
WebSocket version would be the fastest, because of  HTTP header processing and WebSocket 
being designed for performance. 

4.2 Test Phase - Scenario 1 
The results in this section show how the three different transports performed in the first test 
scenario. The data points are collected from right after the broadcast phase has started to just 
before it ends. This way, abnormalities from the initialization and teardown are eliminated. 
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The test phase is the most interesting phase as it aims to answer the performance related 
research questions. As discussed in Subsection 2.9.1, when the CPU load is below maximum, 
the test is a load test, and when it reaches a maximum and stops to grow, the test is a stress 
test. 

4.2.1 CPU Load during Broadcast 

!  
Figure 27: CPU load in the first test scenario. 

Figure 27 shows that the Long Polling server reaches maximum CPU utilization with only 50 
clients. Already at that point, the server is stressed. On the other hand, the Server-Sent Events 
and WebSocket servers, reach maximum CPU load with 250 and 350 clients respectively. 

It was expected that the Long Polling server would see a steeper climb in CPU load compared 
to the other two. But it was not expected that it would reach the peak CPU load this quick. 
Apart from that, these results are in line with the expectations from Section 2.10. 

These results show that, from a server CPU load perspective, Server-Sent Events and 
WebSocket appear to be more suited for doing server-to-client real-time messaging than 
HTTP Long Polling. 
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4.2.2 Response Time during Broadcast 

!  
Figure 28: Response times in the first test scenario. 

The two dotted red lines in Figure 28 are the 1.0 and 0.1-second limits described in 
Subsection 2.9.2. 

When the HTTP Long Polling server reaches full CPU utilization with 50 clients, we see the 
start of  a steady, almost linear climb in response time as the client count increases. With 200 
clients, the server breaches the first red line and now uses more than 100 milliseconds to 
answer a request. With the maximum of  500 clients, the server responds after 372 
milliseconds, well below the 1.0-second limit. 

The Server-Sent Events server has a very low response time as long as the CPU load is below 
the maximum. From 1 to 200 clients, it always responds within 11 milliseconds, which is well 
clear of  the 0.1-second limit. But, the server response time starts to increase dramatically as 
the CPU reaches maximum load with 250 clients. It immediately breaches the 0.1-second 
limit and with 350 clients, it even surpasses the 1.0-second limit. At 500 clients, the Server-
Sent Events server uses over 1.8 seconds for each response. Although the response time seem 
to climb linearly (in line with expectations from Section 2.10), the climb is unexpectedly steep. 

The WebSocket server shows similarities to the Server-Sent Events version. As long as the 
CPU load is moderate, from 1 to 300 clients, the response time stays very low. That matches 
my expectations from Section 2.10 about how well WebSocket suits this kind of  application. 
With 350 clients, the test becomes a stress test as the server CPU is fully utilized. The response 
time then jumps well above the 0.1-second limit. Unlike the Server-Sent Events server, the 
WebSocket server’s response time growth stops at 800 milliseconds with 400 clients. 
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This sudden and explosive growth in response time that the Server-Sent Events and 
WebSocket servers show is unexpected. For the response time in the first test scenario, it is 
only the HTTP Long Polling server that gives expected results. As soon as the servers are 
CPU constrained, the Server-Sent Events, and WebSocket versions struggle to keep up with 
the technically more complex and outdated HTTP Long Polling. These results are not only 
unexpected, but also surprising. 

Lastly, it is interesting to see how the response time for the Long Polling server stays fairly low, 
even though, the CPU is stressed. 

4.3 Test Phase - Scenario 2 
This section presents the results from the test phase in the second test scenario; the chat 
system. The data points are collected from right after the chat phase has started to just before 
it ends. This minimizes the possibility of  collecting bad results from when the test is 
initializing or tearing down. 

4.3.1 CPU Load during Chat 

!  
Figure 29: CPU load in the second test scenario. 

Figure 29 shows that the Long Polling server reaches the maximum CPU utilization with 150 
clients, while the other servers reach their maximum at 350 clients both. That Long Polling is 
the transport to first reach its maximum is in line with the expectations from Section 2.10. 
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The Server-Sent Events and WebSocket servers perform equally as good here, with Server-
Sent Events slightly ahead. It does not look like the Server-Sent Events server’s increase in 
header size or the need for an additional POST route have compromised CPU performance 
compared to the WebSocket version. 

4.3.2 Response Time during Chat 

!  
Figure 30: Response times in the second test scenario. 
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!  
Figure 31: Zoomed in response times in the second test scenario. 

Figure 30 shows the response times for the second scenario's test phase. Because the response 
time goes all the way up to 6 seconds, I have included Figure 31. That figure shows the same 
results, but zoomed in to make them easier to read before the dramatic increase in response 
time. 

Again, the dotted red lines in the figures above indicate the 0.1 and 1.0-second limits found in 
Subsection 2.9.2. 

When the Long Polling server reaches full CPU utilization with 150 clients, we see the start of  
a steady, almost linear increase in response time as the client count rises. The Long Polling 
server behaves as expected (see Section 2.10), and as long as the CPU load is moderate, it 
never uses more than 0.1 seconds to respond. Once the test is at stressing levels, can we see 
that the response time breaks the 0.1-second limit, but never the 1.0-second limit. 

The Server-Sent Events and WebSocket servers performed similarly in this scenario. They 
both reach maximum CPU load with 350 clients. But already at 300 we see that the CPU is 
pushed hard enough for the response time to jump significantly. As long as the CPU load is 
moderate and only at load test levels, both servers have response times well below the 0.1-
second limit. 

When the load reaches a stressing level, the Server-Sent Events and WebSocket server show 
an explosive and sudden growth in response time. With the maximum of  500 clients, both 
servers have response times of  6 seconds. That is way above the 1.0-second limit. 
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The fact that the Long Polling server reaches full CPU utilization before the other two was 
expected because it is technically more demanding (see Subsection 2.7.4) in terms of  headers. 
It was also expected that the server would have a slow linear growth in response time when 
the CPU is stressed. 

As long as the CPU load is moderate for the Server-Sent Events and WebSocket servers, they 
behave as expected. But as soon as they are under stressing levels of  load, they show 
unexpected high response times. The results were in line with the results from the first test 
scenario (Subsection 4.2.2), even though they were unexpected. 

4.4 Memory Footprint after Tests 
This section presents the recorded memory consumption right after the test phase has 
finished. Because of  the memory related uncertainties presented in Subsection 2.8.2 and 
3.7.5, I did not put much attention to memory in this thesis. But, I decided to include these 
recordings as they show interesting and unexpected results. 

In Figure 32 and 33, you can see the memory consumption right after the tests have finished. 
In the first scenario (Figure 32), you see that the memory consumption explodes for the 
Server-Sent Events and WebSocket servers. This happens when they reach full CPU 
utilization, with 250 and 350 clients respectively. Both consume well over 1 GB of  memory 
for the 500-clients tests. The expected results would be lower and along the line of  the Long 
Polling server, which lands on 97 MB, more than 10 times lower. Section 2.10 shows that the 
expected result was a slow, gradual linear increase in memory consumption and not the 
explosive growth we see here. 

 

!  
Figure 32: Memory footprint after the first test scenario. 
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!  
Figure 33: Memory footprint after the second test scenario. 

In the second test scenario, found in Figure 33, we see the same story, although not at the 
same magnitude. When the Server-Sent Events and WebSocket servers reach full CPU 
utilization with 350 clients, there is a bump in memory usage. The WebSocket version is the 
most notable. 

As long as the server CPU load is low or moderate, the memory consumption is exactly as 
expected, growing linearly with the client count. But, as the servers are under stressing load 
levels, it is, once again, only the Long Polling one that behaves expectedly. 

4.5 Result Summary 
Table 1 shows a ranking of  the three transporting technologies based on their performance as 
servers in my two scenarios. Because of  unexpected results happening under the stress tests, I 
have chosen to divide the ranking between the load tests and the stress tests. 

During the load tests, when all servers behaved as expected (see Section 2.10), the ranking was 
the same between the two scenarios. The WebSocket server had the lowest response times, 
and it reached higher client counts before the CPU was stressed. Even though a WebSocket 
connection is more memory costly than a Server-Sent Events connection or a hanging Long 
Polling request, the difference is not that big. 
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The Long Polling server was the only server that behaved expectedly under stressing levels of  
load and constantly showed good results. The other two servers had explosive growth in both 
response time and memory consumption, with the WebSocket server being the worst. 

These two-sided results indicate that the research questions will have two-sided answers. And 
the results seem to conflict with Johannessen’s view that “WebSocket is better than HTTP in 
every aspect of  real time applications.” [3] 

Table 1: Ranking of  the three transports in both test scenarios. 

Load test Stress test

Scenario 1 1. WebSocket 
2. Server-Sent Events 
3. HTTP Long Polling

1. HTTP Long Polling 
2. WebSocket 
3. Server-Sent Events

Scenario 2 1. WebSocket 
2. Server-Sent Events 
3. HTTP Long Polling

1. HTTP Long Polling 
2. Server-Sent Events 
3. WebSocket
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Chapter 5: Discussion 
Some of  the results presented in the previous chapter were expected, while others were 
unexpected and surprising. Because of  the unexpected results of  the stress tests, this chapter 
divides the discussion between the load and the stress testing. 

The test result discussion in this chapter will be the basis for the answers to the performance 
related research questions in the thesis conclusion. And at the end of  the chapter, I will discuss 
how the two different scenarios were to implement from a programmer’s perspective. This 
will let me answer the programmer friendliness related research question. 

5.1 Idle Clients 
Even though 500 client processes were the maximum my client test computer could handle, 
500 idle clients have seemingly no effect on the server’s performance. The CPU load stays as 
low as it was with just one client, and the same goes for the response time, never breaching 
the 0.1-second limit found in Subsection 2.9.2. This is true for all three servers, but the 
WebSocket version has the edge in terms of  CPU usage and response time. 

Another thing that the idle client phase proves is that each WebSocket connection is 
considerably more memory costly than a Server-Sent Events connection or a hanging Long 
Polling request. Even though this memory penalty is noteworthy, I do not think it is significant 
enough for it to be a deal-breaker when deciding whether to use WebSocket or not. 

According to Section 2.10, all the points and observations from the idle client test phase 
results were expected. 

5.2 Load Testing 
In this section, I will discuss how the three transports handled low and moderate levels of  
load. That means all parts of  the test phase where the CPU load is less than the maximum. 

The Long Polling servers displayed similar results in the first and the second test scenario. 
They were the first to reach maximum CPU load, well before the other servers. And, they 
constantly used the longest time to answer ping requests. 

Figure 34 and 35 show the response times from both test scenarios, but only where the tests 
were load tests (CPU load is less than the maximum). In the first scenario, the Long Polling 
server reached full CPU utilization with only 50 clients, so it was only with 1 client that it was 
a load test. The Server-Sent Events and WebSocket servers performed better and could 
handle 200 and 300 clients respectively, before reaching stressing load levels. As long as the 
levels of  load are moderate, they all respond quickly, below 12 milliseconds. 
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In the second test scenario, we see a similar story with the Long Polling server, as it reaches 
full CPU utilization early on. Even though the WebSocket and Server-Sent Events servers are 
not fully utilizing the CPU before 350 clients, we already at 300 see signs of  the server being 
CPU limited, as the response times breach the 0.1-second line. 

!  
Figure 34: Response times in the first test scenario until the CPU was limited. 
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!  
Figure 35: Response times in the second test scenario until the CPU was limited. 

These results point out the following observations: 

5.2.1 The Long Polling Server Performs Expectedly Poor 
The HTTP Long Polling server performed poorly compared to the other two versions in the 
load tests, both in terms of  CPU usage and response time. This was expected (see Section 
2.10) and can be explained by the large amount of  headers that needs processing, for both 
incoming requests and outgoing responses. 

5.2.2 The Server-Sent Events Server Performs Great 
That Server-Sent Events would perform almost as well as WebSocket in the first scenario was 
expected, as the transport has the concept of  connections. But it was surprising that the 
Server-Sent Events server was so close to the WebSocket version in the second test scenario. 
That scenario introduced bidirectional messaging, a feature that Server-Sent Events in itself  
does not support. Even with the separate HTTP POST route for incoming messages, the 
Server-Sent Events server performed comparable to the WebSocket counterpart. 

5.2.3 WebSocket is the Best Choice under Moderate Load 
The WebSocket server was the most performant, both in terms of  CPU load and response 
time. But it did introduce a small memory penalty. However, that penalty is quite small, so 
WebSocket must be considered the best transport choice if  you expect low to moderate levels 
of  load. These results were expected, as WebSocket is a protocol designed to be a fast and 
thin layer on top of  TCP. WebSocket seems to work great in a real-time setting. 

R
es

po
ns

e 
tim

e 
in

 m
illi

se
co

nd
s

0

40

80

120

160

200

Number of clients
1 50 100 150 200 250 300 350 400 450 500

WebSocket Server-Sent Events HTTP Long Polling

!73



5.3 Stress Testing 
All the expectations from Section 2.10 were confirmed by the load testing. WebSocket was the 
performance winner, Server-Sent Events almost equally as good and Long Polling quite far 
behind. 

The stress testing, however, did not go as expected. Figure 10 in Section 2.10 shows how the 
response time was expected to increase in a linear, but slow manner. In the stress tests, the 
Server-Sent Events and WebSocket servers show a dramatic increase in response time. 

Figure 36 and 37 show the response times of  both test scenarios, but only where the tests were 
stress tests (CPU load at the maximum). In a sense, they continue from where Figure 34 and 
35 in Section 5.2 left off. 

!  
Figure 36: Response times in the first test scenario after the CPU was limited. 
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!  
Figure 37: Response times in the second test scenario after the CPU was limited. 

These results point out the following observations: 

5.3.1 Unexpected and Dramatic Increase in Response Time 
The linear, slow and steady increase in response time we see with the Long Polling server is 
the expected server behavior. The sudden spike in response times the other two servers 
demonstrate was unexpected and very surprising. There are several reasons why these results 
were unexpected: 

The load tests show an entirely different picture 
The Server-Sent Events and WebSocket servers performed well in the load tests. However, 
they performed very poorly in the stress tests, quickly breaching the 0.1 and 1.0-second limits 
from Subsection 2.9.2. 

The HTTP Long Polling servers is fine under heavy load 
In both the first and second scenario, the Long Polling servers seem to handle heavy load 
levels just fine and even matching my predictions and expectations from Section 2.10. 

The Server-Sent Events and Long Polling servers use the same code 
The Server-Sent Events and Long Polling servers both use the same HTTP library, Express. 
The fact that only one of  them has this problem makes it very surprising. 

R
es

po
ns

e 
tim

e 
in

 m
illi

se
co

nd
s

0

1200

2400

3600

4800

6000

Number of clients
1 50 100 150 200 250 300 350 400 450 500

WebSocket Server-Sent Events HTTP Long Polling

!75



5.3.2 Average vs. Median Response Time 
The response times for the WebSocket and Server-Sent Events servers grew steep in the first 
scenario, but they grew even faster in the second scenario. This development was noticed 
early on. For the second test scenario, I consequently also recorded the median response time, 
not just the average. I did this to see if  the average was compromised by a couple of  very high 
response time recordings while the rest were at a lower level. The median response times were 
a bit lower, mostly within 75% of  the average. But they were still much higher than the results 
from the first test scenario. 

The full median and average response times can be found in the Appendix. 

5.3.3 Memory 
It was expected that the memory consumption would gradually and linearly increase as the 
client count grew. The increase would mainly come from two factors: 

• The server needs memory for each connection. 
• The server receives incoming messages. 

The Server-Sent Events and WebSocket servers were implemented to quickly discard each 
received message. But each message has to be stored in memory before the garbage collector 
flushes them. With no easy way to inspect how the Node.js garbage collector (more explicitly, 
Google’s V8 JavaScript engine) works, and when it runs, it was hard to tell whether there 
would be a significant difference between the three servers. 

Because of  these uncertainties regarding the memory inspection, as well as the garbage 
collector, I did not want memory to be a main focus for this thesis. Thankfully I did inspect 
memory consumption after the tests though, as the results can point to possible explanations 
to why the response time explodes. 

The dramatic increases in memory footprint after the tests (see Figure 38 and 39) are 
happening at the same time as the response times quickly escalated. In both test scenarios, the 
three different servers are developed using the same techniques and code styles, so there are 
no reasons for these sudden spikes in memory and response times to happen. The fact that 
the spikes in memory footprint and response time are consistently happening (see the 
Appendix for 10 all test runs), and the fact that they happen in both test scenarios, makes me 
believe there is an error, a bug or another anomaly that compromises the results. 
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!  
Figure 38: Memory footprint after the first test scenario. 

!  
Figure 39: Memory footprint after the second test scenario. 
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5.4 Anomaly Discussion 
This section presents and discusses possible explanations to the response time and memory 
anomaly. 

5.4.1 Issue with the WebSocket Implementation 
The WebSocket servers are affected by this anomaly. That makes it possible that there is a bug 
or an issue with the WebSocket library that was used. The version of  ws used in the tests is 
0.4.32 and as of  May 13th, 2015, 0.7.1 is the latest. When looking at the change logs for 
version 0.5 (the version after 0.4.32) arriving November 20th, 2014, there are two very 
interesting changes to the library. “Fixed a file descriptor leak” and “Fixed memory leak caused by 
EventEmitters” [47]. Memory leaks can cause the garbage collector to become more aggressive 
[48], meaning increased CPU use. If  these issues did occur in my tests, they could explain the 
high response times and large memory consumption during high load, at least for the 
WebSocket version. 

There is, however, one important point that makes this less likely. It is not only the WebSocket 
servers that experience the spike in memory footprint and response time. The Server-Sent 
Events versions are equally affected. 

5.4.2 Node.js 
As stated in Subsection 3.6.1, I chose to implement the Server-Sent Events server myself. 
Interestingly, this means that there is no difference in libraries used by the Server-Sent Events 
server and the Long Polling twin (true for both test scenarios). The question of  why the 
Server-Sent Events version is affected and the Long Polling twin is not then arises. The 
answer might be linked to how Node.js treats long-lived connections. In the Long Polling 
versions, the connections have to be reestablished after each message sent by the server while 
the Server-Sent Events version keeps this connection open throughout the entire test. That is 
also true for the WebSocket counterpart. 

There could also be a bug in the Node.js source code that only influences the Server-Sent 
Events and WebSocket versions. Looking for bugs or issues in the Node.js source code would 
take very long time and is way out of  the scope for this thesis, but it is possible that there is an 
issue with the Node.js version used in these tests. As a consequence of  being a new, innovative 
and fast moving platform, Node.js can suffer from bugs and instability. 

Since I settled on version 0.10.35, there has happened a lot in the world of  Node.js. Late last 
year, the open source community forked Node.js into io.js [49] after being dissatisfied by how 
Joyent, the organization behind Node.js, ran the project. The fork io.js includes an updated 
version of  the Google V8 JavaScript engine. Joyent released Node.js version 0.12 with a more 
updated V8 engine soon after the fork. Maybe the engines running in io.js and Node.js 0.12 
fixes the test anomalies. 

It is also possible that the event loop blocks (described in Subsection 3.7.5) on the broadcast 
function which only exists in the WebSocket and Server-Sent Events versions. 
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5.4.3 Node.js’ HTTP Is More Tested and Stable 
A possible explanation to why there could be one or more bugs in the implementation is the 
fact that HTTP is much more tested and in use than the other two approaches. Also, it is very 
rare that you push a server to the absolute limits in real world use. Maybe these abnormalities 
have never been seen before. 

5.4.4 Errors with the Test Implementation 
It is also possible that there are errors in my code. Writing bug-free code is proven to be 
difficult, and especially when there are few people testing the programs. For two reasons, I do 
not believe this is the case. First, as long as the CPU load is moderate and below maximum, 
nothing out of  the ordinary happens. It is only when the CPU is stressed hard, that the 
anomalies and unexpected results occur. Second, the result anomalies happen in both test 
scenarios, where the implementations are different. I believe these two points back up my 
belief  that my implementation is not the root of  this anomaly. 

5.5 Implementation 
Up until this point, the discussion has been related to performance and the test results. How 
different technologies compare in performance is very fundamental, but how easy they are to 
use for a programmer is also an area of  great importance. In this section, I will discuss how 
the different servers were to implement from a programmer’s perspective. 

5.5.1 Test Scenario 1 

!  
Figure 40: The three different servers in the first test scenario. 

Figure 40 shows the different components involved in the three different servers for the first 
test scenario. Obviously they all need a WebSocket client connection to the backend server. 
That component is common between the three versions. 

Both the Server-Sent Events and WebSocket servers were straightforward to write. The two 
technologies both support the concept of  persistent connections, so there was no need to store 
incoming messages on the server; they could be broadcasted right as the server received them. 
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Standard HTTP, on the other hand, has no way to keep the connection open after a response 
is sent. That means double the network traffic and increased complexity on the server. 
Because of  the issue presented by Figure 5 in Subsection 2.5.3, the Long Polling server must 
locally store each broadcast message to ensure that all clients receive them. This means a 
quite substantial increased complexity on the server-side, but also on the client-side. Each 
client must keep track of  what messages it got and then tell the server what the last message it 
received was. 

5.5.2 Test Scenario 2 

!  
Figure 41: The three different servers in the second test scenario. 

Looking at Figure 41, the difference in server complexity between the three servers becomes 
apparent. WebSocket is the perfect transport for the second scenario, where messages are 
going in both directions; server-to-client and client-to-server. As WebSocket is a full-duplex 
protocol, the server can be very simple, with one component for both incoming and outgoing 
messages. It is conceptually simple and easy to develop. 

Server-Sent Events for outgoing and an additional HTTP POST route for incoming chat 
messages proved to be a great combination. Because Server-Sent Events allow us to keep 
track of  connections, it was easy to distribute chat messages as soon as they were received. It 
was conceptually a bit more complex than the WebSocket server, but not by much. 

The Long Polling server was the most complex to write. First, you need one HTTP POST 
route for incoming chat messages. Then, you need an additional route where the clients can 
poll chat messages. Lastly, as Figure 5 in Subsection 2.5.3 proves, you need a local buffer 
where all messages are stored (at least temporarily) to ensure that every client gets them all. 
This implementation was conceptually complex and more difficult to develop than the other 
two servers. 
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5.5.3 APIs 
Both WebSocket and Server-Sent Events have APIs that developers can use. Long Polling, on 
the other hand, is a technique using HTTP and has no API available. This is huge 
disadvantage. 
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Chapter 6: Conclusion 

6.1 Thesis Conclusion 
In this section, I will directly answer the research questions from Section 1.2 based on the 
information and knowledge acquired by the test results and discussion from the previous 
chapters. 

For simplicity’s sake, when the transports are mentioned in this section, they refer to a specific 
combination of  Node.js and libraries: 

• WebSocket is the combination of  Node.js version 0.10.35 and ws version 0.4.32. 
• Server-Sent Events is the combination of  Node.js version 0.10.35 and Express 4.9.8. 
• Long Polling is the combination of  Node.js version 0.10.35 and Express 4.9.8. 

For a full list of  all software versions, see the Appendix. 

6.1.1 Sub-Questions 

How does WebSocket perform compared to Long Polling and Server-Sent Events 
in a unidirectional, server-to-client messaging setting with high client load 
levels? 
When the load level is high, but not extreme, WebSocket performs better than both Server-
Sent Events and Long Polling. That is true both in terms of  CPU usage and response time. 
Server-Sent Events is not far behind WebSocket, but Long Polling performed considerably 
worse in these tests. 

However, when the server CPU load is extreme, both WebSocket and Server-Sent Events 
performed poorly compared to Long Polling. This is displayed by unexpectedly high response 
times and a large memory footprint. 

How does WebSocket perform compared to Long Polling and Server-Sent Events 
in a bidirectional messaging setting with high client load levels? 
When the load level is high, but not extreme, WebSocket performs much better than Long 
Polling in terms of  CPU usage and response time. Despite its increase in server complexity, 
Server-Sent Events performs comparable to WebSocket, both in terms of  CPU utilization 
and response time. 

Also here, Long Polling outperformed WebSocket and Server-Sent Events under extreme 
levels of  CPU load. Once again, this is displayed by unexpectedly high response times and a 
large memory footprint. 
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Does WebSocket provide any advantages over Long Polling and Server-Sent 
Events in a real-time setting from a programmer’s perspective? 
There are three major advantages that WebSocket provides over Long Polling. First is the 
concept of  a persistent connection. The connection makes WebSocket a stateful protocol. 
This is especially advantageous for real-time applications where the server would like to keep 
information about a client over longer periods of  time. The second advantage over Long 
Polling is WebSocket’s bidirectional nature. This makes server-push a feature of  the protocol 
and not a technique as with Long Polling. Third, WebSocket is a protocol with a well-defined 
API, while Long Polling is not. 

From a programmer’s perspective, WebSocket has two major advantages over Server-Sent 
Events. First, it is bidirectional by design. This makes adding a client-to-server messaging 
component easy. Second, WebSocket has greater web browser support. 

6.1.2 Main Research Question 

For what types of  real-time web applications does WebSocket provide a benefit 
over Long Polling and Server-Sent Events? 
When the server CPU load levels are below maximum, WebSocket provides both 
performance and programmer friendliness benefits over Long Polling and Server-Sent Events 
in all types of  real-time applications. 

However, WebSocket is a terrible choice if  the CPU load levels reach a maximum. This is due 
to the performance penalties shown through the scenarios in this thesis. This is true from both 
a user’s perspective with long response times and from a server’s perspective with a very high 
memory footprint. 
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6.2 Further Work 
The limitations presented in Section 3.7 and the test results from Chapter 4 show that there 
are potential for new projects as continuations of  this thesis. In this section, I present 
suggestions to further work of  this thesis as well as new and interesting areas of  the real-time 
web. 

6.2.1 Real-time Web at Scale 
Even though my client machine was limited to 500 clients, that number is not that high. We 
can see from the Idle Client Phase results in Section 4.1 that 500 clients have no effect on 
server CPU load or response time. To make the server reach full CPU utilization in my tests, I 
had to send messages in a very rapid manner. 

It would be interesting to see how the transports perform with a much higher number of  
clients, especially over very long periods of  time. It could also be interesting to see what effect 
it would have to send fewer messages. 

A project with this scalability focus would benefit from having several machines where client 
processes are running. Deploying the whole system to the cloud, using a PaaS (Platform as a 
Service) would make this possible. 

6.2.2 More Platforms 
Like I discuss in Subsection 3.7.4, the fact that I only focused on Node.js can be seen as a 
limitation. The picture I get of  WebSocket, Server-Sent Events, and Long Polling is a 
reflection of  how these transports perform on the Node.js platform, not in general. 

It would be interesting to see how bare-bones WebSocket, Server-Sent Events, and Long 
Polling servers perform on different software platforms. 

6.2.3 Node.js Scalability 
I briefly mentioned in Subsection 3.3.2 that you can scale Node.js applications by just 
spawning another instance of  the server process. It would be interesting to see how this is 
done in practice with load balancing and shared server state between Node.js instances. 

6.2.4 Node.js Garbage Collection 
As discussed several times throughout this thesis, Node.js’ V8 JavaScript engine employs 
garbage collection. A deep-dive into the foundations of  the V8 garbage collector would be an 
interesting project. An interesting part of  a project like this is that you can control when to 
run the garbage collector yourself  [50]. 

6.2.5 HTTP 2.0 
For the first time since HTTP/1.1 was standardized in 1997, we see a new version of  HTTP 
today. Version 2.0 was just recently approved by IETF [51] and introduces several new 
features like header compression and server-push. 
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Comparing HTTP 2.0 to version 1.1 in terms of  performance would be an interesting 
project. Maybe the disparity between HTTP and WebSocket found in this thesis looks 
different with HTTP 2.0. 

6.2.6 WebRTC 
WebRTC [52] (Web Real-Time Communication) is a new API that makes browser-to-browser 
communication on the Web possible. The API allows for advanced peer-to-peer 
communication with voice, video and file sharing without a web server. Under the hood, 
WebRTC is composed of  many technologies and protocols that work together to make the 
API user-friendly. 

WebRTC joins WebSocket in making the Web more advanced in terms of  communication. 
Taking a close look at WebRTC and see what it offers can be an interesting project. Maybe it 
allows for entirely new applications that up until today have been unthinkable for the Web. 

It could also be interesting to see how WebRTC works in combination with other protocols 
such as WebSocket. 
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Appendix 

Code 
All the test code, as well as digital versions of  the thesis can be downloaded from my GitHub 
repository. Direct link: http://www.github.com/oyvindrt/thesis 

Software Versions 

 
Table 2: The software versions used in this thesis. 

OS X 10.10.1

Node.js 0.10.35

Express 4.9.8

ws 0.4.32

EventSource 0.1.3

request 2.40.0

process-monitor 0.3.0

body-parser 1.9.0

multer 0.1.7
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How to Run the Tests 
Node.js is required and version 0.10.35 was used in this thesis. Run “npm install” in each 
folder to fetch the required packages. 

Depending of  the operating system default, it might also be required to increase the 
maximum limit for user processes. 

Scenario 1 
It is required to start the backend before the server. Once started, the backend listens on port 
9000. The servers always listen on port 8000. 

First, start the backend like this: 
$ node backend.js 

Then start the desired server like so: 
$ node <ws/sse/http>server.js <backend ip> <backend port> 
Example: 
$ node wsserver.js localhost 9000 

Lastly, start the clients: 
$ node start<ws/sse/http>clients.js <server ip> <server port> <client 
number> 
Example: 
$ node startwsclients.js localhost 8000 128 

Scenario 2 
First start the server like this: 
$ node <ws/sse/http>server.js <backend ip> <seconds the test should run> 
Example: 
$ node wsserver.js localhost 30 

Then start up the clients like so: 
$ node start<ws/sse/http>clients.js <server ip> <client number> 
Example: 
$ node startwsclients.js localhost 128 
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Full Test Results 
Idle Clients Phase 

HTTP Long Polling - Idle CPU Load

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 3,00 2,42 2,29 2,30 2,54 2,44 2,70 2,78 2,36 2,67 2,54

Run 2 2,77 3,00 2,38 2,35 2,32 2,31 2,76 2,73 2,73 2,57 2,57

Run 3 2,81 2,97 2,41 2,42 2,41 2,38 2,64 2,93 2,43 2,62 2,77

Run 4 2,75 3,00 2,44 2,36 2,65 2,48 2,66 2,82 2,49 2,66 2,44

Run 5 2,80 3,18 2,38 2,43 2,34 2,48 2,81 2,73 2,45 2,55 2,75

Run 6 2,96 2,86 2,34 2,33 2,50 2,56 2,68 2,79 2,54 2,71 2,58

Run 7 3,05 3,00 2,44 2,30 2,55 2,57 2,60 2,50 2,54 3,00 2,49

Run 8 3,02 2,86 2,32 2,55 2,58 2,52 2,88 2,55 2,59 2,67 2,57

Run 9 2,47 3,14 2,47 2,33 2,40 2,65 2,84 3,02 2,41 2,47 2,66

Run 10 2,98 2,89 2,42 2,63 2,45 2,53 2,67 2,86 2,33 2,60 2,50

Average 2,861 2,932 2,389 2,4 2,474 2,492 2,724 2,771 2,487 2,652 2,587

Server Sent Events - Idle CPU Load

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 2,71 2,88 2,37 2,39 2,35 2,40 2,32 2,52 2,79 2,52 2,44

Run 2 2,44 2,67 2,29 2,41 2,70 2,47 2,31 2,40 2,29 2,31 2,49

Run 3 2,94 2,65 2,21 2,19 2,58 2,78 2,47 2,55 2,29 2,45 2,33

Run 4 2,83 2,63 2,27 2,21 2,32 2,49 2,64 2,45 2,40 2,21 2,54

Run 5 2,93 2,49 2,26 2,26 2,56 2,44 2,53 2,53 2,72 2,42 2,32

Run 6 2,86 2,51 2,23 2,25 2,61 2,37 2,71 2,45 2,37 2,63 2,32

Run 7 3,07 2,64 2,22 2,28 2,37 2,23 2,47 2,33 2,59 2,79 2,42

Run 8 2,77 2,50 2,24 2,29 2,29 2,36 2,53 2,67 2,47 2,46 2,54

Run 9 2,80 2,66 2,25 2,24 2,25 2,49 2,62 2,40 2,74 2,54 2,34

Run 10 2,93 2,68 2,37 2,18 2,41 2,50 2,19 2,42 2,47 2,40 2,44

Average 2,828 2,631 2,271 2,27 2,444 2,453 2,479 2,472 2,513 2,473 2,418

WebSocket - Idle CPU Load

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 0,98 0,65 0,48 1,04 0,91 0,83 1,02 0,97 0,89 0,72 0,93

Run 2 1,09 1,07 1,02 0,70 1,00 0,79 0,61 1,05 0,64 1,17 0,61

Run 3 1,05 1,21 0,93 0,86 1,06 0,90 1,02 0,54 1,05 1,11 1,05

Run 4 0,59 1,05 0,67 0,71 1,03 0,53 1,02 0,61 0,89 0,98 1,32

Run 5 0,62 1,02 1,09 1,15 0,93 0,88 0,51 1,05 0,81 1,07 0,73

Run 6 1,12 1,26 0,97 1,16 0,97 0,89 0,96 1,19 0,59 1,20 1,23

Run 7 1,18 1,14 1,09 1,02 0,60 0,62 1,11 1,05 0,89 0,77 0,84

Run 8 0,78 1,21 0,83 0,67 0,89 0,83 0,59 0,95 0,95 0,66 1,05

Run 9 0,59 0,95 0,88 0,49 0,98 0,83 0,82 1,09 0,82 0,95 1,16

Run 10 0,96 1,12 1,12 1,53 0,94 0,55 0,67 1,22 0,98 0,85 0,47

Average 0,896 1,068 0,908 0,933 0,931 0,765 0,833 0,972 0,851 0,948 0,939
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HTTP Long Polling - Idle Memory Footprint

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 28,47 29,63 30,15 30,38 30,47 30,71 30,74 31,19 31,41 31,43 33,30

Run 2 28,83 29,47 30,00 30,28 30,57 30,66 30,90 31,04 31,16 31,78 32,47

Run 3 28,62 29,46 30,07 30,21 30,43 29,88 30,81 31,04 31,16 31,53 32,08

Run 4 29,07 29,40 30,14 30,25 29,83 30,70 30,72 31,07 31,24 31,49 32,49

Run 5 28,81 29,44 30,04 30,16 30,58 30,67 30,87 31,13 31,27 31,48 32,52

Run 6 27,90 29,86 30,00 30,32 30,39 30,46 30,72 31,10 31,25 31,34 32,16

Run 7 28,73 29,80 29,93 30,18 30,50 30,77 30,99 31,19 31,23 32,26 32,38

Run 8 28,23 29,80 30,19 29,46 30,55 30,66 30,39 30,99 31,13 31,54 32,14

Run 9 27,10 29,49 30,13 30,35 30,45 30,41 30,87 31,13 31,36 32,54 32,40

Run 10 28,16 29,51 30,04 29,37 30,35 29,95 30,75 31,11 31,25 32,18 32,34

Average 28,392 29,586 30,069 30,096 30,412 30,487 30,776 31,099 31,246 31,757 32,428

Server Sent Events - Idle Memory Footprint

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 29,08 28,58 29,10 29,69 31,03 31,90 32,13 31,96 33,09 34,11 34,93

Run 2 27,51 28,73 30,47 30,80 30,95 31,10 31,33 31,77 33,11 34,03 33,77

Run 3 28,60 28,37 30,12 30,78 30,43 30,71 31,33 32,36 33,15 34,58 34,99

Run 4 29,12 28,34 30,19 29,26 30,99 31,29 31,40 31,92 32,97 34,01 34,98

Run 5 28,78 30,00 30,68 30,72 29,99 31,30 31,71 31,93 33,45 33,55 34,71

Run 6 28,71 30,10 28,98 30,83 29,91 31,02 31,55 31,89 32,99 33,67 34,87

Run 7 28,88 30,01 30,24 30,65 30,96 31,20 31,45 32,08 32,75 34,55 34,87

Run 8 29,16 28,49 30,48 30,72 30,82 31,29 31,42 31,79 33,26 33,70 35,02

Run 9 28,94 28,44 30,49 29,20 30,95 31,16 31,27 31,98 37,23 34,48 34,53

Run 10 28,72 29,84 28,71 30,58 30,97 31,30 31,36 32,83 32,94 34,22 35,13

Average 28,75 29,09 29,946 30,323 30,7 31,227 31,495 32,051 33,494 34,09 34,78

WebSocket - Idle Memory Footprint

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 17,76 21,15 22,89 23,50 24,05 27,08 28,70 29,89 32,25 32,37 34,24

Run 2 17,51 20,89 22,99 23,31 24,02 25,76 28,05 30,00 32,13 32,56 34,77

Run 3 17,59 20,93 22,41 23,53 23,84 25,80 28,09 29,91 32,15 32,49 34,10

Run 4 17,68 21,13 23,00 23,42 24,46 25,67 28,26 29,94 32,32 32,59 34,53

Run 5 17,82 21,23 23,08 23,51 24,04 25,86 28,31 29,93 32,06 32,52 34,46

Run 6 17,60 21,14 23,18 23,51 23,82 25,97 28,05 30,42 32,25 32,53 34,08

Run 7 17,98 20,92 22,80 23,56 24,05 25,67 28,16 29,92 32,14 32,56 34,47

Run 8 17,86 20,89 22,91 23,54 23,89 25,71 28,16 29,80 31,96 32,45 34,40

Run 9 17,86 21,22 22,72 23,50 23,89 25,73 28,11 30,05 32,31 32,46 34,25

Run 10 17,85 20,93 22,73 23,46 23,85 25,89 28,24 30,05 32,11 32,53 34,36

Average 17,751 21,043 22,871 23,484 23,991 25,914 28,213 29,991 32,168 32,506 34,366
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HTTP Long Polling - Idle Response Time

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 3,26 3,11 2,96 3,14 3,15 3,15 3,98 3,00 2,96 3,08 3,10

Run 2 2,95 3,27 3,30 3,62 3,12 2,92 3,24 3,09 3,11 3,04 2,91

Run 3 3,05 3,30 3,20 3,12 3,02 3,15 3,19 3,16 3,04 2,98 3,14

Run 4 3,10 3,30 3,29 3,14 3,07 3,01 3,17 3,18 3,01 3,01 2,94

Run 5 3,08 3,40 2,98 3,12 3,00 3,02 3,15 3,08 3,14 3,10 3,10

Run 6 3,26 2,97 3,19 3,00 3,15 3,13 3,05 3,31 3,09 3,09 3,42

Run 7 2,97 3,84 3,25 2,97 3,00 3,01 3,13 3,27 3,20 3,15 3,07

Run 8 3,10 3,30 2,88 3,08 3,12 3,03 3,20 3,05 3,20 3,12 3,03

Run 9 3,06 3,34 3,13 2,93 3,15 3,05 3,07 3,11 3,10 3,04 2,97

Run 10 3,33 4,91 2,89 3,08 2,93 3,17 3,20 3,30 3,08 2,99 3,21

Average 3,116 3,474 3,107 3,12 3,071 3,064 3,238 3,155 3,093 3,06 3,089

Server Sent Events - Idle Response Time

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 3,20 3,36 3,18 2,91 2,92 3,39 2,85 3,21 4,05 2,95 3,07

Run 2 3,10 3,07 3,01 3,12 3,10 2,96 3,14 3,14 3,09 2,98 3,08

Run 3 3,17 3,32 3,10 2,95 3,13 3,15 2,90 3,16 3,07 2,88 3,21

Run 4 3,30 4,01 3,11 3,02 3,07 3,04 3,22 3,04 2,89 3,18 3,41

Run 5 3,32 3,02 3,15 2,98 3,11 3,06 3,18 3,10 3,04 3,01 3,56

Run 6 3,17 4,03 3,01 2,95 3,03 2,99 3,03 3,14 3,15 3,07 3,03

Run 7 3,17 3,19 3,19 3,04 3,00 3,06 3,02 3,05 3,08 3,18 3,14

Run 8 3,09 3,11 3,04 3,04 3,16 3,10 2,99 3,24 3,02 3,09 4,22

Run 9 3,27 4,35 3,13 3,07 2,99 3,17 3,11 3,07 3,03 2,98 3,07

Run 10 3,26 3,24 3,14 3,03 3,15 3,19 3,15 3,10 3,11 3,06 3,16

Average 3,205 3,47 3,106 3,011 3,066 3,111 3,059 3,125 3,153 3,038 3,295

WebSocket - Idle Response Time

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 1,32 1,40 1,44 1,35 1,38 1,49 1,48 1,41 1,42 1,48 1,41

Run 2 1,46 1,52 1,40 1,32 1,47 1,32 1,34 1,41 1,39 1,45 1,42

Run 3 1,27 1,50 1,39 1,46 1,38 1,34 1,39 1,40 1,31 1,46 1,41

Run 4 1,31 1,41 1,53 1,35 1,15 1,44 1,39 1,38 1,45 1,33 1,45

Run 5 1,40 1,35 1,35 1,37 1,18 1,45 1,33 1,37 1,28 1,37 1,47

Run 6 1,37 1,46 1,45 1,40 1,40 1,37 1,28 1,46 1,38 1,48 1,55

Run 7 1,46 1,49 1,44 1,30 1,40 1,38 1,38 1,43 1,38 1,42 1,32

Run 8 1,29 1,55 1,41 1,47 1,38 1,38 1,36 1,48 1,43 1,40 1,49

Run 9 1,41 1,59 1,54 1,27 1,52 1,35 1,33 1,39 1,33 1,45 1,58

Run 10 1,33 1,58 1,57 1,40 1,35 1,37 1,40 1,51 1,40 1,42 1,35

Average 1,362 1,485 1,452 1,369 1,361 1,389 1,368 1,424 1,377 1,426 1,445
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Test Phase - Scenario 1 
HTTP Long Polling - CPU Load in Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 17,54 98,41 98,32 98,33 98,16 97,87 97,85 97,96 98,23 98,03 98,20

Run 2 17,47 98,47 98,35 98,28 98,20 98,06 97,94 98,06 98,04 98,16 98,06

Run 3 17,73 98,35 98,38 98,23 98,03 97,98 98,00 98,05 98,01 98,26 98,12

Run 4 17,46 98,43 98,47 98,06 97,95 97,96 97,97 98,01 98,33 98,11 98,08

Run 5 17,30 98,37 98,32 98,40 98,16 98,02 97,82 98,08 98,17 98,08 98,17

Run 6 17,27 98,44 98,32 98,33 98,10 97,96 98,09 98,18 98,35 98,14 98,25

Run 7 17,37 98,30 98,46 98,35 97,97 97,80 97,93 98,00 98,00 98,27 98,21

Run 8 17,52 98,48 98,30 98,35 98,15 97,89 97,91 98,19 98,18 98,62 98,09

Run 9 17,50 98,51 98,40 98,30 98,19 97,95 98,06 98,12 98,22 98,05 98,02

Run 10 17,46 98,44 98,38 98,19 97,97 97,86 97,79 97,98 98,12 98,32 97,90

Average 17,462 98,42 98,37 98,282 98,088 97,935 97,936 98,063 98,165 98,204 98,11

Server Sent Events - CPU Load in Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 8,55 32,12 57,71 79,50 93,97 97,97 97,59 98,84 99,03 99,05 99,16

Run 2 8,74 30,61 54,94 80,53 94,86 98,35 98,59 98,88 98,97 99,11 99,16

Run 3 8,64 29,56 55,55 82,08 94,12 98,55 98,74 98,94 98,97 99,12 99,13

Run 4 8,72 30,58 53,88 83,04 95,40 98,38 98,84 98,84 98,95 99,10 99,17

Run 5 8,71 30,69 55,99 86,23 95,97 98,41 98,67 98,83 99,01 99,12 99,13

Run 6 8,80 30,88 57,46 83,97 97,60 98,38 98,51 98,86 99,03 99,10 99,11

Run 7 8,56 30,48 49,36 85,25 95,61 98,25 98,69 98,91 99,06 99,13 99,16

Run 8 8,64 30,98 52,86 79,19 94,76 98,23 98,66 98,95 99,00 99,08 99,16

Run 9 8,71 29,90 57,88 81,10 95,20 98,31 98,76 98,78 99,04 98,99 99,22

Run 10 8,80 30,43 49,01 84,35 95,18 98,34 98,60 98,97 99,00 99,13 99,16

Average 8,687 30,623 54,464 82,524 95,267 98,317 98,565 98,88 99,006 99,093 99,156

WebSocket - CPU Load in Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 8,01 30,09 46,03 70,83 80,90 89,69 95,84 98,37 98,57 98,02 98,81

Run 2 8,10 30,23 50,12 72,44 83,33 89,49 95,26 97,30 97,85 98,41 96,97

Run 3 7,94 29,94 45,85 70,89 80,68 90,00 95,12 97,47 98,92 97,33 98,45

Run 4 8,12 29,92 48,24 72,56 83,11 89,16 96,67 98,11 98,08 98,33 97,81

Run 5 8,03 30,73 47,99 70,24 80,99 91,40 96,16 98,18 97,49 98,69 97,72

Run 6 8,07 33,27 51,03 71,39 83,10 90,51 97,16 97,64 98,74 98,22 98,57

Run 7 8,04 30,03 53,82 70,26 81,13 89,46 96,22 97,57 98,79 98,75 98,90

Run 8 8,10 30,31 53,83 64,49 85,31 91,03 96,15 98,59 98,44 98,54 98,76

Run 9 8,07 30,17 50,66 66,99 81,36 89,76 95,75 97,85 98,74 98,68 98,62

Run 10 8,04 29,81 49,99 70,80 83,63 92,55 96,60 98,44 98,59 98,93 98,85

Average 8,052 30,45 49,756 70,089 82,354 90,305 96,093 97,952 98,421 98,39 98,346
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HTTP Long Polling - Average Response Time in Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 2,20 21,47 47,47 71,52 104,67 133,89 141,52 187,51 259,57 300,78 357,26

Run 2 2,16 21,10 46,68 71,47 101,19 131,05 135,93 189,05 259,32 303,22 390,97

Run 3 2,15 20,49 46,37 71,15 101,32 132,81 142,82 190,11 248,32 309,05 402,08

Run 4 2,19 20,16 46,89 70,01 99,85 136,70 146,21 194,01 266,06 300,87 365,01

Run 5 2,15 21,66 47,43 72,13 99,09 134,57 148,66 199,33 252,19 303,07 383,06

Run 6 2,19 21,65 47,35 70,28 100,15 127,86 140,74 187,31 283,20 306,13 352,76

Run 7 2,16 20,34 46,70 70,35 101,30 137,20 143,83 180,54 262,29 326,04 351,64

Run 8 2,21 19,97 46,54 70,49 98,98 139,12 141,29 196,23 257,18 297,92 381,64

Run 9 2,16 21,37 46,85 68,08 100,37 123,32 140,82 188,45 261,47 299,39 378,53

Run 10 2,17 21,11 46,78 73,10 99,06 131,20 147,39 177,88 244,94 299,01 359,56

Average 2,174 20,932 46,906 70,858 100,598 132,772 142,921 189,042 259,454 304,548 372,251

Server Sent Events - Average Response Time in Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 2,33 3,19 4,18 5,45 9,30 392,48 394,46 1127,86 1003,25 2421,00 989,00

Run 2 2,37 3,30 4,17 5,70 10,09 587,77 492,25 1022,80 1878,40 1174,67 2020,00

Run 3 2,30 3,31 4,20 5,69 9,32 400,00 1419,14 1513,80 1564,00 1386,50 2540,50

Run 4 2,29 3,26 4,05 5,50 10,42 649,25 1099,40 936,75 1646,40 2201,25 2260,67

Run 5 2,31 3,31 4,04 6,00 11,77 564,42 1177,67 995,75 1006,67 1388,25 1723,25

Run 6 2,34 3,26 4,28 5,63 16,44 596,57 561,93 907,67 1269,75 1397,67 2582,00

Run 7 2,32 3,33 4,01 5,90 10,25 525,98 756,63 1936,00 1034,67 2920,67 1408,50

Run 8 2,33 3,26 3,71 5,31 9,46 460,51 732,90 1148,50 861,75 1225,67 2991,67

Run 9 2,38 3,20 4,09 5,26 10,03 784,52 830,00 720,25 2183,50 1154,25 985,50

Run 10 2,32 3,29 4,03 5,66 9,90 629,94 599,55 1501,00 1804,00 1634,00 1092,50

Average 2,329 3,271 4,076 5,61 10,698 559,144 806,393 1181,038 1425,239 1690,393 1859,359

WebSocket - Average Response Time in Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 1,04 1,24 1,68 1,97 2,89 4,65 8,88 568,62 770,55 725,04 900,09

Run 2 1,04 1,24 1,50 1,90 3,27 5,06 11,64 686,52 715,13 891,17 767,34

Run 3 1,06 1,22 1,66 2,03 2,87 4,77 8,12 411,51 828,46 719,97 707,70

Run 4 1,02 1,16 1,52 1,94 2,98 4,71 15,90 507,47 824,01 405,13 826,00

Run 5 1,10 1,31 1,51 1,75 3,10 5,59 10,97 668,46 540,48 1111,92 862,21

Run 6 1,09 1,34 1,35 2,06 3,38 4,80 21,53 701,75 936,25 730,13 632,85

Run 7 1,06 1,40 1,42 1,94 2,93 4,55 9,71 378,00 1021,14 1087,83 886,50

Run 8 1,03 1,14 1,56 1,65 3,70 5,45 9,21 795,69 670,44 639,58 848,10

Run 9 1,06 1,24 1,42 1,69 2,92 4,55 9,26 646,17 857,54 791,46 740,71

Run 10 1,08 1,27 1,41 1,83 3,27 5,57 12,21 718,51 663,99 851,22 790,07

Average 1,058 1,256 1,503 1,876 3,131 4,97 11,743 608,27 782,799 795,345 796,157
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Test Phase - Scenario 2 
HTTP Long Polling - CPU Load in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 0,08 29,37 78,32 96,35 96,75 96,77 96,89 96,90 97,31 97,34 96,97

Run 2 0,09 29,58 78,23 96,60 96,74 96,89 96,88 96,96 97,19 97,29 97,12

Run 3 0,09 28,56 77,18 96,62 96,75 96,89 96,92 97,00 96,66 97,26 97,17

Run 4 0,09 28,99 77,64 96,39 96,71 96,13 96,87 96,98 96,99 97,31 97,18

Run 5 0,08 28,22 77,41 96,49 96,76 96,82 96,96 96,33 97,03 96,23 96,90

Run 6 0,09 28,83 77,58 96,53 96,57 96,81 96,87 96,93 97,29 97,16 97,09

Run 7 0,09 28,43 78,31 96,58 96,66 95,95 96,93 96,97 97,25 97,16 97,04

Run 8 0,09 28,49 77,87 96,49 96,81 96,93 96,58 96,94 97,20 97,27 97,27

Run 9 0,09 28,43 77,67 96,44 96,73 96,19 96,88 96,98 97,25 97,17 97,01

Run 10 0,08 28,95 78,46 96,44 96,81 96,82 96,10 96,93 97,28 97,17 97,05

Average 0,087 28,785 77,867 96,493 96,729 96,62 96,788 96,892 97,145 97,136 97,08

Server Sent Events - CPU Load in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 0,05 8,81 26,63 35,86 50,43 61,52 83,51 92,76 92,26 92,71 92,41

Run 2 0,05 8,83 26,04 40,75 50,71 64,42 84,21 92,64 92,72 92,04 91,92

Run 3 0,05 8,88 26,73 38,83 50,73 63,78 83,81 92,77 92,08 92,40 92,01

Run 4 0,06 8,82 26,51 36,02 50,26 64,45 83,86 92,76 92,27 92,29 92,45

Run 5 0,05 8,90 27,06 38,55 49,79 62,49 83,48 92,92 92,25 92,39 92,35

Run 6 0,06 8,80 26,41 42,35 49,29 63,39 83,27 92,73 92,69 92,53 92,91

Run 7 0,06 8,99 26,88 36,56 50,08 62,36 84,18 92,94 92,68 92,19 92,24

Run 8 0,04 8,86 26,45 35,03 49,79 64,18 84,76 92,70 92,30 92,25 92,17

Run 9 0,03 9,00 26,66 36,56 51,28 63,51 82,94 92,75 92,22 92,44 91,91

Run 10 0,06 8,96 26,00 40,44 50,25 62,68 86,31 92,74 92,12 92,44 92,17

Average 0,051 8,885 26,537 38,095 50,261 63,278 84,033 92,771 92,359 92,368 92,254

WebSocket - CPU Load in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 0,01 7,33 26,37 47,59 62,36 62,16 90,06 94,21 93,99 93,95 94,40

Run 2 0,01 7,33 26,23 25,60 63,33 77,39 90,79 94,06 94,18 94,53 93,84

Run 3 0,01 7,61 26,73 48,08 65,47 75,84 89,89 94,22 94,08 93,04 93,77

Run 4 0,01 7,26 26,57 47,82 56,99 64,38 91,89 94,17 93,92 93,84 94,31

Run 5 0,01 7,31 26,64 48,68 64,20 75,77 91,79 94,29 93,89 94,34 93,94

Run 6 0,01 7,47 26,59 48,28 40,08 64,55 88,95 94,35 94,28 94,49 93,74

Run 7 0,01 7,58 26,69 48,29 39,22 75,61 90,40 94,42 94,06 94,19 94,07

Run 8 0,01 7,54 26,68 47,98 62,13 76,12 90,99 94,21 94,12 94,04 93,79

Run 9 0,01 7,36 26,34 24,76 38,90 76,19 93,03 94,34 94,25 94,03 93,83

Run 10 0,01 7,19 27,34 48,12 63,01 63,64 91,66 94,44 94,09 94,25 94,32

Average 0,01 7,398 26,618 43,52 55,569 71,165 90,945 94,271 94,086 94,07 94,001
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HTTP Long Polling - Average Response Time in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 5,00 10,38 28,32 136,08 179,02 233,03 298,59 371,20 431,14 562,67 732,19

Run 2 5,25 10,39 21,77 133,44 178,23 224,27 295,15 365,36 436,40 568,87 729,48

Run 3 5,13 10,09 22,47 132,62 178,62 231,64 300,78 367,17 467,06 556,17 719,08

Run 4 5,00 10,23 23,13 136,89 177,40 256,55 300,29 372,34 443,06 568,76 707,23

Run 5 5,00 10,05 22,24 133,63 182,11 231,58 299,26 404,52 448,97 658,70 725,45

Run 6 5,25 10,27 24,16 134,67 181,48 236,74 296,94 367,56 441,98 551,51 701,43

Run 7 5,00 10,10 25,00 133,43 181,38 266,19 294,38 367,34 438,21 565,30 702,98

Run 8 5,13 10,11 25,03 134,10 178,30 227,68 312,67 365,11 442,62 564,03 706,38

Run 9 5,50 10,07 23,93 133,75 181,50 256,47 294,89 365,66 437,04 582,09 719,73

Run 10 5,25 10,27 25,32 134,13 178,65 229,72 327,49 363,13 442,79 547,84 718,56

Average 5,151 10,196 24,137 134,274 179,669 239,387 302,044 370,939 442,927 572,594 716,251

Server Sent Events - Average Response Time in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 5,25 5,80 7,62 8,95 16,19 34,15 186,48 3004,89 3894,47 5331,73 5854,79

Run 2 5,38 5,77 7,81 9,26 13,84 36,93 204,74 2800,87 3977,96 5000,66 5858,34

Run 3 5,25 5,77 7,68 9,45 13,02 39,15 195,98 2874,00 4399,06 5204,05 6161,97

Run 4 5,25 5,74 7,74 9,61 11,17 44,36 166,61 2968,29 4375,28 5137,51 6022,98

Run 5 5,50 5,82 7,57 9,54 13,16 45,00 142,33 3032,16 4226,24 5440,15 5964,23

Run 6 5,38 5,77 7,82 9,51 14,58 35,29 181,05 2676,65 4187,49 5279,24 6260,23

Run 7 5,25 5,80 7,72 9,54 14,06 37,77 181,02 3112,02 3976,14 5230,53 5749,43

Run 8 5,38 5,77 7,56 9,74 14,28 37,80 185,38 2827,62 4298,76 5128,29 5820,35

Run 9 4,13 5,86 7,78 9,41 14,29 30,00 201,09 2802,05 4348,69 5339,55 5728,49

Run 10 4,38 5,80 7,55 9,54 12,98 34,09 195,44 3006,95 4138,52 5504,33 6052,50

Average 5,115 5,79 7,685 9,455 13,757 37,454 184,012 2910,55 4182,261 5259,604 5947,331

WebSocket - Average Response Time in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 1,75 3,22 5,22 7,47 9,46 12,91 127,41 4011,77 4496,76 4890,20 5648,91

Run 2 1,63 3,22 5,25 4,12 8,95 18,74 109,53 3758,67 4271,51 5875,74 6253,93

Run 3 1,75 3,34 5,27 7,12 9,07 16,42 74,76 3937,77 4847,48 5609,76 6303,20

Run 4 1,63 3,20 5,30 7,68 8,65 12,84 103,42 3966,14 4717,44 5036,62 5649,20

Run 5 1,88 3,23 5,34 7,24 9,26 17,09 88,62 3272,82 5433,95 5412,69 6146,90

Run 6 1,88 3,27 5,25 7,05 5,36 14,01 80,78 3534,59 5077,18 5490,90 6209,67

Run 7 1,63 3,28 5,25 7,27 5,16 12,56 91,42 3266,58 4914,74 4747,50 5279,45

Run 8 2,00 3,32 5,27 7,23 9,25 14,79 113,96 3996,53 4491,31 5896,76 5822,92

Run 9 1,75 3,26 5,24 3,99 5,20 14,93 132,67 3141,57 5182,45 6161,56 6283,20

Run 10 1,75 3,20 5,39 7,39 9,07 11,37 103,31 3643,02 4710,91 5316,17 6013,30

Average 1,765 3,254 5,278 6,656 7,943 14,566 102,588 3652,946 4814,373 5443,79 5961,068
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HTTP Long Polling - Median Response Time in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 3,00 10,00 19,00 133,50 175,00 232,00 301,50 375,00 433,00 567,00 733,00

Run 2 4,00 10,00 18,00 129,00 174,50 218,00 293,75 369,50 436,75 575,00 727,00

Run 3 3,50 10,00 17,50 130,00 178,00 229,00 301,00 370,00 472,00 558,00 719,00

Run 4 3,00 9,00 17,00 135,50 173,00 255,00 302,00 372,00 436,00 573,00 712,50

Run 5 3,00 10,00 18,00 131,00 176,00 230,00 295,00 397,00 446,00 666,25 726,50

Run 6 3,50 10,00 18,00 130,00 177,00 236,00 295,00 367,50 440,50 552,00 705,75

Run 7 3,00 10,00 18,00 128,00 176,00 264,00 296,00 362,50 433,00 569,00 707,50

Run 8 4,00 9,00 18,00 131,50 176,00 226,00 304,50 356,00 443,00 566,50 713,00

Run 9 4,00 9,00 19,00 129,00 178,00 258,25 294,00 359,50 432,00 585,00 720,50

Run 10 4,00 10,00 18,00 130,00 176,00 225,00 328,00 360,00 436,00 549,00 722,00

Average 3,5 9,7 18,05 130,75 175,95 237,325 301,075 368,9 440,825 576,075 718,675

Server Sent Events - Median Response Time in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 3,00 5,00 6,00 7,00 9,00 13,00 156,00 2671,00 4090,50 5031,00 5458,50

Run 2 3,00 5,00 6,00 8,00 9,00 14,00 194,00 2601,50 3729,00 4446,00 5115,00

Run 3 3,50 5,00 6,50 7,50 9,00 18,00 184,00 2666,50 3819,50 4810,50 5405,00

Run 4 3,00 5,00 6,00 7,00 8,00 16,00 162,00 2805,00 4041,50 4734,00 5542,00

Run 5 3,00 5,00 6,00 7,50 9,00 14,00 124,00 2670,00 3904,50 4757,00 5681,00

Run 6 3,00 5,00 6,00 8,00 9,00 13,00 169,00 2465,00 3872,00 4870,50 5779,00

Run 7 3,00 5,00 6,25 8,00 9,00 13,00 163,00 2893,50 3740,00 4897,00 5009,00

Run 8 3,00 5,00 6,00 7,00 9,00 14,00 176,00 2656,00 4053,00 4607,00 5216,00

Run 9 3,00 5,00 6,00 8,00 9,00 13,00 191,00 2592,50 3808,50 4738,00 4936,00

Run 10 3,50 5,00 6,00 8,00 9,00 14,00 184,50 2689,50 3800,00 4907,00 4892,00

Average 3,1 5 6,075 7,6 8,9 14,2 170,35 2671,05 3885,85 4779,8 5303,35

WebSocket - Median Response Time in Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 1,00 3,00 5,00 7,00 9,00 6,00 128,00 2439,50 3540,00 3800,00 4376,00

Run 2 1,00 3,00 5,00 3,00 9,00 11,00 118,53 2733,00 3437,00 4431,00 4781,00

Run 3 1,00 3,00 5,00 7,00 9,00 11,00 73,00 2288,50 3595,00 3947,50 4840,50

Run 4 1,00 3,00 5,00 7,00 8,00 5,00 104,00 2503,00 3268,00 4084,50 4154,00

Run 5 1,50 3,00 5,00 7,00 9,00 12,00 91,00 2322,50 3631,00 4228,00 3969,00

Run 6 1,50 3,00 5,00 7,00 4,00 6,00 79,00 2174,00 3263,50 3662,00 4263,00

Run 7 1,00 3,00 5,00 7,00 4,00 11,00 93,00 2235,50 3912,00 3512,00 4168,00

Run 8 2,00 3,00 5,00 7,00 9,00 11,00 120,00 2376,00 3571,00 3741,50 4584,00

Run 9 1,00 3,00 5,00 3,00 4,00 11,00 139,00 2158,50 3074,00 4426,00 4836,00

Run 10 1,00 3,00 5,00 7,00 9,00 5,00 107,00 2021,00 3429,00 4267,00 4577,00

Average 1,2 3 5 6,2 7,4 8,9 105,253 2325,15 3472,05 4009,95 4454,85
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Memory Footprint after Test - Scenario 1 
HTTP Long Polling - Memory Footprint after Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 43,41 63,36 65,68 67,92 70,83 73,17 78,64 89,17 89,23 88,75 96,98

Run 2 43,05 63,66 65,37 67,36 70,72 73,78 78,08 88,44 89,21 97,54 98,05

Run 3 43,34 62,57 66,03 67,51 70,50 74,37 77,78 89,17 89,48 88,27 98,95

Run 4 43,53 62,70 66,00 68,20 69,93 74,93 78,45 89,58 89,26 96,72 97,40

Run 5 43,82 64,52 65,70 67,73 71,15 73,61 76,10 89,07 98,31 88,02 97,24

Run 6 43,12 64,03 65,87 67,64 71,08 75,77 77,45 89,22 88,85 89,02 96,96

Run 7 43,43 62,81 65,92 67,73 70,07 73,21 78,34 87,95 88,23 90,10 98,44

Run 8 43,68 63,19 66,08 67,49 70,44 74,71 77,60 89,24 89,28 89,62 98,38

Run 9 43,80 63,86 66,37 67,07 71,15 73,91 77,18 88,62 96,76 98,04 98,40

Run 10 43,41 63,34 65,59 68,66 70,22 73,73 76,79 88,74 88,15 89,35 97,90

Average 43,459 63,404 65,861 67,731 70,609 74,119 77,641 88,92 90,676 91,543 97,87

Server Sent Events - Memory Footprint after Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 41,02 40,75 41,56 42,45 59,08 361,25 697,65 893,30 1056,93 1094,48 1272,93

Run 2 40,54 41,18 41,54 42,43 59,09 357,21 753,91 871,86 988,80 1187,88 1331,42

Run 3 40,69 40,90 41,51 42,12 59,10 555,30 742,80 906,60 1074,58 1241,28 1208,90

Run 4 41,23 40,69 41,99 42,06 58,85 229,34 751,12 930,91 967,50 1179,23 1266,82

Run 5 41,54 41,01 41,83 42,44 59,20 162,64 707,84 868,05 1062,02 1150,16 1310,55

Run 6 40,77 41,27 41,58 42,11 59,36 312,22 690,46 863,07 1113,82 1180,38 1282,28

Run 7 40,42 41,07 41,65 42,21 58,99 259,49 759,35 811,11 1022,30 1106,56 1313,60

Run 8 41,16 40,79 41,67 42,35 58,75 98,32 738,63 857,99 1087,98 1129,83 1296,55

Run 9 41,23 40,84 41,50 41,98 59,30 297,66 679,59 822,48 975,38 1084,34 1296,39

Run 10 41,74 40,99 41,42 42,00 59,08 286,76 711,05 857,06 1048,90 1141,94 1291,83

Average 41,034 40,949 41,625 42,215 59,08 292,019 723,24 868,243 1039,821 1149,608 1287,127

WebSocket - Memory Footprint after Test Scenario 1

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 22,68 29,52 39,78 42,04 63,59 65,08 70,19 1029,58 1316,49 1248,57 1397,89

Run 2 22,59 29,59 40,02 41,81 62,50 64,99 69,01 940,06 1260,37 1616,52 976,69

Run 3 22,76 29,50 40,11 41,62 62,22 64,90 68,10 696,34 1246,16 1230,47 1665,54

Run 4 22,78 29,50 39,89 42,05 62,31 64,82 74,66 726,87 1129,14 1167,72 1400,90

Run 5 22,64 29,57 40,13 41,46 62,58 65,02 69,92 948,68 1075,36 1473,15 978,56

Run 6 22,68 29,40 39,90 41,47 62,66 65,10 72,35 799,30 1283,27 1387,47 1598,40

Run 7 22,71 29,34 39,99 41,42 62,59 64,49 71,05 222,08 1307,06 1451,38 1801,90

Run 8 22,83 29,34 39,94 43,26 63,36 64,32 70,05 976,62 1339,91 1337,47 1820,96

Run 9 22,84 29,58 39,87 42,90 63,27 65,13 68,47 819,69 1317,93 1193,72 1717,20

Run 10 22,84 29,52 39,85 41,61 63,05 64,94 69,94 931,28 1354,81 1587,94 1754,12

Average 22,735 29,486 39,948 41,964 62,813 64,879 70,374 809,05 1263,05 1369,441 1511,216
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Memory Footprint after Test - Scenario 2  
HTTP Long Polling - Memory Footprint after Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 36,27 67,10 67,69 68,67 71,25 71,66 74,34 78,12 80,07 81,71 82,88

Run 2 36,40 67,00 68,32 68,06 68,49 71,56 73,22 77,94 77,74 81,30 82,88

Run 3 36,04 66,56 68,32 67,48 70,02 70,98 74,61 78,31 79,46 78,40 82,68

Run 4 36,34 66,44 68,96 67,62 69,64 70,14 74,38 77,65 78,44 80,04 83,96

Run 5 36,19 66,48 68,15 67,32 68,70 72,30 75,26 76,44 82,00 80,32 85,18

Run 6 36,23 67,05 67,01 67,60 69,68 72,98 73,39 77,98 80,15 81,34 82,43

Run 7 36,04 66,40 68,14 67,30 69,09 71,04 74,24 76,46 77,80 80,72 83,50

Run 8 36,16 66,40 68,13 67,80 69,33 71,62 74,18 78,62 78,96 81,41 89,95

Run 9 36,20 66,78 68,46 68,46 69,67 71,59 74,66 77,54 80,00 80,15 83,25

Run 10 36,33 66,55 68,06 68,35 68,85 73,46 74,76 77,31 78,46 82,55 88,25

Average 36,22 66,676 68,124 67,866 69,472 71,733 74,304 77,637 79,308 80,794 84,496

Server Sent Events - Memory Footprint after Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 35,73 51,65 68,10 67,23 70,43 71,58 77,79 97,82 99,68 126,90 125,63

Run 2 35,84 53,24 68,08 68,60 69,30 71,64 77,74 95,78 103,48 111,45 130,34

Run 3 35,71 51,16 67,60 67,62 69,01 72,45 77,14 97,76 104,28 109,30 133,86

Run 4 35,66 51,06 68,28 67,74 68,67 72,41 77,91 96,00 102,48 116,38 131,14

Run 5 35,85 53,66 68,02 68,63 69,28 71,89 76,95 95,50 100,73 112,83 119,54

Run 6 35,93 53,22 67,98 67,39 69,38 71,87 77,27 96,53 101,36 114,02 124,94

Run 7 35,99 52,79 67,88 67,57 69,15 71,88 77,67 97,30 100,42 108,30 122,42

Run 8 35,92 48,86 67,75 67,72 69,38 71,64 77,49 97,31 102,62 113,14 120,10

Run 9 35,96 52,68 67,17 67,65 69,40 71,19 78,10 98,87 101,48 111,55 126,96

Run 10 36,07 49,98 68,16 67,78 69,16 72,64 77,73 97,58 103,18 118,65 134,90

Average 35,866 51,83 67,902 67,793 69,316 71,919 77,579 97,045 101,971 114,252 126,983

WebSocket - Memory Footprint after Test Scenario 2

# clients 1 50 100 150 200 250 300 350 400 450 500

Run 1 18,66 25,58 34,94 45,56 50,62 63,90 69,60 286,43 283,70 358,87 333,42

Run 2 18,56 25,68 33,95 45,32 50,34 64,55 69,38 277,82 307,42 458,03 469,24

Run 3 18,69 25,66 34,03 44,78 50,15 64,60 68,18 292,95 269,18 385,39 470,64

Run 4 18,67 25,54 34,24 45,18 49,90 64,14 71,09 301,92 273,38 337,76 332,54

Run 5 18,79 25,27 34,64 44,96 50,24 64,36 69,81 193,61 390,38 420,72 439,95

Run 6 18,61 25,21 34,13 45,11 49,94 64,44 68,44 258,71 383,47 442,60 458,38

Run 7 18,82 25,40 34,67 45,22 50,31 64,02 70,14 263,57 320,68 330,32 348,32

Run 8 18,65 25,37 34,84 45,19 50,15 64,22 70,52 295,07 289,42 422,57 304,79

Run 9 18,83 25,48 34,45 45,01 50,09 64,06 70,80 259,86 370,68 363,57 471,20

Run 10 18,83 25,48 34,34 45,12 49,96 64,44 68,88 288,08 254,62 420,92 402,34

Average 18,711 25,467 34,423 45,145 50,17 64,273 69,684 271,802 314,293 394,075 403,082
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