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Classes of projections in a von-Neumann algebra are studied, 

and thereby fairly general conditions for unitary implementa­

tion (of isomorphisms) are obtained. By introducing a relation 

between classes of projections we also get a unified proof and 

generalizations of some results in the spatial theory for 

von-Neumann algebras. 
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Introduction. 

Conditions, assuring that an algebraic isomorphism between 

von-Neumann algebras be spatial (unitarily implemented), appear 

in a rather non-uniform way in the litterature. (cfr. [3], [4], 

[6]). In this article we shall study classes of projections in 

a von-Neumann algebra from a quite general point of view and 

thereby obtain a unitary implementation theorem for a fairly 

large class of von-Neumann algebras, the so-called GD (gene­

ralized discrete) algebras. As the name indicates, this is a 

generalization. of the "classical" concept of a discrete (type I) 

von-Neumann algebra. In fact, any von-Neumann whose commutant 

does not have any II1 - part is GD. - A von-Neumann algebra 

with II 1 commutant may, or_ may not be GD. 

Our basic building blocks will be the so-called primitive 

classes of projections (as an example: the class of abelian 

projections is primitive). We also introduce a relation between 

classes of projections and show how this may be used to give a 

unified proof of some spatial results for von-Neumann algebras. 

§ 1. Definitions, terminology and notation. 

(00 and £8 will denote von-Neumann algebras over Hilbert­

spaces 9t and X respectively. All isomorphisms are *-iso­

morphisms. E,F will denote projections and P,Q central pro­

jections.- Central carrier of an element A is denoted by CA. 

If x E -tf-, [(}Zx] denotes the closure of the linear space 

{Ax; A E(Y~1 (or the orthogonal projection on this space). -

By a E?rtition of E we mean an orthogonal family (Ei} of 

projections with sum E. The family {E.} is said to be homo-
1 

geneous if the elements are pairwise equivalent and completely 
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disjoint if for i ~ j. If is homoge-

Leous and card J = n, we say E = ~ El. is an n-multiple of 
iEJ 

any of the summands E .• An arbitrary n-multiple of a projec­
l 

tion F is denoted by n•F. 

Definition 1.1. 

Let ~ be a property of von-Neumann algebras. A projec­

tion E in OLI is said to have the property ~(relatively 00) 

if the reduced algebra G~E has the property JO. 

1rhe symbol [JJ will also be used to denote the class of 

projections having the property y). - Of course, we only con-

sider properties which are preserved under unitary equivalence. 

Further we shall confine ourselves to properties which are 

"proper'' in the sense that they persist under restrictions to 

central projections (i.e., if E EJO and P is central, then 

PE E tp ) . 

If n is a cardinal, we denote by n•JO the class of 

projections which may be written as n-multiples of elements froo 

~ • - E is said to be semi-J? if every nonzero subprojec­

tion of E majorizes a nonzero ~-projection. (Note that if 

E is semi-~, E may be written as a sum of ~-projections, 

by Zorn's lemma).- E is said to be cr-~ if it may be written 

as a completely disjoint sum of 9-projections. If {P ct J is 

a central partition of the unit such that P aE E 

{P a) is a 9-parti tion for E. 

, we say 

The following terminology will be used. in connection with 

classes: 
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Definition 1.20 

Let [JJ and & be classes (properties). We say that !J is: 

i) dominated by & , and write :JJ << (!},_, if E E :P , F E Q. 

and CE .::: CF implies E ,:,.. F. We say ._7) and & are re­

lated if either (/J << &. 0r Q_ << j'J • 

ii) primitive if E, FE~ and CE = CF implies E ~F. 

iii) almost primitive if K 0 • [P is primitive. 

iv) heredi tarx if E E CP and F ~ E implies F E tf. 
v) invariant (resp. a-invariant) if JP persists under ortho­

gonal (resp. completely disjoint) sums; the meaning of 

finitely (resp. countably) invariant should be clear. 
unique 

vi) homogeneous_l;y;(resp. _§.lmost homogeneously QE.ique) if 

and n·E = m• F (resp.: and n,m ~ K 0 ) implies 

vii) symmetric if [<)l~.~ x] E :P implies [01 'x] E !} . 

Remarks. 

n = m. 

If !} and (~ are related, then obviously ~ n & is 

primitive. Further, !lJ is primitive if and only if JJ <<.? . 
Indeed, suppose E, FE jJ with CE.::; CF. Then CE = CECF= CcEF 

and so E ~ CEF .::; F. 

§ 2. General conditions for unitary implementation. 

We shall make repeated use of the following structure 

theorem for isomorphisms, due to Dixmier. 

Theorem 2.1. 

Let cp: {)(__ ... r:J3 be an isomorphism. Then there exists a 

von-Neumann algebra aD and projections E' ,F' E /lJ' with 

CE' = CF' = I such that: 

2 = 9.JF, and cp may be identified with the 
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rna pping TE ' ... TF ' , T E !lJ Also, ~ is spatial if and only 

if E' ~ F 1 ([1; 5.1.3.] and [2; 4, th.3, corollaire]). 

From the definition of primitivity we then get: 

Corollary 1. 

Let !) be a primitive property and suppose OL 1 and 1J ' 
belong to the class P . Then every isomorphism ~: 62. .... J.3 is 
spatial. 

If ~: c.1L-:J3 is an isomorphism and E' E 67. 1 and F' E7.3' 
are such that ~(cE,) = CF' , then also the mapping 

E ' Fl 
l'f\ ' •• AE I ... AF I f t\) 'i" rom urc E 1 to ~ F 1 is an isomorphism 

[6; p.331]. From theorem 1 we then get: 

Corollary 2. 

Let ~: ()I_ ... !J3 be an isomorphism. If there exist parti-

tions (E. I) and (F. I 1 of the units in (fZI and 53' respec-
~ ~ I I E. ,Fi tively such that ~ ( CE. I) = CF. I and such that cp ~ is 

~ ~ 

spatial for all i , then cp is spatial. 

Proof. 

Let ,j{) , E 1 and F' be as in theorem. We have E' = L:E. 1 

E·' F I ~ 
and F 1 = L:F . 1 and 

~ 
~ ~' i is given by: TE. 1 ... TF. 1 , T E c0 , 

~ ~ 

from g;E. 1 
~ 

to f)) F. 1 • 
~ 

E. 1 F. ' and so 
~ ~ 

Since 
E. I F. I 

cp ~ ' ~ 

E I = L:E. I ,.... L:F. I = F I • 
~ ~ 

is spatial, we have 

§ 3. The unitary implementation theorem for GD (generalized 

discrete) algebras. 

In this paragraph we shall study von-Neumann algebras 

whose commutants may be decomposed into primitive constituents, 
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the so-called generalized discrete algebras. We give a precise 

definition of this concept: 

Definition 3. 1...:_ 

Let OL be a von-Neumann algebra and let j) be a primitive, 

homogeneously unique (r~sp. almost primitive, almost homogene­

nusly unique) property. Suppose that for each cardinal n 

(resp. for each cardinal n ~ ('-<) 
0 

there exists a maximal 

central projection 

n•jP and suppose 

P such that (JL p' belongs to the class 
n n 

l.u.b.[Pn) = I. In either case we say 02 

is generalized discrete (abb:rev. GD) with respect to JJ • The 

family [Pn} is said to be a characteristic family for ~ 

(with respect to !P ) . 

Remark. 

If the family exists, it is unique and the P 's n 

are orthogonal; this follows from the homogeneous uniqueness of 

~ and the maximality of the Pn's. 

In the next proposition we discuss some properties of the 

class operations 9-+ cr - :J and :J ... n· 7> and the relation <<, 

introduced in§ 1. 

Proposition 3.1. 

Let !]> and & be classes of projections and let n be 

a cardinal. Then 

i) [j) << G. <=> a - J.l << a - &_ <=> a - ']J << Q <=> .P << a - & • 

In particular, if Jl is primitive, so is cr- 9 . 
ii) n.(cr-,JJ) = cr- (n·:P). In particular, if 'JJ is almost 

primitive, so is cr-:} • 

iii) :J << {Q_ => n• 'J> << n. G . In particular, if :JJ is primi­

tive, so is n·~ ; and if P is dominated by the proper­

ty "properly infinite", then ]J is almost primitive. 
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iv) If ~ is homogeneously unique (resp. almost homogeneously 

unique) so is a ..:. } • 

Proof. 

i) We prove :J << (X, => a- JJ << a- t:.2. Let E E a- !} , 

F E a-("_;>_ with CE _s CF and let [Pa J (resp. [ &. 13 )) 

be a :P -partition (resp. &-partition) for E (resp. 

for F). Then, if Ra S = Pa Q13 , [\ 61 is a :fJ -partition 

for E and a ~-partition for F. We have 

CR E = R c CE S R c CF = CR F and so Ra S E ~ ~ Q F , 
a:S al-l a\-) as iJ 

since :J << (Q • But then E = ~\ SE .1_ ~\ 13 F = F and so 

a- :J << a - Q • - The other implications are either obvious 

or quite analogous to the one just proved. 

ii) We prove n. (a- :P) ~ a - (n· J>). Let E E n• (a -J>). 

iii) 

Then E =~E. where E. ~E. and 
l l J 

be a common ~-partition for all the 

E. E a -:J'J. Let 
l 

E. 's (this is 
l 

£P ) ·a: 

possible since the E. Is 
l 

are equivalent) and set 

F = ~p E .• a i a 1 
the F 's a: are com-

pletely disjoint. But E = ~ F and so E E a - (n·P), a r:~, 

i.e. n·(a -JO) ~a -(n·50). The proof of the converse 

inclusion is quite analogous. 

Suppose ... :P << Q and let E = n·E , F = n•F with 
0 0 

E E]) 
0 ' 

GE = CE < CF = CF 
0 0 

Then 

It follows that E = n•E cl_ n•F = F. -
0 0 

Now let (Q_ denote the property 11 properly infinite" and 

suppose ;/J<< & . Then Q = !< 0 • Q. [2; p.298] and so 

(< 0 •. :} << K 0. Q = Q. But t< 0. JJ s a and it 

follows that ("( 0 ·:P = <~ 0 ·P) n a is primitive. 
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i v) Suppose :J is homogeneously unique ( resp. almost homo­

geneously unique) and let [Ei1iEJ and [Fk}kEK be homo-

geneous families from with 'E E. = 'E Fk 
iEJ 1 kEK 

(resp.: 

~ t( 0 ). Let [P } a: and such that card J ~ ~ 0 , card K 

and [ QS} be :J -partitions for the 

respectively. Then, if R o:S 

E. Is 
1 

and the Fk 1 s 

is a J -parti-

tion for the E. Is 
1 

as well as for the 

'ER = o:S I, there is a nonzero element R 

(Ro:sl· We have 'E R E. = 
iEJ o 1 

'E R F 
kEK 0 k 

and 

since RoEi' R0 Fk E :;P and the sums are 

Since 

0 
in the family 

so card J = card 

homogeneous. 

We now state the unitary implementation theorem for GD 

algebras. 

Theorem 3.1. 

K 

Let (Ji and <?:; be GD algebras with respect to the primi­

tive (resp. almost primitive) property J1, with characteristic 

families (Pn} and_ \Qn1 respectively. Then, if cp: 01-+ J3 
is an isomorphism such that cp(Pn) = Qn for all n, cp is spa­

tial. 

Proof. 

i) Suppose :JJ is primitive. Then, for any cardinal n~ also 

n• !JJ is primitive (proposition 3.1 , iii)). By theorem 2 .1, 

corollary 1, each cpp is spatial, and by corollary 2, 
n 

cp itself is spatial. 

ii) Suppose VU is almost-primitive. For any cardinal 

n ~ ·~ 0 we obviously have n• JJ ~ n. ( ('12 0 • Jl), and we 

are back in the primitive case. The theorem follows. 

To obtain conditions for generalized discreteness, we 

shall need the following lemma, due to Dixmier. 
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Lemma 3.1. 

Let [Ei}iEJ be a homogeneous family in Q1 . Then there 

is a central projection Q in G~ and a homogeneous family 

[Fk}kEK such that: 

i) J .£:;; K 

ti) Fi ~ EiQ' i E J 

iii) if we put F0 = Q- 2: Fk, then F0 ..Z. Fk (strictly). 
kEK 

Furthermore, if card K ~ 'Z:':< 0 , we may suppose 

[2; III, 1, Th. 1, corollaire 2]. 

As an intermediate result we now get~ 

Lemma 3.2. 

Let :P be a hereditary property and let Oc be a semi- Ji 
von-Neumann algebra. Suppose one of the following two conditions 

is fulfilled: 

l. ) G-) J is primitive. 

A.r ii) !P is finitely invariant. 

Then there is a central partition (Po:} of the unit in (Jl. 

and a corresponding family {no:} of cardinals such that Olp 
0: 

belongs to the class n •:]) 0: • 

Proof. 

i) Suppose JJ is primitive. Let E be a JO-projection and 

let Q,F 0 and [Fk}kEK be as in lemma 3.1, constructed 

with respect to the one-element family [E}. Since 

F 0 .( Fk , F 0 E JJ by heredity of :P, and since F 0 is not 

equivalent to Fk' we have CF < CF (strictly), by pri-
0 k 

mitivity of 71. Set p = CF - CF • Then PF = 0 and 
0 k 0 

so 
PQ = P = P(F0 + 2: Fk) = ~ PFk 

kEK . . kEK 



- 10 -

[PFk)kEK is a homogeneous family of JJ -projections and 

so DL·p belongs to the class n• .P where n = card K. 

We may now repeat the argument for O(I-P (which is 

semi-J)), and the lemma follows by transfinite induction. 

ii) Suppose JU is finitely invariant and let E, Q, F0 and 

[Fk}kEK be as above. If card K < Ko ' 
then ObQ 

belongs to the class J>. If card K 2: 2:'<?0 , we may 

suppose Q = ~ F 
kEK k 

and so (f"VQ belongs to n. 'jJ' where 

n = card K. The proof is now completed as in part i). 

.Qorol]-ar_y_. 

A fini,.te projection is a-countably decomposable. 

Proof. ----
Let <g denote the property "countably decomposablen. 

Then any von-Neumann algebra (fl is semi-~ , since every non­

zero projection in (}( majorizes a nonzero cyclic projection. 

Also, the property ~ is obviously finitely invariant and here-

ditary. Now, if 01 is finite, then all the 

must be finite. The corollary follows. 

n 's a in lemma 3.1 

The following lemma clarifies the relationship between 

primitivity and homogeneous uniqueness. We omit the proof, 

since it is identical with the proof of a corresponding lemma 

in Dixmier [2; p.239], concerning abelian projections. 

Lemma 3.3. 

A primitive subclass of the class of finite projections 

is homogeneously unique. 

In particular, the property "having a generating and 

separating vector" is homogeneously unique when restricted 
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to finite von-Neumann algebras. 

We now give a sufficient condition for generalized 

discreteness: 

Theorem 3.2. 

Let CJu be a von-Neumann algebra (resp. such that 02' is 

properly infinite) and suppose 0{' is semi-J? where J is 

Prc:..of. 

i) primitive, homogeneously unique and hereditary 

(resp. i') almost primitive, almost homogeneously 

unique, finitely invariant and hereditary). 

Then C5L is GD with respect to cr - .]> • 

i) Suppose the unprimed conditions are fulfilled, Then, by 

proposition 3. 1 , cr -? is primitive and homogeneously 

unique. By lemma 3.2 there is a central partition {P } 
a 

Of the Unit SUCh that CJ/.,; I p 
a 

cardinal na. Set Pn = L:[Pa; 

longs to cr -(n.J.>) = n• (cr-Jl) 

respect to this property (by 

belongs to 

n = n}. a 
and Pn 

n • ']J for some 
a. 

Then c.n 'p be­
n 

is maximal with 

hnmogeneous uniqueness of 

cr-JU). It follows that {Pn1 is a characteristic family 

for 62.., with respect to cr- 'J . 
ii) Suppose 6t' is properly infinite and the primed conditions 

are fulfilled. Then cr-JJ is almost primitive and almost 

homogeneously unique (proposition- 3.1). As in part i) we 

obtain families {P } and [n } such that 6l' belon~ 
a a Pa 

to n • ]1:1 a • If na is finite, then the elements of the 

homogeneous partition in O('p are properly infinite 
a 

(Indeed, let ~j be a properly infinite von=Neumann alge-

bra and suppose E1 + E2 = I , E1 ~ E2 • If E1 were not 
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prnperly infinite, there would exist a nonzero projection p 

in the center of 2 such that PE1 ' 
and consequently PE2 , 

was finite. But then also PE 1 + PE2 = p would be finite, 

contradicting the proper infiniteness of~). Since a properly 

infinite projection is equivalent to an ~ 0 -multiple of 

itself c2; p. 29sJ, we have that crup belongs to x o. r:J for 
a: 

finite n 's a: • Altogether, we may supp0se that all the ~ 's 

are greater than i<,. 0 • The proof is now completed as in part i). 

Many theorems in the spatial theory for von-Neumann algebras 

now follow as easy corollaries from the above theorem. 

Corollary 1. 

A type I von-Neumann algebra is GD with respect to abelian 

projections. 

Proof. 

If 01- is type I, so is ()01 • In 0ur language this means 

that (;(. 1 is semi-abelian. Let c// denote the property "abelian"; 

then v1 is primitive [2; p.239] and hereditary. Since every 

abelian projection is finite, o4 is homogeneously unique. 

(lemma 3. 3). Since cr- A = t.-4, the corollary follows. 

Corollary 2. 

A von-Neumann algebra with properly infinite commutant is 

GD with respect to cr-countably decomposable projections. 

Proof. 

Let ~ denote the property "countably decomposable". Then, 

as noted before, any von-Neumann algebra is semi- ~. Further­

more, the property 1j;. is almost primitive ([2; p.299] and 

proposition 3.1, iii)), almost homogeneously unique [2; p. 224, 

lem. 6] finitely invariant and hereditary. The corollary follows. 
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Corollary 3. 

A semi-finite von-Neumann algebra with properly infinite 

commutant is GD with respect to finite projections. 

Proof. 

If 62. is semi-finite, so is 07_'. Let 7 denote the pro­

perty "finite". Then 7 is finitely invariant and hereditary. 

Since every finite projection is cr-countably decomposable 

(lemma 3.2, corollary) ~ is alno almost primitive and almost 

homogeneously unique (cfr. the proof of the preceding corollary). 

The corollary follows. 

§ 4. A note on genera~vectnrs. 

By theorem 3.2, corollaries, the only possible pure type 

non-GD algebras are the II 1 - algebras x, (x = 1or ro). And 

indeed, a IIx 1 - algebra need r~t be GD since, for instance, 
' a II001 -factor with non-trivial fundamental group permits 

' non-spatial automorphisms [5] (and so can't be GD, by theorem 

3.1; on the other hand, a II1 1 -algebra with a generating and 
' separating vector is GD). In general then, when we deal with 

IIx, 1 -algebras, we must look for other criteria for unitary 

implementation than those developed in the preceding paragraphs. 

For finite-finite1 ) algebras, and in particular for II1 1-
' 

algebras, one may formulate a criterion in terms of the coupling-

operator ([2] and [3]). 

For II00 , 1- algebras there is no canonical coupling-operator 

at hand. However, for algebras with generating vectors there is 

a condition for unitary implementation, due to Kadison, which 

says that an isomorphism between such algebras is spatial if it 

preserves maximal cyclicity [6; p.349J. (For finite-finite 

1) "finite with finite comrnutant". 



- 14 -

algebras with generating vectors it is easy to see that an iso­

morphism cp: ut - .. 2 preserves maximal cyclicity if it preserves 

the coupling-operator; indeed, in this case c~1 ~ [Gyt'x]ir, 

C_i1 ~ [~ 'y]~ where Cm,., CJS are the coupling-operators and 

x, y are generating vectors. By assumption, cp ( [01., 'xfr) ~ C:.B 1 yfr; 

but cp([m'x]"tt-) ~ (cp(Cfl'x]))'tf-, by uniqueness of the trace, 

and so cp([v~'x]) ""[J3 'y], by faithfulness of the trace). We 

now contend that a II00 1- algebra with countably decomposable , 
center has a generating vector. This will follow from the 

following more general result, which gives a condition for the 

existence of separating vectors in terms of the relation <<. 

At the same time we also get a new and unified proof of two 

similar results in Dixmier. ([2; p.19] and (2; p.302]). (Note 

that in view of lemma 3.2, corollary, and theorem 2.1, 

corollary 2, the restriction to algebras with countably decom­

po~able centers is not a very severe one). 

Proposition 4.1. 

Suppose at belongs to the class :fJ and C>l.' belongs to 

the class ~, where JJ<< (1 and 6( is symmetric. Then, if en 
is countably decomposable, en has a separating vector. 

Proof. 

By [2; p.18] we may assume that 07._. has a generating vector 

x. Then, if E ~ [()L 'x], we have that CE ~ I and E E &_ and 

so, by hypothesis, I ..<_ E ) : I - E. The algebra (nE has a 

separating vector, and so the same must hold for eJ-rL( C'r'L is spa-

tially isomorphic to 6'1E) • 

Corollary 1 • 

A countably decomposable abelian von-Neumann algebra has a 

separating vector. 
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Proof. 

The property "abelian" is dominated by any property.(2;p.239]. 

Corollary 2. 

A countably decomposable von-Neumann algebra with properly 

infinite commutant has a separating vector. 

Proof. 

The property "countably decomposable 11 is dominated by the 

property "properly infinite'' [2; p.292], and the latter is 

symmetric. [2; p.231]. 

Corollary 3. 

A properly infinite von-Neumann algebra with finite commu­

tant and countably decomposable center has a generating vector. 

Proof. 

If 01_, satisfies the hypothesis of the corollary, 07.' is 

countably decomposable (lemma 3.2, corollary). Thus 0(' has a 

separating vector, i.e. f)?_ has a generating vector. 
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