MAJORIZED BY AN DNVARIANT WEIGHT.

A. Van Daele ${ }^{3}$
Institute of kiathematics, University of Oslo

Abstract.

Let A be a $C^{3 x}$-algebra, F_{j} a group of ${ }^{\text {F }}$ automorphisms of A and y a G-invariant weight. Assume that p takes finite values on a dense subset of A^{+}. It is shom that there is a largest element among the G-invariant weights ψ_{s} majorized by φ and weakly adherent to the set of G-invariant continuous positive linear functionals majorized by ψ_{0}, Horeover this weight majorizes every E-inveriant continuous positive linear functional majorized by φ. If A is a von Neumann algebra it is sufficient to assume that φ takes finite values on a $\sigma-$ weakly dense subset of A^{+}to get a similar result for normai fiunctionals. Further characterisations of this weight are given in terms of the representation associated with φ. Itis relation is then used to prove that if φ is lower semi-continuous, the existence of G-invariant continuous positive linear functionals majorized by φ is equivalent to the existence of fixed points in the associated Hilbert space X and representation of $\left[\frac{1 n}{} d\right.$. Finally two examples are discussed.

핀)
Aspir ant van het Belgisch M.F.H.O. On leave from the university of Leuven (Belgium).

Fresent address: Universitetet i Oslo, kathematisk Institutt, Postboks 1053, Blindern Oslo 3 Norway.

1. Introduction and notations.

Recently a great deal of information has been obtained about states on a $C^{3 E}$ migebra A, invisiant under a group $\sqrt{2}$ of automorphisms. Unfortunately the get of invariant states on A can be very small, in some cases it may be emyty. So one may ask for the existence of G-invariant linear functionala on A which are eventually unbounded. The concept of unbounded linear functionals has been introduced in [1] and [2]. In this paper wo will be conceraed with reights as defined. in $[1]$ which are invariant under a group of automorphisme. The theory of \bar{G}-invariant weigits must make it possible to give a unified treatment of the theory of \bar{G}-invariant states and the theory of traces. Indeed a state is a special case of a weight and a trace is a weight invariant under the group of inner automorphisms. In this paper we will show that the study of invariant weights can essentially be devided in two parts. The first of them being related to the theory of invariant states, the second being moxe similar to that of traces.

This fact will be discussed in section 2 where we construct to some G-invariant weights φ an other G-invariant weight ψ_{0} with the property that $\Psi_{\text {. }}$ is the largest weifht majorized by φ which is the upper envelope of G-invariant continuous positive linear functionals.

In section 3 we will construct $a G$-invariant projection map of the set \exists of continuous positive linear functionals majorized by φ onto the set \mathcal{F}_{0} of $[\mathcal{E}$-invariant elements in \mathcal{F}. This mapping will be used in section 4 where we give more properties of the weight Ψ_{0} constructed in section 2. Among others we will give a necessary and sufficient condition for the existenco of G-invariant continuous positive linear functionals majorized by \hat{i} if the latter is lower semi-continuous. Finally in the last section we discuss two exanples.

He recall some notions and results as they can be found in [1]. A weight on a $C^{\text {F}}$-aleebra is a function φ defined on A^{+}with values
in $[0, \infty]$ satisfying the following conditions:
i) $\varphi(x+y)=\varphi(x)+\varphi(y)$ for all $x, y \in A^{+}$
ii) $\varphi(\lambda x)=\lambda \varphi(x)$ for all real numbers $\lambda \geqslant 0$
(we agree that $0 . \infty=0$)
The set of elements $x \in A$ such that $\varphi\left(x^{*} x\right)<\infty$ is a left ideal $火$ in A and the set of elements $x \in A^{+}$with $\varphi(x)<\infty$ is the positive part m^{+}of the subalgebra W K defined as $v^{*} V$. The norm closures \bar{v} and \bar{w} of respectively we and wT satisfy the relation $\overline{w \sqrt{V}}=\overline{\sqrt{k}} \sqrt{r}=\sqrt{k} \cap \overline{\mathbb{L}}^{*}$. The subalgebra W is is spanned by its positive part and the restriction of φ to Wr^{+}can be extended to a linear form on W, still denoted by φ. With φ is associated a Hilbert space \mathcal{H}, a representation π of A and a mapping N of V into \mathcal{H} such that
i) \wedge 四 is dense in X
ii) $\varphi\left(x^{*} y\right)=\left(\lambda_{y}, \lambda x\right)$ for all $x, y \in v$
iii) $\pi(x) \wedge y=\Lambda x y \quad$ Io r $\quad x \in A \quad$ and $y \in v$

Throughout the paper we will be concerned with a fixed weight φ so that it is unnecessary to write V_{φ}, W_{φ} etc. $;$ if we are given also another weight ψ we will write $V_{y},{ }_{\psi} \mathcal{H}_{\psi} . .$. for the objects associated with ψ.

I would like to express ny thanks to Prof. E. Stormer for his kind hospitality at the mathematical institute of the university of oslo and for fruitful discussions. I am also indebted to Dr. N.H. Peterson for helpful comments and to Dr. F. Comber for discussions concerning the subject treated in this paper.

2. The upper envelope of invariant functional majorized by an invariant weight.

Let A be a $C^{\#}$-algebra and G a group of ${ }^{3}$-automorphisms of A. Fix a weight φ on A and assume that it is $[$-invariant i.e. $\varphi(g(x))=\varphi(x)$ for all $x \in A^{+}$and $g \in E$. As might be expected there is a unitary representation of G in X that implements the automorphisms. The following lemma is more or less known (see [4] lemma 4.7).
2.1 Lemma. Let φ be a G-invariant weight on A. Then W and V are G-invariant and there exists a unitary representation $\left\{U_{g}\right\}$ of E in H such that
i) $U_{g} \wedge x=\Lambda g(x)$ for $x \in V \quad$ and $g \in G$
ii) $U_{g} \pi(y) U_{g}^{-1}=\pi(g(y i)$ for $y \in A$ and $g \in E$

Proof: The invariance of V and the follows trivially from the invariance of φ. From $\|\Lambda g(x)\|^{2}=\varphi\left(g(x)^{*} g(x)\right)=\varphi\left(x^{*} x\right)=\|\Lambda x\|^{2}$ it follows that the mapping $\Lambda x \rightarrow \Lambda g(x)$ is well defined, continuous and can be extended to an isometry U_{g} oi ye. Clearly $U_{g-1} U_{g}=I$ so that U_{g} is unitary. It follows from a trivial calculation that $\left\{U_{g}\right\}$ is a representation of E and that the relations i) and ii) hold.
2. 2 Definitions End notations. For any weight φ on a $C^{\text {F -algebra } A}$ we will denote by $子$ the family of continuous positive linear functional majorized by φ, i.e. $f(z) \leqslant \varphi(z)$ for all $z \in A^{+}$and $\notin \in \exists$. By \mathcal{K} we denote the set of operators $S \in \pi(A)^{\prime}$ such that there is a positive real number λ such that $\|S \wedge x\| \leqslant \lambda\|x\|$ for all $x \in V$. If moreover φ is G-invariant we denote by
7. and \mathcal{K} 。 respectively the G-invariant elements in 7 and \mathcal{K} This makes sense if we let G act on \exists and \mathcal{J} in the natural way.

From the work of comber [1] we may expect that \mathcal{F} and $]$, respectively \exists_{0} and $\mathcal{K}_{\text {。 , will be related to each other. We will }}$ clarify this relation without any restriction for the weight φ. Doing so we will be able to treat very general cases. The sets $\mathcal{F}, \mathcal{Y}, \mathcal{F}_{0}$ and \mathcal{K}_{0} and the relations we are going to prove in the next lemmas will be extensively used throughout the paper.
2.3 Lemma. K is a G-invariant left ideal in $\pi(A)^{\prime}$. For any $S \in \mathcal{K}$ there is a unique vector α in the closure of $\pi\left(V^{*}\right) \mathcal{H}$ such that $S \lambda x=\pi(x) \alpha$ for all $x \& v$.

Proof: Take $S, S_{1}, S_{2} \in K, T \in T(A)$ and $x \in K$ The relations

$$
\left\|\left(S_{A}+S_{2}\right) \lambda x\right\| \leqslant\left\|S_{A} \Lambda x\right\|+\left\|S_{2} \lambda \times\right\|
$$

and

$$
\|T S \Lambda x\| \leqslant\|T\|\|5 \Lambda x\|
$$

show that \mathcal{J} is a left ideal. The relations $\left\|U_{g}^{-4} S U_{g} \Lambda x\right\|=\left\|S \Lambda_{g}(x)\right\|$ and $\|g(x)\|=\|x\|$ for $g \in G$ show that J is invariant. Assume $\|s \wedge x\| \leq\|x\|$. Let $\left\{u_{\lambda}\right\}$ be an approximate left identity in V so that $\lim x u_{\lambda}=x$ for all $x \in V \quad$ and therefore $\lim _{n} \pi(x) S \Lambda u_{\lambda}=\lim S \Lambda \times u_{\lambda}=S \Lambda x$ because $S \in K$. $\begin{array}{cc}\text { Let } P=\sum_{i=1}^{n} \pi\left(x_{i}\right)^{*} \gamma_{i} \quad \text { be an arbitrary element in } \\ \pi\left(v^{c}\right) \pi & \text { - From the relation }\end{array}$

$$
\sum_{i=1}^{n}\left(Y_{i}, s \wedge x_{i}\right)=\lim \sum_{i=1}^{n}\left(\gamma_{i}, s \wedge x_{i} u_{\lambda}\right)=\lim \left(p, s \wedge u_{\lambda}\right)
$$

it follows that $\omega(\rho) \equiv \sum_{i=1}^{\infty}\left(\gamma_{i}, s \wedge x_{i}\right)$ defines a linear functional ω on $\pi\left(\mu^{*}\right) \mathcal{H}^{3}$. Moreover

$$
|\omega(p)|=\lim \left|\left(p, \sin u_{\lambda}\right)\right| \leqslant \operatorname{lin}\|p\| s A u_{\lambda}\|\leqslant\| p \|
$$

so that ω is continuous, can be extended to $\overline{\pi\left(V^{*}\right) \mathcal{H}}$ and that there exists a unique $\alpha \in \overline{\pi\left(r^{*}\right) x e}$ such that $w(p)=(p, \alpha)$

This means $(\gamma, S \wedge x)=\left(\pi\left(x^{*}\right) \gamma, \alpha\right)$ for all $x \in V$ and $\gamma \in \mathcal{X}$ so that $S \wedge x=\pi(x) \alpha \quad$ for all $x \in \mathbb{R}$.
2.4 Lemma. K_{0} is a left ideal in the fired point algebra of $\pi(A)^{\prime}$. For any $S \in \mathcal{K}_{0}$ there is a unique G-invariant rector $\alpha \in \pi\left(M^{*}\right) み$ such that $S \Lambda x=\pi(x) \alpha$ for all $x \in \mathcal{R}$.

Proof: The first statement follows trivially from lemma 2.3. By this lemma we have also the existence of α in $\overline{\pi\left(N^{*}\right) ~} \mathcal{H}$ such that $S \Lambda x=\pi(x) \alpha$. As $5 \in \mathcal{X}$. it is \bar{G}-invariant and

$$
\begin{aligned}
S \Lambda x & =U_{g} S U_{g}^{-1} \wedge x=U_{g} S \wedge g^{-1}(x) \\
& =U_{g} \pi\left(g^{-1}(x)\right) \alpha=\pi(x) U_{g} \alpha
\end{aligned}
$$

by the use of lemma 2.1. By invariance of \sqrt{C} we have that also
$u_{g} \alpha \in \overline{\pi\left(V^{*}\right) X}$ and by uniqueness that $u_{j} \alpha=\alpha$ This completes the proof.
2.5 Remark. In the previous lemmas we gave a first characterisation of \mathcal{K} and \mathcal{K}_{0}, in the next we will show the relation between \mathcal{K} and \mathcal{Z}, resp. K_{0} and \exists_{0}. But first remark that $K=\pi(A)^{\prime}$ implies that $I \in \mathcal{X}$ and so $\Lambda x=\pi(x) \alpha$ for some $\alpha \in \mathcal{X}$ so that $\varphi\left(x^{*} x\right)=\left(\pi\left(x^{*} x\right) \alpha, \alpha\right)$ for all $x \in V C$.
It follows that φ coincides on W^{*} with a continuous positive linear functional. Conversely this property would iraply that $\varphi\left(x^{*} x\right)=\|\lambda x\|^{2} \leqslant \lambda\|x\|^{2}$ for some $\lambda>0$ so that $I \in \mathcal{K}$ and $\pi(A)^{\prime}=k$.
2.6 Lemma. For any $f \in \mathcal{F}$ there is a unique $S \in \mathcal{X}$ such that $0 \leqslant S \leqslant 1$ and $f\left(x^{*} x\right)=\|S \wedge x\|^{2} \quad$ for all $x \in v e$. Conversely for any $S \in \mathcal{K}$ such that $\|S\| \leqslant 1$ there is a $f \in \mathcal{F}$ such that $f\left(x^{*} x\right)=\|5 \lambda x\|^{2}$ for all $x \in \mathbb{R}$. Similarly for \mathbf{F}_{0} and J_{0} 。

Proof: We prove the lemma for F_{0} and K_{0}. Let $f \in \notin \mathcal{F}_{0}$ then by ([I], lemma 2.3) there is a $T_{f} \in \pi\left(n_{1}\right)$ such that $0 \leq T_{f} \leqslant 1$ and $f\left(x^{*} x\right)=\left(T_{f} \lambda x, \wedge x\right)$: Define $s=T_{f}^{1 / 2}$ then $0 \leqslant s \leqslant 1$ and $\|s \lambda x\|^{2}=f\left(x^{*} x\right) \leq\|f\|\left\|^{+} x\right\|^{2}$ so that $S \in \mathcal{X}$.
If S^{\prime} is another element in $\pi(A)^{\prime}$ such that $0 \leqslant S^{\prime} \leq 1$ and $f\left(x^{*} x\right)=\left\|s^{\prime} \wedge x\right\|^{2}$ then $\|s \wedge x\|^{2}=\left\|s^{1} \wedge x\right\|^{2}$ so that $S^{2}=S^{\prime 2}$ and by uniqueness of the square root that $s=s^{\prime}$. It then follows from the invariance of f that S is also G-invariant so that $S \in \mathcal{K}_{\text {。 }}$. Conversely let $S \in \mathcal{K}_{0}$ such that $\|S\| \leqslant 1$. By lemma 2.4 there is a G-invariant $\alpha \in \mathcal{X}$ such that $S \Lambda x=\pi(x) \alpha \quad$. A trivial calculation shows that
f defined by $f(z)=(\pi(z) \alpha, \alpha) \quad$ for $z \in A$ is in f_{0} and satisfies the required relation.

We will proceed in the same way as in the proof of proposition 13.11 of [3] in order to construct a largest G-invariant weight Ψ_{0} majorized by φ and with the property that it is the upper envelope of $[$-invariant continuous positive linear functionals. Therefore we rill need a property of \exists_{0} called " $\varepsilon-f i l t r a t i n g "$ by Comber [l]. The following result can be found in ([10], lemma 3.1) and is due to Dingier. For sake of completeness we write down the short proof given there.
2.7 Lemma. Let N be a left ideal in a vo Neumann algebra M. For any two elements S_{1}, S_{2} in the unit ball of N and $\varepsilon>0$ there is a $S \in N$ such that

$$
(1-\varepsilon) \quad S_{i}^{*} S_{i} \leqslant s^{*} S \leqslant 1 \text { for } i=1,2
$$

Proof: Put $\quad T_{i}=(1-\varepsilon)\left(1-(1-\varepsilon) S_{i}^{*} S_{i}\right)^{-4} S_{i}^{*} S_{i}$ for $i=1,2$

$$
T=T_{1}+T_{2}
$$

$$
s=(1+T)^{-1 / 2} T^{1 / 2}
$$

He will show that S is the desired element. First a trivial calculation shows that $(1-\varepsilon) S_{i}^{*} S_{i}=1-\left(1+T_{i}\right)^{-1}$ and $S^{*} S=1-(1+T)^{-1}$ so that $(1-\varepsilon) S_{i}{ }^{*} S_{i} \leqslant S^{k} S \leqslant 1$. clearly $T_{i} \in N^{*} N$ since N is a left ideal, so $T \in N^{*} N$ and by ([4], lemma 4.11) $T^{1 / 2} \in N$ and therefore also $S \in N$.

We can now prove our first main result.
2,8 Theorem. Let A be a $c^{3 *}$-algebra, $\quad G$ a group of ${ }^{*}$ automorphisms of A and φ a G-invariant weight on A^{+}such that iv is norm dense in A. There exists a largest G-invariant weight ψ_{0} majorized by φ such that ψ o is the upper envelope of a family of E-invariant continuous positive linear functionals on A. Moreover ψ_{0} majorizes every E-invariant continuous positive linear functional majorized by φ.

Proof: Define the function ψ_{0} on A^{+}by

$$
\psi_{0}(x)=\sup \left\{f(x), f \in \exists_{0}\right\}
$$

It follows directly from the definition that $\psi_{n}(\lambda x)=\lambda \psi_{0}(x)$ for all real $\lambda>0$ and that $\psi_{0}\left(x_{1}+x_{2}\right) \leqslant \psi_{1}\left(x_{1}\right)+\psi_{0}\left(x_{2}\right)$ for all $x_{1}, x_{2} \in A^{+}$. We claim that also $\psi_{0}\left(x_{1}+x_{2}\right) \geqslant \psi_{0}\left(x_{1}\right)+\psi_{0}\left(x_{2}\right)$ so that ψ_{0} is a weight on A.
Suppose first that $\psi_{0}\left(x_{1}\right)=\infty$, then for every integer n there is a $f \in \exists_{0} \quad$ such that $f\left(x_{1}\right)>x$ and so $\psi_{0}\left(x_{1}+x_{2}\right) \geqslant f\left(x_{1}+x_{2}\right)>n$. We get $\psi_{0}\left(x_{1}+x_{2}\right)=\infty$ So we may suppose that $\psi_{0}\left(x_{1}\right)$ and $\psi_{0}\left(x_{2}\right)$ are finite n For any $\varepsilon>0$ we find $f_{1}, f_{2} \in \neq \mathcal{F}_{0}$ such that $\psi_{0}\left(x_{i}\right)-\varepsilon<f_{i}\left(x_{i}\right)$ for $i=1,2$. By lemma 2.6 there exist operators S_{i} in \mathcal{K}_{0} such that $0 \leqslant S_{i} \leqslant 1$ and $f_{i}\left(y^{N} y\right)=\left\|S_{i} \lambda_{y}\right\|$ for all $y \in K$. By lemma 2.4 K. is a left ideal in the fixed point algebra of $\pi(A)^{\prime}$ so we can apply lemma 2.7 to get an
$S \in K_{0}$ such that $(1-\varepsilon) S_{i}^{*} S_{i} \leqslant S^{*} S \leq 1$ Again by lemma 2.6 we find $f \in \mathcal{F}_{0}$ such that $f\left(y^{*} y\right)=\|5 \pi y\|^{2}$ for all $y \in V . \quad$ It follows that $(1-\varepsilon) f_{i}\left(y^{*} y\right) \leqslant f\left(y^{*} y\right)$
and by continuity of f_{i} and f and the density of W 依 that

$$
(1-\varepsilon)\left(\psi_{0}\left(x_{i}\right)-\varepsilon\right) \leq(1-\varepsilon) f_{i}\left(x_{i}\right) \leq f\left(x_{i}\right)
$$

Summing up we get $(1-\varepsilon)\left(\psi_{0}\left(x_{1}\right)+\psi_{0}\left(x_{2}\right)-2 \varepsilon\right) \leqslant f\left(x_{1}+x_{2}\right) \leqslant \psi_{0}\left(x_{1}+x_{2}\right.$ and this holds for all $\varepsilon>0$ so that $\psi_{0}\left(x_{1}\right)+\psi_{0}\left(x_{2}\right) \leq \psi_{0}\left(x_{1}+x_{2}\right)$ and that ψ_{0} is a weight.

As \mathcal{F}_{0} is $\left[\right.$-invariant, so is ψ_{0}. If $f \in \mathcal{F}_{0}$ then $f \leqslant \varphi$ so that $\psi_{0} \leqslant \varphi$. From the definition we have also that ψ_{0} is the upper envelope of G-invariant continuous linear functionals.
Finally suppose that ψ_{1} is another G-invariant weight majorized by φ with this property. So for any $x \in A^{+}$such that $\psi_{1}(x)<\infty$ there is a G-invariant continuous positive linear functional $f \leqslant \psi_{1}$ such that $\psi_{1}(x)-f(x)<1$. But $\psi_{1} \leqslant \varphi$ implies $f \in \mathcal{F}_{0}$ and $f(x) \leqslant \psi_{0}(x)$ so that $\psi_{1}(x)<\psi_{0}(x)+1$ for all $x \in W C_{\psi_{1}}$ and therefore $\psi_{1}(x) \leqslant \psi_{0}(x)$. A similar argument holds for the case $\psi_{k}(x)=\infty$: So the proof is complete.

2.2 Corollary.

For any weight φ on a $C^{z z}$-algebra A such that W is dense in A there exists a largest weight ψ majorized by φ and lower semi-continuous on A^{+}. This weight majorizes every functional in \mathcal{F}.

The corollary follows by taking for \ddagger the group consisting only of the identity automorphism. It is an extension of proposition 1.10 of [1]. We next will show an analogous result for a σ-weakly lower semi-continuous weight on a vo Newman algebra. It is almost a consequence of theorem 2.8 .
2. 10 Theorem. Let A be a vol Newman algebra, G a group of ${ }^{3}$-automorphisms of A and p a $[$-invariant σ-weakly lower semi-
continuous weight on A^{+}such that Wर is σ-weakly dense in A. There exists a largest G-invariant weight ψ_{0} majorized by φ such that ψ. is the upper envelope of normal G-invariant functional on A.

Proof: Define the function ψ_{0} on A^{+}by

$$
\psi_{0}(x)=\sup \left\{f(x), f \in \mathcal{F}_{0} \text { and } f \text { is normal }\right\}
$$

To prove that ψ_{0} is a weight we can use the same argument as in theorem 2.8. By ([3], prop. 13.10) π is normal and all elements $f \in \exists_{0}$ constricted in lemma 2.6 are of the form $\omega_{\alpha} 0 \pi$ and hence are normal. Further in this case we must use the σ-weakly density of W I A and the normality of f_{i} and f to get $(1-\varepsilon) f_{i}\left(x_{i}\right) \leqslant f\left(x_{i}\right)$

Apart from these two remarks the proof carries over completely.
2.11 Remarks, Theorem 2.10 reduces partly to proposition 13.11 of [3] if G consists only of the identity automorphism. The proofs are then almost the same.

Let ψ and ψ_{0} be as in theorem 2.8. Define the function ψ_{j} on A^{+} by $\psi_{1}(x)=\varphi(x)-\psi_{1}(x)$ if $x \in w r^{+}$and $\psi_{1}(x)=\infty$ for $x \notin W r^{+}$. Clearly ψ_{1} is again a G-invariant weight with $W_{Y_{1}}=W 殳$ and

$$
\psi_{1} \leqslant \varphi \text {. If } f \text { is any } G \text {-invariant continuous positive linear }
$$ functional majorized by ψ_{f} then $f \leqslant \exists_{0}$ and $f \leqslant \psi_{0}$ So for all $x \in \operatorname{Mar}^{+}, f(x) \leqslant \psi_{0}(x)$ and $f(x) \leq \psi_{e}(x)$ so that $2 f(x) \leqslant \varphi(x)$ and $2 f \leqslant \varphi$, Similarly $n f \leqslant \varphi$ for all positive integers M so that $f(x)=0$ for $x \in$ wry $^{+}$ and by continuity that $f=0$

We conclude that a G-invariant weight φ such that $\overline{\mathcal{W}}=A$ can bs decomposed into two G-invariant weights ψ_{0} and ψ_{1} such that
i) $\varphi(x)=\psi_{0}(x)+\psi_{x}(x)$ for $x \in A^{+}$
ii) ψ_{0} is the upper envelope of G-invariant continuous positive linear functionals.
iii) ψ_{4} majorizes no G-invariant continuous positive linear functional.

This result enables us to devide the theory of G-invariant weights into two parts. In the first case we may assume that the weight majorizes no G-invariant continuous positive linear functional, in the second case we may assume that the weight is the upper envelope of such functionals. It is clear that the last case will be treatable by the use of known results for G-invariant states.

In the next section we will construct a unique normal G-invariant projection map ϕ of the ultra weak closure $\overline{\mathcal{K}}$ of k onto the ultra weak closure \bar{k} 。 of \mathcal{K}. . We follow closely the arguments of ([6] theorem 1). We will have that ϕ is also a projection map of \mathcal{K} onto \mathcal{K}_{0} and of $\mathcal{K}^{*} K$ onto $\mathcal{K}_{0}^{k} K_{0}$. . Therefore it will be possible to define a unique G-invariant projection map \varnothing^{\prime} of F onto F_{0} that is u^{*}-continuous on bounded sets. The map ϕ will be used to prove more results on ψ_{0} in section 4 .

3 or A G-invariant projection map of $子$ onto $\mathfrak{Z o .}$
3.1 Notations. Let φ be a G-invariant weight on A. We will denote by E_{0} the projection onto the fixed points in H. So we have $U_{g} E_{0}=E_{0}$ for all $\& \in G$ and therefore also E. $U_{g}=E_{0}$. Moreover there exists a net of convex: combinations, which we denote by $\left\{\Sigma \lambda^{i}(g) u_{g}\right\}_{i \in I}$, converging strongly to $E_{0},\left([7]\right.$ sect. 144), (λ^{i} are functions on G with values in $[0,1]$ such that $j^{i}(g)=0$ except on a finite set and $\left.\sum \lambda^{i}(g)=1\right)$. By E_{A} we will denote the projection $\left[\pi(A) E_{0}\right.$ He $]$; clearly $E_{1} \in \pi(A)^{\prime}$ and E_{1} is E-invariant because $\pi(A)$ and $E_{0} H$ are so.
3.2 Proposition. Let φ bs a G-invariant weight on A. There exists a unique normal G-invariant positive projection map of \bar{K}
onto $\overline{\mathcal{K}}_{0}$, the ultra-weak closures of k and \mathcal{K}_{0}. We have $\phi(S) E_{0}=E_{0} S E_{0}$ for any $S \in \overline{\mathcal{K}}$. In particular $\phi(\mathcal{K})=\mathcal{K}_{\text {. }}$ and $\phi\left(x^{*} k\right)=k_{0}^{*} k_{\text {。 }}$

Proof: We first define ϕ on \mathcal{J}, then we prove strong continuity of \varnothing on bounded sets and extend it to \bar{K}. Let $S \in \mathcal{K}$, by lemma 2.3 there is a vector α such that $S \Lambda x=\pi(x) \alpha$ for all $x \in \pi \quad$. Let $\left\{\sum_{i \in} \lambda^{i}(g) u_{g}\right\}_{i \in I} \quad$ be a net of convex combinations converging strongly to E_{0}. For all $x \in V \quad$ and all $i \in I \quad$ we have

$$
\begin{aligned}
\left(\sum_{g \in G} \lambda^{i}(g) u_{g} s u_{g}^{-1}\right) \lambda x & =\sum_{g \in G} \lambda^{i}(g) u_{g} s \wedge g^{-1}(x) \\
& =\sum_{g \in G} \lambda^{i}(g) u_{g} \pi\left(g^{-1}(x)\right) \alpha \\
& =\sum_{g \in G} \lambda^{i}(g) \pi(x) u_{q} \alpha \\
& =\pi(x)\left(\sum_{g \in 5} \lambda^{i}(g) u_{g}\right) \alpha
\end{aligned}
$$

Because the net $\left\{\sum \lambda^{i}(g) u_{g} s u_{g}^{-4}\right\}_{i \in I} \quad$ is bounded, it then converges strongly to an operator $\phi(s)<\pi(A)^{\prime}$ such that $\phi(s) \lambda x=\pi(x) E_{0} \alpha$. So $\|\phi(s) \wedge x\| \leq\|x\|\left\|E_{0} \alpha\right\|$ and $\phi(s) \in \mathcal{K}$. As $E_{0} \alpha$ is E-invariant it follows by a similar calculation that $\phi(s)$ is E-invariant. clearly ϕ is linear and positive. If $s \in \mathcal{X}$, then $u_{g} s u_{g}^{-1}=S$ for all $g \in E$ so that $\phi(s)=s$ and ϕ is a positive projection map of J_{k} onto K_{0}. Now let $g \in E$ then $S \Lambda x=\pi(x) \alpha$ implies $u_{g} S u_{g}^{-1} \Lambda_{x}=\pi(x) u_{q \alpha}$ and $\phi\left(u_{g} S u_{g}^{-1}\right) \Lambda x=$ $\pi(x) E_{0} u_{g} \alpha=\pi(x) E_{0} \alpha \quad$ so that $\phi\left(u_{g}^{g} s u_{g}^{-1}\right)=\phi(S)$ and ϕ is \bar{G}-invariant. We also have that

$$
\begin{aligned}
\phi(s) E_{0} & =\text { str. } \lim _{i \in I} \sum_{g \in 5} d^{i}(g) u_{g} s u_{q}^{-1} E_{0} \\
& =\operatorname{str} \lim _{i \in I} \sum_{g \in E} d^{i}(g) u_{q} s \\
& =E_{0} S E_{0}
\end{aligned}
$$

Using this last relation we prove that $\mathcal{\phi}$ is strongly continuous on bounded sets, Take $S_{0} \in \mathcal{K}_{0}$, by lemma 2.4 there is a E-invariant vector $\alpha_{0} \in \mathcal{H}$ such that $S_{0} \Lambda x=\pi(x) \alpha_{0}$. Let $S_{0}=U\left|S_{0}\right|$ be the polar decomposition of S_{0}. Then $\left|S_{0}\right| \Lambda x=u^{*} S_{0} \Lambda x=\pi(x) u^{*} \alpha_{0}$ and as S_{0} is E-invariant, we have also that U^{*} and $U^{*} \alpha_{0}$ are G-invariant. It follows that $E_{1}\left|S_{0}\right|=\left|S_{0}\right|$ and so $S_{0} E_{1}=S_{0}$. Now let $\gamma \in \mathcal{H}$, then $\phi(S) \gamma=\phi(S) E_{1} \gamma$ and there is a
 where $T_{i} \in \pi(A) \quad$ and $Y_{i} \in E_{0} \pi$

So $\|\phi(s) Y\|=\left\|\phi(s) E_{i} \gamma\right\| \leqslant\|\phi(s)\|+\left\|\phi(s) \sum_{i=1}^{n} T_{i} \gamma_{i}\right\|$

$$
\left.\leqslant\left\|\sum\right\|+\sum_{i=1}^{n}\left\|T_{i}\right\|\|\not\| \delta\right) Y_{i} \|
$$

But $\phi(s) Y_{i}=\phi(s) E_{0} \gamma_{i}=E_{0} s E_{0} \gamma_{i}=E_{0} s Y_{i}$ and therefore
$\|\phi(s) \gamma\| \leq\|s\|+\sum_{i=1}^{n}\left\|T_{i}\right\|\left\|s \gamma_{i}\right\|$
and it follows from this relation that \varnothing is strongly continuous on bounded sets.

So by continuity we can extend \varnothing to the $u l$ tr weak closure $\overline{\mathcal{K}}$ of \mathcal{K}. The extension is still denoted by ϕ. Clearly \varnothing will be a G-invariant projection map of \bar{K} onto $\overline{K_{0}}$ and still satisfy $\phi(S) E_{0}=E_{0} S E_{0}$ We show that the extension is also positive. Therefore let $S \in \bar{K}$ and $0 \leqslant S \leq 1 \quad ;$ if F is the largest projection in \bar{k} we have $S=S F=F S F$. So $S \in F \pi(A)^{\prime} F=\bar{x}^{8} \bar{K}$. By ([8] lemma 2.2) K" K is ultra weakly dense in $\bar{K}^{*} \bar{K}$ and by the Kaplansky density theorem we have that the unit ball of the hermitian fart of $\mathcal{K}^{\prime} K$ is strongly dense in the unit ball of the hermitian part of $\bar{K}^{\prime \prime} \bar{K}$. So 5 is strongly adherent to
$\{T\} T \in J K^{*} K, T=T^{*},\|T\| \leq 4$. We then have that S^{2} is strongly adherent to $\left\{T^{2}\left\{T \in X^{*} \mathcal{K}, T=T^{*},\|T\| \leq 1\right\}\right.$ and by the work of Kaplansky $[g]$ that $S^{\prime}=\left(S^{2}\right)^{4 / 2}$, is strongly adherent to $\left.\{|T|\} T \in K^{*} K, T=T^{*},\|T\| \leq 1\right\}$. is K is an ideal $T \in K^{*} \mathcal{K}$ implies $T \in \mathcal{K}$ and $|T| \in \mathcal{K}$ so that
S is strongly adherent to $\{T\} T \in \mathcal{K}, 0 \leq T \leqslant 1\}$. We may conclude that ϕ is positive and so that ϕ is a normal G-invariant positive projection may of $\overline{Y_{K}}$ onto $\overline{K_{0}}$. The normality follows
from ([5], appendix II). Finally If ϕ_{1} is another normal G-invariant projection map of \bar{K} onto \bar{K} 。 then for any $S \in \mathcal{K}$

$$
\phi_{A}\left(\sum_{g \in G} d^{i}(g) u_{g} s u_{g}^{-1}\right)=\phi_{A}(s)
$$

and by continuity $\phi_{1}\left(\phi^{\prime}(s)\right)=\phi_{1}(s)=\phi(s)$. So ϕ and ϕ_{1} coincide on \mathcal{K} and therefore also on \bar{k}.

To complete the proof we must show that $\varnothing\left(\mathcal{K}^{*} \mathcal{K}^{\prime}\right)=\mathcal{K}^{*} \mathcal{K}_{0}$ Take $5 \in \mathcal{K}$ such that $\|s \lambda \times\| \leqslant\|x\| \quad$ then

$$
\begin{aligned}
\left(\sum_{g \in G} \lambda^{i}(g) u_{g} s^{*}\right. & \left.s u_{g}^{-1} \Lambda x, \lambda x\right)=\sum_{g \in \sigma} \lambda^{i}(g)\left\|S u_{g}^{-1} \Lambda x\right\|^{2} \\
& =\sum_{g \in G} \lambda^{i}(g) \| S \wedge g^{-1}\left(x \|^{2}\right. \\
& \leqslant \sum_{g \in G} \lambda^{i}(g)\|x\|^{2}=\|x\|^{2}
\end{aligned}
$$

So that $\left(\phi\left(S^{*} S\right) \Lambda x, \Lambda x\right) \leq\|x\|^{2}$ and $\phi\left(s^{*} s\right)^{1 / 2} \in \mathcal{K}$ 。 and $\phi(s * s) \in \mathcal{K}_{0}^{*} \mathcal{J}_{0}$. As $\mathcal{K}^{*} K^{*}$ is spanned by its positive elements and those elements are of the form $S^{*} S$ with $S \propto K$ ([4] lemma 4.1I) we get $\phi\left(\mathbb{K}^{*} \nless\right) s K_{0}^{*} K_{0}$. This completes the proof.

3.3. Corollary.

Let F and F_{0} be the largest projections in resp. \mathcal{K} and \bar{K}_{0}, the ultra-weak closures of \mathcal{K} and \mathcal{K}_{0}, then $\phi(F)=F_{0}$.

Proof: As $F_{0} \in \bar{J}$ we have $F_{0} \leq F$ and $F_{0}=\phi\left(F_{0}\right) \leqslant \phi(F)$ is $\phi(F) \in \overline{K_{X}}$ and $0 \leqslant \phi(F) \leq 1$ we have $\phi(F) \leq F_{0}$ so that $\phi(F)=F_{0}$.
3.4 Proposition. Let φ be a G-invariant weight on A. Then there exists a E-invariant projection map ϕ^{\prime} of \mathcal{J}^{7} into \mathcal{F}_{0} satisfying $\phi^{\prime}\left(f_{1}+f_{2}\right)=\phi^{\prime}\left(f_{2}\right)+\phi^{\prime}\left(f_{2}\right)$ and $\phi^{\prime}(\lambda f)=\lambda \phi^{\prime}(f)$ for all $f_{1} f_{1} f_{2} \in \mathcal{F}$ and positive real numbers λ. If moreover W is norm dense in A, then ϕ^{\prime} is onto ξ_{0}, ω^{*}-continuous on bounded sets and unique.

Proof: First define $\phi^{\prime}(f)$ for $f \in \mathcal{F}$. Given $f \in \mathcal{F}$ there is a unique $S \in \mathcal{K}$ such that $0 \leqslant S \leqslant 1$ and $f\left(x^{*} x\right)=\left(s^{*} S \lambda x, \lambda x\right)$ by lemma 2.6. Then $\phi\left(s^{*} s\right) \in \mathcal{K}_{0}^{*} \mathcal{X}_{0}$ by proposition 3.2 and $\phi\left(s^{*} s\right)^{\mathbb{1} 2} \in \pi_{0}$ by ([4] lemma 4.11). By lemma 2.4 there is a unique invariant vector $\alpha \in \overline{\pi\left(N^{*}\right) \mathcal{H}}$ such that
$\phi\left(s^{*} s\right)^{d / 2} \lambda x=\pi(x) \alpha$ for $\operatorname{aill} x \in R$. Define $\phi^{\prime}\left(\frac{1}{1}\right)$ by $\phi^{\prime}\left(f \mid(z)=(\pi(z) \alpha, \alpha)\right.$. Clearly ϕ^{\prime} maps \neq into \exists_{0}
Let $f_{1}, f_{2} \in \mathcal{F}$ such that $f_{1}=\lambda f_{2}$ for a real number $\lambda \geq 0$ It is clear that the corresponding $S_{1}, S_{2} \in \mathcal{K}$ satisfy $S_{1}=\lambda^{1 / 2} S_{2}$ and that $\alpha_{1}=\lambda^{1 / 2} \alpha_{2}$ for the corresponding vectors. Then $\phi^{\prime}\left(f_{1}\right)=\lambda \phi^{\prime}\left(f_{2}\right)$. Further suppose $f_{1}, f_{2}, f \in \exists$ such that $f=f_{1}+f_{2}$. We then have $S^{*} S=S_{1}^{*} S_{1}+S_{2}^{*} S_{2}$ for the corresponding elements in \mathcal{K}. By linearity of \varnothing we get $\left.\left.\phi \subset s^{*} s\right)=\varnothing C s_{1}^{*} s_{1}\right)+\phi\left(s_{2}^{*} s_{2}\right)$ As in the proof of ([5] th. 1 p. 85) we can find operators $u_{A}, u_{2} \in \pi(A)^{\prime}$ such that

$$
\phi\left(s_{i}^{*} s_{i}\right)^{1 / 2}=u_{i} \phi(s s)^{1 / 2} \quad \text { for } i=1,2
$$

and

$$
\left(u_{1}^{N} u_{1}+u_{2}^{*} u_{2}\right) \phi\left(s^{*} s\right)^{1 / 2}=\phi\left(s^{*} s\right)^{1 / 2}
$$

Let $\alpha_{1}, \alpha_{2}, \alpha \quad$ be the vectors in $\overline{\pi(V)} \mathcal{H}$ corresponding to $\phi\left(s_{i}^{\prime \prime} s_{i}\right)^{1 / 2}$ and $\phi\left(s^{*} s\right)^{1 / 2}$. Then

$$
\begin{aligned}
\pi(x) \alpha_{i} & =\phi\left(s_{i}{ }^{*} s_{i}\right)^{1 / 2} \Lambda x=u_{i} \phi\left(s^{*} s\right)^{1 / 2} \Lambda x \\
& =\pi(x) u_{i} \alpha
\end{aligned}
$$

So that $\alpha_{i}=u_{i} \alpha$ by unicity and invariance of $\overline{\pi\left(r^{*}\right) \pi}$. A similar argument shows that $\alpha=\left(u_{1}^{*} u_{A}+u_{2}^{*} u_{2}\right) \alpha$ We apply all this to find the following

$$
\begin{aligned}
{\left[\phi^{\prime}\left(f_{1}\right)\right.} & \left.+\phi^{\prime}\left(f_{2}\right)\right](z)=\left(\pi(z) \alpha_{1}, \alpha_{1}\right)+\left(\pi(z) \alpha_{2}, \alpha_{2}\right) \\
& =\left(\pi(z) \alpha_{1}, u_{1}^{k} u_{1} \alpha\right)+\left(\pi(z) \alpha, u_{2}^{*} u_{2} \alpha\right) \\
& =\left(\pi(z) \alpha_{1} \alpha\right)=\phi^{\prime}(f)(z)
\end{aligned}
$$

for all $z \in A$, showing $\phi^{\prime}\left(f_{A}+f_{2}\right)=\phi^{\prime}\left(f_{A}\right)+\phi^{\prime}\left(f_{2}\right)$.

We next show that it is a projection map. Let f bein the image of ϕ^{\prime}. Then there exist a $S \in \mathcal{K}_{0}$ and a G-invariant vector $\alpha \in \overline{\pi\left(\pi^{*}\right)} \boldsymbol{X}$ such that $f\left(x^{*} x\right)=\left(S^{*} S \Lambda x, \lambda x\right), S \Lambda \lambda=\pi(x) \alpha$ for $x \in \pi$ and $f(z)=(\pi(z) \alpha, \alpha)$ for $z \in A$. Then $\phi\left(s^{*} S\right)=s^{*} J$ and $\phi^{\prime}(\eta)(z)=(\pi(z) \alpha, \alpha) \quad$ for $z \in A$. The E-invariance of ϕ^{\prime} follows straight forward from the G-invariance of ϕ. So we proved the first part.

Assume now that W is norm dense in A. If $f \in \mathcal{F}_{0}$ there exist a $S \in \mathcal{K}_{0}$ and an invariant vector $\alpha \in \overline{\pi\left(V^{2}\right) \pi}$ such that $\left.f\left(x^{*} x\right)=\operatorname{cs}^{5} S A x, \Lambda x\right)$ and $S A x=\pi(x) \alpha \quad$ for $x \in \pi$. Then $\phi\left(s^{*} s\right)=s^{*} S$ and $\phi^{\prime}(f)(z)=(\pi(z) \alpha, \alpha)$ for $z \in A$ But also $f\left(x^{*} x\right)=\left(x\left(x^{*} x\right) \alpha, \alpha\right)$ for $x \in \mathbb{K}$ and it follows by the density of W in A that $f(z)=(\pi(z) \alpha, \alpha)=\phi^{\prime}\left(\frac{y}{f}\right)(z)$ for ail $z \in A$. So ϕ^{\prime} is a projection map onto y_{0}. To complete the proof it remains to show that ϕ^{\prime} is ω^{*}-continuous on bounded sets for then a similar argument as in proposition 3.2 provides the uniqueness.
Let f_{i} be a sequence in y converging to f in the w^{*}-topology and such that $\left\|f_{i}\right\| \leqslant 1$. He must show that $\phi^{\prime}\left(f_{i}\right)(z)$ converges to $f^{\prime}(f)(z)$ for any $z \in A$. Denote by S_{i}, S the corresponding elements in \mathcal{K} and by α_{i}, α the vectors in \mathcal{R} corresponding to $\phi\left(s_{i}{ }^{*} s_{i}\right)^{4 / 2}$ and $\phi\left(S^{*} S\right)^{1 / 2}$. Take first $\quad z=x^{*} x \quad$ with $x \in \mathbb{R}$. From the relations $\phi^{\prime}\left(f_{i}\right)\left(x^{*}\right)=\left(\phi^{\prime}\left(s_{i}^{*} s_{i}\right) \wedge x, \lambda x\right)$

$$
f_{i}\left(x^{*} x\right)=\left\langle S_{i}^{*} s_{i} \Lambda x, A x\right),
$$

the corresponding once for f and the normality of ϕ we get that $\lim \phi^{i}\left(f_{t}\right)\left(x^{*} x\right)=\phi^{*}(f)\left(x^{*} x\right)$.
As We is linearly spanned by elements $x^{*} x$ with $x \in \mathbb{R}$ we have that $\lim \phi^{\prime}\left(f_{i}\right)(z)=\phi^{\prime}(f)(z)$ for all $z \in \mathcal{N}$. Then by the fact that $\left\|\phi^{\prime}\left(f_{i}\right)\right\| \leq\left\|f_{i}\right\| \leq 1$ and the density of We this relation holds for all $z \leqslant A$.
So the proof is complete.

4．More properties of the upper envelope of \exists_{0} ．

In this section we will get some more information about the \bar{E}－invariant weight $\psi_{\text {．}}$ ，constructed in theorem 2.8 and from now on called the upper envelope of \mathcal{F}_{0} ．We will also relate the existence of fixed points in $\mathcal{I C}$ to the existence of nontrivial elements in \mathcal{F}_{0} ．Finally we will consider the set of weights majorized by ψ_{0} ．In this section again F and F_{0} will stand for the largest projections in the ultra－ weak closures $\overline{\mathcal{K}}$ and $\overline{\mathcal{K}}$ 。 of resp． \mathcal{K} and \mathcal{K} ．．

4．1 Theorem．Let φ be a G－invariant weight on A such that WC is norm dense in A ．Let F_{0} be the largest projection in the ultra． wo ak closure \bar{K}_{0} of \mathcal{K}_{0} and ψ_{0} the upper envelope of \mathcal{F}_{0} ．Then $\psi_{0}\left(x^{*} x\right)=\left(F_{0} \Lambda x, \Lambda x\right)$ for all $x \in \sqrt{c}$

Proof：By lemma 2．4， K_{0} is a left ideal in the fixed point algebra B of $\pi(A)^{\prime}$ ．Then by（［4］lemma 4．11）$K_{0}^{*} K_{0}$ is a facial subalgebra of B and ultra－weakd dense in $\bar{x}_{0}^{*} \bar{x}_{0}=F_{0} \mathbb{B}_{2} F_{0}$ by（ $[8]$ lemma 2．2）．So by（ $[8]$ lemma 2．3）there is an increasing net $\left\{T_{i}\right\}_{i}$ ．of positive elements in $\mathcal{K}_{0}{ }^{*} \mathcal{K}_{0}$ tending ultrameakly to I ．Again by（［4］lena 4．11）there exist $S_{i} \in K_{\text {。 }}$ such that $T_{i}=S_{i}^{*} S_{i} \quad$ and b_{j} lemma 2.6 there exist $f_{i} \in \exists$ 。 such that $\mathcal{F}_{i}\left(x^{*} x\right)=\left\|s_{i} \Lambda x\right\|$ for all $x \in V$ so $\left(F_{0} \Lambda x, A x\right)=\sup _{i \in I}\left(s_{i}^{*} s_{i} \Lambda x, \Lambda x\right)=\sup _{i \in I} f_{i}\left(x^{*} x\right)$ But $f_{i} \in \mathcal{F}_{0}$ so by definition $f_{i} \leqslant \psi_{2}$ and $\left(F_{0} \lambda x, \lambda x\right) \leqslant \psi_{0}\left(x^{*} \lambda\right)$ On the other hand if $f \in \mathcal{F}$ ，there exist a $S \in \mathcal{K}$ 。 such that $0 \leq 5 \leq 1$ and $f\left(x^{*} x\right)=\|S \Lambda x\|^{2} \quad$ by lemma 2．6． This implies that $S^{*} S \leqslant F_{0}$ and so that $f\left(x^{*} x\right) \leqslant\left(F_{0} A x, \Delta x\right)$ It follows that also $\psi_{0}\left(x^{*} x\right)=$ sup $f\left(x^{*} x\right) \leqslant\left(F_{0} \wedge x, A x\right)$ This completes the proof．

4．2 Corollary．

Any weight φ on A ，such that $\bar{w}=A$ ，is lower semi－continuous on wr^{+}if and only if K is ultra－weakly dense in $\pi(A)^{\prime}$ ．

Proof: Let G be the group consisting only of the identity automorphism, then $\exists_{0}=7, \mathcal{K}_{0}=\mathcal{K}^{2}$ and $F=F_{0}$. If $\bar{K}=\pi(A)^{\prime}$ then $F=I \quad$ and $\psi_{0}\left(x^{*} x\right)=(\Lambda x, \lambda x)=\varphi\left(x^{*} x\right)$ It follows that φ is lower semi-continuous on wry ${ }^{+}$. If on the other hand φ is lower semi-continuous on Wr^{+}, then by ([1], prop.1.7) $\varphi \mid \mathrm{WC}^{+}$is weakly adherent to y so that

$$
(\Lambda x, \Lambda x)=\varphi\left(x^{*} x\right)=\psi_{0}\left(x^{*} x\right)=\left(F_{0} \wedge x, \Delta x\right)
$$

So that

$$
F_{0}=F=I
$$

and $\overline{y_{k}}=\pi(A)^{\prime}$

4. 3 Corollary.

Let φ be a E-invariant height on A-assume w norm dense in A and φ lower semi-continuous on m^{+}. Then $F_{0}=\left[\pi(A) E_{0} \mathcal{H}\right]$. Moreover φ majorizes no non-zero G-invariant continuous positive linear functional jiff Y has no fixed points.

Proof: From the proof of proposition 3.2 we know that for any $S \in \mathcal{K}$ 。 we have $S_{0} E_{A}=S_{0}$ where $E_{1}=\left[\pi(A) E_{0} \mu\right]$ By continuity we get $F_{0} \leqslant E_{1}$. From corollary 4.2 we have $F=I$ So again from proposition 3.2 and corollary 3.3 we have $F_{0} E_{0}=\phi(I) E_{0}=E_{0} I E_{0}=E_{u}$. As $F_{0} \in \pi(A)^{\prime}$ we get $F_{0} T E_{0}=T E_{0}$ for all $T \in \pi(A)$ so that also $F_{0} \geqslant E_{1}$. The last statement then follows from the relations $\psi_{0}\left(x^{*} x\right)=\left(F_{0} \cap x, \Lambda x\right)$ and $F_{0}=\left[\pi(A) E_{0} H\right]$

Remark that the existence of nonzero elements in \ddagger 。 implies trivially the existence of fixed points. The converse however is not so clear.

4.4. Corollary.

Let φ be a G-invariant weight on A such that $\overline{w \pi}=A$. Then there is an increasing net $\left\{f_{i}\right\}_{i s} I \quad$ in 7_{0} such that $\Psi_{0}(z)=\sup f_{i}(z)$ for all $z \in A^{+}$such that $\Psi_{0}(z) \leqslant \infty$

Proof: From the proof of the theorem there is an increasing net $\left\{f_{i}\right\}_{i \in I} \quad$ in \exists_{0} such that
($F \cdot \Lambda x, \Lambda x$) $=\psi_{1}\left(x^{*} x\right)=\sup _{i \in \pi} f_{i}\left(x^{*} x\right) \quad$ for all $x \in V$ In applying this result to the weight ψ_{0} we get $\psi_{0}(z)=\sup f_{i}(z) \quad$ for all $z \in W_{\psi_{0}}^{+} \quad$ i.e for $z \in A^{+}$such that $\psi_{0}(z)<\infty$

Applying cor. 4.4 with trivial G to any lower semi-continuous weight on A such that $\overline{W z}=A$ we get the existence of an increasing net $\left\{f_{i}\right\} \in \exists$ such that $\varphi(z)=\sup f_{i}(z)$ for all $z \in \mathcal{K}^{+}$

4.5. Corollary.

Let φ be a G-invariant weight on A such that $\bar{W}=A$. Assume there is a family $\left\{\frac{f}{f}\right\}_{i} I \quad$ in \exists such that $\varphi(x)=$ $\sum_{i \in I} f_{i}(x)$ for $x \in w^{+}$. Then there is a family $\left\{f_{i}^{2}\right\}_{i \in I}$ in ${ }^{i 63} \exists_{0}$ such that $\psi_{0}(x)=\sum_{i \in I} f_{i}^{0}(x)$ for all $x \in W^{+}$.

Proof: By lemma 2.6 we get operators $T_{i} \in \mathcal{J x}^{*} \mathcal{K}$ such that

$$
\varphi\left(x^{\psi} x\right)=\sum_{i=1}\left(T_{i} \Lambda x, \Lambda x\right)=(\Lambda x, \lambda x) \text { for } x \in \sqrt{x}
$$

So that $I=\sum_{i=I} T_{i}$
As φ is lower semi-continuous we have $F=I$ by corollary 4.2 and $\phi(I)=F_{0}$ by corollary 3.3.
So by the normality of \varnothing we get

$$
\begin{aligned}
& F_{0}=\sum_{i \in I} \phi\left(T_{i}\right) \quad \text { and so } \\
& \Psi_{0}\left(x^{*} x\right)=\left(F_{0} \Lambda x, \Lambda x\right)=\sum_{i=I}\left(\phi\left(T_{i}\right) \wedge x, \Lambda x\right) \\
&=\sum_{i \leqslant 5} \phi^{\prime}\left(f_{i}\right)\left(x^{n} x\right) \quad \text { Porn } x \in v(
\end{aligned}
$$

by the use of proposition 3.4. As $\phi^{\prime}\left(f_{i}\right) \in \mathcal{Y}^{\prime}$. we proved the corollary.
4.6. Remark. In theorem 4.2, as well as in the corollaries 4.4 and 4.5 we find that two lower semi-continuous weights coincide on m^{+}. It is nog yet known if this implies that they will coincide on all of $A([1], p .74)$. However if we assume the existence of a two sided ideal V_{1} contained in V and dense in A then this weights will coincide everywhere. Indeed there exists an approximate identity $\left\{u_{\lambda}\right\}$ in $V_{A}^{*} r_{1}$ for A. So for any $\left.z \in A^{+}, \lambda z^{1 / 2} u_{\lambda} z^{1 / 2}\right\}$ is a net in m^{+}tending to z from below. (see also [2], cor.3.2)
4.7 Proposition, Let φ be a G-invariant weight on A such that WK is norm dense in A. For any G-invariant $T \in T$ (A ' such that

$$
0 \leqslant T \leqslant F_{0} \text { there is a } G \text {-invariant weight } \psi \text { such that }
$$

$$
\psi \leqslant \psi_{0} \quad \text { and } \quad \psi\left(x^{*} x\right)=(T \wedge x, \lambda x) \text { for all } x \in V
$$

For any G-invariant weight ψ such that $\psi \leqslant \psi_{0}$ and ψ is lower semi-continuous on $\mathrm{Wr}^{+}, \psi \mid \mathrm{Wr}^{+}$is the upper envelope of a family of G-invariant continuous positive linear functionals. For any weight ψ on A such that $\psi \leqslant \varphi$ and ψ / wr^{+}is the upper envelope of G-invariant continuous positive linear functional there exist an operator $T \in \pi(A)^{\prime}$ such that T is invariant, $0 \leq T \leqslant F_{0}$ and $\psi\left(x^{*} x\right)=(T \lambda x, \lambda x)$ for $x \in \mathbb{R}$.

Proof: First let $T \in \pi(A)^{\prime}$ such that $0 \leqslant T \leqslant F_{0}$. Define the function ψ on A^{+}by

$$
\begin{aligned}
\Psi(x) & =\left(T \lambda x^{1 / 2}, \lambda x^{1 / 2}\right) \text { for } x \in M^{+} \\
& =\infty
\end{aligned}
$$

Clearly $\psi(\lambda x)=\lambda \psi(x)$ for all real $\lambda>0$ and $\psi(x) \leqslant\left\|F_{0} \wedge x^{1 / 2}\right\| \leqslant\left\|\Lambda x^{1 / 2}\right\|=\varphi(x)$ for $x \in \mathcal{W r}^{+}$
We prove that $\psi(x+y)=\psi(x)+\psi(y)$ for ald $x, y \in A^{+}$ It is clearly sufficient to show it for $x, y \in W^{+}$
As $\quad F_{0} \leq F$ we have $T \leqslant F$ and $T \in F \pi^{\prime}(A) F=\bar{K}^{*} \bar{x}=\bar{K}^{\prime} \bar{K} \quad$ by ([8] lemma 2.2)
So T is weakly adherent to elements of the form

$$
\sum_{i=1}^{m} s_{i}^{*} T_{i} \quad \text { with } \quad S_{i}, T_{i} \in \mathcal{K}
$$

But $\psi(x)=\left(T \wedge x^{1 / 2}, A x^{1 / h}\right)$ and if $\alpha_{i}, B_{i} \quad$ are the vectors in \mathcal{X} corresponding to S_{i} and T_{i} ((leman 2.3) we also have that

$$
\left(\sum_{i=1}^{n} S_{i}^{*} T_{i} \Lambda x^{1 / 2}, \Lambda x^{1 / 2}\right)=\sum_{i=1}^{n}\left(\pi(x) \beta_{i}, \alpha_{i}\right)
$$

So given $x, y e^{+} \mathcal{W e}^{+}$we can find vectors $\alpha_{i}, \beta_{i} \in X$ such that $\mid \psi(z)-\sum_{i=1}^{n}\left(\pi\left(z i \beta_{i}, \alpha_{i}\right) \mid<1 \quad\right.$ for z equal to x, y on $x+y$. So we get $|\psi(x+y)-\psi(x)-\psi(y)|<3$ and by homogenvity that $\psi(x+y)=\Psi(x)+\psi(y)$
If moreover T is E-invariant then ψ is clearly E-invariant. So we proved the first part of the proposition.

Let ψ be a G-invariant weight, majorized by φ and lower semicontinuous on We^{+}, then by ([1] prop, 1.7) $Y \mid \mathrm{W}^{+1}$ is weakly adherent to the family of positive continuous linear functional $\leq \psi$ So by ([1] lemma 2.6) T is weakly adherent to the family $\left\{5 \in K^{*} K\{0 \leq 5 \leq T\}\right.$ where T is the operator in $\pi(A)^{\prime}$ such that $\Psi\left(x^{*} x\right)=(T \wedge x, \wedge x)$ for $x \in V$ ([I] lemma 2.3). So we may apply \varnothing and use its normality to get that \varnothing (T) is weakly adherent to $\left\{\phi(s)\left\{5 \in j \gamma^{*} y, 0 \leq 5 \leqslant T\right\}\right.$ But as Y is E-invariant, so is T and $\phi(T)=T$. Also $\phi\left(K^{=} \mathcal{K}\right)=\mathcal{K}_{0}{ }^{*} K_{0} \quad$ so that T is weakly adherent to $\left.\left\{5_{0}\right\} S_{0} \in \mathcal{K}_{0}{ }^{*} Y_{0}, 0 \leq S_{0} \leq T\right\}_{0}$ Again by ($[1]$ leman 2.6) se have that $\psi_{0} \mid W^{*}$ is weakly adherent to the family of G-invariant continuous positive linear functionals majorized by ψ 。

To prove the third part, let ψ be a weight such that $\psi \leqslant \varphi$ and $\Psi 1 \mathrm{Wr}^{+}$is the upper envelope of 5 -invariant continuous positive linear functionals. By ($[1]$ lemma 2.3) there is a $T \in \pi(A)$ such that $0 \leqslant T \leqslant 1$ and $\psi\left(x^{*} x\right)=(T \lambda x, \lambda x)$ for $x \in V$ Then again by ([1] lemma 2.6) T is weakly adherent to the family $\left.\left\{s \in \mathcal{K}_{0}{ }^{*} \mathcal{K}_{0}\right\} \quad 0 \leq s \leq T\right\}$. so $T \in \overline{K_{0}{ }^{*} X_{0}}=\overline{X_{0}}{ }^{k} \bar{K}_{0}$ by ([8] lemma 2.2). It follows that $T=F_{0} T F_{0} \leq F_{0}$
4.8 Corollary.

Let ψ be any weight on A such that $\bar{m}=A$. Given $T \in \pi(A)^{\prime}$ such that $0 \leqslant T \leqslant F$ there exists a weight $\psi \leqslant \varphi$ such that $\Psi\left(x^{*} x\right)=(T \Lambda x, \Lambda x) \quad$ for all $x \in V r$.

Proof: Apply the first part of prop. 4.7 to the case where I is trivial.
4.9 Remarks. Corollary 4.8 is in a sense the inverse of ([1] lemma 2.3) On the other hand lemma 2.6 shows a similar relation for the set $\left\{5\left\{5 \in \mathcal{K}^{*} \nVdash, 0 \leq 5 \leq 1\right\}\right.$ and the set of continuous positive linear functionals majorized by φ. One may ask if for all $T \in \pi(A)^{\prime}$ such that $0 \leqslant T \leqslant 1$ there exists a weight ψ such that $\psi \leqslant \varphi$ and $\psi\left(x^{*} x\right)=(T \Lambda x, \Lambda x)$ for all $x \in \mathbb{Z}$ It can be shown to be true if A is a von Newman algebra. Indeed the only trouble is to show that the function ψ defined on A^{+} by $\quad \psi(x)=\left(T \wedge x^{1 / 2}, n x^{1 / 4}\right)$ if $x \in M /{ }^{+}$and $\psi(x)=\infty$ if $x \in A^{+}$but $x \&$ Nr $^{+}$satisfies $\psi(x+y)=\psi(x)+\psi(y)$. If now A is a vo Neumann algebra we can again find operators u and $v \in A$ such that
i) $x^{1 / 2}=u(x+y)^{1 / 2}$
$y^{1 / 2}=v(x+y)^{1 / 2}$
ii) $\left(u * u+v v^{n} v\right)(x+y)^{1 / 2}=(x+y)^{1 / 2}$,
see proof of ([5] th. 1 p. 85).
So that

$$
\begin{aligned}
\Psi(x)+ & \Psi(y)=\left(T \lambda x^{1 / 2}, \lambda x^{1 / 2}\right)+\left(T A y^{1 / 2}, \lambda y^{1 / 2}\right) \\
= & \left(T \lambda(x+y)^{1 / 2}, T\left(u^{4} u\right) \lambda(x+y)^{1 / 2}\right) \\
& +\left(T \lambda(x+y)^{1 / 2}, T\left(v^{x} v\right) \Lambda(x+y)^{1 / 2}\right) \\
= & \left(T A(x+y)^{1 / 2}, \Lambda(x+y)^{1 / 2}\right)=\psi(x+y)
\end{aligned}
$$

for $x, y \in m+$

5. Examples.

5.1. Let G be a compact group acting as ${ }^{\mathbf{3}}$-automorphisins on a vo Newman algebra A. Assume that the function $g \rightarrow g(x)$ is strongly continuous for all $x \in A$. Let φ be a G-invariant ultraweakly lower semimcontinuous weight on A such that we is ultra-weakly dense in A. We will show that $\varphi \mid w /$ is weakly adherent to the set of G-invariant normal functional majorized by φ. Consider $T \in \mathcal{K}^{+} K K$, there exist $S_{i}, T_{i} \in Y_{K}$ such that $T=\sum_{i=1}^{n} s_{i}^{*} T_{i} \quad$. By lemma 2.3 there exist vectors
$\alpha_{i}, \beta_{i} \in X^{-1}$ such that $S_{i} \Lambda x=\pi(x) \alpha_{i}$ and $T_{i} \lambda x=\pi(x) \beta_{i}$ for all $x \in \sqrt{2}$. For all $g \in T$ and $x, y \neq \sqrt{2}$ we have

$$
\left(U_{g}^{-1} \tau u_{g} \Lambda x, \Lambda y\right)=\sum_{i=1}^{n}\left(\pi\left(g(y \times 1) A_{i}, \alpha_{i}\right)\right.
$$

By the normality of π ([3] prop. 13.20) we have that the function $g \rightarrow u_{q}^{-1} T u_{q}$ is weakly continuous.
So we can derive for all $T \in \mathcal{K}^{*} \not \subset$ an operator $\phi_{1}(T)$ by

$$
\phi_{1}(T)=\int_{E} u_{g}^{-3} T u_{g} d g
$$

where $d g$ is the normalized Haar measure on G.
It is clear that \varnothing_{1} is a linear positive G-invariant map into the fixed points of $\pi(A)^{\prime}$. Consider now also the projection map \varnothing of proposition 3.2. is φ is ultrameakly lower semi-continuous, $\mathcal{K}^{+} K$ is dense in $\pi(A)^{\prime}$ (corollary 4.2) and \varnothing is defined on $\pi(A)^{\prime}$. By normality and E-invariance of ϕ we get

$$
\phi\left(\phi_{1}(T)\right)=\int_{G} \phi\left(u_{g}^{-1} T u_{g}\right) d g=\phi(T)
$$

On the other hand $\phi\left(\phi_{A}(T)\right)=\phi_{1}(T)$ because \varnothing is a projection map onto the fired points of $\pi(A)^{\prime}$. Therefore $\mathscr{G}_{1}=\varnothing \mid x^{*} x<\quad$ Let S_{α} be an increasing net of positive elements in J^{*} " $k<$ tending to I. Clearly by the definition of
$\phi_{1} \quad$ we will have that $\phi_{A}\left(S_{\alpha}\right) \rightarrow I$.
On the other hand $\phi_{1}\left(s_{\alpha}\right)=\varnothing\left(s_{\alpha}\right)$ and ϕ is normal so that $\phi\left(J_{\alpha}\right) \rightarrow \phi(I) \quad$. By corollary 4.2 we have $F=I$ and
by corollary 3.2 that $\phi(F)=F_{0}$. It follows at once that
$F_{0}=I$ and by theorem 4.1 we get that
$\varphi\left|w==\psi_{0}\right| w e \quad$ where ψ_{0} is the upper envelope of normal G-inveriant continuous linear functionals.
5.2. In our first example we found that the weight φ was upper envelope of invariant normal functionals. It is not hard to find an example for the other extreme. Let A be a semi-finite von Neumann algebra with no finite portion, i.e, with no finite non-zero central projection. Let φ be a faithful normal semi-finite trace on A. If G is the group of all inner automorphisms, then φ is a G-invariant -weakly lower semi-continuous weight on A and w is σ-weakly dense.
Since A is properly infinite there are no finite normal traces on A The wejght ψ_{0}. constructed in theorem 2.10 is the upper envelope of normal finite traces majorized by φ, hence $\psi_{0}=\varphi$.

REFERENCES,
[1] F. Combes
 Appl. 47 , $2568(57-100)$
[2] G.K. Pedersen

- Measure theory for C^{36}-algebras, Hath. Scand. 12, $2566(1.31-145)$
[3] M. Takesaki
- Lecture notes U.C.L.A on operator algebras
[4] F. Combes
ε Poids associé à une algèbre hilbertienne a gauche, Compositio Nathematica 23, 1971 (49-77)
[5] J. Dixmier \& Les algèbres d'operateurs dans l'expace hilbextien; $2^{\text {e édition, Paris Gauthier Villars } 1969}$
[6] S. Doplicher, D. Kastler and E. Størmer: Invariant states and asymptotic ajolianness, J. Funct. Anal. 3 , 1565 (419-434)
[7] F. Riesz and Sz. Nagy : Leçons d'analyse fonctionelle, Akadémiai Kiado Budapest, 1552
[8] F. Combes
: Poids et espérances conditionelles dans les algèbres de von Neumann, Bull. soc, Math. France cg, 1571 (73-112)
[9] I. Kaplansky s A theorem on rines of operators, Pac.J.hath. I , 1551 (227-232)
[10] F. Combes and F. Perdrizet: Ideaux dans les expaces vectoriels oxconnés, J. Kath. Puxes et sppl. ac, is70 $(29-59)$

