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Abstract

The purpose of this thesis is to study the pricing of mortality risk in life
annuities, when using the so-called Wang’s Transform which is popu-
lar in certain quarters of actuarial science. This is a distortion operator
that transforms the mortality distribution into risk-adjusted mortali-
ties. By applying this to a given mortality table, we will price life an-
nuities with both distributions and discuss the underlying risk of using
wrong mortalities.

Words: life insurance, life annuities, mortality risk, Wang’s Trans-
form, mortality bonds, insurance securitization, hedging, discounting.
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Chapter 1

Introduction

Longevity risk is a major issue for insurers and pension funds. When
pricing a life insurance product it is important that the mortalities used
don’t deviate too much from the actual mortalities in the future, as this
could lead to severe underestimation of the reserve. Mortality tables
are based on historical data. Because of a continuously increase in ex-
pected lifetime since The Second World War, the historical data quickly
become obsolete.

In this thesis, we will study the pricing of mortality risk in life an-
nuities when using the Wang Transform:

gλ(u) = Φ[Φ−1(u)− λ].

The distortion operator transforms the mortality distribution into risk-
adjusted mortalities. By applying this to a given mortality table, we
will price life annuities with both distributions and discuss the under-
lying risk of using wrong mortalities. The risk-adjusted mortalities will
also be used further to price a mortality bond.

It is assumed that the reader knows basic statistics and also a little
about life insurance. In Chapter 2 will life insurance basics be intro-
duced, and also necessary background material for further use in the
thesis. The concept of mortality bonds is introduced with examples. We
will look at the theory of distortion operators, and especially we intro-
duce the Wang Transform and how it can be used on survival probabil-
ities.

1



2 1. INTRODUCTION

In Chapter 3 will we expain how a life annuity can be priced. We will
use both the mortalities from a given table and the risk-adjusted mor-
talities in our calculations, and see if there actually is a difference.

In Chapter 4 will we go deeper into one of the mortality bonds from
Chapter 2 and look at how it can be priced with the use of the risk-
adjusted mortalities obtained from the Wang Transform in Chapter 3.

Finally, we will compare and discuss the results to see if the Wang
Transform can be used as a universal framework for adjusting mortal-
ity tables when the historical data is obsolete.



Chapter 2

Life insurance basics

2.1 Annuities

2.1.1 Introduction

An annuity is defined as a sequence of payments of limited duration
which we denote by n. The payments can either take place at the end
of each period (in arrears), or at the beginning (in advance); see [9]. If
the payments start at time 0, the present value is denoted by än , and
with survival probabilities kpl0 and discount rate d, given by

än =
n−1∑
k=0

dkkpl0 . (2.1)

Similarly, if the payments occur at the end of the periods, the present
value, now denoted an , is

an =
n∑
k=1

dkkpl0 . (2.2)

In other words, taking the payment agreed on at time k (here set equal
to 1) and multiplying with the probability that it is actually made,
adding over all k and discounting, the present value of the annuity
emerges; see [7].

3



4 2. LIFE INSURANCE BASICS

2.1.2 Life tables

An important part of annuities is the survival probabilities kpl. Often
the payment stream is broken off when the individual dies, and we
have to correct for it. To do this, we have to model how long people
live. It can then be transformed to a life table specified through the
conditional probabilities

kpl = P (L ≥ l + k|L ≥ l)
survival probabilities

and kql = P (k + l − 1 ≤ L < l + k|L ≥ l)
mortalities

.

(2.3)
To the left we have the probability of surviving k periods given that the
initial age is l, whereas the right is the probability that the individual
survives k-1 periods then dies during the next, given initial age l.

Using the one-step probabilities 1pl = pl and 1ql = ql, we can construct
a life table through recursion,

k+1pl = (1− ql+k) · kpl, k = 0, 1, ... starting at 0pl = 1, (2.4)

and for the mortalities we have

k+1ql = ql+k · kpl, k = 0, 1, .... (2.5)

2.1.3 The concept of discounting

To find the present value of an annuity we have to discount. This is
because the payments are to be received in the future. Money is sub-
ject to inflation and has above all the ability to earn interest, therefore
one money unit today is worth more than one money unit tomorrow.
Discounting is the process of determining how tomorrow’s money unit
is devaluated.

Let’s say that a payment F will be made k years ahead, then the present
value of this payment, also called the discounted value, is P = F/(1 + r)k,
where r is called the discount yield.

There are several ways of determining the discount rate. We have

dk =
1

(1 + r)k
technical rate

, dk = P0(0 : k) =
1

(1 + r̄0(k))k
fair value discounting

, dk =
Qk

(1 + r)k
inflation included

.
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The technical rate r is determined administratively. It is the interest
rate charged to banks and other depository institutions for loans re-
ceived from the central bank. It is vulnerable to bias as the central
bank changes it according to which direction they want to push the
economy. A low interest rate makes liabilities very attractive, while
high values are used to keep liabilities low.

That weakness is avoided with fair value discounting. The discounts
now are market bond prices P0(0 : k) closely related to the market in-
terest rate curve r̄0(k). The bias is gone, but both bond prices and inter-
est rate curves fluctuate, and also the market-based present valuation
with them. The fair value discounts in the future are not known, and
this also induces uncertainty in the valuation.

It may be the liabilities depend on inflation. In traditional defined ben-
efit schemes where pension rights and contributions are linked to some
prior price or wage index Qk, we enter inflation by dk · Qk. This can be
done with the fair value discount as well as the technical rate.

2.1.4 Life annuities

A life annuity is a financial contract in form of an insurance product
according to which a seller - typically a life insurance company - makes
a series of future payments to a buyer - an annuitant - in exchange for
the immediate payment of a lump sum (single-payment annuity) or a
series of payments (regular-payment annuity), prior to the onset of the
annuity.

As mentioned, the payment stream has an unknown duration based
principally upon the death of the annuitant. Then the contract will ter-
minate and the remainder of the fund accumulated is forfeited unless
there are other annuitants or beneficiaries in the contract. This is a
form of longevity insurance: the uncertainty of an individual’s lifespan
is transferred from the individual to the insurer, which reduces its own
uncertainty by pooling many clients.

A life annuity can be divided into two phases: the accumulation phase
and the distribution phase. During the accumulation phase the annu-
itant deposits and accumulates money into an account. Then during
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the distribution phase the insurance company makes payments until
the death of the annuitant. The type of contract decides how long each
phase lasts.

Fixed and variable annuities
A fixed annuity consists of payments in fixed amounts or increases by a
fixed percentage. A variable one is when the amounts vary according to
the investment performance of a specified set of investments, typically
bonds and equity mutual funds.

Guaranteed annuities
The issuer is required to make annuity payments for at least a cer-
tain number of years, called the "period certain". If the annuitant out-
lives the specified period, annuity payments will then continue until
death. However if the annuitant dies before expiration of the period,
the annuitant’s estate of beneficiary is entitled to collect the remaining
payments certain. This is a way of reducing the risk of loss for the an-
nuitant, but in return the annuity payments will be smaller than with
an ordinary annuity.

Joint annuities
This is a multiple annuitant product that includes joint-life and joint-
survivor annuities. The payments stop upon death of one or both of the
annuitants, depending on what was agreed on in the contract. A type of
contract can be structured so that a married couple receives payments
until the second spouse’s death. In joint-survivor annuities, sometimes
the payments are reduced to the second annuitant after the death of
the first.

Impaired life annuities
If there is a medical diagnosis which is severe enough to reduce life
expectancy, the terms offered will often be improved compared to an
ordinary annuity.

The present value of life annuities
Annuities are often used to save money for retirement, e.g. pension
schemes. The type of contract we will focus on is fixed annuities. The
ordinary benefit type have contributions π up to some retirement age
lr, and then benefits s are recieved after that. The cash flows can be
written like (2.1) and (2.2).
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Assuming payments are made in advance, we get that the expected
present value for the entire scheme is

ä∞ = −π
lr−l0−1∑
k=0

dkkpl0 + s
∞∑

k=lr−l0

dkkpl0 , (2.6)

the usual convention being that the contributions are counted negative
(as this is something the policy holder has to pay).

The equivalence principle
An important concept in pricing life insurance is the principle of equiv-
alence. Then the expected value of payments into and out of the scheme
is equalized, i.e. (2.6) is set equal to zero. Solving for π, we get the
premium a pension holder has to pay to receive the agreed on pension
benefit s after retirement. Then there is no profit for the insurer, but no
expenses or risk are covered. In real life the companies add a loading
to cover the expenses, but we will disregard this for now.

2.1.5 Life table risk

In section 2.1.2 life tables and how they are obtained were introduced.
Now we will look at the risk inherent in this. The mortalities are es-
timated from historical data, so it is a risk of the data being obsolete.
Since The Second World War, there has been a trend of one-year in-
creases per ten years of survival in the expected lifetime, thanks to
advancements in medicine and raised awareness of personal hygiene.

Random error is inevitable, but negligible for large countries. There is
a different story when it comes to small countries and pension schemes.
Historical data are now more scarce and it has been discovered that life
tables for pension schemes differ substantially from the country aver-
age. The target group that buys life annuities are usually the group of
good health who are afraid of outliving their savings.

We also have the systematic error or bias. This is when the histori-
cal material is too old or applies to the wrong social group, also called
selection bias. Let’s say that a newly started life insurance company
has access to mortalities for their entire country or the life annuitants
in another country. What data should they choose to base their cal-
culations on? The smaller data set applies to the right group, but to
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the wrong country. The larger data set applies to the wrong group, but
the right country. All the choices that are made regarding the life ta-
ble lead to an error of some type. Using a data set that applies to the
correct population will remove the bias, but the random error will be
large. Using a larger data set to reduce the random error will introduce
bias.

2.2 Mortality bonds

2.2.1 Introduction

Longevity risk is a major issue for insurers and pension funds. The cal-
culation of expected present values requires an appropriate dynamic
mortality model in order to avoid underestimation of the future costs.
Actuaries are increasingly using life tables that include forecasts of
future trends of mortality, but there is the danger that the mortality
projections turn out to be incorrect. Longevity risk occur principally
when the annuitants live longer than predicted by the projected life
tables. A very good hedge against mortality improvement risk is mor-
tality bonds where the coupon payments depend on the proportion of
the population surviving to particular ages; see [8].

There has since The Second World War not only been a substantial in-
crease in expected lifetime, it was also a baby boom period in the imme-
diate post-war decade. These so-called "baby boomers" are now reach-
ing retirement age and are starting their distribution phases. This
means that the annuity providers are in big demand of liquidity, and a
mortality bond can come in handy as is dealth with next.

2.2.2 Example of a mortality bond

An insurer buys reinsurance from a special purpose company (SPC),
which issues bonds to investors. The bond contract and reinsurance
transfer the risk from the annuity provider to these investors. The
company invests the premium and cash from the sale of the bonds in
default-free securities; see Figure 2.1 for an overview. To understand
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Figure 2.1: Mortality Bond Cash Flow Diagram

the concept of a mortality bond consider the following example.

Suppose an insurer must pay immediate life annuities to nx annuitants
all aged x initially. If we set the payment rate at 1000/year annuitant,
and let nx+k denote the number of survivors to year k, the insurer pays
1000nx+k to its annuitants. We will define a bond contract to hedge the
risk that the insurer’s payments exceed an agreed upon level.

The insurer buys reinsurance from the SPC for a premium P at time
0. The contract has fixed trigger levels Xk such that the SPC pays the
insurer the excess of the actual payments over this level. In year k, the
insurer pays 1000nx+k to its annuitants. If the payments exceed the
trigger level for that year, the SPC pays the excess up to a maximum
amount 1000C. Then in each year k=1,2,. . . ,K the insurer collects the
benefit Bk from the SPC determined by formula (2.7):

Bk =


1000C, if nx+k > Xk + C,

1000(nx+k −Xk), if Xk < nx+k ≤ Xk + C,

0, if nx+k ≤ Xk.

(2.7)

The insurer’s cash flow to annuitants at k is now offset by positive cash
flow from the insurance:

Insurer′s net cash flow = 1000nx+k −Bk

=


1000(nx+k − C), if nx+k > Xk + C,

1000Xk, if Xk < nx+k ≤ Xk + C,

1000nx+k, if nx+k ≤ Xk.

(2.8)

Now, there are no "basis risk" in the reinsurance. That arises when the
hedge is not exactly the same as the reinsurer’s risk, but this mortality
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bond cover that.

The cash flows between the SPC, the investors, and the insurer can be
described as in Figure 2.1. First, the SPC’s payments to the investors:

Dk =


0, if nx+k > Xk + C,

1000C −Bk, if Xk < nx+k ≤ Xk + C,

1000C, if nx+k ≤ Xk,

(2.9)

=


0, if nx+k > Xk + C,

1000(C +Xk − nx+k), if Xk < nx+k ≤ Xk + C,

1000C, if nx+k ≤ Xk,

(2.10)

where Dk is the total coupon paid to investors. The maximum value of
nx+k is nx, attained when nobody has died yet, but from the perspective
of 0, nx+k is a random value between 0 and nx. We denote the market
price of the mortality bond as V. The aggregate cash flow out of the SPC
is

Bk +Dk = 1000C

for each year k=1,..,K and the principal amount 1000F at k=K. The SPC
will perform on its insurance and bond contract commitments provided
that P+V is at least equal to the price W of a default-free fixed-coupon
bond with annual coupon 1000C and principal 1000F valued with the
bond market discount factors:

P + V ≥ W = 1000Fd(0, K) +
K∑
k=1

1000Cd(0, k). (2.11)

In other words, the SPC can buy a "straight bond" and have exactly
the required cash flow it needs to meet its obligation to the insurer and
the investors, if the insurance premium and proceeds from sale of the
mortality bonds are sufficient. Each year, they will receive 1000C as
the straigth bond coupon and then pays Dk to the investors and Bk to
the insurer. The case is always that 1000C=Dk + Bk is exactly enough
to meet its obligations.

2.2.3 Types of mortality bonds

There are many types of mortality bonds, but they can be divided into
two main categories:
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1. Principal-at-risk

2. Coupon-based

For the first type, the investor risks losing all or part of the principal if
the relevant mortality event occurs. An example of this is the Swiss Re
mortality bond issued in December 2003. The second type has coupon
payments that are mortality dependent. This can be a smooth function
of a mortality index, or it can be specified in "at-risk" terms. Then the
investor loses some or all of the coupon if the mortality index crosses
som threshold. An example of this is the EIB/BNP longevity bond an-
nounced in November 2004; see [4] for more details.

The Swiss Re mortality bond
The Swiss Re bond was a three-year life catastrophe bond maturing
on January 1, 2007. This was to reduce their exposure to catastrophic
mortality deterioration (e.g. if a pandemic occur). The issue size was
$400m. Investors would receive quarterly coupons set at three-month
U.S. dollar LIBOR + 135 basis points.

The principal was unprotected and depended on what happened to the
constructed index of mortality rates across five countries: the United
States of America, United Kingdom, France, Italy and Switzerland.
The principal would be repayable in full if the mortality index didn’t
exceed 1.3 times the 2002 base level during any of the three years. It
was reduced by 5% for every 0.01 increase in the mortality index above
this threshold and it was completely exhausted if the index exceeded
1.5 times the base level. The payoff schedule is shown in Table 2.1.

The bond was issued via a special purpose vehicle (SPV) called Vita
Capital (VC). VC invested the $400m principal in bonds and swapped
the income stream on these for a LIBOR-linked cash flow. They dis-
tributed the quarterly income to investors and any principle repayment
at maturity; see Figure 2.2 for an overview. The benefits of using a SPV
are that the cash flows are kept off balance sheet (which is good from
Swiss Re’s point of view) and the credit risk is reduced (which is good
from the investor’s point of view).
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Payment at 100%-
∑

k lossk if
∑

k lossk < 100%

maturity (K) 0% if
∑

k lossk ≥ 100%

Loss percentage 0% if qk < 1.3q0

in year k [(qk − 1.3q0)/(0.2q0)]× 100% if 1.3q0 ≤ qk ≤ 1.5q0

= lossk 100% if 1.5q0 ≤ qk

where:
q0=base index
qk =

∑
j Cj

∑
i(G

mAiq
m
i,j,k +GfAiq

f
i,j,k)

Key: qmi,j,k=mortality rate (deaths per 100,000) for males in
the age group i for country j
qfi,j,k=mortality rate (deaths per 100,000) for females in
the age group i for country j
Cj = weight attached to country j
Ai = weight attributed to age group i (same for males and females)
Gm and Gf=gender weights applied to males and females respectively
The following country weights apply:
U.S.A. 70%, U.K. 15%, France 7.5%, Italy 5%, Switzerland 2.5%,
male 65%, female 35%

Table 2.1: Swiss Re mortality bond payoff schedule
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Figure 2.2: The structure of Swiss Re mortality bond

The EIB/BNP longevity bond
In 2004, BNP Paribas announced a long-term longevity bond targeted
at pension plans and other annuity providers. The security was to be
issued by the European Investment Bank (EIB), with BNP Paribas as
the designer and originator and Partner Re as the longevity risk in-
surer. The 25-year maturity bond had a face value of £540m. The bond
was an annuity with floating coupon payments, with the coupon pay-
ments linked to a cohort survivor index based on the realised mortality
rates of English and Welsh males aged 65 in 2002. The initial coupon
was set at £50m.

We will refer to December 31, 2004 as time k=0, and December 31,
2005 as time k=1 etc. Then we have that the survivor index S(k) can
be constructed as follows:

S(0) = 1

S(1) = S(0)× (1−m(2003, 65))

S(k) = S(0)× (1−m(2003, 65))× (1−m(2004, 66))× . . .× (1−m(2002 + k, 64 + k)).

where m(y, x) is the crude central death rate for age x published in year
y. At each k=1,2,. . . ,25, the bond pays a coupon of £50m × S(k). The
cash flows are illustrated in Figure 2.3.
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Figure 2.3: Cash flows from the EIB/BNP bond, as viewed by investors

There are also issues of credit risk to consider, which makes everything
a bit more complex, see Figure 2.4 for details on the involvement of
BNP Paribas and Partner Re.

Figure 2.4: Cash flows from the EIB/BNP bond
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As we can see, things are much more complicated now. The longevity
bond is made up of 3 components.

• A floating rate annuity bond issued by the EIB with a commit-
ment to pay in euros (C).

• A cross-currency interest-rate swap between EIB and BNP Paribas,
in which EIB pays floating euros and receives fixed sterling, Ŝ(k),
which has to be set to ensure that the swap has zero value at
initiation.

• A mortality swap between the EIB and Partner Re, in which the
EIB exchanges the fixed sterling Ŝ(k) for the floating sterling
S(k).

It’s a bit more complicated than the Swiss Re bond, and it was with-
drawn for redesign in late 2005.

2.3 The Wang Transform

2.3.1 Introduction

The expected utility theory has dominated the financial and insurance
economics for the past half century, and it has had a big influence in
actuarial risk theory; see [5], [6] or [10]. From this, a dual theory of
risk has emerged in the economic literature by Yaari [20] and others.

In finance, the first major pricing theory is the capital asset pricing
model (CAPM). We also have option-pricing theory, with among others
the widely accepted Black-Scholes formula in [3]. Some researchers
noted the resemblance between an option and a stop-loss reinsurance
cover, which called for an analogous approach to pricing insurance
risks. However we have to remember there are still big differences
between the two pricing methods. As the option-pricing methodology
defines a price as the minimal cost of setting up a hedging portfolio,
the actuarial pricing is based on the actuarial present value of costs
and the law of large numbers.

Wang has proposed a method of pricing risk that unifies four differ-
ent approaches: (i) the traditional actuarial standard deviation load-
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ing principle, (ii) Yaari´s economic theory of risk, (iii) CAPM, and (iv)
option-pricing theory; see [17]. The method named the Wang Trans-
form is based on distorting the survival function of an insurance risk.

2.3.2 Distortion operators in insurance pricing

Let X be a non-negative loss random variable with cumulative distri-
bution function FX , and with SX = 1− FX as its survival function. The
net insurance premium (excluding other expenses) is

E[X] =

∫ ∞
0

ydFX(y) =

∫ ∞
0

SX(y)dy. (2.12)

An insurance layer X(a,a+m] of X is defined by the payoff function

X(a,a+m] =


0, when 0 ≤ X < a,

X − a, when a ≤ X < a+m,

m, when a+m ≤ X,

(2.13)

where a is the attachment point (also called deductible) and m is the
payment limit.

The survival function of this insurance layer is given by SX as

SX(a,a+m]
(y) =

{
SX(a+ y), when 0 ≤ y < m,

0, when m ≤ y.
(2.14)

Hence, the expected loss for the layer X(a,a+m] can be calculated by

E[X(a,a+m]] =

∫ ∞
0

SX(a,a+m]
(y)dy =

∫ a+m

a

SX(x)dx. (2.15)

Inspired by Venter [16], Wang [19] suggested that the premium could
be calculated by transforming the survival function through

Hg[X] =

∫ ∞
0

g[SX(x)]dx, (2.16)

where the so-called distortion operator g is an increasing function over
(0,1) with g(0)=0 and g(1)=1. A distortion operator transforms a prob-
ability distribution SX to a new distribution g[SX ]. The mean value



2.3. THE WANG TRANSFORM 17

Hg[X] is meant to represent the risk-adjusted premium, expenses ex-
cluded. From (2.15) and (2.16), we now get the risk-adjusted premium
of a risk layer as

Hg[X(a,a+m]] =

∫ ∞
0

g[SX(a,a+m]
(y)]dy =

∫ a+m

a

g[SX(x)]dx. (2.17)

For general insurance pricing, the distortion operator g should meet
the following criteria:

• 0 < g(u) < 1, g(0) = 0 and g(1) = 1,

• g(u) is increasing (where it exists, g′(u) ≥ 0),

• g(u) is concave (where it exists, g′′(u) ≤ 0),

• g′(0) =∞.

Furthermore, the dual distortion function of g is given by:

g̃(u) = 1− g(1− u), u ∈ [0, 1].

2.3.3 The distortion operator

The price of an insurance risk is called a risk-adjusted premium, ex-
penses excluded. Wang has proposed a new distortion operator in the
general class of Wang which are transformations that can be applied
on (2.16); see [19]. The proportional hazard transform; see [18], is the
simplest member of the class with

g(x) = x
1
p , p ≥ 1. (2.18)

Unlike the PH-transform, the new distortion operator is equally appli-
cable to assets and losses.

Let Φ(x) be the standard normal cumulative distribution function with
probability density function

f(x) =
dΦ(x)

dx
=

1√
2π
e−x

2/2

for all x. Wang defines the distortion operator as

gα(u) = Φ[Φ−1(u) + α] (2.19)
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for 0 < u < 1 and a real-valued parameter α. As mentioned, the distor-
tion operator (2.19) can be applied to both assets and liabilities, with
opposite signs in the parameter α.

Note that gα in equation (2.19) satisfies the following criteria:

• The limits are

gα(0) = lim
u→0+

gα(u) = 0, and gα(1) = lim
u→1−

gα(u) = 1.

• The first derivative is
dgα(u)

du
=
f(x+ a)

f(x)
= e−αx−α

2/2 > 0.

• The second derivative is
d2gα(u)

du2
=
−αf(x+ a)

f(x)2
.

Thus, gα is concave (g′′α < 0) for positive α, and convex (g′′α > 0) for
negative α.

• For α > 0,

g′α(0) = lim
0→0+

dgα(u)

du
= lim

x→−∞
e−αx−α

2/2 = +∞.

• The dual distortion operator of gα is

g∗α(u) = 1− gα(1− u) = g−α(u).

In other words, a change in the sign of α and we obtain the dual
distortion operator. This is due to the symmetry of the standard
normal distibution around the origin.

Hence, for α > 0, gα meets all the necessary criteria listed for a desir-
able distortion operator.

2.3.4 The market price of risk

Lin and Cox applied this method to price mortality risk bonds; see [13].
Changing the sign of (2.19), the Wang transform can be written as

gλ(u) = Φ[Φ−1(u)− λ]. (2.20)
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Given a distribution with cumulative density function F(t), a "distorted"
distribution F∗(t) is determined by λ according to the equation

F ∗(t) = gλ(F (t)), (2.21)

where the parameter λ is called the market price of risk, reflecting the
systematic risk of an insurer’s liability X. Thus, the Wang transform
will produce a "risk-adjusted" density function F∗ for an insurer’s given
liability X.

2.3.5 Using the Wang Transform

Under the new probability measure, E∗(X) will define a risk-adjusted
"fair-value" of X, which can be discounted to time zero using the risk-
free rate. In terms of an annuity of the form (2.1) the formula for the
price can be written

H(X,λ) = E∗(X) = s
n−1∑
k=0

dkkp
∗
l0
, (2.22)

where kp
∗
l0

is the risk-adjusted survival probabilities obtained from Wang’s
transformation. Combining (2.20) and (2.21) we get

kp
∗
l0

= gλ(kpl0)

= Φ[Φ−1(kpl0)− λ]

= Φ[Φ−1(1− kql0)− λ]. (2.23)

The Wang transformation adjusts the mortalities from the population
average. The selection bias introduced in section 2.1.5 can now be re-
duced. For the transformation to be of good use, the mortalities have to
shift downwards, meaning that under the distorted mortalities, people
live longer. This is obtained for λ > 0. With the increase in longevity
that are present, the historical data becomes obsolete fast. Applying
the Wang Transform with a λ of own choice might conceivably be a
good way to adjust the old mortalities, but what value of λ is to be
chosen?





Chapter 3

Pricing life annuities

3.1 Introduction

When a life annuity is issued the issuer has to calculate a price for
the future payments. This is usually done using the Actuarial Present
Value (APV), which is the expected value of the present value of a ran-
dom cash flow. As mentioned in section 2.1.4 it is often calculated us-
ing the principle of equivalence. The probability of a future payment
is based on assumptions about a person’s future mortality, estimated
using a life table. The price can be found numerically.

Algorithm 1: Present value of life annuities

0. Input: l0, K, d = 1/(1 + r), {ql}, s
1. ä← 0, p← 1, l← l0 − 1
2. for k = 0, 1, . . . , K − 1 repeat
3. ä← ä+ p and l← l + 1
4. p← p(1− ql)d % Recall that kpl0 = (1− ql0+k−1)k−1pl0
5. a← ä+ p− 1
6. Return s · ä and s · a.

This is ä and a from equation (2.1) and (2.2)

21
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The concept will be used to estimate the market price of risk λ. Using
a mortality table and known prices of annuities, λ can be estimated
numerically by solving equation (2.22) for λ.

H(X,λ) = s
n−1∑
k=0

dkkp
∗
l0

= s

n−1∑
k=0

dkΦ[Φ−1(1− kql0)− λ]. (3.1)

Algorithm 2: Market Price of Risk

0. Input: d = 1/(1 + r), {ql}, s, l0, le, gender
1. L = function(λ, input)
2. K = le − l0
3. If (gender=male) then q ← qmale else q ← qfemale
4. H(X,λ)← s

∑K
k=0 d

kΦ[Φ−1(1− kql)− λ] %Equation (3.1)
5. list H(X,λ)
6. Solve L(λ, input) for λ given H(X,λ)

%This can be done using uniroot in R

s, l0 and gender are variables, others kept fixed.

We will then apply the Wang Transform with the obtained λ’s on the
mortality table as in equation (2.23), and plot the two distributions to
compare the actual distribution to the transformed distribution.

The objebtive is to look at the stability of λ. As mentioned earlier,
the market price of risk is reflecting the systematic risk of an insurer’s
liability X. For the Wang Transform to be a universal framework, λ has
to be stable.

It is reasonable to think that λ = λl0,g such that it depends on age,
but also on gender. If a 25 year old female and a 45 year old male want
the same contract, it is reasonable to think that the young female is
a bigger risk to the company. There is larger uncertainty about her
future, in addition females have a tendency to live longer than males.
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3.2 Detailed procedure

To obtain a life table we use the 1996 IAM 2000 Mortality Table; see
A.1 or [11]. We will assume a technical rate of interest r of 3% and
6% to get the discount rate d = 1/(1 + r). Best’s Review gives us the
prices for Single Premium Immediate Annuities (SPIA’s) for 99 differ-
ent companies; see [12]. With prices from Canada Life (CL), Franklin
Life (FL), Hartford Life (HL) and Nationwide Insurance (NI); see Table
3.3, we will use Algorithm 2 to get the market price of risk by solving
the following equation numerically:

π = s ∗ 12
n−1∑
k=0

dkΦ[Φ−1(1− kql0)− λ]. (3.2)

The prices in Best’s review are monthly payouts on a single premium
immediate annuity with a one-time premia of $100,000. This means
that the annuitant pays a lump sum, and then the benefit payouts start
immediately after. Since the prices are monthly, but the mortalities are
one-year mortalities, s is multiplied with 12.

The prices are different between the companies, but also inside each
company the prices vary for the different ages and type of gender. We
will get one λ for each price, but as we only have prices for six different
age groups we will have to use interpolation and extrapolation for the
remaining ages when we plot the distorted survival functions. In Fig-
ure 3.1, the black circles represent the price one would get from Canada
Life when signing a contract at the age x = 55, 60, 65, 70, 75 and 80.

3.2.1 Interpolation

In the mathematical field of numerical analysis, interpolation is a method
of constructing new data points within the range of already known data
points. In Figure 3.1 we want to find the values for the red dots. There
are several ways of doing so, the one more complex than the other, but
we will stick to the very simplest.

Piecewise constant interpolation
This is also called nearest-neighbor interpolation. The method is to
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Figure 3.1: Prices from Canada Life for males

locate the nearest data value, and assign the same value. In simple
problems, this method is unlikely to be used as linear interpolation is
almost as easy, but in higher dimensions, this could be a good choice
for its speed and simplicity.

Linear interpolation
This is one of the simplest interpolation methods. It takes two data
points and find the weighted average between them. Say that we have
(x1, y1) and (x3, y3) and wants to find y2. Then we use the following for-
mula:

y2 =
(x2 − x1)(y3 − y1)

(x3 − x1)
+ y1. (3.3)

The slope between x1 and x2 will now be the same as the slope between
x1 and x3. Linear interpolation is quick and easy, but not very precise.
We could use polynomial interpolation or spline interpolation instead,
but it depends on how important the error is, see [14] for more on this.

We will use the linear interpolation method on the prices from Best’s
review to estimate λ’s for each age x ∈ (55,80), and then plot the dis-
torted survival probabilities.
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Algorithm 3: Interpolation

0. Input: x= age vector, y= price vector, n=length(x)
1. P = function(x, y)
2. for i = 1, . . . , n repeat
3. yi = (xi−x1)(yn−y1)

(xn−x1)
+ x1

4. list y

age and price are divided into 5 groups, each group containing
two known prices as its end points. Run the algorithm separately
for the 5 groups and merge the price vectors into one.

3.2.2 Extrapolation

In mathematics, extrapolation is the process of estimating beyond the
original observation range. In Figure 3.1 we want to estimate values
for the blue dots. It is similar to interpolation, but subject to greater
uncertainty and a higher risk of producing meaningless results. Ex-
trapolation may also apply to human experience, granting that one
expand known experience into an area not known, e.g. a driver ex-
trapolates the road outside their sight when driving.

Linear extrapolation
It is almost the same as linear interpolation, but now we create a tan-
gent line at the end of the known data and extend it beyond the limit. A
good result will only be provided when used on a fairly linear function
or not too far beyond the known data.

If the two data points nearest the point x3 to be extrapolated are (x1, y1)
and (x2, y2), linear extrapolation gives the formula:

y3 =
(x3 − x2)(y2 − y1)

(x2 − x1)
+ y1. (3.4)

We will use extrapolation on the ages x ∈ (80,115), but as this group is
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unlikely to invest their savings in a SPIA, we will instead use nearest-
point extrapolation and assign all the ages the same price as age 80.
This will lead to a little lower benefit than they probably would get if
signing a contract, but that means the company issuing the SPIA will
gain on average. When inserted in the Wang transform, the prices are
used on different lengths of annuities (the mortalities used will differ
from the different ages), so we will still get different values of λ.

3.3 Results and discussion

Before we analyse the results, some assumptions will be made. It is ex-
pected that the market price of risk goes down as the age goes up. This
is because the older you are, the fewer expected payouts will there be
in the future. When we get to the older age groups, the "risky" peo-
ple have usually already died. The selection bias will then be small,
as the mortalities for the group of annuitants don’t deviate too much
from the country average anymore. It might also be a higher market
price of risk for females than for males, as females have a longer life
expectancy, and hence more expected payouts in the future.

The market price of risk for males and females are shown in Table 3.1
and Table 3.2 for the two different interest rates. Figures (3.2)-(3.5) are
plots of the same values. As mentioned in section 2.3.5 for the trans-
formed mortalities to be of good use we will have to have λ > 0. Then
the mortalities will go down, implying a longer expected lifetime.

Canada Life
Starting with Canada Life consider Figure 3.2. When r = 3%, females
have a higher price of risk than males, as expected. The ratio of the
risks decreases with age, probably coming from the fact that the uncer-
tainties inside the gender groups become smaller as the age goes up.
We also note that the market price of risk is decreasing as the age is
increasing. Currently, our assumptions are fulfilled, but when the dis-
count r = 6%, things change.

Now males are more risky, which seems odd, as the risk shouldn’t
change between groups just because of a change in the discount. The



3.3. RESULTS AND DISCUSSION 27

Different values of the market price of risk, r=3%

Males Females
CL FL HL NI CL FL HL NI

55 1.117 0.934 1.052 0.917 1.261 1.080 1.202 1.095
60 0.981 0.782 0.914 0.788 1.098 0.892 1.025 0.945
65 0.842 0.633 0.780 0.658 0.938 0.712 0.862 0.796
70 0.712 0.505 0.654 0.546 0.781 0.541 0.711 0.652
75 0.604 0.403 0.564 0.480 0.632 0.393 0.575 0.520
80 0.517 0.331 0.509 0.457 0.504 0.273 0.477 0.426

Table 3.1: Examples of λ evaluations obtained using the Wang Trans-
form with r=3%

Different values of the market price of risk, r=6%

Males Females
CL FL HL NI CL FL HL NI

55 0.433 0.036 0.301 -0.007 0.439 -0.041 0.299 0.006
60 0.396 0.019 0.276 0.032 0.387 -0.081 0.235 0.053
65 0.359 0.012 0.260 0.055 0.339 -0.098 0.202 0.076
70 0.324 0.018 0.241 0.081 0.292 -0.109 0.182 0.083
75 0.299 0.029 0.247 0.134 0.251 -0.099 0.171 0.092
80 0.282 0.050 0.271 0.208 0.218 -0.086 0.183 0.118

Table 3.2: Examples of λ evaluations obtained using the Wang Trans-
form with r=6%
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ratio of the risks are also increasing with age, something that isn’t ex-
pected. Other than that, the market price of risk still decreases with
age, so that assumption still holds true. Also, we notice that λ > 0 for
both discount rates and genders, so the transformed mortalities will be
of good use.
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Figure 3.2: Prices from Canada Life

Franklin Life
The next example is Franklin Life in Figure 3.3. The 3% discount pro-
duces the expected. Females have higher risk than males, and the ratio
decreases with age. At the age of 75 males become of more risk, but this
is just because it is a small age group with little data to base our cal-
culations on. Also, the market price of risk decreases with age, and all
λ’s > 0.

For the 6% discount, we get that all λ’s ≈ 0, and for females we also
get λ < 0, which shouldn’t be. Then we will get an upward shift in
the mortality curve, meaning that the group of females we look at have
shorter expected lifetime. In Figure A.2 we have plotted the trans-
formed mortalities against the actual distribution. As we can see, the
transformed mortalities have become higher, which will lead to severe
underestimation of the need of liquidity. Also note that the risk for both
gender starts with a decrease, before it ends with an increase.
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Figure 3.3: Prices from Franklin Life

Hartford Life
Hartford Life in Figure 3.4 has expected values for r = 3%. Just as
the other two, the risk decreases with age, females are of higher risk
than males and all λ′s > 0. For the 6% discount, we get that the risk
increases after the age of 75, also males are of much higher risk, again
something implausible.

55 60 65 70 75 80

0.
6

0.
8

1.
0

1.
2

Market Price of Risk - Hartford Life 
when r = 3%

Initial age

λ

Male
Female

(a) Hartford Life 3%

55 60 65 70 75 80

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

Market Price of Risk - Hartford Life 
when r = 6%

Initial age

λ

Male
Female

(b) Hartford Life 6%

Figure 3.4: Prices from Hartford Life
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Nationwide Insurance
At last we come to Nationwide Insurance in Figure 3.5. The 3% values
are reasonable, with all assumptions looking OK, but the 6% values
are the opposite of what we expect. Except from the fact that females
are of higher risk than males until the age of 70, we get that the risk
increases with age, and we even get λ < 0 for a male aged 55. Hence,
the 6% discount doesn’t seem to give good values.
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Figure 3.5: Prices from Nationwide Insurance

Comparison
Now, we want to compare the values between the companies. When
using the Wang Transform to distort the mortalities we need a value of
λ for each age and gender, but what values to choose?

Looking at the 3% discount values for males we get big discrepancies
inside each age group. Of course, this comes from the fact that the
different companies have different prices, also with big discrepancies
there. Canada Life and Hartford Life have chosen to give their annui-
tants higher benefit payouts than Franklin Life and Nationwide Insur-
ance. Hence, they get a higher market price of risk as well. This can
come from several facts, but Franklin Life and Nationwide Insurance
have probably used a higher loading in their calculations, and by that
assigning a higher risk to their customers than the other two. We see
that the same tendency fits for the females as well.
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The 6% discount values for males have the same tendency. Canada
Life and Hartford Life have a much higher market price of risk than
the other two. Because of the increase in λ, Nationwide Insurance gets
a lot closer to the other two in this scenario. Unlike the other, Franklin
Life has values close to 0 for all age groups, implying that their cus-
tomers are of little risk, in other words, they take a much higher load-
ing than the other three.

When we look at the 6% values for females we still have that Canada
Life and Hartford Life have the highest market price of risk, but now
all the values for Franklin Life < 0. This is not good, using transformed
mortalities based on this will lead to big underestimation. Again we
have that Nationwide Insurance starts around zero, a lot less than the
other two, but the increase in risk decreases the ratio.

It seems as though the Wang Transform works for the discount rate
of 3%, but neither of the results for 6% is as expected. Therefore, when
we use the market price of risk further to compare the two mortality
distributions, we will only use r = 3%.

Prices from Best’s review [12]

Males Females
CL FL HL NI CL FL HL NI

55 671.70 612 649 607 627.13 575 609 579
60 726.44 656 701 658 669.96 607 646 622
65 804.02 720 777 729 729.13 654 702 680
70 911.69 813 882 831 812.49 722 784 761
75 1060.03 943 1035 985 936.41 827 908 882
80 1265.68 1129 1259 1219 1118.95 984 1101 1070

Table 3.3: Single Premium Immediate Annuities as of May 1, 1996
Lifetime Only Option - $100,000 Single Premium
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Figure 3.6: Wang transform used on Canada Life

The transformed mortalities
Figures 3.6 - 3.9 shows us the 1996 IAM 2000 Mortality Table plotted
against the new distorted distribution for the four different companies.
As we can see, all the transformed distributions have reduced mortal-
ities. This is what we want as life annuity customers usually have a
better expected survival than the country average. We can think of the
mortality table as the actual distribution, which requires a distortion
to obtain market prices. That is, a risk premium is required for pricing
annuities.
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Figure 3.7: Wang transform used on Franklin Life

The male and female mortalities are plotted in different plots for an
easier view. Remembering back to section 3.2.2, we chose to assign the
same price to all ages x > 80 when we extrapolated. Because of this, and
also because annuitants at this age usually don’t make annuity con-
tracts at this time, we have chosen to look at the cropped plots for the
mortality distributions as well. The mortality plots with x ∈ (55, 115)
aren’t easy to interpret for the ages under 80. For the ages x ∈ (55, 70)
it looks as though the distorted mortalities are approximately the same
as the original. Cropping the plot and looking at x ∈ (55, 80) we see that
this really isn’t the case. The discrepancies are now easier to see.
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Figure 3.8: Wang transform used on Hartford Life

Remembering that Canada Life and Hartford Life had higher values
of λ, we notice that their distorted distributions have lower mortalities
than Franklin Life and Nationwide Insurance. Comparing the distri-
butions between males and females, we also notice that the female mor-
tality distribution have lower values than the males. This comes from
the fact that the original mortalities was smaller to begin with, and
also that the market price of risk was higher, so we subtract a higher
value in the transformation.
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Figure 3.9: Wang transform used on Nationwide Insurance

Let’s say that the 1996 US Annuity 2000 Mortality Table is the data a
company has access to, and that these data are obsolete. By using the
Wang transform (2.23) on them we get transformed mortalities. The
risk-adjusted mortalities are fulfilling what we need to price annuities,
and we will now use Algorithm 1 to calculate the one-time premium of
a life annuity that pays s=1 money unit/year, when using both distri-
butions.
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Figure 3.10: One-time premium for an annuity where s = 1,
based on Canada Life’s transformed mortalities

3.3.1 Using the transformed mortalities in annuities

Figures 3.10 - 3.13 shows us the result when we apply the market price
of risk in Table 3.1. As we can see, if the company had used the obsolete
data set they would have underestimated the premium, which again
would lead to their reserve being to small. Hence, using an obsolete
data set could cause a company to go bankrupt.

We also note that the one-time premium is higher for females than
for males. This is because the distribution phase in this contract lasts
until death. Not separating between gender when using a mortality
table would lead to severe underestimation for the female clients, and
overestimation for the male clients. If one is lucky, the over- and un-
derestimation can hedge each other, but it is unlikely that this hedge
is perfect. Hence, it is important to separate between male and female
mortalities during calculations.

We also notice that the one-time premium obtained when using the
risk-adjusted mortalities are a bit higher for Canada Life and Hartford
Life, than for Franklin Life and Nationwide Insurance. As mentioned
earlier this comes from the fact that the latter two takes a higher load-
ing in their contracts, which probably reduces their risk.
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Figure 3.11: One-time premium for an annuity where s = 1,
based on Franklin Life’s transformed mortalities
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Figure 3.12: One-time premium for an annuity where s = 1,
based on Hartford Life’s transformed mortalities
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Figure 3.13: One-time premium for an annuity where s = 1,
based on Nationwide Insurance’s transformed mortalities



Chapter 4

Pricing mortality bonds

4.1 Introduction

As mentioned in Section 2.3.4, Lin and Cox applied the transformed
mortality distribution obtained from the Wang Transform to price mor-
tality risk bonds. We will look back at the example given in Section
2.2.2. The mortality risk bond here can also be called a longevity bond
because the hedge is against too high payments in annuities, which
arise when the mortaliy rate have been overestimated - or in other
words when the increase in longevity is higher than expected.

4.2 Mathematics

4.2.1 The bond price

In the bond market, we have cash flows {Dk} given by equation (2.10).
This gives us that the bond price of a mortality bond with face value F
can be written

V = Fd(0, K) +
K∑
k=1

E∗[Dk]d(0, k). (4.1)
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The face amount F is not at risk, it will be paid at time K regardless
of the number of surviving annuitants. We will use the same discount
factor as in Chapter 3, i.e. r = 3%. The survival distribution will
be the one we derived with the Wang Transform in Chapter 3. We
will only use the survival distribution obtained with the prices from
Canada Life.

4.2.2 The mortality bond strike levels Xk

The contract are set at different strike levels Xk. We will use the same
strike levels as Lin and Cox, which they derived using the Renshaw,
Haberman and Hatzopoulos method to predict the force of mortality;
see [15]. The improvement levels were determined by the average of
30-year force of mortality improvement forcecast for the age groups 65-
74, 75-84 and 85-94. That gave the improvement levels in Table 4.1.

Age group Change of force of mortality

65-74 -0.0070
75-84 -0.0093
85-94 -0.0103

Table 4.1: The improvement levels to determine the strike levels

Now we can determine the strike levels Xk:

Xk =


nx · kpx · e0.0070t, for k = 1, . . . , 10,

nx · kpx · e0.07e0.0093(t−10), for k = 11, . . . , 20,

nx · kpx · e0.163 · e0.0103(t−20), for k = 21, . . . , 30,

(4.2)

where kpx is the survival probabilities from the 1996 IAM 2000 Annuity
table.
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4.2.3 The coupon payments Dk

Now we need to calculate E∗[Dk]. From (2.10), the coupon payment can
be written as

1

1000
Dk =


0, if nx+k > Xk +X,

C +Xk − nx+k if Xk < nx+k ≤ Xk + C,

C, if nx+k ≤ Xk,

(4.3)

= C − (nx+k −Xk)+ + (nx+k −Xk − C)+. (4.4)

Hence,

1

1000
E∗[Dk] = C − E∗[(nx+k −Xk)+] + E∗[(nx+k −Xk − C)+]. (4.5)

4.2.4 Calculation

We have that the distribution of nx+k is the distribution of the number
of survivors from nx who survive to age x+ k, which occurs with proba-
bility kp

∗
x. Therefore nx+k has a binomial distribution with parameters

nx and kp
∗
x. Since nx is a large value, we have that nx+k is approximately

normally distributed with mean E∗[nx+k] = µ∗k = nx · kp∗x and variance
V ∗[nx+k] = σ∗2k = nx · kp∗x · (1− kp

∗
x).

Integrating by parts, we get that for a random variable X with E[X] <
∞:

E[(X − a)+] =

∫ ∞
a

[1− F (t)]dt

=

∫ ∞
a

[1− Φ(t)]dt.

We can write this as

Ψ(a) =

∫ ∞
a

[1− Φ(t)]dt

= φ(a)− a[1− Φ(a)];

see [13] for more details. As the functions φ(a) and Φ(a) are easy to
calculate, we now express E∗[Dk] in terms of them:

E∗[Dk] = 1000 · {C − σ∗k[Ψ(ak)−Ψ(ak + C/σ∗k)]}, (4.6)
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where ak = (Xk − µ∗k)/σ∗k.

Inserting (4.6) in (4.1), the bond price V can be calculated. Letting
λ65,m=0.842 and λ65,f=0.938, we find that the mortality bond price when
we assume that n65=10,000 for each gender, F=10,000,000 and C=0.07,
is Vmale=4,119,868 and Vfemale=4,120,117.

Using that the face value of the straight bond W=10,000,000, we can
calculate the premium P that the insurer pays the SPC. In Section
2.2.2 we mentioned that SPC would perform on its insurance and com-
mitments given that P+V was at least equal to W. Lin and Cox sets
W=10,000,000 so we will do the same. This gives that Pmale = 5, 880, 132
and Pfemale = 5, 879, 883. They also state that the total premium from
annuitants is πmale = 99, 650, 768 and πfemale = 107, 232, 089. Comparing
the total immediate annuity premium the insurer collects from its an-
nuitants, the reinsurance premium the insurer pays the SPC is only a
proportion of the total annuity premium: 5.9% for males and 5.5% for
females.

Lin and Cox of course get other values as their values for λ differs a
lot from ours. They have used other values for the discount, and may
also have used different calculations. This indicates that λ is not so
stable.



Chapter 5

Discussion with possible
extensions

We have looked at the stability of the market price of risk λ obtained
from Wang’s Transform. It seems as a good idea to transform the mor-
talities so they have a shift downwards compared to the country aver-
age. As the group buying annuities often have a longer life expectancy
than the country average, it can be a large underestimation in the re-
serve when using the mortalities of a country. To find a value of λl0,g for
l0 ∈ (55, 80) and g ∈ (male, female), we used prices of annuities to solve
(2.23) numerically.

There were big differences between the gender groups and age groups
just by a little change in the discount, implying that there would be
difficult to find universal values of λ. When we used r = 3%, all our as-
sumptions were OK, so we used the market price of risk obtained with
that discount in our further calculations.

To plot the two mortality distributions against each other, we had to
interpolate and extrapolate the prices to find values of λ for all ages
x ∈ (55, 115). The transformed mortality distributions had a shift down-
wards from the actual distribution, just as we wanted for pricing life
annuities. Even thought the value of λ may not be "the right one", the
transformed mortalities are better to use than the historical ones as
they come from a data set that may be obsolete.
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We calculated the one-time premium of a life annuity with benefit pay-
ments s = 1 money unit/year until death. We got that the transformed
mortalities gave a much higher premium than the historical mortali-
ties. An insurance company is obliged to have a reserve for future pay-
ments, and if the distorted mortalities are closer to the real ones than
the historical ones, a company only using the historical data could risk
bankruptcy. Hence, risk due to mortality is important to take serious.

One way for campanies to cover some of their risk is to use a loading
that covers more than just the expences, which we saw that Franklin
Life and Nationwide Insurance probably was doing. This lead to their
market price of risk being smaller than for Canada Life and Hartford
Life. If they in addition had used the market price of risk from one of
these companies instead of their own, they would get a much higher
one-time premium. If the pension holders are willing to pay this price
for the annuity, they will have a good cover of future risk.

So the stability of λ was not present between companies. To use the
Wang Transform with a decided value of λ isn’t difficult, but the uni-
versal market price of risk is not present. One have to be careful not to
think that just by using the Wang Transform with a random λ, future
risk is covered.

Lin and Cox suggested to use the risk-adjusted mortalities to price a
mortality bond. We did so using λ65,g from Canada Life, and got that
mortality bonds could be a good way of hedging ones mortality risk. In
our calculations, we got that just a little proportion of the total annuity
premium would go to pay the reinsurance premium. If the annuitants
lived longer than expected, the issuer would get parts of the excess cov-
ered, up to a maximum amount.

Again, as we got values different than Lin and Cox, the stability of
λ is not very good. It can be a smart tool to handle mortality risk, but
the uncertainties are too big to use it alone, without an extra loading
and one should also probably adjust the value a little higher just to be
safe.

We chose to calculate the market price of risk λ by using r = 3%. Possi-
ble extensions to this thesis could be to do the calculations with other
values and methods of discounting. As mentioned in Section 2.1.3 one
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could also use the fair value discounting with the market yield curve.
One possibility is also to use stochastic interest rates obtained by using
e.g. Vas̆ic̆ek or Black-Karasinski.

Also, one can use different mortality tables in the calculations. Us-
ing Algortihm 2, one can calculate the market price of risk for differ-
ent mortality tables and different prices of annuities, and see whether
there are a trend in the values or if they are all over the place. If there
is a trend, one can look at this and use the average value as the uni-
versal value for each age and gender.
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Appendix

A.1 1996 IAM 2000 Mortality Table

Age Male Female
1 0 0
2 0 0
3 0 0
4 0 0
5 0.291 0.171
6 0.27 0.141
7 0.257 0.118
8 0.294 0.118
9 0.325 0.121
10 0.35 0.126
11 0.371 0.133
12 0.388 0.142
13 0.402 0.152
14 0.414 0.164
15 0.425 0.177
16 0.437 0.19
17 0.449 0.204
18 0.463 0.219
19 0.48 0.234
20 0.499 0.25
21 0.519 0.265
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22 0.542 0.281
23 0.566 0.298
24 0.592 0.314
25 0.616 0.331
26 0.639 0.347
27 0.659 0.362
28 0.675 0.376
29 0.687 0.389
30 0.694 0.402
31 0.699 0.414
32 0.7 0.425
33 0.701 0.436
34 0.702 0.449
35 0.704 0.463
36 0.719 0.481
37 0.749 0.504
38 0.796 0.532
39 0.864 0.567
40 0.953 0.609
41 1.065 0.658
42 1.201 0.715
43 1.362 0.781
44 1.547 0.855
45 1.752 0.939
46 1.974 1.035
47 2.211 1.141
48 2.46 1.261
49 2.721 1.393
50 2.994 1.538
51 3.279 1.695
52 3.576 1.864
53 3.884 2.047
54 4.203 2.244
55 4.534 2.457
56 4.876 2.689
57 5.228 2.942
58 5.593 3.218
59 5.988 3.523
60 6.428 3.863
61 6.933 4.242
62 7.52 4.668
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63 8.207 5.144
64 9.008 5.671
65 9.94 6.25
66 11.016 6.878
67 12.251 7.555
68 13.657 8.287
69 15.233 9.102
70 16.979 10.034
71 18.891 11.117
72 20.967 12.386
73 23.209 13.871
74 25.644 15.592
75 28.304 17.564
76 31.22 19.805
77 34.425 22.328
78 37.948 25.158
79 41.812 28.341
80 46.037 31.933
81 50.643 35.985
82 55.651 40.552
83 61.08 45.69
84 66.948 51.456
85 73.275 57.913
86 80.076 65.119
87 87.37 73.136
88 95.169 81.991
89 103.455 91.577
90 112.208 101.758
91 121.402 112.395
92 131.017 123.349
93 141.03 134.486
94 151.422 145.689
95 162.179 156.846
96 173.279 167.841
97 184.706 178.563
98 196.946 189.604
99 210.484 201.557
100 225.806 215.013
101 243.398 230.565
102 263.745 248.805
103 287.334 270.326
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104 314.649 295.719
105 346.177 325.576
106 382.403 360.491
107 423.813 401.054
108 470.893 447.86
109 524.128 501.498
110 584.004 562.563
111 651.007 631.645
112 725.622 709.338
113 808.336 796.233
114 899.633 892.923
115 1000 1000

Table A.1: 1996 IAM US Annuity 2000 Table, 1000 · qx
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A.2 Plots
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Figure A.1: Wang transform used on Canada Life, when r = 6%
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Figure A.2: Wang transform used on Franklin Life, when r = 6%
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Figure A.3: Wang transform used on Hartford Life, when r = 6%
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Figure A.4: Wang transform used on Nationwide Insurance, when r =

6%
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A.3 R-code

A.3.1 Market Price of Risk

Listing A.1: Market price of risk
1 # reading the table , 1000q_x
2 q_x=read . table ( " / Users / Solveig / Dropbox / Masteroppgave / Data / bas ic table . txt " ,←↩

header=T )
3
4 L=function (lambda ,r , q ,s ,x0 ,le ,male )
5 {
6 # to be optimalized wrt lambda
7 # r = f ixed interes t rate
8 # q = mortality table
9 # s = monthly payout from SPIA

10 # x0 = i n i t i a l age
11 # le = maximum age set to 115
12 # male : TRUE/FALSE
13 # dividing with 1000 to get the morta l i t i es
14 q_male=q$Male / 1000
15 q_female=q$Female / 1000
16 # K = number of time periods
17 K=le−x0
18 # discount
19 d=1 / (1+r )
20 # s i s monthly , q i s in years
21 s=s*12
22 # calcu lat ing k_q_x0 and insert ing them in a matrix
23 i f (male ) q=q_male e lse
24 q=q_female
25 q_=c ( q , rep (1 ,le ) )
26 kq=matrix (0 ,K+1 ,le )
27 for (l in 0:le )
28 {
29 kq [ 1 :K+1 ,l]=1−cumprod(1−q_ [l : ( l+K−1) ] )
30 }
31 # the Wang transform
32 A=s*sum(d** ( 0 :K ) * (pnorm(qnorm(1−kq [ 1 : ( K+1) ,x0 ] )−lambda ) ) )
33 l i s t (A=A )
34 }
35
36 ###############################################################################
37 ### s , x0 and male are variables , others kept f ixed
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38 f=function (lambda ,r=0.03 ,q=q_x ,s=680 ,x0=65 ,le=115 ,male=FALSE ) L (lambda ,r , q ,s ,x0←↩
,le ,male ) $A

39 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
40 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
41
42 lambda=uni$root
43 lambda

Listing A.2: Canada Life
1 ##### Canada Life #####
2
3 source ( "MPOR2.R" )
4
5 # i n i t i a l age
6 age=c (55 ,60 ,65 ,70 ,75 ,80)
7
8 # row 1=male , row 2=female
9 # SPIA payouts

10 sCL=matrix ( c←↩
(671.7 ,726.44 ,804.02 ,911.69 ,1060.03 ,1265.68 ,627.13 ,669.96 ,729.13 ,812.49 ,936.41 ,1118.95)←↩
,byrow=T , ncol =6)

11
12 # estimating the Wang transform
13 l_male=1:6*0
14 l_female=1:6*0
15 gender=c (TRUE ,FALSE )
16
17 for (i in 1: length (age ) )
18 {
19 for (j in 1 :2 )
20 {
21 f=function (lambda ,r=0.03 ,q=q_x ,s=sCL [j ,i ] ,x0=age [i ] ,le=115 ,male=gender [j ] ) L (←↩

lambda ,r , q ,s ,x0 ,le ,male ) $A
22 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
23 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
24 i f (gender [j ] ) l_male [i]=uni$root e lse
25 l_female [i]=uni$root
26 }
27 }
28
29 # plo t t ing the Wang transform
30 plot (age ,l_male , " o " ,lty=1 ,main="Market Price o f Risk − Canada Life \nwhen r = ←↩

3%" ,xlab=" I n i t i a l age " ,ylab=expression (lambda ) ,ylim=c (min(l_male ,l_female ) ,←↩
max(l_male ,l_female ) ) )

31 l ines (age ,l_female , " o " ,lty=2)
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32 legend ( " topright " , c ( "Male" , "Female" ) ,lty=c (1 ,2 ) , c o l =1)
33
34
35
36 ### Basic morta l i t i es versus the transformed morta l i t i es
37 q_male=q_x$Male / 1000
38 q_female=q_x$Female / 1000
39 Age=q_x$Age
40
41 ###### Wang transform on Males (55) ######
42 q_starm=55:115*0
43
44 l_male2=c ( rep (l_male [ 1 ] , 5 ) , rep (l_male [ 2 ] , 5 ) , rep (l_male [ 3 ] , 5 ) , rep (l_male [ 4 ] , 5 ) ,←↩

rep (l_male [ 5 ] , 5 ) , rep (l_male [ 6 ] , 3 6 ) )
45
46 for (i in 1: length ( q_starm ) )
47 {
48 q_starm [i]=pnorm(qnorm( q_male [Age[54+i ] ] )−l_male2 [i ] )
49 }
50
51 # " vanlig " p lot
52 plot (Age [55 :115] , q_male [55 :115] , " l " ,ylim=c (min( q_starm ) ,max( q_male ) ) ,main="One−←↩

year morta l i t i es for males " ,xlab=" I n i t i a l age " ,ylab="q" )
53 l ines (Age [55 :115] , q_starm , " l " ,lty=2)
54 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
55
56 # " zoomet " inn plot
57 plot (Age [ 55 :80 ] , q_male [ 55 :80 ] , " l " ,ylim=c (min( q_starm ) ,max( q_male [ 5 5 : 8 0 ] ) ) ,main=←↩

"One−year morta l i t i es for males " ,xlab=" I n i t i a l age " ,ylab="q" )
58 l ines (Age [ 55 :80 ] , q_starm[1:(80−55+1) ] , " l " ,lty=2)
59 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
60
61
62 ###### Wang transform on Females (55) #######
63 q_starf=55:115*0
64
65 l_female2=c ( rep (l_female [ 1 ] , 5 ) , rep (l_female [ 2 ] , 5 ) , rep (l_female [ 3 ] , 5 ) , rep (l_←↩

female [ 4 ] , 5 ) , rep (l_female [ 5 ] , 5 ) , rep (l_female [ 6 ] , 3 6 ) )
66
67 for (i in 1: length ( q_starf ) )
68 {
69 q_starf [i]=pnorm(qnorm( q_female [Age[54+i ] ] )−l_female2 [i ] )
70 }
71
72 # " vanlig " p lot
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73 plot (Age [55 :115] , q_female [55 :115] , " l " ,ylim=c (min( q_starf ) ,max( q_female ) ) ,main="←↩
One−year morta l i t i es for females " ,xlab=" I n i t i a l age " ,ylab="q" )

74 l ines (Age [55 :115] , q_starf , " l " ,lty=2)
75 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
76
77 # " zoomet " inn plot
78 plot (Age [ 55 :80 ] , q_female [ 55 :80 ] , " l " ,ylim=c (min( q_starf ) ,max( q_female [ 5 5 : 8 0 ] ) ) ,←↩

main="One−year morta l i t i es for females " ,xlab=" I n i t i a l age " ,ylab="q" )
79 l ines (Age [ 55 :80 ] , q_starf[1:(80−55+1) ] , " l " ,lty=2)
80 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )

Listing A.3: Franklin Life
1 ##### Franklin Life #####
2
3 source ( "MPOR2.R" )
4
5 # i n i t i a l age
6 age=c (55 ,60 ,65 ,70 ,75 ,80)
7
8 # row 1=male , row 2=female
9 # SPIA payouts

10 sFL=matrix ( c (612 ,656 ,720 ,813 ,943 ,1129 ,575 ,607 ,654 ,722 ,827 ,984) ,byrow=T , ncol =6)
11
12 # estimating the Wang transform
13 l_male=1:6*0
14 l_female=1:6*0
15 gender=c (TRUE ,FALSE )
16
17 for (i in 1: length (age ) )
18 {
19 for (j in 1 :2 )
20 {
21 f=function (lambda ,r=0.03 ,q=q_x ,s=sFL [j ,i ] ,x0=age [i ] ,le=115 ,male=gender [j ] ) L (←↩

lambda ,r , q ,s ,x0 ,le ,male ) $A
22 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
23 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
24 i f (gender [j ] ) l_male [i]=uni$root e lse
25 l_female [i]=uni$root
26 }
27 }
28
29 # plo t t ing the Wang transform
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30 plot (age ,l_male , " o " ,lty=1 ,main="Market Price o f Risk − Franklin Life \nwhen r =←↩
3%" ,xlab=" I n i t i a l age " ,ylab=expression (lambda ) ,ylim=c (min(l_male ,l_female )←↩

,max(l_male ,l_female ) ) )
31 l ines (age ,l_female , " o " ,lty=2)
32 legend ( " topright " , c ( "Male" , "Female" ) ,lty=c (1 ,2 ) , c o l =1)
33
34
35 ### Basic morta l i t i es versus the transformed morta l i t i es
36 q_male=q_x$Male / 1000
37 q_female=q_x$Female / 1000
38 Age=q_x$Age
39
40 ###### Wang transform on Males (55) ######
41 q_starm=55:115*0
42
43 l_male2=c ( rep (l_male [ 1 ] , 5 ) , rep (l_male [ 2 ] , 5 ) , rep (l_male [ 3 ] , 5 ) , rep (l_male [ 4 ] , 5 ) ,←↩

rep (l_male [ 5 ] , 5 ) , rep (l_male [ 6 ] , 3 6 ) )
44
45 for (i in 1: length ( q_starm ) )
46 {
47 q_starm [i]=pnorm(qnorm( q_male [Age[54+i ] ] )−l_male2 [i ] )
48 }
49
50 # " vanlig " p lot
51 plot (Age [55 :115] , q_male [55 :115] , " l " ,ylim=c (min( q_starm ) ,max( q_male ) ) ,main="One−←↩

year morta l i t i es for males " ,xlab=" I n i t i a l age " ,ylab="q" )
52 l ines (Age [55 :115] , q_starm , " l " ,lty=2)
53 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
54
55 # " zoomet " inn plot
56 plot (Age [ 55 :80 ] , q_male [ 55 :80 ] , " l " ,ylim=c (min( q_starm ) ,max( q_male [ 5 5 : 8 0 ] ) ) ,main=←↩

"One−year morta l i t i es for males " ,xlab=" I n i t i a l age " ,ylab="q" )
57 l ines (Age [ 55 :80 ] , q_starm[1:(80−55+1) ] , " l " ,lty=2)
58 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
59
60
61 ###### Wang transform on Females (55) #######
62 q_starf=55:115*0
63
64 l_female2=c ( rep (l_female [ 1 ] , 5 ) , rep (l_female [ 2 ] , 5 ) , rep (l_female [ 3 ] , 5 ) , rep (l_←↩

female [ 4 ] , 5 ) , rep (l_female [ 5 ] , 5 ) , rep (l_female [ 6 ] , 3 6 ) )
65
66 for (i in 1: length ( q_starf ) )
67 {
68 q_starf [i]=pnorm(qnorm( q_female [Age[54+i ] ] )−l_female2 [i ] )
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69 }
70
71 # " vanlig " p lot
72 plot (Age [55 :115] , q_female [55 :115] , " l " ,ylim=c (min( q_starf ) ,max( q_female ) ) ,main="←↩

One−year morta l i t i es for females " ,xlab=" I n i t i a l age " ,ylab="q" )
73 l ines (Age [55 :115] , q_starf , " l " ,lty=2)
74 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
75
76 # " zoomet " inn plot
77 plot (Age [ 55 :80 ] , q_female [ 55 :80 ] , " l " ,ylim=c (min( q_starf ) ,max( q_female [ 5 5 : 8 0 ] ) ) ,←↩

main="One−year morta l i t i es for females " ,xlab=" I n i t i a l age " ,ylab="q" )
78 l ines (Age [ 55 :80 ] , q_starf[1:(80−55+1) ] , " l " ,lty=2)
79 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )

Listing A.4: Hartford Life
1 ##### Hartford Life #####
2
3 source ( "MPOR2.R" )
4
5 # i n i t i a l age
6 age=c (55 ,60 ,65 ,70 ,75 ,80)
7
8 # row 1=male , row 2=female
9 # SPIA payouts

10 sHL=matrix ( c (649 ,701 ,777 ,882 ,1035 ,1259 ,609 ,646 ,702 ,784 ,908 ,1101) ,byrow=T , ncol←↩
=6)

11
12 # estimating the Wang transform
13 l_male=1:6*0
14 l_female=1:6*0
15 gender=c (TRUE ,FALSE )
16
17 for (i in 1: length (age ) )
18 {
19 for (j in 1 :2 )
20 {
21 f=function (lambda ,r=0.03 ,q=q_x ,s=sHL [j ,i ] ,x0=age [i ] ,le=115 ,male=gender [j ] ) L (←↩

lambda ,r , q ,s ,x0 ,le ,male ) $A
22 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
23 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
24 i f (gender [j ] ) l_male [i]=uni$root e lse
25 l_female [i]=uni$root
26 }
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27 }
28
29 # plo t t ing the Wang transform
30 plot (age ,l_male , " o " ,lty=1 ,main="Market Price o f Risk − Hartford Life \nwhen r =←↩

3%" ,xlab=" I n i t i a l age " ,ylab=expression (lambda ) ,ylim=c (min(l_male ,l_female )←↩
,max(l_male ,l_female ) ) )

31 l ines (age ,l_female , " o " ,lty=2)
32 legend ( " topright " , c ( "Male" , "Female" ) ,lty=c (1 ,2 ) , c o l =1)
33
34
35 ### Basic morta l i t i es versus the transformed morta l i t i es
36 q_male=q_x$Male / 1000
37 q_female=q_x$Female / 1000
38 Age=q_x$Age
39
40 ###### Wang transform on Males (55) ######
41 q_starm=55:115*0
42
43 l_male2=c ( rep (l_male [ 1 ] , 5 ) , rep (l_male [ 2 ] , 5 ) , rep (l_male [ 3 ] , 5 ) , rep (l_male [ 4 ] , 5 ) ,←↩

rep (l_male [ 5 ] , 5 ) , rep (l_male [ 6 ] , 3 6 ) )
44
45 for (i in 1: length ( q_starm ) )
46 {
47 q_starm [i]=pnorm(qnorm( q_male [Age[54+i ] ] )−l_male2 [i ] )
48 }
49
50 # " vanlig " p lot
51 plot (Age [55 :115] , q_male [55 :115] , " l " ,ylim=c (min( q_starm ) ,max( q_male ) ) ,main="One−←↩

year morta l i t i es for males " ,xlab=" I n i t i a l age " ,ylab="q" )
52 l ines (Age [55 :115] , q_starm , " l " ,lty=2)
53 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
54
55 # " zoomet " inn plot
56 plot (Age [ 55 :80 ] , q_male [ 55 :80 ] , " l " ,ylim=c (min( q_starm ) ,max( q_male [ 5 5 : 8 0 ] ) ) ,main=←↩

"One−year morta l i t i es for males " ,xlab=" I n i t i a l age " ,ylab="q" )
57 l ines (Age [ 55 :80 ] , q_starm[1:(80−55+1) ] , " l " ,lty=2)
58 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
59
60 ###### Wang transform on Females (55) #######
61 q_starf=55:115*0
62
63 l_female2=c ( rep (l_female [ 1 ] , 5 ) , rep (l_female [ 2 ] , 5 ) , rep (l_female [ 3 ] , 5 ) , rep (l_←↩

female [ 4 ] , 5 ) , rep (l_female [ 5 ] , 5 ) , rep (l_female [ 6 ] , 3 6 ) )
64
65 for (i in 1: length ( q_starf ) )
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66 {
67 q_starf [i]=pnorm(qnorm( q_female [Age[54+i ] ] )−l_female2 [i ] )
68 }
69
70 # " vanlig " p lot
71 plot (Age [55 :115] , q_female [55 :115] , " l " ,ylim=c (min( q_starf ) ,max( q_female ) ) ,main="←↩

One−year morta l i t i es for females " ,xlab=" I n i t i a l age " ,ylab="q" )
72 l ines (Age [55 :115] , q_starf , " l " ,lty=2)
73 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
74
75 # " zoomet " inn plot
76 plot (Age [ 55 :80 ] , q_female [ 55 :80 ] , " l " ,ylim=c (min( q_starf ) ,max( q_female [ 5 5 : 8 0 ] ) ) ,←↩

main="One−year morta l i t i es for females " ,xlab=" I n i t i a l age " ,ylab="q" )
77 l ines (Age [ 55 :80 ] , q_starf[1:(80−55+1) ] , " l " ,lty=2)
78 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )

Listing A.5: Nationwide Insurance
1 ##### Nationwide Insurance #####
2
3 source ( "MPOR2.R" )
4
5 # i n i t i a l age
6 age=c (55 ,60 ,65 ,70 ,75 ,80)
7
8 # row 1=male , row 2=female
9 # SPIA payouts

10 sNI=matrix ( c (607 ,658 ,729 ,831 ,985 ,1219 ,579 ,622 ,680 ,761 ,882 ,1070) ,byrow=T , ncol =6)
11
12 # estimating the Wang transform
13 l_male=1:6*0
14 l_female=1:6*0
15 gender=c (TRUE ,FALSE )
16
17 for (i in 1: length (age ) )
18 {
19 for (j in 1 :2 )
20 {
21 f=function (lambda ,r=0.03 ,q=q_x ,s=sNI [j ,i ] ,x0=age [i ] ,le=115 ,male=gender [j ] ) L (←↩

lambda ,r , q ,s ,x0 ,le ,male ) $A
22 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
23 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
24 i f (gender [j ] ) l_male [i]=uni$root e lse
25 l_female [i]=uni$root
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26 }
27 }
28
29 # plo t t ing the Wang transform
30 plot (age ,l_male , " o " ,lty=1 ,main="Market Price o f Risk − Nationwide Insurance\←↩

nwhen r = 3%" ,xlab=" I n i t i a l age " ,ylab=expression (lambda ) ,ylim=c (min(l_male ,←↩
l_female ) ,max(l_male ,l_female ) ) )

31 l ines (age ,l_female , " o " ,lty=2)
32 legend ( " topright " , c ( "Male" , "Female" ) ,lty=c (1 ,2 ) , c o l =1)
33
34
35 ### Basic morta l i t i es versus the transformed morta l i t i es
36 q_male=q_x$Male / 1000
37 q_female=q_x$Female / 1000
38 Age=q_x$Age
39
40 ###### Wang transform on Males (55) ######
41 q_starm=55:115*0
42
43 l_male2=c ( rep (l_male [ 1 ] , 5 ) , rep (l_male [ 2 ] , 5 ) , rep (l_male [ 3 ] , 5 ) , rep (l_male [ 4 ] , 5 ) ,←↩

rep (l_male [ 5 ] , 5 ) , rep (l_male [ 6 ] , 3 6 ) )
44
45 for (i in 1: length ( q_starm ) )
46 {
47 q_starm [i]=pnorm(qnorm( q_male [Age[54+i ] ] )−l_male2 [i ] )
48 }
49
50 # " vanlig " p lot
51 plot (Age [55 :115] , q_male [55 :115] , " l " ,ylim=c (min( q_starm ) ,max( q_male ) ) ,main="One−←↩

year morta l i t i es for males " ,xlab=" I n i t i a l age " ,ylab="q" )
52 l ines (Age [55 :115] , q_starm , " l " ,lty=2)
53 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
54
55 # " zoomet " inn plot
56 plot (Age [ 55 :80 ] , q_male [ 55 :80 ] , " l " ,ylim=c (min( q_starm ) ,max( q_male [ 5 5 : 8 0 ] ) ) ,main=←↩

"One−year morta l i t i es for males " ,xlab=" I n i t i a l age " ,ylab="q" )
57 l ines (Age [ 55 :80 ] , q_starm[1:(80−55+1) ] , " l " ,lty=2)
58 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
59
60 ###### Wang transform on Females (55) #######
61 q_starf=55:115*0
62
63 l_female2=c ( rep (l_female [ 1 ] , 5 ) , rep (l_female [ 2 ] , 5 ) , rep (l_female [ 3 ] , 5 ) , rep (l_←↩

female [ 4 ] , 5 ) , rep (l_female [ 5 ] , 5 ) , rep (l_female [ 6 ] , 3 6 ) )
64
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65 for (i in 1: length ( q_starf ) )
66 {
67 q_starf [i]=pnorm(qnorm( q_female [Age[54+i ] ] )−l_female2 [i ] )
68 }
69
70 # " vanlig " p lot
71 plot (Age [55 :115] , q_female [55 :115] , " l " ,ylim=c (min( q_starf ) ,max( q_female ) ) ,main="←↩

One−year morta l i t i es for females " ,xlab=" I n i t i a l age " ,ylab="q" )
72 l ines (Age [55 :115] , q_starf , " l " ,lty=2)
73 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )
74
75 # " zoomet " inn plot
76 plot (Age [ 55 :80 ] , q_female [ 55 :80 ] , " l " ,ylim=c (min( q_starf ) ,max( q_female [ 5 5 : 8 0 ] ) ) ,←↩

main="One−year morta l i t i es for females " ,xlab=" I n i t i a l age " ,ylab="q" )
77 l ines (Age [ 55 :80 ] , q_starf[1:(80−55+1) ] , " l " ,lty=2)
78 legend ( " t o p l e f t " , c ( " 1996 US Annuity 2000 Mortality Table " , " Mortal i t ies based on←↩

Wang' s Transformation " ) , c o l =1 ,lty=c (1 ,2 ) )

A.3.2 Interpolation

Listing A.6: Interpolation
1 ### Linear interpo lat ion ###
2
3 P=function (ageg ,priceg )
4 {
5 for (i in 1: length (ageg ) )
6 {
7 priceg [i ] = ( (ageg [i]−ageg [ 1 ] ) * (priceg[6]−priceg [ 1 ] ) ) / (ageg[6]−ageg [ 1 ] ) +priceg [ 1 ]
8 }
9 l i s t (priceg=priceg )

10 }
11
12
13 ageg1=c (55 :60 )
14 ageg2=c (60 :65 )
15 ageg3=c (65 :70 )
16 ageg4=c (70 :75 )
17 ageg5=c (75 :80 )
18
19 ### Canada Life ###
20 priceg1_CLm=c (671 .7 ,1 :4 * 0 ,726.44)
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21 priceg2_CLm=c (726.44 ,1 :4 * 0 ,804.02)
22 priceg3_CLm=c (804.02 ,1 :4 * 0 ,911.69)
23 priceg4_CLm=c (911.69 ,1 :4 * 0 ,1060.03)
24 priceg5_CLm=c (1060.03 ,1 :4 * 0 ,1265.68)
25 priceg1_CLf=c (627.13 ,1 :4 * 0 ,669.96)
26 priceg2_CLf=c (669.96 ,1 :4 * 0 ,729.13)
27 priceg3_CLf=c (729.13 ,1 :4 * 0 ,812.49)
28 priceg4_CLf=c (812.49 ,1 :4 * 0 ,936.41)
29 priceg5_CLf=c (936.41 ,1 :4 * 0 ,1118.95)
30
31 priceg1_CLm=P (ageg1 ,priceg1_CLm ) $priceg
32 priceg2_CLm=P (ageg2 ,priceg2_CLm ) $priceg
33 priceg3_CLm=P (ageg3 ,priceg3_CLm ) $priceg
34 priceg4_CLm=P (ageg4 ,priceg4_CLm ) $priceg
35 priceg5_CLm=P (ageg5 ,priceg5_CLm ) $priceg
36 priceg1_CLf=P (ageg1 ,priceg1_CLf ) $priceg
37 priceg2_CLf=P (ageg2 ,priceg2_CLf ) $priceg
38 priceg3_CLf=P (ageg3 ,priceg3_CLf ) $priceg
39 priceg4_CLf=P (ageg4 ,priceg4_CLf ) $priceg
40 priceg5_CLf=P (ageg5 ,priceg5_CLf ) $priceg
41
42 price_CL=matrix ( c (priceg1_CLm ,priceg2_CLm[−1] ,priceg3_CLm[−1] ,priceg4_CLm[−1] ,←↩

priceg5_CLm[−1] ,priceg1_CLf ,priceg2_CLf[−1] ,priceg3_CLf[−1] ,priceg4_CLf←↩
[−1] ,priceg5_CLf[−1]) ,byrow=T , ncol =26)

43
44
45 ### Franklin Life ###
46 priceg1_FLm=c (612 ,1:4 * 0 ,656)
47 priceg2_FLm=c (656 ,1:4 * 0 ,720)
48 priceg3_FLm=c (720 ,1:4 * 0 ,813)
49 priceg4_FLm=c (813 ,1:4 * 0 ,943)
50 priceg5_FLm=c (943 ,1:4 * 0 ,1129)
51 priceg1_FLf=c (575 ,1:4 * 0 ,607)
52 priceg2_FLf=c (607 ,1:4 * 0 ,654)
53 priceg3_FLf=c (654 ,1:4 * 0 ,722)
54 priceg4_FLf=c (722 ,1:4 * 0 ,827)
55 priceg5_FLf=c (827 ,1:4 * 0 ,984)
56
57 priceg1_FLm=P (ageg1 ,priceg1_FLm ) $priceg
58 priceg2_FLm=P (ageg2 ,priceg2_FLm ) $priceg
59 priceg3_FLm=P (ageg3 ,priceg3_FLm ) $priceg
60 priceg4_FLm=P (ageg4 ,priceg4_FLm ) $priceg
61 priceg5_FLm=P (ageg5 ,priceg5_FLm ) $priceg
62 priceg1_FLf=P (ageg1 ,priceg1_FLf ) $priceg
63 priceg2_FLf=P (ageg2 ,priceg2_FLf ) $priceg
64 priceg3_FLf=P (ageg3 ,priceg3_FLf ) $priceg
65 priceg4_FLf=P (ageg4 ,priceg4_FLf ) $priceg
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66 priceg5_FLf=P (ageg5 ,priceg5_FLf ) $priceg
67
68 price_FL=matrix ( c (priceg1_FLm ,priceg2_FLm[−1] ,priceg3_FLm[−1] ,priceg4_FLm[−1] ,←↩

priceg5_FLm[−1] ,priceg1_FLf ,priceg2_FLf[−1] ,priceg3_FLf[−1] ,priceg4_FLf←↩
[−1] ,priceg5_FLf[−1]) ,byrow=T , ncol =26)

69
70
71 ### Hartford Life ###
72 priceg1_HLm=c (649 ,1:4 * 0 ,701)
73 priceg2_HLm=c (701 ,1:4 * 0 ,777)
74 priceg3_HLm=c (777 ,1:4 * 0 ,882)
75 priceg4_HLm=c (882 ,1:4 * 0 ,1035)
76 priceg5_HLm=c (1035 ,1:4 * 0 ,1259)
77 priceg1_HLf=c (609 ,1:4 * 0 ,646)
78 priceg2_HLf=c (646 ,1:4 * 0 ,702)
79 priceg3_HLf=c (702 ,1:4 * 0 ,784)
80 priceg4_HLf=c (784 ,1:4 * 0 ,908)
81 priceg5_HLf=c (908 ,1:4 * 0 ,1101)
82
83 priceg1_HLm=P (ageg1 ,priceg1_HLm ) $priceg
84 priceg2_HLm=P (ageg2 ,priceg2_HLm ) $priceg
85 priceg3_HLm=P (ageg3 ,priceg3_HLm ) $priceg
86 priceg4_HLm=P (ageg4 ,priceg4_HLm ) $priceg
87 priceg5_HLm=P (ageg5 ,priceg5_HLm ) $priceg
88 priceg1_HLf=P (ageg1 ,priceg1_HLf ) $priceg
89 priceg2_HLf=P (ageg2 ,priceg2_HLf ) $priceg
90 priceg3_HLf=P (ageg3 ,priceg3_HLf ) $priceg
91 priceg4_HLf=P (ageg4 ,priceg4_HLf ) $priceg
92 priceg5_HLf=P (ageg5 ,priceg5_HLf ) $priceg
93
94 price_HL=matrix ( c (priceg1_HLm ,priceg2_HLm[−1] ,priceg3_HLm[−1] ,priceg4_HLm[−1] ,←↩

priceg5_HLm[−1] ,priceg1_HLf ,priceg2_HLf[−1] ,priceg3_HLf[−1] ,priceg4_HLf←↩
[−1] ,priceg5_HLf[−1]) ,byrow=T , ncol =26)

95
96
97 ### Nationwide Insurance ###
98 priceg1_NIm=c (607 ,1:4 * 0 ,658)
99 priceg2_NIm=c (658 ,1:4 * 0 ,729)

100 priceg3_NIm=c (729 ,1:4 * 0 ,831)
101 priceg4_NIm=c (831 ,1:4 * 0 ,985)
102 priceg5_NIm=c (985 ,1:4 * 0 ,1219)
103 priceg1_NIf=c (579 ,1:4 * 0 ,622)
104 priceg2_NIf=c (622 ,1:4 * 0 ,680)
105 priceg3_NIf=c (680 ,1:4 * 0 ,761)
106 priceg4_NIf=c (761 ,1:4 * 0 ,882)
107 priceg5_NIf=c (882 ,1:4 * 0 ,1070)
108
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109 priceg1_NIm=P (ageg1 ,priceg1_NIm ) $priceg
110 priceg2_NIm=P (ageg2 ,priceg2_NIm ) $priceg
111 priceg3_NIm=P (ageg3 ,priceg3_NIm ) $priceg
112 priceg4_NIm=P (ageg4 ,priceg4_NIm ) $priceg
113 priceg5_NIm=P (ageg5 ,priceg5_NIm ) $priceg
114 priceg1_NIf=P (ageg1 ,priceg1_NIf ) $priceg
115 priceg2_NIf=P (ageg2 ,priceg2_NIf ) $priceg
116 priceg3_NIf=P (ageg3 ,priceg3_NIf ) $priceg
117 priceg4_NIf=P (ageg4 ,priceg4_NIf ) $priceg
118 priceg5_NIf=P (ageg5 ,priceg5_NIf ) $priceg
119
120 price_NI=matrix ( c (priceg1_NIm ,priceg2_NIm[−1] ,priceg3_NIm[−1] ,priceg4_NIm[−1] ,←↩

priceg5_NIm[−1] ,priceg1_NIf ,priceg2_NIf[−1] ,priceg3_NIf[−1] ,priceg4_NIf←↩
[−1] ,priceg5_NIf[−1]) ,byrow=T , ncol =26)

A.3.3 Risk-adjusted mortalities

Listing A.7: Using the interpolated prices to calculate the market price
of risk

1 source ( "MPOR2.R" )
2
3 # i n i t i a l age
4 age=c (55 :80 )
5
6 # row 1=male , row 2=female
7 # SPIA payouts , interpolated in R−f i l e interpo lat ion
8 price_CL
9 price_FL

10 price_HL
11 price_NI
12
13 ##### Canada Life #####
14 # estimating the Wang transform
15 l_male=1: length (age ) *0
16 l_female=1: length (age ) *0
17 gender=c (TRUE ,FALSE )
18
19 for (i in 1: length (age ) )
20 {
21 for (j in 1 :2 )
22 {
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23 f=function (lambda ,r=0.03 ,q=q_x ,s=price_CL [j ,i ] ,x0=age [i ] ,le=115 ,male=gender [j ] )←↩
L (lambda ,r , q ,s ,x0 ,le ,male ) $A

24 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
25 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
26 i f (gender [j ] ) l_male [i]=uni$root e lse
27 l_female [i]=uni$root
28 }
29 }
30
31 # plo t t ing the Wang transform
32 plot (age ,l_male , " l " ,main="MPOR Canada Life " ,xlab=" I n i t i a l age " ,ylab="MPOR" ,ylim←↩

=c (min(l_male ,l_female ) ,max(l_male ,l_female ) ) )
33 l ines (age ,l_female , " l " , c o l =2)
34 legend ( " topright " , c ( "Male" , "Female" ) , c o l=c (1 ,2 ) ,lty=1)
35
36
37 ### Basic morta l i t i es versus the transformed morta l i t i es
38 q_male=q_x$Male / 1000
39 q_female=q_x$Female / 1000
40 Age=q_x$Age
41
42 ###### Wang transform on Males (55) ######
43 q_starm=55:115*0
44
45 l_male2=c (l_male , rep (l_male [26 ] ,36 ) )
46
47 for (i in 1: length ( q_starm ) )
48 {
49 q_starm [i]=pnorm(qnorm( q_male [Age[54+i ] ] )−l_male2 [i ] )
50 }
51
52 # " vanlig " p lot
53 plot (Age [55 :115] , q_male [55 :115] , " l " ,ylim=c (min( q_starm ) ,max( q_male ) ) ,main="←↩

Basic morta l i t i es vs . the transformed morta l i t i es for males " )
54 l ines (Age [55 :115] , q_starm , " l " , c o l =2)
55 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
56
57 # " zoomet " inn plot
58 plot (Age [ 55 :80 ] , q_male [ 55 :80 ] , " l " ,ylim=c (min( q_starm ) ,max( q_male [ 5 5 : 8 0 ] ) ) ,main=←↩

" Basic morta l i t i es vs . the transformed morta l i t i es for males " )
59 l ines (Age [ 55 :80 ] , q_starm[1:(80−55+1) ] , " l " , c o l =2)
60 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
61
62 ###### Wang transform on Females (55) #######
63 q_starf=55:115*0
64
65 l_female2=c (l_female , rep (l_female [26 ] ,36 ) )
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66
67 for (i in 1: length ( q_starf ) )
68 {
69 q_starf [i]=pnorm(qnorm( q_female [Age[54+i ] ] )−l_female2 [i ] )
70 }
71
72 # " vanlig " p lot
73 plot (Age [55 :115] , q_female [55 :115] , " l " ,ylim=c (min( q_starf ) ,max( q_female ) ) ,main="←↩

Basic morta l i t i es vs . the transformed morta l i t i es for females " )
74 l ines (Age [55 :115] , q_starf , " l " , c o l =2)
75 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
76
77 # " zoomet " inn plot
78 plot (Age [ 55 :80 ] , q_female [ 55 :80 ] , " l " ,ylim=c (min( q_starf ) ,max( q_female [ 5 5 : 8 0 ] ) ) ,←↩

main=" Basic morta l i t i es vs . the transformed morta l i t i es for females " )
79 l ines (Age [ 55 :80 ] , q_starf[1:(80−55+1) ] , " l " , c o l =2)
80 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
81
82
83 ##### Franklin Life #####
84 # estimating the Wang transform
85 l_male=1: length (age ) *0
86 l_female=1: length (age ) *0
87 gender=c (TRUE ,FALSE )
88
89 for (i in 1: length (age ) )
90 {
91 for (j in 1 :2 )
92 {
93 f=function (lambda ,r=0.03 ,q=q_x ,s=price_FL [j ,i ] ,x0=age [i ] ,le=115 ,male=gender [j ] )←↩

L (lambda ,r , q ,s ,x0 ,le ,male ) $A
94 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
95 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
96 i f (gender [j ] ) l_male [i]=uni$root e lse
97 l_female [i]=uni$root
98 }
99 }

100
101 # plo t t ing the Wang transform
102 plot (age ,l_male , " l " ,main="MPOR Franklin Life " ,xlab=" I n i t i a l age " ,ylab="MPOR" ,←↩

ylim=c (min(l_male ,l_female ) ,max(l_male ,l_female ) ) )
103 l ines (age ,l_female , " l " , c o l =2)
104 legend ( " topright " , c ( "Male" , "Female" ) , c o l=c (1 ,2 ) ,lty=1)
105
106
107 ### Basic morta l i t i es versus the transformed morta l i t i es
108 q_male=q_x$Male / 1000



70 A. APPENDIX

109 q_female=q_x$Female / 1000
110 Age=q_x$Age
111
112 ###### Wang transform on Males (55) ######
113 q_starm=55:115*0
114
115 l_male2=c (l_male , rep (l_male [26 ] ,36 ) )
116
117 for (i in 1: length ( q_starm ) )
118 {
119 q_starm [i]=pnorm(qnorm( q_male [Age[54+i ] ] )−l_male2 [i ] )
120 }
121
122 # " vanlig " p lot
123 plot (Age [55 :115] , q_male [55 :115] , " l " ,ylim=c (min( q_starm ) ,max( q_male ) ) ,main="←↩

Basic morta l i t i es vs . the transformed morta l i t i es for males " )
124 l ines (Age [55 :115] , q_starm , " l " , c o l =2)
125 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
126
127 # " zoomet " inn plot
128 plot (Age [ 55 :80 ] , q_male [ 55 :80 ] , " l " ,ylim=c (min( q_starm ) ,max( q_male [ 5 5 : 8 0 ] ) ) ,main=←↩

" Basic morta l i t i es vs . the transformed morta l i t i es for males " )
129 l ines (Age [ 55 :80 ] , q_starm[1:(80−55+1) ] , " l " , c o l =2)
130 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
131
132 ###### Wang transform on Females (55) #######
133 q_starf=55:115*0
134
135 l_female2=c (l_female , rep (l_female [26 ] ,36 ) )
136
137 for (i in 1: length ( q_starf ) )
138 {
139 q_starf [i]=pnorm(qnorm( q_female [Age[54+i ] ] )−l_female2 [i ] )
140 }
141
142 # " vanlig " p lot
143 plot (Age [55 :115] , q_female [55 :115] , " l " ,ylim=c (min( q_starf ) ,max( q_female ) ) ,main="←↩

Basic morta l i t i es vs . the transformed morta l i t i es for females " )
144 l ines (Age [55 :115] , q_starf , " l " , c o l =2)
145 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
146
147 # " zoomet " inn plot
148 plot (Age [ 55 :80 ] , q_female [ 55 :80 ] , " l " ,ylim=c (min( q_starf ) ,max( q_female [ 5 5 : 8 0 ] ) ) ,←↩

main=" Basic morta l i t i es vs . the transformed morta l i t i es for females " )
149 l ines (Age [ 55 :80 ] , q_starf[1:(80−55+1) ] , " l " , c o l =2)
150 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
151



A.3. R-CODE 71

152
153 ##### Hartford Life #####
154 # estimating the Wang transform
155 l_male=1: length (age ) *0
156 l_female=1: length (age ) *0
157 gender=c (TRUE ,FALSE )
158
159 for (i in 1: length (age ) )
160 {
161 for (j in 1 :2 )
162 {
163 f=function (lambda ,r=0.03 ,q=q_x ,s=price_HL [j ,i ] ,x0=age [i ] ,le=115 ,male=gender [j ] )←↩

L (lambda ,r , q ,s ,x0 ,le ,male ) $A
164 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
165 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
166 i f (gender [j ] ) l_male [i]=uni$root e lse
167 l_female [i]=uni$root
168 }
169 }
170
171 # plo t t ing the Wang transform
172 plot (age ,l_male , " l " ,main="MPOR Hartford Life " ,xlab=" I n i t i a l age " ,ylab="MPOR" ,←↩

ylim=c (min(l_male ,l_female ) ,max(l_male ,l_female ) ) )
173 l ines (age ,l_female , " l " , c o l =2)
174 legend ( " topright " , c ( "Male" , "Female" ) , c o l=c (1 ,2 ) ,lty=1)
175
176
177 ### Basic morta l i t i es versus the transformed morta l i t i es
178 q_male=q_x$Male / 1000
179 q_female=q_x$Female / 1000
180 Age=q_x$Age
181
182 ###### Wang transform on Males (55) ######
183 q_starm=55:115*0
184
185 l_male2=c (l_male , rep (l_male [26 ] ,36 ) )
186
187 for (i in 1: length ( q_starm ) )
188 {
189 q_starm [i]=pnorm(qnorm( q_male [Age[54+i ] ] )−l_male2 [i ] )
190 }
191
192 # " vanlig " p lot
193 plot (Age [55 :115] , q_male [55 :115] , " l " ,ylim=c (min( q_starm ) ,max( q_male ) ) ,main="←↩

Basic morta l i t i es vs . the transformed morta l i t i es for males " )
194 l ines (Age [55 :115] , q_starm , " l " , c o l =2)
195 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
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196
197 # " zoomet " inn plot
198 plot (Age [ 55 :80 ] , q_male [ 55 :80 ] , " l " ,ylim=c (min( q_starm ) ,max( q_male [ 5 5 : 8 0 ] ) ) ,main=←↩

" Basic morta l i t i es vs . the transformed morta l i t i es for males " )
199 l ines (Age [ 55 :80 ] , q_starm[1:(80−55+1) ] , " l " , c o l =2)
200 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
201
202 ###### Wang transform on Females (55) #######
203 q_starf=55:115*0
204
205 l_female2=c (l_female , rep (l_female [26 ] ,36 ) )
206
207 for (i in 1: length ( q_starf ) )
208 {
209 q_starf [i]=pnorm(qnorm( q_female [Age[54+i ] ] )−l_female2 [i ] )
210 }
211
212 # " vanlig " p lot
213 plot (Age [55 :115] , q_female [55 :115] , " l " ,ylim=c (min( q_starf ) ,max( q_female ) ) ,main="←↩

Basic morta l i t i es vs . the transformed morta l i t i es for females " )
214 l ines (Age [55 :115] , q_starf , " l " , c o l =2)
215 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
216
217 # " zoomet " inn plot
218 plot (Age [ 55 :80 ] , q_female [ 55 :80 ] , " l " ,ylim=c (min( q_starf ) ,max( q_female [ 5 5 : 8 0 ] ) ) ,←↩

main=" Basic morta l i t i es vs . the transformed morta l i t i es for females " )
219 l ines (Age [ 55 :80 ] , q_starf[1:(80−55+1) ] , " l " , c o l =2)
220 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
221
222
223 ##### Nationwide Insurance #####
224 # estimating the Wang transform
225 l_male=1: length (age ) *0
226 l_female=1: length (age ) *0
227 gender=c (TRUE ,FALSE )
228
229 for (i in 1: length (age ) )
230 {
231 for (j in 1 :2 )
232 {
233 f=function (lambda ,r=0.03 ,q=q_x ,s=price_NI [j ,i ] ,x0=age [i ] ,le=115 ,male=gender [j ] )←↩

L (lambda ,r , q ,s ,x0 ,le ,male ) $A
234 fzero=function (lambda ,pi_x0 ) f (lambda )−pi_x0
235 uni=uniroot (fzero , c (−10 ,10) ,pi_x0=100000)
236 i f (gender [j ] ) l_male [i]=uni$root e lse
237 l_female [i]=uni$root
238 }
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239 }
240
241 # plo t t ing the Wang transform
242 plot (age ,l_male , " l " ,main="MPOR Nationwide Insurance " ,xlab=" I n i t i a l age " ,ylab="←↩

MPOR" ,ylim=c (min(l_male ,l_female ) ,max(l_male ,l_female ) ) )
243 l ines (age ,l_female , " l " , c o l =2)
244 legend ( " topright " , c ( "Male" , "Female" ) , c o l=c (1 ,2 ) ,lty=1)
245
246
247 ### Basic morta l i t i es versus the transformed morta l i t i es
248 q_male=q_x$Male / 1000
249 q_female=q_x$Female / 1000
250 Age=q_x$Age
251
252 ###### Wang transform on Males (55) ######
253 q_starm=55:115*0
254
255 l_male2=c (l_male , rep (l_male [26 ] ,36 ) )
256
257 for (i in 1: length ( q_starm ) )
258 {
259 q_starm [i]=pnorm(qnorm( q_male [Age[54+i ] ] )−l_male2 [i ] )
260 }
261
262 # " vanlig " p lot
263 plot (Age [55 :115] , q_male [55 :115] , " l " ,ylim=c (min( q_starm ) ,max( q_male ) ) ,main="←↩

Basic morta l i t i es vs . the transformed morta l i t i es for males " )
264 l ines (Age [55 :115] , q_starm , " l " , c o l =2)
265 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
266
267 # " zoomet " inn plot
268 plot (Age [ 55 :80 ] , q_male [ 55 :80 ] , " l " ,ylim=c (min( q_starm ) ,max( q_male [ 5 5 : 8 0 ] ) ) ,main=←↩

" Basic morta l i t i es vs . the transformed morta l i t i es for males " )
269 l ines (Age [ 55 :80 ] , q_starm[1:(80−55+1) ] , " l " , c o l =2)
270 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
271
272 ###### Wang transform on Females (55) #######
273 q_starf=55:115*0
274
275 l_female2=c (l_female , rep (l_female [26 ] ,36 ) )
276
277 for (i in 1: length ( q_starf ) )
278 {
279 q_starf [i]=pnorm(qnorm( q_female [Age[54+i ] ] )−l_female2 [i ] )
280 }
281
282 # " vanlig " p lot
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283 plot (Age [55 :115] , q_female [55 :115] , " l " ,ylim=c (min( q_starf ) ,max( q_female ) ) ,main="←↩
Basic morta l i t i es vs . the transformed morta l i t i es for females " )

284 l ines (Age [55 :115] , q_starf , " l " , c o l =2)
285 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )
286
287 # " zoomet " inn plot
288 plot (Age [ 55 :80 ] , q_female [ 55 :80 ] , " l " ,ylim=c (min( q_starf ) ,max( q_female [ 5 5 : 8 0 ] ) ) ,←↩

main=" Basic morta l i t i es vs . the transformed morta l i t i es for females " )
289 l ines (Age [ 55 :80 ] , q_starf[1:(80−55+1) ] , " l " , c o l =2)
290 legend ( " t o p l e f t " , c ( " Basic " , "Wang transform " ) ,lty=1 , co l=c (1 ,2 ) )

A.3.4 Using the market price of risk

Listing A.8: Present value of a life annuity/Calculating the one-time
premium

1 # One−time premium against age
2
3 le=115
4 K=115
5 r=0.03
6 d=1 / (1+r )
7 lr=55
8 s=1
9

10 q_x=read . table ( " / Users / Solveig / Dropbox / Masteroppgave / Data / bas ic table . txt " ,←↩
header=T )

11
12 ###### for males ######
13
14 # " normal " morta l i t i es
15 q_male=q_x$Male / 1000
16
17 p_=c(1−q_male , rep (0 ,le+1) )
18 kp=matrix (1 ,K+1 ,le+1)
19 for (l in 0:le+1)
20 {
21 kp [ 1 :K+1 ,l]=cumprod (p_ [l : ( l+K−1) ] )
22 }
23
24 I=matrix (0 ,le+1 ,le+1)
25 I [ row ( I )+co l ( I )>lr+1]=1
26
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27 ll=0:le
28 M=s*d**ll*kp* I
29 pi_l0=apply (M , 2 ,sum)
30
31 # transformed morta l i t i es q_starm
32 q_star=c ( q_male [ 1 : 5 4 ] , q_starm )
33 p_star=c(1−q_star , rep (0 ,le+1) )
34 kp_star=matrix (1 ,K+1 ,le+1)
35 for (l in 0:le+1)
36 {
37 kp_star [ 1 :K+1 ,l]=cumprod (p_star [l : ( l+K−1) ] )
38 }
39
40 I _star=matrix (0 ,le+1 ,le+1)
41 I _star [ row ( I _star )+co l ( I _star )>lr+1]=1
42
43 ll=0:le
44 M_star=s*d**ll*kp_star* I _star
45 pi_l0_star=apply (M_star , 2 ,sum)
46
47 # plot
48 l1=55; l2=114
49 matplot (l1 :l2 ,pi_l0 [l1 :l2+1] , " l " ,main="One−time premium against age \n when s=1←↩

f o r males " ,xlab=" I n i t i a l age " , ylab=expression (pi ) , sub=" Nationwide ←↩
Insurance " )

50 l ines (l1 :l2 ,pi_l0_star [l1 :l2+1] , " l " ,lty=2)
51 legend ( " topright " , c ( " 1996 US Annuity 2000 Mortality Table " , " Transformed ←↩

morta l i t i es " ) ,lty=c (1 ,2 ) , c o l=c (1 ,1 ) )
52
53
54 # for females
55
56 # " normal " morta l i t i es
57 q_female=q_x$Female / 1000
58
59 p_=c(1−q_female , rep (0 ,le+1) )
60 kp=matrix (1 ,K+1 ,le+1)
61 for (l in 0:le+1)
62 {
63 kp [ 1 :K+1 ,l]=cumprod (p_ [l : ( l+K−1) ] )
64 }
65
66 I=matrix (0 ,le+1 ,le+1)
67 I [ row ( I )+co l ( I )>lr+1]=1
68
69 ll=0:le
70 M=s*d**ll*kp* I
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71 pi_l0=apply (M , 2 ,sum)
72
73 # transformed morta l i t i es q_ s tar f
74 q_star=c ( q_female [ 1 : 5 4 ] , q_starf )
75 p_star=c(1−q_star , rep (0 ,le+1) )
76 kp_star=matrix (1 ,K+1 ,le+1)
77 for (l in 0:le+1)
78 {
79 kp_star [ 1 :K+1 ,l]=cumprod (p_star [l : ( l+K−1) ] )
80 }
81
82 I _star=matrix (0 ,le+1 ,le+1)
83 I _star [ row ( I _star )+co l ( I _star )>lr+1]=1
84
85 ll=0:le
86 M_star=s*d**ll*kp_star* I _star
87 pi_l0_star=apply (M_star , 2 ,sum)
88
89 # plot
90 l1=55; l2=114
91 matplot (l1 :l2 ,pi_l0 [l1 :l2+1] , " l " ,main="One−time premium against age \n when s=1←↩

f o r females " ,xlab=" I n i t i a l age " , ylab=expression (pi ) , sub=" Nationwide ←↩
Insurance " )

92 l ines (l1 :l2 ,pi_l0_star [l1 :l2+1] , " l " ,lty=2)
93 legend ( " topright " , c ( " 1996 US Annuity 2000 Mortality Table " , " Transformed ←↩

morta l i t i es " ) ,lty=c (1 ,2 ) , c o l=c (1 ,1 ) )

Listing A.9: Pricing the mortality bond
1 q_x=read . table ( " / Users / Solveig / Dropbox / Masteroppgave / Data / bas ic table . txt " ,←↩

header=T )
2 q_male=q_x$Male / 1000
3 q_female=q_x$Female / 1000
4
5 le=115;K1=115
6 p_=c(1−q_female , rep (0 ,le+1) )
7 kp=matrix (1 ,K1+1 ,le+1)
8 for (l in 0:le+1)
9 {

10 kp [ 1 :K1+1 ,l]=cumprod (p_ [l : ( l+K1−1) ] )
11 }
12
13 l_male=0.842
14 l_female=0.938
15
16 q_starm=1: length ( q_male ) *0
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17 q_starf=1: length ( q_female ) *0
18 for (i in 1: length ( q_starm ) )
19 {
20 q_starm [i]=pnorm(qnorm( q_male [i ] )−l_male )
21 q_starf [i]=pnorm(qnorm( q_female [i ] )−l_female )
22 }
23
24 p_star=c(1−q_starf , rep (0 ,le+1) )
25 kp_star=matrix (1 ,K1+1 ,le+1)
26 for (l in 0:le+1)
27 {
28 kp_star [ 1 :K1+1 ,l]=cumprod (p_star [l : ( l+K1−1) ] )
29 }
30
31 K=30
32 x0=65; n_x=10000
33 X=1:K*0
34 for (k in 1:10)
35 {
36 X [k]=n_x*kp [k+1 ,x0 ] *exp (0.0070 *k )
37 }
38 for (k in 11:20)
39 {
40 X [k]=n_x*kp [k+1 ,x0 ] *exp ( 0 . 0 7 ) *exp (0.0093 * (k−10) )
41 }
42 for (k in 21:30)
43 {
44 X [k]=n_x*kp [k+1 ,x0 ] *exp (0 .163) *exp (0.0103 * (k−20) )
45 }
46
47 mu=1:K*0
48 sigma=1:K*0
49 for (k in 1:K )
50 {
51 mu [k]=n_x*kp_star [k+1 ,x0 ]
52 sigma [k]= sqrt (n_x*kp_star [k+1 ,x0 ] *(1−kp_star [k+1 ,x0 ] ) )
53 }
54
55 psi=function (a )
56 {
57 dnorm(a )−a*(1−pnorm(a ) )
58 }
59
60 C=0.07
61 E_D=1:K*0
62 for (k in 1:K )
63 {
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64 a=(X [k]−mu [k ] ) /sigma [k ]
65 E_D[k]=1000* (C−sigma [k ] * (psi (a )−psi (a+C/sigma [k ] ) ) )
66 }
67
68 F=10000000
69 V=F*d**K+sum(d** ( 1 :K ) *E_D)



Bibliography

[1] Alejandro Balbás and José Garrido. “A Unifying Pricing Theory
for Insurance and Financial Risks: Applications for a Unified
Risk Management”. In: (2002).

[2] Alejandro Balbás, José Garrido, and Silvia Mayoral. “Properties
of distortion risk measures”. In: Methodology and Computing in
Applied Probability Vol. 11.No. 3 (2009), pp. 385–399.

[3] Fischer Black and Myron Scholes. “The pricing of options and cor-
porate liabilities”. In: The journal of political economy Vol. 81.No.
3 (1973), pp. 637–654.

[4] David Blake, Andrew JG Cairns, and Kevin Dowd. “Living with
mortality: Longevity bonds and other mortality-linked securities”.
In: British Actuarial Journal Vol. 12.No. 1 (2006), pp. 153–197.

[5] Karl Borch. “The utility concept applied to the theory of insur-
ance”. In: Astin Bulletin Vol. 1.No. 5 (1961), pp. 245–255.

[6] Hans Bühlmann. “An economic premium principle”. In: Astin Bul-
letin Vol. 11.No. 1 (1980), pp. 52–60.

[7] Erik Bølviken. Computation and Modelling in Insurance and Fi-
nance. International Series on Actuarial Science. Cambridge: Cam-
bridge University Press, 2014.

[8] Michel Denuit, Pierre Devolder, and Anne-Cécile Goderniaux.
“Securitization of Longevity Risk: Pricing Survivor Bonds With
Wang Transform in the Lee-Carter Framework”. In: Journal of
Risk and Insurance Vol. 74.No. 1 (2007), pp. 87–113.

79



80 BIBLIOGRAPHY

[9] Hans U Gerber. Life Insurance Mathematics. 3rd Edition. Berlin:
Springer-Verlag, 1997.

[10] J. Goovaerts, F. de Vylder, and J. Haezendonck. Insurance pre-
miums: theory and applications. North-Holland Publishing Com-
pany, 1984.

[11] Robert J Johansen. Annuity 2000 Mortality Tables. Tech. rep.
Transactions of Society of Actuaries Reports, 1995-96.

[12] John A Kiczek. “Single Premium Immediate Annuity Payouts”.
In: Best’s Review (L/H) Vol. 97.No. 4 (1996), pp. 57–60.

[13] Yijia Lin and Samuel H Cox. “Securitization of Mortality Risks
in Life Annuities”. In: The Journal of Risk and Insurance Vol.
72.No. 2 (2005), pp. 227–252.

[14] William H Press et al. Numerical recipes 3rd edition: The art of
scientific computing. Cambridge university press, 2007.

[15] AE Renshaw, S Haberman, and P Hatzopoulos. “The modelling of
recent mortality trends in United Kingdom male assured lives”.
In: British Actuarial Journal Vol. 2.No. 2 (1996), pp. 449–477.

[16] Gary G Venter. “Premium calculation implications of reinsurance
without arbitrage”. In: Astin Bulletin Vol. 21.No. 2 (1991), pp. 223–
230.

[17] Shaun S Wang. “A Class of Distortion Operators for Pricing Fi-
nancial and Insurance Risks”. In: The Journal of Risk and Insur-
ance Vol. 67.No. 1 (2000), pp. 15–36.

[18] Shaun S Wang. “Insurance pricing and increased limits ratemak-
ing by proportional hazards transforms”. In: Insurance: Mathe-
matics and Economics Vol. 17.No. 1 (1995), pp. 43–54.

[19] Shaun S Wang. “Premium Calculation by Transforming the Layer
Premium Density”. In: ASTIN Bulletin Vol. 26.No. 1 (1996), pp. 71–
92.



BIBLIOGRAPHY 81

[20] Menahem E Yaari. “The dual theory of choice under risk”. In:
Econometrica: Journal of the Econometric Society (1987), pp. 95–
115.


	Acknowledgements
	Abstract
	Introduction
	Life insurance basics
	Annuities
	Introduction
	Life tables
	The concept of discounting
	Life annuities
	Life table risk

	Mortality bonds
	Introduction
	Example of a mortality bond
	Types of mortality bonds

	The Wang Transform
	Introduction
	Distortion operators in insurance pricing
	The distortion operator
	The market price of risk
	Using the Wang Transform


	Pricing life annuities
	Introduction
	Detailed procedure
	Interpolation
	Extrapolation

	Results and discussion
	Using the transformed mortalities in annuities


	Pricing mortality bonds
	Introduction
	Mathematics
	The bond price
	The mortality bond strike levels Xk
	The coupon payments Dk
	Calculation


	Discussion with possible extensions
	Appendix
	1996 IAM 2000 Mortality Table
	Plots
	R-code
	Market Price of Risk
	Interpolation
	Risk-adjusted mortalities
	Using the market price of risk


	Bibliography

