
Sections of functors and the problem 

of lifting algebraic structures. 

by 

Olav Arnfinn Laudal 



- 1 -

Contents 

0. Introduction. 

Chapter 1. Sections of functors 

( 1.1) 

( 1 • 2) 

( 1 • 3) 

Derivation functors associated to a functor. 

Obstructions for the existence of sections of functors. 

Proof of lemma (1.2.2). 

Chapter 2. Lifting algebras 

( 2. 1 ) 

( 2. 2) 

Leray spectral sequence for 

Lifting of algebras. 

Chapter 3. Lifting morphisms 

lim • .... 

(3.1) Obstructions for lifting morphisms. 

(3.2) Obstructions for lifting diagrams of algebras. 



- 2 -

Introduction. 

Let rr: R ~ S be a surjective homomorphism of rings and suppose 

( ker rr ) 2 = 0 • 

Let A be an S-algebra and let A' be an R-algebra such that 

A' ® S .::: A . A' is called a lift in~ of A to R 
' 

if 

Tor~(A' ,S) = 0 

In particular, if A is S-flat then A' is a lifting of A to 

R if, and only if, A' ®R S .::: A and A' if R-flat. We may 

then ask the following question. 

When do liftings exist, and if there are some, how many liftings 

will there be? 

If A is S-flat the answer was given by Schlessinger and 

Lichtenbaum [S]. 

Using their cohomology theory of algebras, they proved that there 

exists an obstruction &E H2(S,A; A 0 ker rr) such that C7= 0 

if and only if there exists a lifting, and the set of liftings, 

modulo isomorphisms reducing to the identity, is then a principal 
1 homogenous space over H ( S, A ;A ®ker rr ) • 

This is the kind of problem we shall be concerned with in this 

paper. 

We shall eventually consider a variety of algebraic objects de-

fined over S , such as an algebra, a morphism of algebras, a 

diagram of morphisms of algebras, a bialgebra etc. In each case 

we will study the corresponding lifting problem. 

A good starting point for the theory of lifting seems to be to 

consider the following general problem. 

Let rr~ C - c be any functor. When does rr admit a section 

(i.e. a functor cr: c - C such that cr rr = 1£ ) ? 
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Chapter 1 is concerned with this general problem. We prove 

that under certain conditions on TI (we need coefficients for 

a cohomology theory) there exists a se~uence of cohomology groups 

Hi(£~TI) and an obstruction ~E H2 (~~TI) such that 6r= 0 if 

and only if TI has a section. Moreover, if there is one section, 

then the set of all sections is a union of principal homogenous 

1 
spaces over H (~,TI) . 

In Chapter 2 we shall use the methods of Chapter 1 to give a new 

proof of a slightly improved version of the result of Lichtenbaum 

and Schlessinger. The cohomology involved here will be the co-

homology of Andre [A]. 

Finally in Chapter 3 we shall consider diagrams of morphisms of 

algebras. 

The main result is not too startling. If ~: A- B is a homomor-

phism of S-algebras, and if A' and B' are liftings of A 

resp. B to R , then there exist an obstruction 

t;Y(A' .B') E H' (S,A;B ® ker TI) 

such that ~A',B') = 0 if and only if there exists a homomor-

phism of R-algebras w': A' - B' such that w' ®R S W • 
The set of such liftings is a principal homogenous space over 

Der8 (A,B ® ker TI) • 

This paper grew out of a seminar given at the Department of Mathe

matics at the University of Oslo through the spring and fall of 

1970. The author wishes to thank the audience for its unfailing 

patience. 
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Chapter 1. Sections of functors. 

(1.1) Derivation functors associated to a functor 

Let rr: C - c be a functor of small categories. We shall con-

sider the category M2£ £ , for which 

1. The objects are the morphisms of £. 

2. If cp,cpl are objects in Mor c -- then the set of morphisms 

Mor ( cp, cp 1 ) is the set of commutative diagrams 

* _j__> * 
cpl 

v 
tcpl 

* <- * w I 

We write ( 1~, 11r 1 ) : cp - cp' for such a morphism. 

Let cp E M2£ £ be an object (i.e. a morphism of c ) and let 

...,.-1 (rn) [ I ( ) 1 
II ~ = A E M2! c IT A = ~) • 

If cp1 and cp2 are morphisms in c which can be composed then 

we have a partially defined map: 

defined by composition o£ morphisms in C 

We shall suppose that there exists a contravariant functor 

Der: Mor c - Ab 

with the pruperties: 

(Der 1) There exists a map: 

~ : rr- 1 (cp) X Der(cp) - rr- 1(cp) 

and a partially defined map 

v : rr- 1 (cp) X rr- 1 (cp) - Der(cp) 

defined on the subset of those pairs (x.1 ,x.2 ) having same "source" 

and same "aim" • These maps satisfy the following relations 
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(Der 2) Suppose ~1 and ~2 can be composed in c 

then the diagram 

TT-1 (~1) X TT-1 (~2) ~> TT-1 (~1 Q ~2) 

i~x~ i~ 
(TT-\~)X Der(Ci1)) X ( TT-1(q.>2) X Der(Cf-2)) -> TT-\~cef2) X Der( cp1oef2 ) 

6 

commutes, with 6 defined by: 

Note that ( id, ~2 ) : ~1 o ~2 -+ ~1 and ( ~1 , id) : q.>1 ocp2 -+ q.>2 are 

morphisms in Mor £ , since the diagrams 

cp1 
* '~ 

1 
* * > > 

cp1 ° cp2! 1~2 cp1ocp21 v t~1 
*<- * * < * 

1 cp2 

commute. 

We shall from now on use the following notations: 

cp 1 ~ = Der(cp1 ,id)(S) 

ncp2 = Der(id,~2 )(a) 

A.1-A.2= v(A.1,A.2) 

A functor with these properties will be called a derivation 

functor associated to TT 

There are some obvious examples. 

Ex.1. Let TT: R -+ S be a surjective homomorphism of rings. 
2 

Let 

I = ker TT and suppose I = 0 • Consider the category c of 
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flat R-algebras and the category c of flat S-algebras. Tensori-

zation with S over R defines a functor 

TT: C ... C 

and the ordinary derivation functor 

Der: Mor c ... Ab 

given by: 

where cp: A ... B defines the A-module structure on B ® I , is 
s 

a derivation functor for TT. 

Ex.2. Let c -o be the full subcategory of c defined by the free 

R-algebras (i.e. the polynomial rings over R in any set of 

variables)~ and let c -o be the full subcategory of c defined 

by the free S-algebras. As above the ordinary derivation functor 

induces a derivation functor for the restriction rr0 of TT to · 

c . -o 

Ex.3. Let rr: R ... S be as before and let C be the category of 

R-flat affine group schemes over R and c the category of S

flat affine groups schemes over S • 

Tensorization by S over R defines a functor 

TT: C ..., C 

Let be an object in Mor c (i.e. cp: Spec(B) ... Spec(A) is 

a homomorphism of S-flat affine group schemes over S ) and con-

sider 

where ~A: A ... A ® A and ~B: B ... B ® B are the comultiplica

tions defining the group scheme structure on Spec(A) and 
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Spec(B) respectively. 

Then Der is a derivation functor for ,. • 

Remark. If ,.- 1 (~) is empty then the conditions (Der 1) and 

(Der 2) are vacuous. 

(1.2.) Obstructions for the existence of sections of functors 

Given a functor rr with a derivation functor Der: Mor £. .... !£, 

let us try to find conditions on c and ,. under which there 

exists a section cr for rr , i.e. a functor cr: c - C such that 

We observe immediately that if such a cr exists then certainly 

we must have 

for all ~ E ~ £ , 

and moreover there must exist a quasisection i.e. a map 

cr': Mor c .... Mor C such that if cp1 and can be composed 

then cr 1 (cp1 ) and cr'(~2 ) can be composed and cr'(cp1 ) ocr'(cp2 ) 

have the same "source" and 11 aim 11 as cr'(~ 1 o ~2 ) • Given such a 

quasisection cr' we deduce a map cr · ob c .... ob C , which we o· -

shall call the stem of the quasisection cr' • 

Now, with all this we may prove: 

Theorem 1.2.1) Suppose given a quasisection cr' of ,. • Then 

there exists an obstruction 

(9-'(cr') E lim( 2 ) Der ..... 
Mor c 
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such that ~(a') = 0 if and only if there exists a section a 

of rr with the same stem a 
0 

as a' • Moreover, if 

then the set of sections having the stem a0 , modulo isomorphllms 

reducing to the identity, is a principal homogenous space over 

lim( 1 ) Der .... 
Mor c 

Proof. Consider the complex D" = D"(Der) of abelian groups 

defined by 

D0 (Der) = rr Der(1 ) 
c E ob c c 

Dn(Der) = rr Der( ~h c ~.?.o. • • o ~n) n > 1 
c0 , .... c1 .... •• · .... c 1 .... c 

w1 n- 1Jh n 

where the indices are chains of morphisms in c , and where 

is defined by: 

n . 1 
l: ( -1 ) 1 S ( ,.,1 j • • • ' 1!1 • o W • 1 ' • • • •'rn+1) + ( -1 ) n+ S {·''1 ' • • •' *-n) ,,, 1 i=1 T , 1 J.+ v '1' '~'n+ 

for n > 1 • 

One easily verifies that dn ° dn+ 1 = 0 for all n > 0 • 

Lemma (1.2.2) .... 
Mor c 

The proof will be given in (1.3). 
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Now consider the quasisection a 1 and define the element ~(cr 1 ) 

2 of D by: 

In fact ere (j I) E ker d 2 since 

( d 2 tr( a I ) ) ( w 191jl 2' $3) = ~1 ec a I )( $2 9 ~3) - cr( a I ) ( ~ 10 ~ 2' ~ 3) 

+ C9"( a I) ( w 1 t ~ 2 otjl 3) - (9( (j I ) ( ~ 1 '111 2) w 3 

= w 1 ( a I ( w 2 0 ~r 3 ) - a I ( $2 ) 0 (j I ( ~ 3 ) ) - (a I ( w1 0 ~ 2 ow 3) - (j I (w 1 0 w 2 ) D a I ( 1lr 3 ) ) 

+ (a1(1!J1o~2ow3)- a'($1)oa1(1j12ow3))- (cr'(w1ow2)- a~(w1)oa1(1Jr2))w3 

= (cr'(~~ 1 ) o a'(w 2ow 3)- a 1(tjs,-) o a 1($ 2) ocr•(w 3 )) 

- (a' ( W 1 oW 2 o\j! 3) - cr I ( $1 o $2) a I ( W 3) ) 

+ (a'(w1ow2ow3)- al(w1)oa'(w2ow3)) 

- (a'(w1ow2)a1($3)- a'(l!r1)oa•(w2)ocr'(w3)) 

= 0 • 

It follows that <Sr(a') defines an element <9'(a 1 ) E H2(D') • 

Suppose e(a') = 0 , then there is a s E D1 such that 

d s = 8( a 1 ) • 

Now put 

Then a ( w1 o 1jl 2 ) - a ( $ 1 ) o a ( w 2 ) 

= (a'(w1ow2) + s($10$2))- (a'(1Jt1)+ s(w1))o(a~'(w2)+ s($2)) 

= a1(1j11ow2) -a1($1)oa'($2)- (a1(1Jt1)s(w2)- s(1j11ow2) 

+ s($1) al($2)) = ~(cr')(w1,1Jt2)- (ds)($1,$2) = 0. 

i.e. a is a functor, (we easily find that cr(1c) = 1cr0 (c) ). 
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Obviously the stem of a is equal to the stem of a' (i.e. = a ). 
0 

Now let a1 and cr 2 be two sections of TI with the same stem 

a0 • Then (a1 - cr 2 ) defines an element in D1 , by: 

Since cr1 and cr2 both are sections (d1 (a1-a2 ))(w 1 ,w 2 ) 

= W 1 ( a 1 - a 2 ) ( W 2 ) - ( a 1 - a 2 )( W 1 ° W 2 ) + ( a 1 - a 2 )( ~ 1 ) $ 2 = 0 ' and 

therefore (a1 -a2 ) defines an element in H1 (D"). 

Suppose this element is zer~then there exists an element C E D0 

such that 

i.e. 

for all 

Conversely, suppose s E H1(D") is represented by s E D1 then 

given any section a of TI ~ s + a is another section with the 

same stem as a • 

QED. 

(1.3.) Proof of lemma 1.2.2. In this section we shallprove lemma 

(1.2.2) by proving a more general theorem. 

Theorem (1.3.1) 

Ab!£!: .£ 
0 

The functor 

Complexes is a resolving functor for lim 
Mor c 0 

• 

Proof. Let L be the constant functor on Mor c with L(cp) = 1G 
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for all cp • 
0 

We shall construct a projective resolution of L in Ab~ .£. • 

Let cp: X ... y be any object of Mor c and consider the s.ets 

e: p 
6o(cp) = {x ... c - y 0 

6n(cp) 
e: W1 

= {x ... c - c 0 1 

There exist maps: 

nn 6n(cp) ... 6n+1(cp) 
i 

defined by: 

I e: 0 p = cp} 

tn p 
I -···- c 1 - c -y e: ow1o .. o1jlno p = cp} n- n 

e: "'1 n~(x - c 0 -

p e: jd p 
c1 .... c.---c -y) 

J. n c1 -· ·- cn-1 - y) = (x ... c 0 

e: W1 w P 
6 :t?- ( x .... c - c 1 - •. • • -c 1 :g. c ... y ) = 

J. o n- n 

e:o*' w2 p 
(x- c1 ... c2-···-cn ... y) i=O. 

€ Wi0 Wi+1 P 
(x~co ... ···-o. 1 ... c. 1 --·-c -+y) 

J.- J.+ n 
for o < i < n 

e: "' 0 p (x ... c ....... -+c 1n ... y) i=n 
o n-

giving 6n(cp) , n ~ 0 the structure of a simplicial set. 

Moreover for each n ~ 0 , 6n(cp) is functorial in cp defining 

a functor 

... Simplicial ~ 

Composing 6 with the functor c.(-,~) we have constructed a 

complex of functors 

c.: !!21:.£ ... Ab 

Now, by a standard argument we construct a contracting homotopy 

for c. thereby proving 
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for i = 0 
H.(C.) 

J. for i I o 

Moreover 

C (cp) = II 
n (e,p):cp' -+cp 

[II 7l } 

llr 1 '• ··' *n 
in Mor c 0 -- w1o ... o*n = cp' 

Using ([La],Prop.1.1.a) it follows that each en is projective as 

object of AbMor £0 

0 

Therefore C. is a projective resolution of L in Ab~ £ • 
Since 

Mor (C ,F) =IT F(* 1o•••own) 
M o n 

Abf or .£ c .... c1-. ·->c 1 ->c 
o 1!1 n- 1!1. n 

---- n 

we find by a dull computation that 

D•(F) ~ Mor (C.,F) 
AbMor £. 

thereby proving the theorem. 
QED. 
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Chapter 2. Lifting of algebras. 

( 2. 1) Leray spectral sequence for lim. 
<-

Let c be any small category and let c be an object of c • 

Consider the contravariant functor C(~,c) defined by: 

C(.tZ,c)(c') = U z; 
c , .... c 

cp 

We know (see ~~) that these functors are projective objects in 
0 

Ab.£ • 

Suppose M is a full subcategory of c and consider the restric~ 

tion of C(~,c) to M • Let F be any contravariant functor 

on M with values in Ab then we find, 

0 
~ ( C ( ~, c ) , F) 

Now, suppose c0 ~ c in c is an M e.J2.imorphism, i.e. c0 E ob M 

and the map 

Mor(c',c ) .... Mor(c',c) 
0 

is surjective for every c' E ob M • 

Suppose further that c has fibered products and consider the 

system of morphisms 

cp 4- 4- ..,_ 4-

c .... c 4- c X c 4- • • • • t- C X • • • X c 4-

0 0 0 4- • 
~ I c • • 4- ... 

p 

Put c = p C X • • • XC 

~ 
and denote by 

p+1 

d i 0 c ..... c p-1 i = 0' ••• 'p p 0 p 

the p+1 projection morphisms. 
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Consider for each d i the corresponding morphism 
p 

o i: C(~9 c ) _, C(Zl,c 1 ) and let o = £ (-1 )io i • Then 
p p p- p i=O p 

o o 1 = 0 for all p > 1 • p p-

Lemma (2.1.1) The complex c. = (C(~,c ) 9 o } > P P p_o 

Proof. See M. Artin [1] p. 18. 

is a resolu-

0 
Let F' be an injective resolution of F in AbM and consider 

the double complex 

Mor( C. 9 F") 

We shall compute the two associated spectral sequences. But 

first we have to establish the following lemma. 

Lemma (2.1.2) Let f: M(c _, M be the canonical forgetful 

functor and let F be inJ·ective in A~0 then the composed - ' 
functor foF: (!Y!jc) 0 _, Ab is injective as an object of Ab(!/c)0 

.. 

Proof. The functor f induces a functor 

We want to prove that f* takes injectives into injectives. 

To prove this we construct a left adjoint 

p: Ab(!fc)o _, AbMo 

Let G be an object of Ab(Mfc)o and put 

cp 
p(G)(m) = .II. G(m _,c) 

cp EMor(m,c) 
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0 
so that p (G) is an object of AbM • 

One easily checks that there is a canonical isomorphism 

Mor(p(G),F) = Mor(G,f*(F)) 

proving that p is left adjoint to f* • Since p is exact 

we know that f* takes injectives into injectives. 
QED. 

Going back to the double complex Mor(C.,F") we find the E2 

terms of the two associated spectral sequences: 

We know already that 

"Ep,q = 0 for q I 0 
2 

"En, 0 = Hn( lim (F")) 
2 -(!Y!;'c)O 

and by Lemma (2.1.2) we deduce that 

"En,o = 
2 

Since 

Mor(C ,F") = lim F• 
p -

Mjcp 

we find, using Lemma (2.1.1) once more that 

'Ep,q = HP( lim (q)F) 
2 -

We. 

We have proved the following theorem. 
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Theorem (2.1.3) Let M c c and ep· c _. c 
0 0 be given as above. 

Then there exists a Leray spectral sequence given by: 

converging to 

Remark 1. The spectral sequence above is nothing but the Leray 

spectral sequence associated to the "covering" cp: c 0 _. c in an 

appropriate Grothendieck topology. 

2. Since c 0 E ob M the category !jc0 has a final object. 

Therefore E0 'q = 0 for all q ~ 1 • 
2 

We deduce from this the formulas 

and the exact sequence 

lim (i)F = 0 .... Corollary_12.1.il Suppose that 

(M,Icj)O 

i+j = p and for i+j = p-1 • Then 

for i > 1 , 
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Assume for a moment that there exists a functor i: c ~ Ab 

commuting with fibered products. 

Corollary (2~.5) Put g = f o i a..11d suppose 

lim g = i(c ) 
lYYc p 

for all p ,2: 0 • 

Then 

p 

lim g = 0 • 
~(1) 

M/c 

Proof. Let E be an injective abelian group and consider the 

functor 

F(-) = Ab (g(-) 9 E) , 

We know that 

Ab ( lim g, E) 
- ~ (1) 

M/c 

= ker[ lim F ~ lim F} / im[lim F ~ lim F} 
4- t- +- 4-

(M/c1)0 (M/c2)o (M/co)o (M/c1 )o 

But since i(c ) = i(c ) x ••• x i(c ) 
P · 0 i(c) i(c) 0 

p+1 

this last group is zero. 

Since this holds for all injective abelian groups E we have 

proved that 1~mc 1 ) g = o • 
M/c 

QED, 
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Remark The last corollary and the next one are important in 

our development of the lifting theory for algebras. 

Corollar~ (2.1.6) Let M c M be two full subcategories of 
~o 

c • Suppose c has fibered products and let c E ob £ • 

Assume that c satisfies the following conditions: 

(c1 ) There exists an object c 0 of M0 and an M-epimorphism 

For any M-epimorphism ljl:d ... d 
0 

im c with d0 E Mo 

exist objects e E M and M-epimorphisms 
P -o 

1)1 • ep - d0 x ••• xd p' d 0 \..._d 
'V" 

./ 

p+1 

Then we may conclude 

lim(·) lim(·) 

<!YJ.i c) 0 <}!!jc) o 

p > 2 • -

there 

Proof. We first observe that (c 1 ) and (c 2 ) together with (2.1.1) 

imply that there are canonical isomorphisms 

( 1 ) lim 
(!;cp) 0 

where c = c x ••• xc • 
p 0 c c 0 

\..._ .......,.-~--J' 
p+1 

Now the canonical morphism 

lim(n) 
+-

~/c)o 

induces morphisms of spectral sequences 
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Using (1) we find isomorphisms 

p .2: 0 • 

Thereby proving that is an isomorphism. By an easy indue-

tion argument we may assume that t~,q are isomorphisms for all 

p,q with p+q < n or q < n • This implies that 

are isomorphisms for all p,q with p+q = n , thereby proving 

that tn is an isomorphism. 

QED. 

(2.2.) Lifting of algebras 

Let S be any commutative ring with unit. Let S-alg de

note the category of S-algebras and let S-free denote the 

category of free S-algebras (i.e. the category of polynomial 

algebras, in any set of variables, over S ) • 

Let A be any object of S-alg and consider the subcategories 

M0 and M of S-al&;A 

full subcategory of M 

given by: M = S-free;A and 

defined by the epimorphisms 

Thus we have M0 ~ M ~ S-algfA • 

We observe that we have isomorphisms of categories: 

M 

Mo/(A r A) 
A 

!/(A f A) 
A 

(S-algj A) I (A r A) • 
A 

M is th~ -o 
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By a straight forward verification we find that M0 ~ M ~ S-~A 

and the object (Af A) satisfy the conditions of Corollary 
A 

(2.1.6). 

We therefore conclude: 

Lemma (2.2.U 

Now recall that given any A-module M the cohomology H"(S,A;M) 

is defined by 

Hn(S,A;M) = l~m(n)Der3 (-,M) 
Mo 

(see Andr~ [A]). 

Using (2.2.1) we find 

Hn(S,A;M) = 11m(n) Der8(-,M) 
Mo 
-o 

(i.e. we may compute the cohomology of A using only surjective 

homomorphisms of free S-algebras onto A ) • 

Recall also (see [La]) the standard resolving complex c· for 

lim (called rr· in CLaJ), for which 
4-

c· is defined by 

cP(F) = l1 F (c ) 
c _. c 1_.- £c 

0 ~1 ljrp p 

with dp: cP(F) _. cP+1 (F) given by 

d p ( S) ( ~ 1 ,. • • ' W p+ 1 ) = F ( ljr 1 )( S ( ~ 2' • • • '~ p+ 1 ) ) 

+ ~ ( - 1 ) i s ( \jl1 ' • • • ' ljr i o ljr i + 1 ' " • • ' ljr p+ 1 ) + ( - 1 ) n + 1 s ( ljr 1 ' • • • ' 1jJ P ) • 
i=1 
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Let IT: R ~ S be a surjective homomorphism of commutative rings 

and let I = ker TT • Assume that 2 
I = 0 • 

Consider the functor 

IT' : R-alg ~ S-alg 

defined by tensorization with S over R • 

Definitiog_(2.2.2) An R-algebra A' is called a lifting of 

the S-algebra A to R if n'(A') ~A and Tor~(A•,S) = 0. 

Let IT be the restriction of n' to R-free 

n: R-free ~ S-free -
We have observed already in (1.1) that 

where ~: F1 ~ F2 is a homomorphism of free S-algebras is a 

derivation functor for n • 

There are lots of quasisections of n , and we pick one quasi

section a' • Note that all stems are equal. 

Suppose now that there exists a section a for n • Given any 

S-algebra A , a good candidate for a lifting of A to R would 

be the R-algebra 

A' = lim ( f o a) • _. 
S-.free/A 

In fact we shall see later that A• is a lifting of A • 

Since there are, in general, S-algebras that cannot be lifted 

to R we deduce that such a a cannot always exist. 



- 22 -

To settle the case of a single S-algebra we must therefore be 

a little more subtle. 

Consider the restriction of 

at the complexes 

D" = D" (g o Der ) 
0 

g: M ... S-free 

C" = C • ( g o Der ( - , A ® I) ) 
0 

defined above (with c = M ), see (1.2). -o 

to M -o and look 

Let us first show that there exists a surjective morphism 

j: n· .... c· . 

In fact we have that 

® I) 

~1 II ~er S ( F 0 , A ® I) 

F .... F 1 ....... - F 

~\l'P0 
A 

where the indices run over all sequences of morphisms 

_. rl\ in M0 • 
~~ 1 "~'n 

Now for each such index; cpn defines a homomorphism 

cp ... cp1 ..... 
o *n 

Since F 
0 

is free and is surjective we conclude that 

is surjective. (This is in fact the only reason why we have to 

consider M -o instead of M • ) 
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But these ~n* induce a surjective morphism 

. Dn On J 0 ... 

n· 

and a trivial verification shows that these j 's commute with n 

the differentials in D" and c• • Put K" = ker j , then the 

sequence 

0 ... K" ... D" ... c• ... 0 

is exact. 

Corresponding to the quasisection a' we have the 2-cocycle 

cr(a') E D2 given by 

where ~1 and w2 are morphisms in M -o 

F lj!j F \jJ~ F 

0 11 2 

cp;~1 '/ 
A 

such that: 

Let &(A, a') = j ( (7'( a')) and consider the corresponding element 

~(A,a') E H2(C") = H2(S,A;A ®I) 

Theorem (~~ (i) The cohomology class ~(A,rr) = ~(A,a') is 

independent of the choice of quasisection a' • 

(ii) There exists a lifting A' of A to R if and only if 

~(A,rr) = 0 • 

(iii) If e(A,rr) = 0 then the set: 

FA(R) = (A' E ob R-alg I A' lifting of 

is a principal homogenous 

A 
11 isomorphisms It A I ~ A" 

reducing to the 
identity on A} 
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1 
space over H (S,A;A ® I) • 

Proof. Suppose cr' and cr" are two q_uasisections. Let C be 

the 1-cochain of D" given by 

Then one verifies that 

C1(cr")- Cf(cr') = dC. 

Thus <'(cr") = et(cr') and h fortiori 

<9( A , cr 11 ) = &( A , cr ' ) 

proving (i). 

Suppose there exists a lifting A' 

the obvious functor 

of A to R and consider " ·~ 

where M0 (A 1 ) is the full subcategory of R-free;A, defined by 

the surjective homomorphisms. 

There are lots of q_uasisections of rr2 , and we pick one quasi-

section cr" • If 
o/1 

Fo ... F1 

cpo\ /r1 
A 

is a morphism 1)11 in S-free/A let 

cr"(w1) 
F' -> F' 

0 1 

cr"(cp )\ /cr"(cp) 
o ~ IL 1 

A' 

be the morphism cr''(w 1 ) of R-free;A. 
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Computing C7'(cr") we find j <'Ccr") = 0 since, on one hand, all 

triangles with A' as vertex in the diagram 

I ' F -> F1 cr'ii(f>) F2 0 cr"(w ) ' 1 

lo"(,V~cp2 ) o"('~'o~ 
L 

A' 

commute; and, on the other hand, the diagram 

F~ ® 
cp.®1I 

I ;:: F. ® I ]. > A' ® I :: A ® I 
J. R ]. s R s 

1 1 
F. I > A' 

]. cr"(cp.) 
]. 

commute as a result of Tor~ ( A', S) = 0 a 

Therefore e(A,rr) = 0 , proving the "only if" part of (ii). 

Suppose ~(A,rr) = 0. Then j C3(cr') = dC where C is a 1-co-

chain of c· . Since j is surjective there exists a 1-cochain 

C of n• such that j ( S) = C • Let cr11 be the map 

Mor M ~ Mor R-free -o 
given by: 

Let 

Since 

Now 

be two morphisms in 

cr tt{ 1!r 1 o ~ 2 ) - cr 11 ( ~ 1 ) a a" ( "' 2 ) 

= &c 0" I )( \~ 1 ' "'2 ) - d S ( "' 1 ' "'2 ) = W ( "' 1 ' "'2 ) 

j &( cr ' ) = j ( d s ) we may assume 

A' = lim cr" _. 
M -o 

then 
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exists as an R-module, 

lim a" = 
M .... 
-o 

coker ( ll a" ( cp ) :: 
~1 0 

cpo .... cp1 

U a"(cp)) • 
cp 

Consider the resolving complex c. (the dual of C") of lim • 

Recall that: 

... 
M -o 

Since a" is not a functor C. ( a 11 ) will not necessarily be a com
plex, but nevertheless we may consider the diagram: 

0 0 0 A ® I 

t t ~ s 
13 Sl 

c2 (a") ® I ---+ C 1 (a") ® I -> C (a") 0 I -> A' ® I-> 0 
R R 0 R R 

I 

I t ' 
I 

w w ~a. 
6 y 

c2(a 11 ) ----~ C1(an) -> C (a") -> A' ->0 
0 

t I t t 'll 

c2(a") ® s -> c1(a") ® s -> C (a") ® s -> A -> 0 
R R 0 

t I t t t' 

0 0 0 0 

In which we know that all sequences of maps marked with solid 

arrows are exact, The vertical sequences are exact since all 

C (a") are R-flat, the .lower horizontal sequences is exact p 

since 
C (a") ® S 

p R 

and because of Corollary (2.1.5). 

The solid part of the upper horizontal sequence is exact since 

c.(a") ®I 
R 
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and finally, part of the middle horizontal sequence is exact by 

the definition of A' • 

Remember that we do not know that 5 o y = 0 • In fact it may well 

be that 6 a v 1 o • However im (6 oy) c C (a")® I and fortu-
- o R 

nately we hawarranged the situation such that 

13 (im(6oy)) = 0. 

This follows by observing that the image of 5 oy consists of 

sums of elements of the form 

for 

qJ 
0 

in M , and by recalling that w E K2 , such that -o 

Using this we may easily see that a is injective. 

But a is injective if and only if 

We have to show that A' is an R-algebra. Consider a system 

of homomorphisms 

d 
p1' 

p _. 
F1 

_. F X F _. F _. A 
o A o p' o 
~ 

fl' 

in which p and d are surjective, P1 and p' 2 
are the pro-

jections and 6' is the diagonal. Let 6: F ... F1 be a homomor-
0 

ph ism such that 6 0 d = 6' 
' 

and put p. = d Q p ~ • l l 

Then A is the inductive limit of the system 
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Now use the quasisection cr"' on these morphisms, and get a 

diagram 
cr'" ~) P, 

F' ~ F' ~ A' • 
~0 

cr"' (6) 

Since we have the commutative diagram 
0 0 

t 
F1 ® I 

t p®l 
~ F ® ® I 0 _, I _, A -> 

0 

t t t ~a 
cr "(p ) ~ 

F' 
1 

_,1 
.... 

cr"~ 
F' _, coker( cr" (p 1), cr" (p2 )) ~A' 

0 

p1 t t / .... F -> A -> 0 _, 

p2 
0 

t t t 
0 0 0 

in which a is injective and all sequences are exact we deduce 

that 

If we can show that im( cr" (p1 ) - cr" (p2 )) 

are through. 

Suppose cr"(1p ) = 1p' + sp , then since 
0 0 0 

we find that Sp = - w ( 1 F , 1 F ) 
0 0 0 

and that 
p I ( Sp (X) ) = 0 

0 

is an ideal of F' we 
0 



- 29 -

for all x E F' ,so that we have 
0 

Obviously cr"(1F ) is an automorphism, such that given any 
0 

X E F' 
0 

we may find a y E F' 
0 

x = cr 11 (1F )(y) • 
0 

such that 

Let z = (cr"(p 1)- cr 11 (p2 ))(u) and look at 

x• z = cr"(1F )(y) • (cr"(p1)(u)-cr"(p2 )(u). 
0 

We recall that 

cr 11 (1F )(y) = cr 11 (p 1 )(cr"(~)(y)) + w(~,p 1 )(y) 
0 

= cr"(p2 )(cr"(~)(y)) + w(6,p2 )(y) 

Therefore we get: 

x • z = cr"(p 1 )(u•cr''(~)(y))- cr 11 (p 2 )(u.cr 11 (~)(y)) 

+ w(~,p 1 )(y) • cr 11 (p1 )(u) 

Now for 

is equal 

where u 

Since 

- w(6,p2)(y) • cr"(p2 )(u) • 

i = 1 '2' the element 

w(6,pi)(y) • a" (p. )( u) E F0 ® I :::: F' 
J. s 0 

to 

w( ~,p1) (y) • pi(u) 

is the image of u in F1 

is a homomorphism of 

• 

F -modules 
0 

(p ® 1I)(w(6,p.)(y) • p.(u)) 
J. J. 

In particular we have proved 

® I 
R 

we find: 

i = 1,2 



- 30 -

x • z E ker p' , 

thus ker p' is an ideal of F' and therefore A' is an alge
o 

bra, which proves (ii). 

Suppose now that e(A) = 0 and consider the quasisection cr" 

defined in the beginning of the proof (p. 24). 
1 Let c be any element of H (S,A;A ® I) and let 

s 
sent c • 

repre-

Then cr" + s is another quasisection with the property that 

(j'(a"+ s) = (5'(cr") • 

Therefore 

1 im ( cr " + s ) = A " 
-+ 

Mo 

is a lifting of A 

Suppose on the other hand that we have two liftings A', A" • 

We may, as we claimed above, construct quasisections a', cr" of 

and 

Let 

TTA,: M (A') -o 

s(~) = a' (1\1)- cr"(w) I 

respectively. 

Then s E D1 and we know that j(ds) = 0 • Therefore j(s) 

defines an element 

If there exists an isomorphism 

~: A' -+ A" 



- 31 -

reducing to the identity on A ~ one checks that j(s) is a 

cocycle such that A.(A',A") = 0. 

Conversely if A.(A' ,A") = 0 one easily shows that the 0-cochain 

' E D0 for which 

j(~-dC) = 0 

defines an isomorphism 

1-1= A' .... A" 

reducing to the identity on A • 

From this we deduce (iii), thereby proving the theorem. 

Example 2.2.4. Let R = ~/(p2)[X]/(X2-p), S = ~/(p)[X]/(X2-p) 
and let TI: R .... S be the obvious homomorphism. Let A = ~/(p) 

and consider A as an S-algebra by the homomorphism S .... A 

mapptr.g X to 0 Suppose there exists a lifting A' of A to 

R ~ and consider the diagram 

Since 

0 

t 
I 
! 
'1/ 

v = ~/(p2) 

t t 
lF = ~/(p) 

p I 
"t 
0 

0 0 
I I v {t 

R &Jv I A ' 0 ( R 0 I ) ~ A ' 0 I 
t t R v V 

-> 7lj(p2 )[X]/(X2-p) :::>A' 

I ' 
\jl ~ 

-> LZj(p) [X]/(X2 ) --> ~j(p) 

t 
0 0 

A I ® F ""' A' 0 (R ® F ) "' A I 0 s ~ A 
V p- R VP- R 

we find by inspecting the diagram that A' is a lifting of the 

Fp-algebra A to V . But then A' ~ V and this is impossible 

since p is not a square in V • 
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This example shows that on(A) is nonzero in 

2 H (S,A;A) 

We shall end this section by proving a result which will be used 

in section (3.2). 

Theorem (2.2.5) Let ~: A~ B be a morphsm of S-algebras, then 

1)!-J<_( o(A,rr)) = fx-(o(B,rr)) 

Proof. Let a• be a quasisection of rr: R-free ~ S-free • 

Let ¢1: ~0 ~ ~ 1 9 ~ 2 : ~ 1 ~ ~2 be two morphisms of Mo(A) , then 

~ ·k ( o (A 9 n)) is represented by the 2 -co cycle 0 1 given by: 

and $-x-( o (B,rr)) is represented by the 2 -cocycle 0 2 

Obviously 0 1 = 0 2 which proves the theorem. 

QETI. 
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Chapter 3. Lifting morphisms. 

(3.1) Obstructions for lifting morphisms of algebras 

Let n: R ..... S be a surjective homomorphism of rings with 

2 (kern) = o • Let ~:A ..... B be a morphism of S-algebras, and 

suppose that A and B can be lifted to R If A' is a lif-

ting of A to R , and B' is a lifting of B to R and 

~':A' ..... B' is a morphism of R-algebras, then we shall call ~' 

a lifting of ~ to R with respect to A', B' , provided 

Theorem (3.1.1) Given liftings A' and B' of A and B re-

spectively there exists an obstruction 

1 on (~,A 1 , B' ) E H ( S, A; B 0 ker n ) 

such that o ( 1~:) = o if and only if there exists a lifting $' 

of t to R with respect to A'~~· . The set of such liftings 

is a principal homogenous space over Der8 (A,B ® ker TT ) • 

Proof. Let cr be a quas1isection of 

: M (A') ..... M (A) -o -o 

(seep. 24). Since B' ..... B is surjective there exists for any 

cp E obM 0 (A) with cr(cp): F' ..... A' a morphism of R-algebras 

v(cp): F' ..... B' 

such that 
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p 
F1 -> F2 

C¥1 \, I C¥2 
A 

be a morphism p: ~ 1 ~ ~2 of M0 (A) and consider the diagram 

A --....--> 

Si:rh.ce r_r 1 o ~~ = o ·~ cp2 o IV we lmow that 

Vllien a and v have been fixed 9 this formula defines an element 

C E C 1 ( S, A; B 0 ker TT ) • 

Moreover C is a 1-cocycle as for any pair of morphisms 

dC(p1 ,p2) = P1 o C(p2)- C(p1 op2) + C(p1) 

= P 1 [a ( P 2) o v ( ~3) - v ( ~2) ] - [a ( P 1 o 0 2) 9 v ( cp3) - v ( ~1 ) J 

+ [a(p1) ov(~2)- v(cp1) J 

= a ( o 1 ) o a ( P 2) 0 v ( ~3) - a ( P 1 ) o v ( cp2) - a ( P 1 o P 2) o v ( ~3) 

+ v(cp1) + a(p1 )ov(~2)- v(cp1) = o 

knowing, as we do, that 

[a ( P 1 ) o a ( p 2) - a ( p 1 o o 2) ] v ( cp3) = [a ( P 1 ) o a ( P 1 o P 2) - a( p1 o p2) ](cp3 o ~) 

= ( [a ( P 1 ) o a ( P 2) - a ( P 1 o P 2) ] o a ( cp3) ) ~ = [a ( P 1 ) o a ( P 2) o a ( cp3) -

a ( P 1 o P 2) o a ( ep3) ] ~~ = o • 
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Let o($) = on($,A' ,B') be the corresponding cohomology class, 

then an easy check shows that o(w) is independent of the choice 

of the ~uasisection o and of the choice of the map v • 

Suppose o($) = o , then there exists a s E C0 (S,A;B®kern) 

such that C = d s . Put 

v1 (r:p) = v(cp)- s(cp) 

then for any morphism p: cp1 ~ cp2 in M (A) -o we have 

a ( P) a v 1 ( cp2) - v 1 ( cp1 ) = a ( P) v ( cp2) - a ( P) S ( cp2) 

v(cp1 ) + s(cp1 ) = C(p)- (ps(cp2 )- s(cp1 )) = (C -dS)(p) = o • 

This implies that for any morphism p: cp1 ~ cp2 

diagram 

is commutative. 

Conse~uently v1 defines an R-algebra morphism 

$' : A' = lim a ~ B' • 
~ 

M (A) -o 

in M (A) -o the 

Clearly $' is a lifting of • to R with respect to A' and B!. 

The rest of the conclusion of the theorem is obvious. 

QED. 

Let n: R ~ S , 1\r: A __, B be as above, and put I = kern. 

Remark (3.1.2) If S[X] : A is a surjective homomorphism of S
J 

algebras then we know that 
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H1 (S,A;B ®I) 
Homsrx] (ker j 9 B ®I) I . . 

L Derlvatlons 

Let R[X] .... A' 
j I 

be a lifting of j 

ker j' ® S ::::::. ker j 
R 

to R and observe that 

Let v': R[X] .... B' be a lifting of j o ~r , then v' defines an 

R[X]-module homomorphism 

vanishing on 

ker j' .... B' ®I 
R 

ker j' ® I • 
R 

Therefore v' induces a homomorphism 

v: ker j .... B'OI.:::::B®I. 
R S 

One may check that v represents the class 

0 ( 1V ; A I ' B I ) • 
TT 

Let A' and B' be liftings of A and B respectively and con

sider the map 
1 1 

'1' • H (S A·ASJI) .... H (S A·A®I) 
*' ' ' ' ' 

defined by 

6 (•~reA• B')-
TT 'I' ' ' 

where A corresponds to the difference A' - A11 • 

Theorerr. (3.1.3) 'i' * is induced by ~ ® 1 I : A® I .... B ®I • 

Proof. Let A• be a 1-cocycle representing A and consider a 

quasisection a' of 



- 37 -

then 

d'( p ) = (j I ( p ) - A ( p ) 

is a quasisection of 

n: M (A") -+ M (A) -o -o 

It follows that 

C (a') -

(see proof of (3.1.1)) 

c ( (J ") 

QED. 

Corollary (3.~4) Suppose A and B can be lifted to R and 

suppose on(w: A' ,B') E im ~-)\C for some A' and B' lifting A 

and B respectively. Then there exists an A" lifting A and 

a ljf": A11 .... B' lifting ~ . 

Corollary (3.1.5) Let ': A .... B be an isomorphism and suppose 

A and B can be lifted to R • Then there exists for every 

lifting B' o£ B a unique lifting A' of A and a morphism 

'': A' .... B' 

lifting r 
\:, . 

Consider the map 

defined by 

'l.'*(!-1) = on(,~: A',B')- on(w;A',B") 

where iJ. corresponds to the difference B 11 - B' • 

Theorem (3.1.6) '¥* is induced by *: A-+ B • 



- 38 -

Proof. We know that lim(i) ::; lim(i) • Let EA. be the resol-
..... ..... 

~(A) o Mo (A) o 

ving complex for 

lim 

M CA) 0 
-o 

(see p. 

lim 
]1(A)o 

20). 

and 

The canonical homomorphism 

c· 
A 

the resolving comples for 

therefore induces isomorphisms in cohomology. 

Let cr be a quasisection of rr: R-free ..... S-free let v1 be a 

section of the map rr: obM(A') ..... ob M(A) and let v2 be a sec-

tion of the map TT: obM(B') ..... ob M(B) . Let p: cpo ... cp1 be a 

morphism of M(A) and put 

E(p) = (a(p)v2 (r:r1w)- v2 (cp0 '1J))- (cr(p)v1(cp1)- v1(cp0 ))w 

Then 1 E E EA(Der8 (-,B®I)) and one checks that E is a cocycle 

in E" 
A 

Moreover it is easily seen that the corresponding coho-

mology class is independent of the choice of a, v1 and v2 • 
1 and let Let c be the image of E in 0 A ( Der S ( - , B 0 I ) ) 

' 
cr' 

be a quasisection of rr: M (A') -o ..... M (A) -o • Since the cohomology 

class c of 0 is independent of the choice of a and v1 we 

find that c is represented by the 1-cocycle 0' defined by: 

O'(p) = (v-'(p)v2 (cpfl;)- \J 2 (cp 0 1~))- (a'(p)a'(cp1)- a'(cp0 ))~ 

= a'(p) v 2 (~p1'1J)- v2(c,o 0 w) 

This shows that c = orr($,A' ,B') • 

orr(lv,A',B') E l~m( 1 )Der8 (-,B®I) = 
M(A) 0 

Thus E represents 
1 

H (S,A;B®I) • 

Let v3 be a section of rr: obM(Bn) ..... obM(B) , and let for any 

morphism p: cp0 ..... cp 1 of ~(A) 
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then F is a 1-cocycle of E~(Der3 (-,B0I)) 
1 

and we know that 

F represents oTT(1V 9 A',B") E H (S,A;B®I) • 

Let a. • T _, T 
• 0 1 be a morphism of M(B) and put 

then is a cocycle and a moments refexion 

will convince the reader that G represents the cohomology class 

fl corresponding to the difference B"- B (i.e. A.(B" ,B') see 

p. 30). In fact, consider the image H of G in C~(Ders(-,B®I)), 
let a be a quasisection of TT: M0 (B') ...... M0 (B) and let cr" be 

a quasisection of TT: M_0 (B") .... ~0 (B) • Then H represents the 

same cohomology class as H' defined by: 

H'(a.) = (cr 11 (a.)cr'(-r 1)- cr'('1' 0 ))- (cr"(a.)cr 11 (,- 1)- cr 11 (T 0 )) 

= cr 11 (a)cr'(T1 )-a'(T0 ) 

= (a"(a) -cr'(a))a'(r 1 ) = (cr"(a) -cr'(a)),- 1 

By definition the cohomology class of H' is A.(B 11 ,B') (see p.30). 

Now let ~ also denote the functor 

M_(A) ...... M(B) 

defined by ~~ ( cp) = rp o ~ • Then 

E-F = IJ!G 

which implies 

0 ( 1\r A 1 B 1 ) - 0 ( 1lr A 1 B 11 ) = '" * ( B 11 - B 1 ) rr''' rr'~''' '~' 

QED. 
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Corollary (3.1.7) A and B can be lifted to R and suppose 

on(1jr;A'~B') E im~* for some A',B' lifting A and B respec

tively. Then there exists an B" lifting B and a ljr": A' -+ B" 

lifting ~ . 

Corollary (3.1.8) Let $: A-+ B be an isomorphism and suppose 

A and B can be lifted to R • Then there exists for every 

lifting A' of A a unique lifting B' of B and a morphism 

~':A' -+ B' lifting $ • 

Corollary (3.1.9) Let correspond to A' -A" 

where A' and A" are two liftings of A to R • Then 

U, = 0 (1 A' A") n A' 9 

Proof. By (3.1.6) on(1A,A' ,A')- oTT(1A,A' ,A") =-1A*(I.l) =-!l· 

Since orr(1A,A' ,A') = o the Corollary follows immediately. 

QED. 

Theorem (3.1.10) 

bra homomorphisms and let A',B' and C' be liftings of A,B and C 

respectively, then 

Proof. Let a be a quasisection of n: R-free -+ S-free . Let 

v 1 be a section of n: ob ~(A') -+ ob M(A) , v 2 a section of 

n: obM(B') _, obM(B) and a section of n: obM(C')-obM(C). 

Let be a morphism of M(A) then the 1-cocycle 

given by 
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represents o1/ur 1,A',B') , and the 1-cocycle c3 given by: 

represents oTI(w 1w2 ,A',0') • 

Let a: T0 ~ T1 be a morphism of M(B) , then the 1-cocycle c2 

given by 

Considering the canonical functors 

~1 1 ~ 2 
M(A) ---> !(B) ---> M(C) 

defined by the morphisms w1 and ~~ 2 we find 

proving the theorem. 

QED. 
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Remark (3.1 . .11l Consider the morphisms 

T """ R .-. S • 
p TT 

Assume p and n both surjective and put 

r 1 = ker TT r 2 = ker p 

Suppose r 2 = o then 
0 

2 2 r 1 = r 2 = o , and we have an exact sequence 

of S-modules 

i j 
0 -+ -+ 0 

Let A' be an R-algebra lifting the S-algebra A , and consider 

the exact sequence 

H2 ( R A I • A I ® I ) ... 
7 ' 0 

induced by 1 ) • 

We know (see [A]) that there are canonical isomorphisms 

k = 0,1,2, i > 0 

and we may verify that by these isomorphisms 

(i) o (A')- o (A") 
p p 

if corresponds to the difference between two 

liftings A' and A" of A to R • 

Suppose given a lifting ~':A' -+ B' of the morphism of S-algebras 
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w: A .... B to R with respect to the liftings A' and B' of A 

respectively B . 

Consider the exact 

.... Der (A' B 1 ® I ) 
R ' R 1 

sequence 

60 
.... H1 (R A'·B' ®I) 

' ' 2 
i~'(- H 1 (R A'· B' ®I ) .... 

' ' 0 R 

induced by 1 ) • 

As above we have canonical isomorphisms 

Hi ( R A I • B i ,0., I ) ,...., Hi ( s A B 10. I ) 
' ' vy k - ' ; \61 k R S 

k = 0,1,2, i > 0 

and we may verify that by these isomorphisms 

(iii) ·S 0 ( s ) = 0 ( \V i • A" B " ) - 0 ( •1• II 0 A" B " ) 
p . ' ' p''¥ ' ' 

if corresponds to the difference between two 

liftings ljr' and 1v" of ~ to R with respect to A', B'., and 

if A", B" are liftings of A', B 1 respectively, to T. 

(3.2) Lifting diagrams of morphisms of algebras 

Let c be a small subcategory of S-alg , and let n: R .... S be 

as before. 

Let w: A .... B be a morphism of c 9 consider B as an A module 

and put 

i > 0 • 

Let (1..,!.1)~ <:p .... \!r be a morphism of Mor c so that the diagram --
'A 

A1 -> A2 

~~ l t t!J 
B1 <- B2 u 
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commutes, and define the homomorphism 

by 

where 

Hi(~Vo~-t) _, Hi(cp) 

Hi(~) .... Hi(*o~-t) 

are induced by A~ A, u and 11 respectively. 

As in (1.1) we shall use the notations 

Now, consider the complex D"(Hi) as defined in the proof of 

(1.2.1). Recall that D" looks like 

Do(Hi) 

d 0 I v 

D1(Hi) 

d 1 t 
D2(Hi) 

= 

= 

= 

II Hi(~) 
¢EM or.£ 

II Hi(~1o1j12) 
¢ 1, 1)1 2 EMor .£ 

II Hi ( S, A; A 0 ker TT ) 

AEob c 

with d 0 ( s) ( 1!1) = !Y SB - ~A ¢ for 1jT: A .... B , 

1 
d ( c ) ( •t 1 ' 1~ 2 ) = 1~ 1 c ( w 2 ) - c ( w 1 ° * 2 ) + c ( l~ 1 ) * 2 

Consider the o-cochain o0 of D"(H2 ) defined by: 

2 o (A)= o(A,n) E H (S,A;A®kern) 
0 

By (2.2.5) is a o-cocycle. Let 0 -o 
be the corresponding 
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cohomology class, then we have proved 9 

Theorem (3.2.1) There exists an obstruction 

o E lim H2 
-o ,_ 

Mor c 

such that o = o if and only if every object of c can be -o 
lifted to R . 

Consider the 1-cochain o1 of D"(H1 ) defined by 

o 1 (w) = o11 (1!J,A'.B') E H 1 (~) 

supposing of course that 1\r: A _, B and that A and B admit 

liftings A', B' respectively. 

By (3.1.10) o1 is a 1-cocyilile. Let £1 be the corresponding 

cohomology class. 

Let C be the subcategory of R-alg defined by: 

o b C = [A ' E o b R-al.g R n (A 1 ) E o b .£ , Tor 1 (A 1 • S) = o } 

mor C = [ 1lr 1 E mor R-alg I n( ~ 1 ) E mor c } 

and let 

n: C _, c 

denote the functor tensorization with S over R • 

Then we have 9 

Theorem (3.2.2) Suppose £o = o , then there exists an obstruc-

tion 

such that 2 1 = o if and only if there exists a quasisection of 

1T~ c _, c • 
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The set of stems of such quasisections is a principal homogenous 

space over 1 . ( o )H1 
liD • .... 

Mor c 

Proof. An easy check shows that 2 1 is independent of the choice 

of liftings A', B' used to define o1 • 

S th th · t h · ~=" E D0 (H 1) such uppose £ 1 = o , en ere ex1s s a o-coc a1n ~ 

that for $: A~ B in mor c 

By (3.1.9) sA=- on(1A,A' ,A") for some lifting A" of A and 

SB=-on(1B,B',B") forsomelifting B" of B. 

Apply (3.1.10) to the compositions 1Ao$ = wo1B and the liftings 

A',A",B" and A',B',B" respectively, then we find 

0 ( 1lr A 1 B 11 ) = 1 0 ( 1lr A 11 B 11 ) + 0 ( 1 A 1 A 11 ) ''' n y' • A n y' ' TT A' ' '~' 

= 111 0 ( 1 B ' B II ) + 0 ( ,,, A I B I ) 1 
,. n B' ' n '~'' ' B 

or equivalentely 

- on(1A,A' ,A")w = on('!',A' ,B')- w sB +sAw = o . 

The rest will be left to the reader as an exercise. 

QED. 

Combining (1.2.1), (3.2.1) and (3.2.2) we have proved. 

Theorem (3.2.3) Suppose 2o = o , Q1 = o then there exists a 

set of obstructions 

O(n) c lim H0 
<-

Mor c 
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such that n has a section if and only if 

o E O(n) 

The set of sections with a fixed stem is a principal homogenous 

space over 1 . ( 1 )Ho 
liD .. ... 

Mor c 

Let c consist of the two objects A and B and the three mor-

phisms 1A, 1V: A-+ B and 1B • Then Mor .£ consists of 3 ob

jects and 5 morphisms ilustrated in the following diagram 

(1A,1A) 

0 
A 

(1A,,v) ,, 

Then (see [L]) we have: 

lim(o)H1 ... 
Mor c 

= H1 (S,A;A®kern) x H1 (S,B;B®kern) 

H 1 ( S, A; B 0 ker TI ) 

where the fibered product is taken with respect to the homomor

phisms ljr* and $* respectively, and 

= H 1 ( S, A; B ® ker TT ) / • 
1m ¢ -x- + im ljr * ... 

Mor c 

This proves the following result, 

Corollary (3.2.4) Given a morphism *: A-+ B of 8-algebras. 

Suppose A and B can be lifted to R , then ljr admits a lift

ing if and only if 

oTI(Iji,A',B') E imljr*+im1\f-x-
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for some liftings A', B' of A and B respectively. 

((3.2.4) is~ of course, a trivial consequence of (3.1.9) and 

(3.1.10).) 

Lemma (3.2.51 Let c be any small category and assume that 

every morphism of c is an isomorphism. Then there is a full 

equivalence of categories 

inducing an isomorphism of functors 

c Mor c 

Proof. If ~: c ~ d is a morphism of c put s(w) = c ~ 

B(~) = d • 

Let F be an object of Ab£ and define the object v(F) of 

AbMor .£ by 

for 

v(F)(w) = F(S~) 

v(F)(A,!l) = F(A) 

im Mor c . 

Let G be an object of Ab!Yf_C'::££ and define the object x.(G) by 

Obviously V 0 1-t 

rt(G)(c) = G(1c) 

x.(G)(t) = G(~,.- 1 ) 

= 1 and if 

A 
c1 -> c2 

\f)~ ~\jr 

d1 <- d2 
11 
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is a morphism in Mor c we find that 

(~ov)(G)(c:p) = v(n(G) )(c.p) = G(1c1)G(1~c:p) G(c:p) 

(ttov)(G)(A.,~) t t tG(),,A.-1) tG(A.,~) ._y 

(~ov)(G)(w) = v(K(G))(1V) = G( 1 c ) ~ G(~) 
2 G(1,1jr) 

commutes since 

But this proves that there exists an isomorphism of functors 

The rest is clear. 

QED. 

Corollary (3.2.6) Let G be a group acting on the S-algebra A. 
Then there exists an obstruction 

such that 0 = 0 -o if and only if A can be lifted. 

If o = o there exists an obstruction -o 

such that if and only if for every g E G 

can be lifted to a common lifting A' of A . 

the action g 

If £0 = o , £1 = o there exists a set of obstructions 

O(rr) ,::: H2 (G,H0(S,A;A ®ker TT)) 

such that o E O(rr) if and only if the action of G can be lif

ted to a lifting A' of A • 
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Proof. This follows from ( 3. 2. 1 ) , ( 3. 2. 2) 9 ( 3. 2. 3) and ( 3. 2. 5) • 

In fact, by (3.245), if c is the category consisting of one ob-

ject A and the morphisms corresponding to the elements in G , 

then 

Hi(G _) 
' ' <- <-

Mor c c ---
(see [La]). 

QED. 

Example (3.2.7) If one wants to lift affine group-schemes, or 

equivalently, bialgebras, the main problem is the following: 

Let A be an S-bialgebra with coalgebra structure defined by 

m: A ..... A & A. 
s 

Find a lifting A' of the S-algebra A to R , and a lifting 

m' of m with 

m': A' _, .A.' ® A' ! 
R 

I claim that this can be done if and only if we can lift the dia-

gram c 

1 ~ E: 
A ==5 A 0 A 

m s 
-> 

E: ® 1 

where e: S _,A is the structure morphism. 

In fact, suppose we can lift this diagram to the diagram 

(1 ®e)' 
A' --> B' --> 

m" 
--> 

(e ®1)' 

Then the morphism of R-algebras a.: A' ®A' ..... B' 
R 

defined by 

( 1 ® E:) ' and ( e ® 1) ' is a lifting of 1 AOA • In particular a. 
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-1 m ' = m" o a , then m': A' ..... A' ®A' 
R 

Next we notice that Mor c is the ordered set with 5 objects 

and 6 non-trivial relations illustrated by the diagram 

1 ® € m 

An easy calculation (see [L]) then shows that 

lim H 1 = ker $ .... 
Mor c 

... coker ljr 

Mor c 

where 

~: H 1 ( S, A; A 0 ker TT ) X H 1 ( S, A ® A; A® A ® ker TT ) 

..... H1 (10e:) x H1 (m) X H1 (e: 01) 

is defined by 

* (a' s) = ( ( 1 ® e:) * (a) - ( 1 ® € r"· ( ~) 'm* (a) - m * ( s) ' 

(e:®1)*(a)-(e:®1)*(s)). 

Having this, we obtain the following result, 

Corollary (3.2.8) In the situation above m can be lifted to 

an m': A' ..... A' ®A' if and only if 
R 

( o ( 1 ® e: A" A" ® A" ) o ( m A" A 11 ® A 11 ) o ( e: ® 1 A 11 A 11 ® A 11 ) ) E im •1• 
TT ' ' R ' TT ' ' R ' TT ' ' R 'I' 

for some lifting A" of A • 

We shall, hopefully, return to this problem in a later paper. 

is 



THE REA.DER SHOU;LD iiLSO CONSULT 

Luc. Illusie: Complexe Cotangent et Deformations I. 
Lecture Notes in Mathematics. Vol. 239. 
Springer-Verlag 1971. 

Among other things Illusie's papery which appeared while this 
paper was in print, contains some of the material covered in 
this repport. Exa.ctely how much I do not know yet. 

Anyway~ our methods seem to be quite different. 

Encl. to: 
PREPRINT SERIES- Mathematics. No 12. O.A. Lauda.l: Sections of 
1971. 'runctors and the problem of lifting algebraic 

structures. 
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