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Abstract.

Let A be a CT-algebra, [5 a group of "~automorphisms of A and ¢ a
G -invariant weight. Assume that ¢ takes finite values on a dense
subset of A+ « It is shown that there is a largest element among the
G -invariant weights \, majorized by % and weakly adherent to the
set of G -invariant continuous positive linear functionals majorized
by , . MHoreover this weight majorizes every & —invariant continuous
positive linear functional majorized by ¢ . If A is a von Neumann
algebra it is sufficient to assuse that ¢ takes {inite values on a

U - weakly dense subset of AT 4o get a similar result for porual
functionals. Purther characterisations of this weight are given in
terms of the representation associated with \() o« This relation is then
used to prove that if i is lower semi-continuous, the existence of

G —invariant continuous positive linear functionals majorized by ¥

is equivalent to the existence of fixed points in the associated Hilbert
space R and representation of 3 in ¥ -

Finally two exaaples are discussed.
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1. Introduction and notations.

Recently a great deal of information has been obtained about states
on a C* ~algebra 4, inveriant under a group 5 of ﬁwautomorphisms.
Unfortunately the set of invariant states on A can be very small, in
some cases it may be empty. So one may ask for the existence of

B —~invariant linear functionals on A which are eventually unbounded.
The concept of unbounded linear functionals has been introduced in 1
and [23 » In this paper we will be concermed with weighis as defined
in €11 which are invariant under a group of *-automorphisma.

The theory of 3 —~invariant weignts must make it possible to give a
unified treatment of the theory of T ~inveriant states and the theory
of traces. Indeed. a state is a special case of a weight and a trace
is a weight invariani under the group of inner automorphisms. In this
paper we will show that the study of invariant weights can essentially
be devided in two parts. The first of them being related to the theory
of invariant statés, the second being more similar to that of traces.

This fact will be discussed in section 2 where we construct to some
G ~invariant weights ¢ an other [ -invariant weight , with
the property that /), is the largest weight majorized by ¢  which
is the upper envelope of [ -invariant continuous positive linear
functionals.

In section 3 vwe will comstruct & G ~invariant projection map of the

set ¥ of continuous positive linear functionals majorized by ¥

onto the set I}, of W ~invariant eleuents in F . This mapping

will be used in section 4 vwhere we give more ypropertiecs of the weight
W, consiructed in sectiion 2. JAmong others we will give a necessary

and sufficient condition for the existence of [T -invariant continuous

positive linear funotionals majorized by \(J if +the latter is lower

seni-continuous. Finally in the last section we discuss two examples.

We recall some notions and resulis as they can be found in [1] .
A weight on a C*-algebra ig a function \{) defined on A+ with values



in [ o ] gatisfying the rollowing conditions:

4
1) wix+y) = opi(x) + v ly) for all x ,4y e A
ii) @ Chix) = A ¢ (x)  for all real numbers A o

{vwe agree that o©. = o )
The set of elements X € A such that (2*x) cw iga

left ideal W in A and the set of elements x € At with

¢ (x) < s is the positive part Wt of the subalgebra WU
defined as M W . The norm closures W and WY  of respecti-
vely V{ and WU satisfy the relation W= m - AR,
The subalgebra WU is spanned by its positive paxt and the restriction
6f p to W’(* can be extended to a linear form on WX , gtill denoted
by P . With \p is associated a Hilbert space H® , a representation
Tt of A and a mapping N of W into R such that

i) A VU 4ig dense in W
ii) \f(:c“y,): Ay , M) for all x,49 e W
iii) W(;.)!\g,-.-. Axy foxr  x e A ad y e W

Throughout the vaper we will ke concerned with a fixzed weight ¢ =0
that it is unnecessary to write W‘P’ ’WIY, etc. 3 if we are given also
another weight Y we will write Ww, "!’X,r... for the objeots
associated with W .

I would like to express my tharks to Prof. E. Stdrmer for his kind
hospitalit, at the mathematical institute of the university of Uslo
and for fruitful discussions. T am also indebted to Ix. N.H. Peterason
for helpful comments and to Dr. F. Combes for discussions coeacerning

the subject treated in this paper.



2, The upper envelope of invariant functionals majorized by an

inveriant weight.

Let A be a C*-algebra and [ a group of *-—automorphisms of A Fix a

weight \p on A and assume that it is (G -imvariant i.e. ¢ (3000 = {x)
for all x ¢ A" and 9 €& . is might be expected there is a

upitary representation of I3 in ¥ that implements the auto-

morphisms. The following lemma is more or less known (see [[4] lemma

4.3 ).

2.1 Lenma. et @ be & G -invariant weight on A, Then WX and W
ere G -invariant and there exists a unitary representation 1} u} 3
of G in X such that

i) U3A1 = N glx) for x €W and 3&5
1) W, wlp W' = o lgly)  for ye A ad gef

Proof: The invariance of M and WY follows trivially from the

invarience of . From I N o (x) "o P ({ g (x)*g(x)) =p (x"2) = l’./bg//2
1t follows that the mapping A x —» Aglx) is well defined,

continuous and can be extended to an isometry U, of *£ .

Clearly Ug.,, U = T so that Llj is unitary. It follows from

a trivial calculation that 4 ng Y is a representation of & and

that the relations i) and ii) hold. '

2.2 Definitions and notations. For any weight Y on a C‘—a.lgebra A

we will denote by F  the family of continuous positive linezr fumctionals
majorized by Y, ic€e #_(z) < &p(_z.) for all 2z & A+ and

,{, ¢ ¥ . By XK we denote the set of operators S e 1w (A) such
that there is a positive real number A such that ISAxl € N i x
for all = € VU . If moreover @ is &G -invarisnt we denote by

¥, and K, respectively the G -—invariant elements in F and X

natural
This makes sense if we let G act on T and 3< in the ieiviak Waye



From the work of Combes [ 1 1 we may expect that ¥ and XK ,
respectively ¥, and K, , will be related to each other. We will
clarify this relation withoui any restriction for the weight \P R
Doing so we will be able to treat very general cases.

The sets ’ patd ’ 3‘0 and k. and the relations we are going to
prove in the next lemmas will be extensively used throughout the

paper.

. .‘
2.3 Lemma. XK is a G =invariant left ideal in <« (A) . For any
S ¢ K there is a umique vector o in the closure of T (W)
such that S AXx = w(xn) « for all x & W.

Proof: Take S,5,,S, ¢ X , T ¢ w(Aland % e W

The relations

B(S,+ SaaAxl € NS Ast 4 Dsy Ax it

and RT SAx U <« BTN 6 SAx

shovw that J< is a left ideal. The relations i UC; S u,, Axl =) SAatl
and J gyl = Uxh for g €G  show that Ix is invarisnt.
Assume B S Ax N ¢ 0N x| . Let 4 UA'f be an approximate

left identity in M so that {Liwm = u, =% for all x € W and
therefore Q»:\n ~ (%) Shu, = din SAhxu, = SAx Dbecause Se X .

Let p= F = (x)* Y, be an arbitrary element in

(W) R = . From the relation

w an
S (Y., sAx )=l Z (8, SAxu )~ b (p, SAy))
tz4 Y'Y ]
~
it follows that w (p) = = (¥. S Ax,) defines a linear
<3 < L
functional w on Tt (W) K. Horsover

\m(p)lz e;)»\l(.pl, Shuy ¥l ¢ low Bok USAw, A ¢ Npn

8o that w is continuous, can be extended to T (VW )X and that

there exists a unique o € T (vz_v’}‘}e, such that w(lp) = CP; o)




Phis means ( Y, SAx) =(wx*)V ,¢) for all % eW and Y ¢ K
so that SAx = m(x) « for all x ¢ VU .

2.4 Lenmma. K, is a left ideal in the fixed point algebra of

wlAY . For any S ¢ K, there is a unique ¥ ~invariant
feotor oo € w{W") R such that S Ax = 7w (x}) <

for all x € VU .

Proof: The first statement follows trivially from lemma 2.3. By

this lemma we have also the exisitence of w in w (VU )R such
that S A~x w(=x) o« ", a3 Se K, it is B -invariant and

-4 A
SAhx ussu, A x zug_Sl\gfx)

(1]

{

]

Lt,/ 7 (3’4(x)) o = Tlx) u.g-L

by the use of lemma 2.1. By invariance of VYU we have that also
Wy, &« € 1 (W¥) M  and by uniqueness that U\a o= o
This completes the proof.

2,5 Remark. In the previous lemmas we gave a first characterisation
of K and X, , in the next we will show the relation between 'K
and ¥ , resp. Ko and F, . But first remark that X = w (A)
implies that T € X and s6 Nx = w(x) = for some o ¢ X
so that ke(x'"'a:) = { w{x%x) «,«) for all x e VT .
It follows that ( coincides on W' with a continuous positive
linear functional. Convers#ly this property would imply that
¥ {x¥x) = I Ax \32' € X Uzl for some A >0 so that
TeX aid (A =K .

~

2.6 Lenna. TFor any % ¢ ¥ there is a unique S € X such that

6 S < A ead 3% = NS Ax for all x e W,
Conversely for any S & K such that iS4 there is a
) e3 such that J(x*x) = U SAxn\® forall x e W,
Similarly for ¥, amda X, .



Proof: We prove the lemma for Yo and X, . Let .f, € YT, then
by (1], lemma 2.3) there is a T ¢ ¢ (A) such that o ¢ Tg <A
and  3(x"y) - CT_‘?_ Ax, Ax) . Define S = T}% then
o S <4 and !\S?\xltz: i(xgx) sh,‘fli lix!iz'
g0 that S e X.
If S is another element in = ( Ay such that o ¢ S§''¢ A
and 3 Cx*x) = 0 S Axw then B SAx We 0 s'Axnt
so that S
5= 8" . It then follows from the inveriance of .%. thet S is
also G -invariant so that S € ¥, . Conversely let S ¢ X, such
that W S W\ £ 4 . By lemma 2.4 there is a [ —invariant o e ¥
such that SAx = w{x} o ". A trivial calculation shows that
4 defineda by {(z) =(m(z) <, o) for ze A  is in F
and satisfies the required relation.

= g% and by uniqueness of the square root that

We will proceed in the same way as in the proof of proposition 13.11
of 137 in order to comstruct a largest [5 ~invariant weight W,
mejorized by L{) and with the property that it is the uppsr envelops
of [ —invariant continuous positive linear Ffunctionals. Therefore we
will need a property of F, called " ¢-filtrating" by Combes U17] .
The following result can be found in (.[107], lemma 3,1) and is due
to Dixmier. For sake of completencss we write down the short proof
given there.

2.7 Lenma. Let N be a left ideal in a von Neumann algebra M .
For any two elements 5, , S, in the unit ball of N and €¢>o
there is a S ¢ N such that

(r-¢) Sa"s,; ¥ s%s P | for (=4,2

Proof:  Put T.

L

o

¥ _ -1
(4-¢) La- G4-<) S S SC“S; for (e1,2

"

"l’,,-&-'r'z_

e /A L/
(a+T) *T™

w
1]



We will show that S is the desired element. First a trivial calculation
-4 -
shows that (4-¢) "S5 = 4~ (4+Tyamd 55 - 4o (a+7)77
go that (+1-¢) S}‘S; c $"S ¢ 4 .
- . A ®
Clearly T; ¢ M N since NV is a left ideal, s0 T €N N
and by ( [4], lemma 4.11) T N and therefore also S€ N |

We can now prove our first main result.

2,8 Theorem. et N be a C* -algebra, Iz a group of E-»automorphisms
of A and Y a L -invariant weight on A’ such that WU is norm
dense in A . There exists a largest G -invariant weight ),
majorized by Y) such that , is the upper envelops of a family

of G -invariant continuous positive linear functionals on A .,

Horeover \, majorizes every G ~invariont continuous positive linear

functional majorized by Y .

+
Proof: Define the fumction ) on A by

np,,(;):m;%,i(x),_ﬁs?r,}

It follows directly from the definition that W, (Ax) = A ¢ (z)
for allreal A >0 and that W, {2, + X} € y, Cx,) + @, (xq)
for all X, , X, € AY « We claim that also W, (x,4+ 3.3 Wolx, ) + 44 (xy )

so that , is a weight om A .

Suppose first that W, (%, ) = o y then for every integer w
there is 2 { e 3, such that § (x, ) >w and so
Clx+3) 2 L) >Mm - Weget W, (x,4x,) = o0

So we may suppose that W, (x, ) and \p, (xg) are finite.

For any © ¥ o we Tind f,! . ‘Lz_ e 3, suck that , Cx;) -€ ‘:'ii(xi)
for {=4,2 . By lemma 2.6 there exist operaiors & in K,
such that o ¢ Sp €4 and P Cy"y¢) = U S Ayl
for all y € W + By lemma 2.4 K, is a left ideal in the fixed
point algebra of T (AY' g0 we can apply lemma 2.7 to get an

S¢ K, such that (1-¢&! Y{‘ S; € $°S <4

Again by lemma 2.6 we find .ge ¥, such that § L%,"?) = I s Ay !lz
for all y e v . It follows that ('4-&)2;(7’5} s P (y*y)



and by continuity of 'L and. £ and the density of WU that
Ca-e) (W (x)~¢) 5 (a-2) 4 (xs) = $(x)

Summing up we get (4-%¢) (o (X)) + Yo (x,) -2¢ ) gf_(x,,-:—xl) s Wl vy,
and this holds for all & >0 so that W, (x,) + Y. {x,) ¢ W, (x4+%,)
and that y, 1is a weight,

As ¥, is G -invariant, so is Y, . If "tp €3 then § < ¢ so that
Y, sy . From the definition we have also that W, is the upper

envelope of {J-invariant continuous linear functionals,

Finally suppose that \, is another G —invariant weight majorized

by v with this property. So for any X € A* such that (x) < oo

there is a (3 ~inviriant eontinuous positive lirnear functional .fé Wy

such that y, () - .f.(l) < 1 » But y, s @ implies ;ﬁe T,
and .{_(x\ € Yol ) 50 that W {x) <« w,(x) +4 for all
% E-WT‘”.I and therefore J, {x) € W, ¢ x/) . Asimilar argument holds

for the case Y, (x) = o . So the proof is complete.

2.2 Corollary.

For any weight ¥ on a c®-algebra A such that WU is dense in A
there exists a largest weight !.y majorized by Y and lower

+ 3 . N N ~s
semi-continuous on A . This weight majorizes every fumctional in J-.

The corollary follows by taking for G the group consisting only
of the identity automorphism. It is an extension of propesition 1.10
of U17]1. We next will show an analogous result for a & -weakly
lower semi-continucus weight on a von Neumann algebra. It is almost

a consequence of theorem 2.8.

2.10 Theoren. Let A bYe a von Neumenn algebra, & a group of
SE--av:uto::mo::‘phisms of A and 19 a [ ~invariant ¢ ~-weakly lower semi~




*
continuous weight on A such that WU is U-weakly dense in A .
There exists a largest b -invariant weight W, majorized by ¢
such that |, 3is the upper envelope of normal G ~invariant functionals

on A .,

4
Procf: Define the function \, on A by

Yo (x) = aup a_e(r),!;e?gand _Eisnormalg

To prove ithat /), is a weight we can use the same argument as in
theorem 2.8. By ( U3], prop. 13.10) ™ is normal and all elements
:f ¢ 3, constructed in lemma 2,6 are of the form W, e T and
hence are normal., Further in this case we must use the U~weakly density
of WU in A end the normality of #; amd { toget (1-¢)f:{(x;) < P(x)

Apart from these two remarks the proof carries over completely.

2.11 Remarks. Theorem 2.10 reduces partly %o proposition 13.11 of [37]
if G consists only of the identity automorphism. The preoofs are then

almost the same.

Let § and y, be as in theorem 2.8. Define the function ¢, on At
by oy (x) = plx)-wulalif x e WX and Y (x) « 0 Jon x ¢ ur?
Clearly Y, is again & [ -invariant weight with W‘t% = Wz and

¥, € (( . If f. is any G -~invariant continuous positive linear
functional majorized by ), then { € ¥, and { <.
So for all % & Wt , YO) = w00 and $(x) € wolx) 8O
that 2 L(x) = ¢ (1) and 1 < ¢ . Similarly W) <
for all positive integers M. so that { (x) =o for = e wt
and by continuity that }f =0 _
We conclude that a & ~invariant weight ' such that WI = A  can be
decompossed into two G -iavariant weights Y, and W/, sucht that

A
1) P Ux) = W lx) + w(x) for w e A
ii) Y, is the upper envelope of 5 ~invariant continuous

pesitive linear functionals.



iii) ¥, majorizes me [ -invariant continuous positive

linear functional.

This result enables us to devide the theory of G -invariant weights.
into two parts. In the first case we may assume that the weight
majorizes no G -invariant continuous positive linear functional,

in the second case we may assume that the weight is the upper envelope
of such functionals. It is clear that the last case will be treatable

by the use of known resulis for G -invariant states.

In the next seciion we will const:buct a unigue normal & ~invariant
projection map gS of the ulira weak closure '3{ “P ¥  onto the

Wira weak closure Ko of Ko . We follow closely the arguments
of { U6 theorem 1). We will have that 5?5 is also & projection map
of W onto K, and of KK onto }(: K, . Therefere it will
be possible 4o define a unigue [5 -inverient projection map @' of
% onto ¥, that is w'-continuous on bounded sets. The map £ will

be used to prove more results on ) in section 4.

34 A B ~inveriant nrojection map of 3  onto 3'0 .

s} Notations. Let ¢ be a (3 ~invariant weight on A .

We will denote by E, the projection onto the fixed points in ¥ .
S0 we heve U‘g E, = T, for all g e G  and therefore also
E. UL%

waich we denote by < = N C%:’ \X% SL e T 1 converging strongly
to E, , (T7] sect.ll44), ( A' are functions on G with values in

o N L

= Eo » Horeover there exists a net of convex.. combinations,

00,11 such that A'(g) = o  exoept on a finite set and T X (g) =14 )

By E, we will denote the projection Cw (A E, ®R] § clearly
E, € T (A} and E, is & -invariant because T (A) and E, W
are so.

3.2 Proposition. Let iy bs a G ~invariant weight on A . There

exigts a unigue normal G -invariani positive precjection map/\of x

P

»
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v

onto K, , the ultra-weak closures of K and X,. We have
FCSIE, = B, S &, for any S € X', In particular BCKR)D =K,
and ¢C3("J< ) = .}‘:(: :ko

Proof: We first defins P on WK , then we prove sirong continuity

of '6 on bounded sets and extend it to K ., ILet S & K , by

lemma 2.3 there is a vector o such that S A x = T ()« for all

x e W . Let 3= AT(g) W §. be a net of convex
G 3- [V .

combinations converging sirongly to E, . For all 2 € VU and all

L& X we have

(= Neg) U, 5u*) ax

4e g% = “z; }(%> Ny SA g™ (x)
= sG A(g) L\?'vr(g (x))
: 3.‘25 X (@) ®(x) Uy o
= T(x) (3"%‘;5 Acg)uﬁ

Because the net )\ = (9) A, S bl ‘1 leT is bounded, it then
converges strongly to an operator g{ s} & ¢ (A)Y such that
Sﬁc_s) Ax = m(x)Ept. S0 Hl ZCs)Ax N € hxl HE, o}

and ¢ (3) € K . 48 E,s is G -invariant it follows by

a similar calculation that @(s) is G ~invariant. Clearly &

is linear and positive. if S e X, then ux% 3 u%" = § for all
g ¢ G so that ¢/CS) = § and # is a positive projection

map of K onto K, . Now let g € & then SAx = m(x/)

implies U, 9 L&; Ae = ‘ﬂ'(x\u?aﬁ and p’(ugsu"}/\x =

wlx) &, u?,,g = n{x) B, & an !
that  F (U S0 = PCs) end ¢ is G -invariant.
We also have that _
F(IE = shr bm 5 ) {9) U, s u
e T 3&5
e ste. bun = .\‘()
T e T g<G f U?S

[

E, SE,
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Using this last relation we prove that ¢’ is sirongly continuous on
bounded seis, Take S, € Ko s by lemma 2.4 there is & |3y ~invariant
vector &, € R such that S, Ax -~ relz) oo « Let S = U IS.l

bo the polar decomposition of S, . Then |S.1 Ax = WS A= i) U "o,
and a8 §, is & ~invariant, we have also that W oama W’ o, are

G -inveriant. It follows that E |S.! = IScland s0o 5o € = o .

Fow let Y & K , then &£C3) Y = $CS5) E, Y and there is a
vector ﬁ‘ T, Y, € m (A)E, R  such that [l E ¥ - %’T,; Y. Il <4

Lte 4 Czq

vhere T ¢ T (A) and Y, e E, A

so N FesIvlh = % FBes)E PN g Ngesdh + 0 ¢<5J,_%T; Y. i
S SW o+ E 0T MY o
But {5(5) Y, = gz(fs) B0 = ‘go SEL Y, = Es 3 ¥; and therefore
NSy o= W SN 4+ = aTiH 0S¥
and it follows from this relation L‘t;zl‘:a:l: ¢ i8 strongly continuous
on bounded sets.

So by continuity we can extend ¢ to the ultra wesk closure E of X,
The extension is still denoted by &g . Clearly Q' will be a G —in-
variant projection map of K onte Ko and still satisfy ;2{(5) E. = B, (E,
We show that the extension is also positive. Therefore let Se¢ I

and o€ 5 <4 3 if F is the largest projection in X
. vt &
we have S = SF.= FSF .5 S € Fn(AYF =%k K.
By (87 lemma 2.2) %~ K is ultra weakly demse in ¥ X and

by the Xaplansky density theorem we have that the unit ball of the
bermitian part of K~ X is strongly dense in the unit ball of the
hermitian part of K K .s0 S is strongly adherent o
AT §Te€ WK, T=T" ,UThe4 . Vo then have that S is
2
strongly adberent to 4 TL 4 T ¢ %"k T=T YouTreq ¢

end by the work of Xaplansky T97) that S =(s9)"2 is strongly
adherent to K 17 3 T’&'K*'}( , T‘:'T‘,HTL' s‘(f. 8 K is an
ideal T & K% implies T € 'K and | T) € X s0 that

S is strongly adherent to K'T’ f TeX |, o« T'c'lf. We may
conclude that f is positive and so that @ is a normal b -invariant

positive projection map of I onto W, . The normality follows
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from ({51, appendix II). Psiwaily If é is another normal

————

G -inveriant projection map of X onto X, then for any S € K

g(gé,\‘(apu?sugj‘) = & (s)

and by continuity ld{ (ﬂ‘(ﬂ) = %, CS) = )‘ﬁ (s) . S0 é‘ and 52'5'

coincide on K and therefore also on K .

. " [ 3
To complete the procf we must show that ¢C K k) = Kk K.
Teke S €& X such that NSAX N < wwx N then

-4

(Z)\(g)uﬁs Suﬁ

hx,hx) s =0 () s a®

" Ay b SAgTO0p"
. x
gz Y 9
s TANG) pxat - ixut
JeG
So that (¢(S’S)I\x,i\l)shﬂland FesTs)" e x,
and FCs*s) € X, K, . i8 X" K ' is spanned by its

positive elements and those elements are of the form S .5 with § €K
=

([4]) 1emna 4.11) we get F(7¢ "Xx) € k. Xo . This completes the

proof.

'3.3. Corollary.

Let F and Fos be the largest projections in resp. « and K.
the ultra-weak closures of JC and X, , then %c Fl = F,

Proof: s T, e we bave Fo <« F asnd Fo = ¢UF) < Q’(F)

is ¢(F) e Xy and o= FCF) €4 wehave g(F) e Fo s0
that dcr) = Fo |

3.4 Proposition. Let Y Yde a (G -invariant weight on A . Then

there exists a B -invariant projection map @ of F  into 3,
satisfying ¢‘ (.f,, +-£1 ) = ¢‘(‘f4) + d,(fziand g{‘(z\# e A 525'[{)
for 211 §,4, 81 ¢ ¥  and positive real numbers A . If moreover WX
is norm dense in A s ‘then ¢" is onto '3'0 ’ w‘-—continuous on bounded

sets and umnique.
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we
Proof: Firat define ?A(.B) for ? ¢ 3 . Given Jil € & there is
s unique S e K such that o< § ¢4 .and :F(x‘x) = (s's Ax, Ax)
by lemma 2.6. Then ¢f( s"s) e 'Ik: ‘Ko by propcsition 3.2 and
Sp'( s s )V{ & XN by (4] lemma 4.11). By lemma 2.4 there is
a unique invariant vector o e T tn™) ¥ such that
FCs )P Ay = w(x)2  for sl x € W . Define ¢f'(F)
by ;Z('('j.‘l(t) = (m{2) o, ) o Clearly Q" maps?‘
into g,
Let {4, a?.‘_ e F such that 3{4 = A _‘1 for a real number A >0
It is clear that the corresponding 5 S, e K satisfy S:‘ - A% A
and that o = /\4/1 ol o for the corresponding vectors. Then
ﬁ'(f,,) = A g (.ﬁl) . Further suppose L ,_{l.,{ ¢ &+ such that
_{Lu 1?:\ + ;?L . We then have S S = S: S * S; S, for the corresponding
elements in X . By linearity of 525 we get ¢ c 3‘5)' = 5;!(‘5"5*4.) + ,{(;:51)
As in the proof of (5] th. 1 p. 89) we can find operators
U, , by e v (A) such that

* A% ; | A
g CsMs )t = u, Jos sy for (=42

« ¥ © as
and (U:Li,, + U:uz) gess)™t = g s syt

_ —
Let o, , oy, o be the vectors in w(Vt) #  corresponding
to Frsis™ end ¢ (375)M . Then
«, %
mla) o = FOS ) CAx = U FCsTS) T Ax
2 Tt{l) U£ o

So that o, = Li; v} by unicity and invariance of T ( W) N
.- »

A similar argument shows that o = ( \A& W, + \X,L W, ) o

We apply all this to find the following

C &)+ 8010 = Cmlz)w, o) +0niz) oy, oy )
L r
:("?t('a'.)'al,,l/!’1 Ud.z)*('m(z\c(,ullk-lu!)

= (wteye, o) = g (D) (o)

for all Z e A | showing 52{,('?4 ~'r.79,‘} = ) +¢/’(¥z} .
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We next show that it is a projection map. Let _e bein the image of 95‘ .
Then there exist a 3¢ K, and a [ -inveriant vector o & RCVWJ K
such that § (x%=x) = (57S Ax, Ax) ,SAx=m{2)2 for x €& W
and .-a(z)t(“*‘tﬂ"d“)d-) for Ze A . Then ?’(JJS)aS‘J
and K&"(:‘)(z) = (wilz)e, o) for # ¢ A . The [y -invariance
of ;ﬁ) follows straight forward from the & -invariance of Q’ .
So we proved the first part.

Assume now that WT is norm dense in A . If £ e 3, there exist
a 3¢ K, and an invariant veetor o e T (W) K such that

2 x"a) e (3"Ss Ax,Ax) amg SAx =w(x) for x e VU ,
Then F(5*3) =5"8 and @' (Pe) = (w(2)<, ) for zed
But also f(x"x) ={m(x"x) o, ) for x e® " and it

follows by the demsity of WX in A that $(z) = ( nlz) o, o) = £ (2
for aill ze A . So ﬁ’ is a projection map onte F, . To complets
the proof it remains to show that (8! is w ~continuous on bounded
sets for then a similar argument as in proposition 3.2 provides the
unigueness.
n F . . v
Let .E.\ be a sequence in converging to .e in the w -topology
end such that ) £l €4 . Wo must show that g'(f;) (z) converges

to ;b”(_‘f)[z) for any z &€ A . Denote by §;, § the

corresponding elements in K and by ., ol the vectors in &
. ® i© . Vo

corresponding to ;{(SC 52) and @’(5 $) .

Take first Z = x" x with x e W .,

From the relations 9!'(4)(;‘1} s (_¢1,(_S(~“.S;}Ak,)\x)

.£; (R"k)

the corresponding onces for 2 and the normality of Ff we get
that Dt ;Ji(fé} (x %23 o ):d“[ﬁ) (x%x) .

A8 WY is linearly spanned by elements x x wiith = € VU we
have that p"(f; l(z) = g&"(f)(z) for 231 =z e Mg .

Then by the fact that | ?!'(_f;) Il < )}_f_; ) €4 and the density
of Wt this relation holds for ull = ¢ A .

So the proof is complete.

(S"“:‘-‘: Al' Ax, )



4, More properties of the upper envelope of 3. .

In this section we will get some more informaticn about the T ~invariant
weight ¢, , constructed in theorem 2.8 and from now on called the

upper envcleope of Ty . We will also relate the existence of fixed points
in ¥  to the existence of non-trivial elements in F, . Finally

we will consider the set of weights majorized by W, « In this section
again F and F, will stand for the largest yrojections in the wWltxra~
weak closures K and K, of resp. K and K, .

4.1 Theorem. Let ¢ be a (3 -invariant weight on A  such that W

is norm dense in ‘A . Let F, be the largest projection in the ultra-

wosk closure ?—Eoof K, and . the upper envelops of %, .« Then
L;J“C:L‘x) = (F, Ax, Ax) for all == e W .

Proofsy By lemma 2.4, K, is a left ideal in the fixed point algebra
 of T (AY . Then by (T4} lemma 4.11) K, ‘K, is a facial
subalgebra of (> and ultra-wealdydense in ‘5(.: K, = F, OF,

by ( (8] iemma 2.2). So by ( U8 lemma 2.3 ) there is an increasing

net AT, Y. .o of positive elements in X, ‘K, tending
ultra~weakly to 'L . Again by ( (4] leoma 4.11) there exist S; € X
such that Ti = S‘i" S, and by lemma 2.6 there exist :?( € Fo

such that -.{,LCx*g) = kS Ax D for all x et
SOCFoAx}AI)-:—'DU-p Cfa'fc Ax, Ax) < 2up -&fz"x}
teT ceX :

But fc [ ?‘o s0 by definition :fc € g, and (F Ax, Ax) s\p,(z'x)
On the other hanmd if {§ € T, there exist 2 S¢ 'K, such. that

6¢ Se 4 amd FCx"e) =10 SAxU* by lemma 2.6.
This implies that S°S < F, and so that f (xx) ¢ (F, Ax,Ax)
It follows that also W, Cx'x) = Aup _E(n’x) < ( =, [\xli\x)
This completes the proof. N

4,2 Coxollary.
Any weight P on A , such that we o= A ,is lover seni~-continuous
on WY if and only if K ie ultra-weakly demse in T ( A) .




S

Proof: Let (& be the group consisting only of the identity auto-
morphism, then F,=9% , Ko = X ad F Fo .

If ]-{ = T CAy then F-T and .‘J;‘,,(X.’x.) -_C,\l,AK)=Cp(t‘NJ
It follows that is lower semi-continuous on WX¥ . If on the

i

other hand Y is lower semi-continuous on WL+, then by (T11, prop.1.7)
‘o wrt  is weakly adherent to F  so that

C Ax, hAx) = \pfx*x*i: g, (x*x) = (R Ax, M)

I

So that Fo=F =X and ‘:}'Z-.-_WLA)‘

4.3 Corollary.

Let ¢ be a [ -invariant weight on A g -assume WX norm dense in A
and @ lower semi-continuous on W' %hen F, = [ nN(AYE, ] .
ioreover Le majorizes no non~zero [y ~invariant continuous positive

linear iunctional iff X has no fixed points.

Proof: From the proof of proposition 3.2 we know that for avy Ce K.
we have Se B, = I, where K, = T m(A) E, 7}

By continuity we get Fo € E, . From corollary 4.2 we have ¥ .-.".t
So again from proposition 3.2 and corollary 3.3 we have

FoB = (T )E, = E,TE, = € , a8 Fy € w(A)

we get F, TE, = TE, for all T & w LA) so that
also Fy » B, + The last statement then follows from

the relations \y,.[x"r.) = (F, hx,.’\x} and Fo = L CAYE, R

Remark that the existence of non~gzero elements in :}, implies txivially

the existence of fixed pointsg. The converse however is not so clear.

4,4, Corollary.

Let ¥ be & [ -invariant weight on A such that WU = A .
Then there is an increasing net § £; kz‘.st in 3’0 guch that
w (z) =aup :{i(;) for 211 z e AY such that ¢, (z] & o0
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Proofs From the proof of the theorem there is an increasing net

{f‘( in ?‘, such that
' tile T
L
(Folx , A) = M"Y e aup Polx®e)  for all xe W
veT
In applying this result 1o the weight Y, we get
¢ .
e ( z): aup 1:02) for all 2 ¢ W, ie

for z ¢ A such that W, (2} <« =@ :

Applying cor. 4.4 with trivial G te any lower semi-continuous weight
on A such that WU = A we get the existence of an increasing

+
net ‘i;l( e 7 such that L‘o(-z.)r.mp_-ﬁ;(z) for all ze Wt

4,5, Corollary.

Let p be a [ ~invariant weight on A such that W{ = A . Assume there
is a family ‘)1;*{\‘_%.: in 3 such that {.F("L)s
S $.() Jen  x e WY . Then there ic a family 14|
L& b

° ce X
in 3, such that W, (x) = Z :Pc (=)
for all x ¢ 'wz_"' . teT
Proofs By lemma 2.6 we get operators T, € 2% "X such that
\P(!*l} = _\% CTC '\'RI f\l) :(’\k,,i\l) for WK & Vz
So that T = & 7T;
]
s is lowex seﬁmi-continuous we have F = T by corollary 4.2
and p)' () = & by corollary 3.3.
So by the normality of ;25 we get
Foz.z dCT’;) and sc
\VEeL
Vol x"x) = CFohx, M) = Z(F CTe) Ax, Ax)
: L&
= = gL ) (xMx) P x e W
{eT
by the use of proposition 3.4. A3 ¢' Cft ) e 3, we proved

the corollary.
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4.6, Remark. In theorem 4.1 , a3 well as in the corollaries 4.4 and

4.5 we find that two lower semi-continucus weighis coincide on 'WL+.

It is nog yet known if this implies that they will coincide on all

of A ([1]1, ». 74). However if we assume the existence of a two

sided ideal ‘R“ contained in W and dense in A then this weignts

will coincide everywhere. Indeed there exisie an approximate identity
{u)\} in VIA' X, for A . So for any =z & A*, }\.z"/"u’\z”“;

ie a net in W'  tending to =z from below. (see also £2], cor.3.2)

4.7 Proposition. Let Y be a I3 -invariant weight on A such that
Wt is norm dense in A, For arny [ -invariant T e ' (A} such that
es T =« F, there is a |3 ~invariant weight \  such that

¥ o<y, and  Wwlx¥xz) = ( T Ax, Ax]) for all x ¢ VT .
For any [ -inveriant weight 1\ such that y € and

is lower semi-continuous on WU~ y ¥ Il we* is the upper envelope

of a family of |5 -invariant continuous positive linear functionals.
For any weight y on A such that W < ¥ and W | wet is
the upper envelope of [§ —invariant continuous positive linear
functionals there exist an operator T € = ¢ AY sucht that T~
is invariant, o T g % and Y {x*x) = C TAx, Ax)

for x ¢ VU,

Proofs Firstlet T ¢ WC(A) such that o¢ T « F.  Defins
the function W on AY vy

/

4. 4
Wix)= CTAX Y, Ax™) gor x e m*

. o2 for x e A ,x & Wt

Clearly (yt"\x) :)t,v{z) for all real A > o and
wle) € BFo Nx"t ¢ ) Ax™ Jl-piiitor x € w*
We prove thai \f/(x+j) :y;(n)«}y(:f) for all x,ﬂeA-n
It is clearly sufficient to show it for It y e wy t
s F, T F we have T ¢ ¥ and

T € FWAYF = % K - K% by ( (8] lemna 2.2)
So T is wezkly adherent to elements of the form

-

s 5’7 with S T, ek

~ i ¥
L4
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But W(l):CTAXA,AI ] and if o, B are the
vactors in A corresponding to S‘(\ fondl 'T: : (lemma e 3) we also have

that

- "y 4y a4 e
-~ : 1 -
(& so To AT, AN = Z (e, ;)
v LK |
+
So given X, ¢ WU vye can find vectors oy, B € X such that
EYS

byez) = = (wleipi 2;) ¢4 for z equal %o

An 4

x,tj on )z-na « 8O0 Ve getl 1LPCX**3)-\V{:(\—\;J(3)}C3
end by homogemvity that W {(x +yl) = y(x) + ywiy) '
If moreover | is & -invariant then y is clearly & ~invarient.

So we proved the first part of the proposition.

Let Y be a & -invariant weight, majorized by &f and lower semi-—
continuous on Wt* , then by ( U171 prop. 1.7) Wy )'Wf is weakly
adherent to the femily of positive continuous linear functionals ¢ 'Y
So by { (1] 1emma 2.6) T is weakly adherent to the family

15ex’"K §oss & T 'K ‘where | is the operator in T CA)
such that W (x¥ ») = (TAx,Ax) for xe W (T1] temma 2.3).
So we may apply 55 and use its normality to get that ¢ CT) is
weakly adherent to % ¢ Ct) § S e e ,0€ Y ¢ T ¢
But as \ is [ -invariant, so is T and FC(T)=T . Also

gf( K k) = “’3(,* “1<o so that |  is weakly adherent to

s, S; S ¢ "}(:"J(. L0 €3, & 1"‘;‘ Again by (1] lemma 2.6)

we have that y, | wr* 1is weakly adherent to the family of § -invaeriant

continuous positive linear functionals majorized by Y,

To prove the third part, led Y be a weight such that @ « y and
W l wet is the upper envelope of & ~invarient continuous positive
linear functionals. By (LU 1) lemma 2.3) there is a T ¢ * ( A}
such that © ¢ T g A4 and Y lx*x) = (T ARx,Ax)for xe W
Then again by ( U1 lemna 2.6) T is weskly adherent to the family
— e

18 e, K, 65T Y 180 T ek ¥ =%, K.
by (U8) lemma 2,2)., It follows that T = F, T F, £ F



4,8 Corollary.

Let P be any weight on A such that "™ = A . Civen Te T(A)
such that o« T ¢ ¥ there exists a weight Y ¢ L  such that
W (x¥x) = CTAx, Ax) for all x & I

Proofs Apply the first part of prop. 4.7 to the case wkers L is
trivial.

4.9 Remarks. Corollary 4.8 is in a sense the inverse of ([ 1] lemma 2.3)
On the other hand lemma 2.6 shows a similar relation for the set

{ S ‘5 S & 7("'7( , o€ 3 g4%a.‘nd the set of continuous positive linear
functionals majorized by \p . One may ask if for all T e =AY
such that 0T < 4 there exists a weight such that
v < and  y (x"x) - (CTAx,Ax) for all ¥ ¢ W
It can be shown to be true if A is a von Neumann algebra. Indeed
the only trouble is to shgw that 4the function (/ defined on A*
by W) = (TAX™, M i x e MY and plr)=e
it w e AT but x £ Wt satisfies W (x tyl) = wilx) +piy) .
If now A is & von Neumann algebra we can again find operators
and U € A such that

4 Y
i) x’{ TS (x+y)6'

y

7/":: v—('x+y)"'/i. Y “
1) (w"w + ") (xvy) e vy 5

gee proof of ([57) th. 1 p. 85),
So that  w (x) + ¢ ly) =(TA NN T I CTiuj%, A«,A/‘!

2 (T A Gay)™ e (u e Aoy ™)

%,
+ (T A (1¢~7)‘/‘, n{viv) .’\(xhj;l‘,

c (T I\Cx+\5)4"’") ,\(l!f(j)f/l) = y)[x%y)
‘Ybl\ x,4 ¢ wt




5. Examples.

5.1. Let T be a compact group acting as !-au'tomorphisms on a von
Neumann algebra A . Assume that the funmotion 5 —¥ %(ﬂie
strongly continuous for all % € A ., Let Y de a G —invariant
ultra-weakly lower semi-~continuous weight om R such that Wt is
ultra-weakly dense im A . We will show that ¥ | W  is weakly
adherent to the set of & —invarient normal functionals majorized by Lf .

Consider T & k'K s there exist Sy T, e 'K such
b
that T = 2 5 T, o By lemma 2,3 there exist vectors
L3
pih,'s'-.e‘}c-‘ such that S; Aw = mOe) v, and T; hxew(x)p;

for all =% € YU , For all ?g.'E and .'Jt,y(-Vt Wwe have

(l

-1

R Y
[ 4
5 Tl Ax,hy) = Z (e (sl ") Ay o)
¢ tz4
By the normality of Tt EB] prop. 13,10) we have that the function
-1
3 - uq T u?_ is weakly continuous.
L]
So we can define for all T & “%”°]< an operator ¢; {T) by
-4
@ (T) = guﬂ Thy dy
where ol 9 is the normalized Haar measure on & .
It is clear that ¢4 is a linear positive [ —invariant map into the
fixed points of - ( A) » Consider now also the projection map (é
of proposition 3.2. 48 kf is ulira~weakly lower semi-coniinuous,

W* K is dense in T (A ) (corollary 4.2) and ;ﬁ is defined
on 1 ( A)' . By normality and [ -invariance of 525' we get

&4 () =GY¢’ca‘,"Tu;) dg = &)

On the other hand @ ( g,C(T)) = g, (T) because ¢ is
& projection map onto the fixed points of W (A}' . Therefore

9“{4 = 52/ e ¥4 . Let S, be an increasing net of positive
elements in “J¢“ Y¢  tending to T . Clearly by the definition of

ng, we will have that &, ( §_,) — I .
On the other hand ¢, (S ,) = g4 ¢5,) &d ﬁf is normal so that
9’( .S._z ) -3 ¢ (IT) « By corollary 4.2 wve have F = T and



by corollary 3.2 that ¢ (F)y = Fo « . It follows at once that
F, = T and by theorem 4.1 we got that
YIWU = Y, Wt v¥here \y, is the upper envelope of normal

f -inveriant continuous lineer fuuctionals.

5.2. In our first example we found that the weight ¢ was upper en-—
velope of invariant ncrmal functionals. It is not hard to find

an example for the other extreme. Let A be a semi~-finite von Neumamn

algebra with no finite portion, i.e. with no finite non-zero ceniral

projection. Let \p be a faithful normal semi-finite trace on A .

If % is the group of all imner sutomorphisms, then | is a G -invarient

v--wezkly lower semi-continuous weight on A and WU is 0 -—weakly

dense. '

Since A is properly infinite there are no finite normal traces on A -

The weight Y/, constructed in theorem 2.10 is the upper envelope of

normal finite traces majorized by ¥ hence 1, = P -
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