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Introduction. 

Let rr: R ~ S be a surjective homomorphism of rings and suppose 

( ker rr ) 2 = 0 • 

Let A be an S-algebra and let A' be an R-algebra such that 

A' ® S .::: A . A' is called a lift in~ of A to R 
' 

if 

Tor~(A' ,S) = 0 

In particular, if A is S-flat then A' is a lifting of A to 

R if, and only if, A' ®R S .::: A and A' if R-flat. We may 

then ask the following question. 

When do liftings exist, and if there are some, how many liftings 

will there be? 

If A is S-flat the answer was given by Schlessinger and 

Lichtenbaum [S]. 

Using their cohomology theory of algebras, they proved that there 

exists an obstruction &E H2(S,A; A 0 ker rr) such that C7= 0 

if and only if there exists a lifting, and the set of liftings, 

modulo isomorphisms reducing to the identity, is then a principal 
1 homogenous space over H ( S, A ;A ®ker rr ) • 

This is the kind of problem we shall be concerned with in this 

paper. 

We shall eventually consider a variety of algebraic objects de-

fined over S , such as an algebra, a morphism of algebras, a 

diagram of morphisms of algebras, a bialgebra etc. In each case 

we will study the corresponding lifting problem. 

A good starting point for the theory of lifting seems to be to 

consider the following general problem. 

Let rr~ C - c be any functor. When does rr admit a section 

(i.e. a functor cr: c - C such that cr rr = 1£ ) ? 
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Chapter 1 is concerned with this general problem. We prove 

that under certain conditions on TI (we need coefficients for 

a cohomology theory) there exists a se~uence of cohomology groups 

Hi(£~TI) and an obstruction ~E H2 (~~TI) such that 6r= 0 if 

and only if TI has a section. Moreover, if there is one section, 

then the set of all sections is a union of principal homogenous 

1 
spaces over H (~,TI) . 

In Chapter 2 we shall use the methods of Chapter 1 to give a new 

proof of a slightly improved version of the result of Lichtenbaum 

and Schlessinger. The cohomology involved here will be the co-

homology of Andre [A]. 

Finally in Chapter 3 we shall consider diagrams of morphisms of 

algebras. 

The main result is not too startling. If ~: A- B is a homomor-

phism of S-algebras, and if A' and B' are liftings of A 

resp. B to R , then there exist an obstruction 

t;Y(A' .B') E H' (S,A;B ® ker TI) 

such that ~A',B') = 0 if and only if there exists a homomor-

phism of R-algebras w': A' - B' such that w' ®R S W • 
The set of such liftings is a principal homogenous space over 

Der8 (A,B ® ker TI) • 

This paper grew out of a seminar given at the Department of Mathe­

matics at the University of Oslo through the spring and fall of 

1970. The author wishes to thank the audience for its unfailing 

patience. 
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Chapter 1. Sections of functors. 

(1.1) Derivation functors associated to a functor 

Let rr: C - c be a functor of small categories. We shall con-

sider the category M2£ £ , for which 

1. The objects are the morphisms of £. 

2. If cp,cpl are objects in Mor c -- then the set of morphisms 

Mor ( cp, cp 1 ) is the set of commutative diagrams 

* _j__> * 
cpl 

v 
tcpl 

* <- * w I 

We write ( 1~, 11r 1 ) : cp - cp' for such a morphism. 

Let cp E M2£ £ be an object (i.e. a morphism of c ) and let 

...,.-1 (rn) [ I ( ) 1 
II ~ = A E M2! c IT A = ~) • 

If cp1 and cp2 are morphisms in c which can be composed then 

we have a partially defined map: 

defined by composition o£ morphisms in C 

We shall suppose that there exists a contravariant functor 

Der: Mor c - Ab 

with the pruperties: 

(Der 1) There exists a map: 

~ : rr- 1 (cp) X Der(cp) - rr- 1(cp) 

and a partially defined map 

v : rr- 1 (cp) X rr- 1 (cp) - Der(cp) 

defined on the subset of those pairs (x.1 ,x.2 ) having same "source" 

and same "aim" • These maps satisfy the following relations 
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(Der 2) Suppose ~1 and ~2 can be composed in c 

then the diagram 

TT-1 (~1) X TT-1 (~2) ~> TT-1 (~1 Q ~2) 

i~x~ i~ 
(TT-\~)X Der(Ci1)) X ( TT-1(q.>2) X Der(Cf-2)) -> TT-\~cef2) X Der( cp1oef2 ) 

6 

commutes, with 6 defined by: 

Note that ( id, ~2 ) : ~1 o ~2 -+ ~1 and ( ~1 , id) : q.>1 ocp2 -+ q.>2 are 

morphisms in Mor £ , since the diagrams 

cp1 
* '~ 

1 
* * > > 

cp1 ° cp2! 1~2 cp1ocp21 v t~1 
*<- * * < * 

1 cp2 

commute. 

We shall from now on use the following notations: 

cp 1 ~ = Der(cp1 ,id)(S) 

ncp2 = Der(id,~2 )(a) 

A.1-A.2= v(A.1,A.2) 

A functor with these properties will be called a derivation 

functor associated to TT 

There are some obvious examples. 

Ex.1. Let TT: R -+ S be a surjective homomorphism of rings. 
2 

Let 

I = ker TT and suppose I = 0 • Consider the category c of 
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flat R-algebras and the category c of flat S-algebras. Tensori-

zation with S over R defines a functor 

TT: C ... C 

and the ordinary derivation functor 

Der: Mor c ... Ab 

given by: 

where cp: A ... B defines the A-module structure on B ® I , is 
s 

a derivation functor for TT. 

Ex.2. Let c -o be the full subcategory of c defined by the free 

R-algebras (i.e. the polynomial rings over R in any set of 

variables)~ and let c -o be the full subcategory of c defined 

by the free S-algebras. As above the ordinary derivation functor 

induces a derivation functor for the restriction rr0 of TT to · 

c . -o 

Ex.3. Let rr: R ... S be as before and let C be the category of 

R-flat affine group schemes over R and c the category of S­

flat affine groups schemes over S • 

Tensorization by S over R defines a functor 

TT: C ..., C 

Let be an object in Mor c (i.e. cp: Spec(B) ... Spec(A) is 

a homomorphism of S-flat affine group schemes over S ) and con-

sider 

where ~A: A ... A ® A and ~B: B ... B ® B are the comultiplica­

tions defining the group scheme structure on Spec(A) and 
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Spec(B) respectively. 

Then Der is a derivation functor for ,. • 

Remark. If ,.- 1 (~) is empty then the conditions (Der 1) and 

(Der 2) are vacuous. 

(1.2.) Obstructions for the existence of sections of functors 

Given a functor rr with a derivation functor Der: Mor £. .... !£, 

let us try to find conditions on c and ,. under which there 

exists a section cr for rr , i.e. a functor cr: c - C such that 

We observe immediately that if such a cr exists then certainly 

we must have 

for all ~ E ~ £ , 

and moreover there must exist a quasisection i.e. a map 

cr': Mor c .... Mor C such that if cp1 and can be composed 

then cr 1 (cp1 ) and cr'(~2 ) can be composed and cr'(cp1 ) ocr'(cp2 ) 

have the same "source" and 11 aim 11 as cr'(~ 1 o ~2 ) • Given such a 

quasisection cr' we deduce a map cr · ob c .... ob C , which we o· -

shall call the stem of the quasisection cr' • 

Now, with all this we may prove: 

Theorem 1.2.1) Suppose given a quasisection cr' of ,. • Then 

there exists an obstruction 

(9-'(cr') E lim( 2 ) Der ..... 
Mor c 
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such that ~(a') = 0 if and only if there exists a section a 

of rr with the same stem a 
0 

as a' • Moreover, if 

then the set of sections having the stem a0 , modulo isomorphllms 

reducing to the identity, is a principal homogenous space over 

lim( 1 ) Der .... 
Mor c 

Proof. Consider the complex D" = D"(Der) of abelian groups 

defined by 

D0 (Der) = rr Der(1 ) 
c E ob c c 

Dn(Der) = rr Der( ~h c ~.?.o. • • o ~n) n > 1 
c0 , .... c1 .... •• · .... c 1 .... c 

w1 n- 1Jh n 

where the indices are chains of morphisms in c , and where 

is defined by: 

n . 1 
l: ( -1 ) 1 S ( ,.,1 j • • • ' 1!1 • o W • 1 ' • • • •'rn+1) + ( -1 ) n+ S {·''1 ' • • •' *-n) ,,, 1 i=1 T , 1 J.+ v '1' '~'n+ 

for n > 1 • 

One easily verifies that dn ° dn+ 1 = 0 for all n > 0 • 

Lemma (1.2.2) .... 
Mor c 

The proof will be given in (1.3). 
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Now consider the quasisection a 1 and define the element ~(cr 1 ) 

2 of D by: 

In fact ere (j I) E ker d 2 since 

( d 2 tr( a I ) ) ( w 191jl 2' $3) = ~1 ec a I )( $2 9 ~3) - cr( a I ) ( ~ 10 ~ 2' ~ 3) 

+ C9"( a I) ( w 1 t ~ 2 otjl 3) - (9( (j I ) ( ~ 1 '111 2) w 3 

= w 1 ( a I ( w 2 0 ~r 3 ) - a I ( $2 ) 0 (j I ( ~ 3 ) ) - (a I ( w1 0 ~ 2 ow 3) - (j I (w 1 0 w 2 ) D a I ( 1lr 3 ) ) 

+ (a1(1!J1o~2ow3)- a'($1)oa1(1j12ow3))- (cr'(w1ow2)- a~(w1)oa1(1Jr2))w3 

= (cr'(~~ 1 ) o a'(w 2ow 3)- a 1(tjs,-) o a 1($ 2) ocr•(w 3 )) 

- (a' ( W 1 oW 2 o\j! 3) - cr I ( $1 o $2) a I ( W 3) ) 

+ (a'(w1ow2ow3)- al(w1)oa'(w2ow3)) 

- (a'(w1ow2)a1($3)- a'(l!r1)oa•(w2)ocr'(w3)) 

= 0 • 

It follows that <Sr(a') defines an element <9'(a 1 ) E H2(D') • 

Suppose e(a') = 0 , then there is a s E D1 such that 

d s = 8( a 1 ) • 

Now put 

Then a ( w1 o 1jl 2 ) - a ( $ 1 ) o a ( w 2 ) 

= (a'(w1ow2) + s($10$2))- (a'(1Jt1)+ s(w1))o(a~'(w2)+ s($2)) 

= a1(1j11ow2) -a1($1)oa'($2)- (a1(1Jt1)s(w2)- s(1j11ow2) 

+ s($1) al($2)) = ~(cr')(w1,1Jt2)- (ds)($1,$2) = 0. 

i.e. a is a functor, (we easily find that cr(1c) = 1cr0 (c) ). 
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Obviously the stem of a is equal to the stem of a' (i.e. = a ). 
0 

Now let a1 and cr 2 be two sections of TI with the same stem 

a0 • Then (a1 - cr 2 ) defines an element in D1 , by: 

Since cr1 and cr2 both are sections (d1 (a1-a2 ))(w 1 ,w 2 ) 

= W 1 ( a 1 - a 2 ) ( W 2 ) - ( a 1 - a 2 )( W 1 ° W 2 ) + ( a 1 - a 2 )( ~ 1 ) $ 2 = 0 ' and 

therefore (a1 -a2 ) defines an element in H1 (D"). 

Suppose this element is zer~then there exists an element C E D0 

such that 

i.e. 

for all 

Conversely, suppose s E H1(D") is represented by s E D1 then 

given any section a of TI ~ s + a is another section with the 

same stem as a • 

QED. 

(1.3.) Proof of lemma 1.2.2. In this section we shallprove lemma 

(1.2.2) by proving a more general theorem. 

Theorem (1.3.1) 

Ab!£!: .£ 
0 

The functor 

Complexes is a resolving functor for lim 
Mor c 0 

• 

Proof. Let L be the constant functor on Mor c with L(cp) = 1G 
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for all cp • 
0 

We shall construct a projective resolution of L in Ab~ .£. • 

Let cp: X ... y be any object of Mor c and consider the s.ets 

e: p 
6o(cp) = {x ... c - y 0 

6n(cp) 
e: W1 

= {x ... c - c 0 1 

There exist maps: 

nn 6n(cp) ... 6n+1(cp) 
i 

defined by: 

I e: 0 p = cp} 

tn p 
I -···- c 1 - c -y e: ow1o .. o1jlno p = cp} n- n 

e: "'1 n~(x - c 0 -

p e: jd p 
c1 .... c.---c -y) 

J. n c1 -· ·- cn-1 - y) = (x ... c 0 

e: W1 w P 
6 :t?- ( x .... c - c 1 - •. • • -c 1 :g. c ... y ) = 

J. o n- n 

e:o*' w2 p 
(x- c1 ... c2-···-cn ... y) i=O. 

€ Wi0 Wi+1 P 
(x~co ... ···-o. 1 ... c. 1 --·-c -+y) 

J.- J.+ n 
for o < i < n 

e: "' 0 p (x ... c ....... -+c 1n ... y) i=n 
o n-

giving 6n(cp) , n ~ 0 the structure of a simplicial set. 

Moreover for each n ~ 0 , 6n(cp) is functorial in cp defining 

a functor 

... Simplicial ~ 

Composing 6 with the functor c.(-,~) we have constructed a 

complex of functors 

c.: !!21:.£ ... Ab 

Now, by a standard argument we construct a contracting homotopy 

for c. thereby proving 
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for i = 0 
H.(C.) 

J. for i I o 

Moreover 

C (cp) = II 
n (e,p):cp' -+cp 

[II 7l } 

llr 1 '• ··' *n 
in Mor c 0 -- w1o ... o*n = cp' 

Using ([La],Prop.1.1.a) it follows that each en is projective as 

object of AbMor £0 

0 

Therefore C. is a projective resolution of L in Ab~ £ • 
Since 

Mor (C ,F) =IT F(* 1o•••own) 
M o n 

Abf or .£ c .... c1-. ·->c 1 ->c 
o 1!1 n- 1!1. n 

---- n 

we find by a dull computation that 

D•(F) ~ Mor (C.,F) 
AbMor £. 

thereby proving the theorem. 
QED. 
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Chapter 2. Lifting of algebras. 

( 2. 1) Leray spectral sequence for lim. 
<-

Let c be any small category and let c be an object of c • 

Consider the contravariant functor C(~,c) defined by: 

C(.tZ,c)(c') = U z; 
c , .... c 

cp 

We know (see ~~) that these functors are projective objects in 
0 

Ab.£ • 

Suppose M is a full subcategory of c and consider the restric~ 

tion of C(~,c) to M • Let F be any contravariant functor 

on M with values in Ab then we find, 

0 
~ ( C ( ~, c ) , F) 

Now, suppose c0 ~ c in c is an M e.J2.imorphism, i.e. c0 E ob M 

and the map 

Mor(c',c ) .... Mor(c',c) 
0 

is surjective for every c' E ob M • 

Suppose further that c has fibered products and consider the 

system of morphisms 

cp 4- 4- ..,_ 4-

c .... c 4- c X c 4- • • • • t- C X • • • X c 4-

0 0 0 4- • 
~ I c • • 4- ... 

p 

Put c = p C X • • • XC 

~ 
and denote by 

p+1 

d i 0 c ..... c p-1 i = 0' ••• 'p p 0 p 

the p+1 projection morphisms. 
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Consider for each d i the corresponding morphism 
p 

o i: C(~9 c ) _, C(Zl,c 1 ) and let o = £ (-1 )io i • Then 
p p p- p i=O p 

o o 1 = 0 for all p > 1 • p p-

Lemma (2.1.1) The complex c. = (C(~,c ) 9 o } > P P p_o 

Proof. See M. Artin [1] p. 18. 

is a resolu-

0 
Let F' be an injective resolution of F in AbM and consider 

the double complex 

Mor( C. 9 F") 

We shall compute the two associated spectral sequences. But 

first we have to establish the following lemma. 

Lemma (2.1.2) Let f: M(c _, M be the canonical forgetful 

functor and let F be inJ·ective in A~0 then the composed - ' 
functor foF: (!Y!jc) 0 _, Ab is injective as an object of Ab(!/c)0 

.. 

Proof. The functor f induces a functor 

We want to prove that f* takes injectives into injectives. 

To prove this we construct a left adjoint 

p: Ab(!fc)o _, AbMo 

Let G be an object of Ab(Mfc)o and put 

cp 
p(G)(m) = .II. G(m _,c) 

cp EMor(m,c) 
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0 
so that p (G) is an object of AbM • 

One easily checks that there is a canonical isomorphism 

Mor(p(G),F) = Mor(G,f*(F)) 

proving that p is left adjoint to f* • Since p is exact 

we know that f* takes injectives into injectives. 
QED. 

Going back to the double complex Mor(C.,F") we find the E2 

terms of the two associated spectral sequences: 

We know already that 

"Ep,q = 0 for q I 0 
2 

"En, 0 = Hn( lim (F")) 
2 -(!Y!;'c)O 

and by Lemma (2.1.2) we deduce that 

"En,o = 
2 

Since 

Mor(C ,F") = lim F• 
p -

Mjcp 

we find, using Lemma (2.1.1) once more that 

'Ep,q = HP( lim (q)F) 
2 -

We. 

We have proved the following theorem. 
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Theorem (2.1.3) Let M c c and ep· c _. c 
0 0 be given as above. 

Then there exists a Leray spectral sequence given by: 

converging to 

Remark 1. The spectral sequence above is nothing but the Leray 

spectral sequence associated to the "covering" cp: c 0 _. c in an 

appropriate Grothendieck topology. 

2. Since c 0 E ob M the category !jc0 has a final object. 

Therefore E0 'q = 0 for all q ~ 1 • 
2 

We deduce from this the formulas 

and the exact sequence 

lim (i)F = 0 .... Corollary_12.1.il Suppose that 

(M,Icj)O 

i+j = p and for i+j = p-1 • Then 

for i > 1 , 
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Assume for a moment that there exists a functor i: c ~ Ab 

commuting with fibered products. 

Corollary (2~.5) Put g = f o i a..11d suppose 

lim g = i(c ) 
lYYc p 

for all p ,2: 0 • 

Then 

p 

lim g = 0 • 
~(1) 

M/c 

Proof. Let E be an injective abelian group and consider the 

functor 

F(-) = Ab (g(-) 9 E) , 

We know that 

Ab ( lim g, E) 
- ~ (1) 

M/c 

= ker[ lim F ~ lim F} / im[lim F ~ lim F} 
4- t- +- 4-

(M/c1)0 (M/c2)o (M/co)o (M/c1 )o 

But since i(c ) = i(c ) x ••• x i(c ) 
P · 0 i(c) i(c) 0 

p+1 

this last group is zero. 

Since this holds for all injective abelian groups E we have 

proved that 1~mc 1 ) g = o • 
M/c 

QED, 
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Remark The last corollary and the next one are important in 

our development of the lifting theory for algebras. 

Corollar~ (2.1.6) Let M c M be two full subcategories of 
~o 

c • Suppose c has fibered products and let c E ob £ • 

Assume that c satisfies the following conditions: 

(c1 ) There exists an object c 0 of M0 and an M-epimorphism 

For any M-epimorphism ljl:d ... d 
0 

im c with d0 E Mo 

exist objects e E M and M-epimorphisms 
P -o 

1)1 • ep - d0 x ••• xd p' d 0 \..._d 
'V" 

./ 

p+1 

Then we may conclude 

lim(·) lim(·) 

<!YJ.i c) 0 <}!!jc) o 

p > 2 • -

there 

Proof. We first observe that (c 1 ) and (c 2 ) together with (2.1.1) 

imply that there are canonical isomorphisms 

( 1 ) lim 
(!;cp) 0 

where c = c x ••• xc • 
p 0 c c 0 

\..._ .......,.-~--J' 
p+1 

Now the canonical morphism 

lim(n) 
+-

~/c)o 

induces morphisms of spectral sequences 
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Using (1) we find isomorphisms 

p .2: 0 • 

Thereby proving that is an isomorphism. By an easy indue-

tion argument we may assume that t~,q are isomorphisms for all 

p,q with p+q < n or q < n • This implies that 

are isomorphisms for all p,q with p+q = n , thereby proving 

that tn is an isomorphism. 

QED. 

(2.2.) Lifting of algebras 

Let S be any commutative ring with unit. Let S-alg de­

note the category of S-algebras and let S-free denote the 

category of free S-algebras (i.e. the category of polynomial 

algebras, in any set of variables, over S ) • 

Let A be any object of S-alg and consider the subcategories 

M0 and M of S-al&;A 

full subcategory of M 

given by: M = S-free;A and 

defined by the epimorphisms 

Thus we have M0 ~ M ~ S-algfA • 

We observe that we have isomorphisms of categories: 

M 

Mo/(A r A) 
A 

!/(A f A) 
A 

(S-algj A) I (A r A) • 
A 

M is th~ -o 



- 20 -

By a straight forward verification we find that M0 ~ M ~ S-~A 

and the object (Af A) satisfy the conditions of Corollary 
A 

(2.1.6). 

We therefore conclude: 

Lemma (2.2.U 

Now recall that given any A-module M the cohomology H"(S,A;M) 

is defined by 

Hn(S,A;M) = l~m(n)Der3 (-,M) 
Mo 

(see Andr~ [A]). 

Using (2.2.1) we find 

Hn(S,A;M) = 11m(n) Der8(-,M) 
Mo 
-o 

(i.e. we may compute the cohomology of A using only surjective 

homomorphisms of free S-algebras onto A ) • 

Recall also (see [La]) the standard resolving complex c· for 

lim (called rr· in CLaJ), for which 
4-

c· is defined by 

cP(F) = l1 F (c ) 
c _. c 1_.- £c 

0 ~1 ljrp p 

with dp: cP(F) _. cP+1 (F) given by 

d p ( S) ( ~ 1 ,. • • ' W p+ 1 ) = F ( ljr 1 )( S ( ~ 2' • • • '~ p+ 1 ) ) 

+ ~ ( - 1 ) i s ( \jl1 ' • • • ' ljr i o ljr i + 1 ' " • • ' ljr p+ 1 ) + ( - 1 ) n + 1 s ( ljr 1 ' • • • ' 1jJ P ) • 
i=1 
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Let IT: R ~ S be a surjective homomorphism of commutative rings 

and let I = ker TT • Assume that 2 
I = 0 • 

Consider the functor 

IT' : R-alg ~ S-alg 

defined by tensorization with S over R • 

Definitiog_(2.2.2) An R-algebra A' is called a lifting of 

the S-algebra A to R if n'(A') ~A and Tor~(A•,S) = 0. 

Let IT be the restriction of n' to R-free 

n: R-free ~ S-free -
We have observed already in (1.1) that 

where ~: F1 ~ F2 is a homomorphism of free S-algebras is a 

derivation functor for n • 

There are lots of quasisections of n , and we pick one quasi­

section a' • Note that all stems are equal. 

Suppose now that there exists a section a for n • Given any 

S-algebra A , a good candidate for a lifting of A to R would 

be the R-algebra 

A' = lim ( f o a) • _. 
S-.free/A 

In fact we shall see later that A• is a lifting of A • 

Since there are, in general, S-algebras that cannot be lifted 

to R we deduce that such a a cannot always exist. 
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To settle the case of a single S-algebra we must therefore be 

a little more subtle. 

Consider the restriction of 

at the complexes 

D" = D" (g o Der ) 
0 

g: M ... S-free 

C" = C • ( g o Der ( - , A ® I) ) 
0 

defined above (with c = M ), see (1.2). -o 

to M -o and look 

Let us first show that there exists a surjective morphism 

j: n· .... c· . 

In fact we have that 

® I) 

~1 II ~er S ( F 0 , A ® I) 

F .... F 1 ....... - F 

~\l'P0 
A 

where the indices run over all sequences of morphisms 

_. rl\ in M0 • 
~~ 1 "~'n 

Now for each such index; cpn defines a homomorphism 

cp ... cp1 ..... 
o *n 

Since F 
0 

is free and is surjective we conclude that 

is surjective. (This is in fact the only reason why we have to 

consider M -o instead of M • ) 
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But these ~n* induce a surjective morphism 

. Dn On J 0 ... 

n· 

and a trivial verification shows that these j 's commute with n 

the differentials in D" and c• • Put K" = ker j , then the 

sequence 

0 ... K" ... D" ... c• ... 0 

is exact. 

Corresponding to the quasisection a' we have the 2-cocycle 

cr(a') E D2 given by 

where ~1 and w2 are morphisms in M -o 

F lj!j F \jJ~ F 

0 11 2 

cp;~1 '/ 
A 

such that: 

Let &(A, a') = j ( (7'( a')) and consider the corresponding element 

~(A,a') E H2(C") = H2(S,A;A ®I) 

Theorem (~~ (i) The cohomology class ~(A,rr) = ~(A,a') is 

independent of the choice of quasisection a' • 

(ii) There exists a lifting A' of A to R if and only if 

~(A,rr) = 0 • 

(iii) If e(A,rr) = 0 then the set: 

FA(R) = (A' E ob R-alg I A' lifting of 

is a principal homogenous 

A 
11 isomorphisms It A I ~ A" 

reducing to the 
identity on A} 
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1 
space over H (S,A;A ® I) • 

Proof. Suppose cr' and cr" are two q_uasisections. Let C be 

the 1-cochain of D" given by 

Then one verifies that 

C1(cr")- Cf(cr') = dC. 

Thus <'(cr") = et(cr') and h fortiori 

<9( A , cr 11 ) = &( A , cr ' ) 

proving (i). 

Suppose there exists a lifting A' 

the obvious functor 

of A to R and consider " ·~ 

where M0 (A 1 ) is the full subcategory of R-free;A, defined by 

the surjective homomorphisms. 

There are lots of q_uasisections of rr2 , and we pick one quasi-

section cr" • If 
o/1 

Fo ... F1 

cpo\ /r1 
A 

is a morphism 1)11 in S-free/A let 

cr"(w1) 
F' -> F' 

0 1 

cr"(cp )\ /cr"(cp) 
o ~ IL 1 

A' 

be the morphism cr''(w 1 ) of R-free;A. 
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Computing C7'(cr") we find j <'Ccr") = 0 since, on one hand, all 

triangles with A' as vertex in the diagram 

I ' F -> F1 cr'ii(f>) F2 0 cr"(w ) ' 1 

lo"(,V~cp2 ) o"('~'o~ 
L 

A' 

commute; and, on the other hand, the diagram 

F~ ® 
cp.®1I 

I ;:: F. ® I ]. > A' ® I :: A ® I 
J. R ]. s R s 

1 1 
F. I > A' 

]. cr"(cp.) 
]. 

commute as a result of Tor~ ( A', S) = 0 a 

Therefore e(A,rr) = 0 , proving the "only if" part of (ii). 

Suppose ~(A,rr) = 0. Then j C3(cr') = dC where C is a 1-co-

chain of c· . Since j is surjective there exists a 1-cochain 

C of n• such that j ( S) = C • Let cr11 be the map 

Mor M ~ Mor R-free -o 
given by: 

Let 

Since 

Now 

be two morphisms in 

cr tt{ 1!r 1 o ~ 2 ) - cr 11 ( ~ 1 ) a a" ( "' 2 ) 

= &c 0" I )( \~ 1 ' "'2 ) - d S ( "' 1 ' "'2 ) = W ( "' 1 ' "'2 ) 

j &( cr ' ) = j ( d s ) we may assume 

A' = lim cr" _. 
M -o 

then 
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exists as an R-module, 

lim a" = 
M .... 
-o 

coker ( ll a" ( cp ) :: 
~1 0 

cpo .... cp1 

U a"(cp)) • 
cp 

Consider the resolving complex c. (the dual of C") of lim • 

Recall that: 

... 
M -o 

Since a" is not a functor C. ( a 11 ) will not necessarily be a com­
plex, but nevertheless we may consider the diagram: 

0 0 0 A ® I 

t t ~ s 
13 Sl 

c2 (a") ® I ---+ C 1 (a") ® I -> C (a") 0 I -> A' ® I-> 0 
R R 0 R R 

I 

I t ' 
I 

w w ~a. 
6 y 

c2(a 11 ) ----~ C1(an) -> C (a") -> A' ->0 
0 

t I t t 'll 

c2(a") ® s -> c1(a") ® s -> C (a") ® s -> A -> 0 
R R 0 

t I t t t' 

0 0 0 0 

In which we know that all sequences of maps marked with solid 

arrows are exact, The vertical sequences are exact since all 

C (a") are R-flat, the .lower horizontal sequences is exact p 

since 
C (a") ® S 

p R 

and because of Corollary (2.1.5). 

The solid part of the upper horizontal sequence is exact since 

c.(a") ®I 
R 
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and finally, part of the middle horizontal sequence is exact by 

the definition of A' • 

Remember that we do not know that 5 o y = 0 • In fact it may well 

be that 6 a v 1 o • However im (6 oy) c C (a")® I and fortu-
- o R 

nately we hawarranged the situation such that 

13 (im(6oy)) = 0. 

This follows by observing that the image of 5 oy consists of 

sums of elements of the form 

for 

qJ 
0 

in M , and by recalling that w E K2 , such that -o 

Using this we may easily see that a is injective. 

But a is injective if and only if 

We have to show that A' is an R-algebra. Consider a system 

of homomorphisms 

d 
p1' 

p _. 
F1 

_. F X F _. F _. A 
o A o p' o 
~ 

fl' 

in which p and d are surjective, P1 and p' 2 
are the pro-

jections and 6' is the diagonal. Let 6: F ... F1 be a homomor-
0 

ph ism such that 6 0 d = 6' 
' 

and put p. = d Q p ~ • l l 

Then A is the inductive limit of the system 
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Now use the quasisection cr"' on these morphisms, and get a 

diagram 
cr'" ~) P, 

F' ~ F' ~ A' • 
~0 

cr"' (6) 

Since we have the commutative diagram 
0 0 

t 
F1 ® I 

t p®l 
~ F ® ® I 0 _, I _, A -> 

0 

t t t ~a 
cr "(p ) ~ 

F' 
1 

_,1 
.... 

cr"~ 
F' _, coker( cr" (p 1), cr" (p2 )) ~A' 

0 

p1 t t / .... F -> A -> 0 _, 

p2 
0 

t t t 
0 0 0 

in which a is injective and all sequences are exact we deduce 

that 

If we can show that im( cr" (p1 ) - cr" (p2 )) 

are through. 

Suppose cr"(1p ) = 1p' + sp , then since 
0 0 0 

we find that Sp = - w ( 1 F , 1 F ) 
0 0 0 

and that 
p I ( Sp (X) ) = 0 

0 

is an ideal of F' we 
0 
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for all x E F' ,so that we have 
0 

Obviously cr"(1F ) is an automorphism, such that given any 
0 

X E F' 
0 

we may find a y E F' 
0 

x = cr 11 (1F )(y) • 
0 

such that 

Let z = (cr"(p 1)- cr 11 (p2 ))(u) and look at 

x• z = cr"(1F )(y) • (cr"(p1)(u)-cr"(p2 )(u). 
0 

We recall that 

cr 11 (1F )(y) = cr 11 (p 1 )(cr"(~)(y)) + w(~,p 1 )(y) 
0 

= cr"(p2 )(cr"(~)(y)) + w(6,p2 )(y) 

Therefore we get: 

x • z = cr"(p 1 )(u•cr''(~)(y))- cr 11 (p 2 )(u.cr 11 (~)(y)) 

+ w(~,p 1 )(y) • cr 11 (p1 )(u) 

Now for 

is equal 

where u 

Since 

- w(6,p2)(y) • cr"(p2 )(u) • 

i = 1 '2' the element 

w(6,pi)(y) • a" (p. )( u) E F0 ® I :::: F' 
J. s 0 

to 

w( ~,p1) (y) • pi(u) 

is the image of u in F1 

is a homomorphism of 

• 

F -modules 
0 

(p ® 1I)(w(6,p.)(y) • p.(u)) 
J. J. 

In particular we have proved 

® I 
R 

we find: 

i = 1,2 
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x • z E ker p' , 

thus ker p' is an ideal of F' and therefore A' is an alge­
o 

bra, which proves (ii). 

Suppose now that e(A) = 0 and consider the quasisection cr" 

defined in the beginning of the proof (p. 24). 
1 Let c be any element of H (S,A;A ® I) and let 

s 
sent c • 

repre-

Then cr" + s is another quasisection with the property that 

(j'(a"+ s) = (5'(cr") • 

Therefore 

1 im ( cr " + s ) = A " 
-+ 

Mo 

is a lifting of A 

Suppose on the other hand that we have two liftings A', A" • 

We may, as we claimed above, construct quasisections a', cr" of 

and 

Let 

TTA,: M (A') -o 

s(~) = a' (1\1)- cr"(w) I 

respectively. 

Then s E D1 and we know that j(ds) = 0 • Therefore j(s) 

defines an element 

If there exists an isomorphism 

~: A' -+ A" 
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reducing to the identity on A ~ one checks that j(s) is a 

cocycle such that A.(A',A") = 0. 

Conversely if A.(A' ,A") = 0 one easily shows that the 0-cochain 

' E D0 for which 

j(~-dC) = 0 

defines an isomorphism 

1-1= A' .... A" 

reducing to the identity on A • 

From this we deduce (iii), thereby proving the theorem. 

Example 2.2.4. Let R = ~/(p2)[X]/(X2-p), S = ~/(p)[X]/(X2-p) 
and let TI: R .... S be the obvious homomorphism. Let A = ~/(p) 

and consider A as an S-algebra by the homomorphism S .... A 

mapptr.g X to 0 Suppose there exists a lifting A' of A to 

R ~ and consider the diagram 

Since 

0 

t 
I 
! 
'1/ 

v = ~/(p2) 

t t 
lF = ~/(p) 

p I 
"t 
0 

0 0 
I I v {t 

R &Jv I A ' 0 ( R 0 I ) ~ A ' 0 I 
t t R v V 

-> 7lj(p2 )[X]/(X2-p) :::>A' 

I ' 
\jl ~ 

-> LZj(p) [X]/(X2 ) --> ~j(p) 

t 
0 0 

A I ® F ""' A' 0 (R ® F ) "' A I 0 s ~ A 
V p- R VP- R 

we find by inspecting the diagram that A' is a lifting of the 

Fp-algebra A to V . But then A' ~ V and this is impossible 

since p is not a square in V • 
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This example shows that on(A) is nonzero in 

2 H (S,A;A) 

We shall end this section by proving a result which will be used 

in section (3.2). 

Theorem (2.2.5) Let ~: A~ B be a morphsm of S-algebras, then 

1)!-J<_( o(A,rr)) = fx-(o(B,rr)) 

Proof. Let a• be a quasisection of rr: R-free ~ S-free • 

Let ¢1: ~0 ~ ~ 1 9 ~ 2 : ~ 1 ~ ~2 be two morphisms of Mo(A) , then 

~ ·k ( o (A 9 n)) is represented by the 2 -co cycle 0 1 given by: 

and $-x-( o (B,rr)) is represented by the 2 -cocycle 0 2 

Obviously 0 1 = 0 2 which proves the theorem. 

QETI. 
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Chapter 3. Lifting morphisms. 

(3.1) Obstructions for lifting morphisms of algebras 

Let n: R ..... S be a surjective homomorphism of rings with 

2 (kern) = o • Let ~:A ..... B be a morphism of S-algebras, and 

suppose that A and B can be lifted to R If A' is a lif-

ting of A to R , and B' is a lifting of B to R and 

~':A' ..... B' is a morphism of R-algebras, then we shall call ~' 

a lifting of ~ to R with respect to A', B' , provided 

Theorem (3.1.1) Given liftings A' and B' of A and B re-

spectively there exists an obstruction 

1 on (~,A 1 , B' ) E H ( S, A; B 0 ker n ) 

such that o ( 1~:) = o if and only if there exists a lifting $' 

of t to R with respect to A'~~· . The set of such liftings 

is a principal homogenous space over Der8 (A,B ® ker TT ) • 

Proof. Let cr be a quas1isection of 

: M (A') ..... M (A) -o -o 

(seep. 24). Since B' ..... B is surjective there exists for any 

cp E obM 0 (A) with cr(cp): F' ..... A' a morphism of R-algebras 

v(cp): F' ..... B' 

such that 
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p 
F1 -> F2 

C¥1 \, I C¥2 
A 

be a morphism p: ~ 1 ~ ~2 of M0 (A) and consider the diagram 

A --....--> 

Si:rh.ce r_r 1 o ~~ = o ·~ cp2 o IV we lmow that 

Vllien a and v have been fixed 9 this formula defines an element 

C E C 1 ( S, A; B 0 ker TT ) • 

Moreover C is a 1-cocycle as for any pair of morphisms 

dC(p1 ,p2) = P1 o C(p2)- C(p1 op2) + C(p1) 

= P 1 [a ( P 2) o v ( ~3) - v ( ~2) ] - [a ( P 1 o 0 2) 9 v ( cp3) - v ( ~1 ) J 

+ [a(p1) ov(~2)- v(cp1) J 

= a ( o 1 ) o a ( P 2) 0 v ( ~3) - a ( P 1 ) o v ( cp2) - a ( P 1 o P 2) o v ( ~3) 

+ v(cp1) + a(p1 )ov(~2)- v(cp1) = o 

knowing, as we do, that 

[a ( P 1 ) o a ( p 2) - a ( p 1 o o 2) ] v ( cp3) = [a ( P 1 ) o a ( P 1 o P 2) - a( p1 o p2) ](cp3 o ~) 

= ( [a ( P 1 ) o a ( P 2) - a ( P 1 o P 2) ] o a ( cp3) ) ~ = [a ( P 1 ) o a ( P 2) o a ( cp3) -

a ( P 1 o P 2) o a ( ep3) ] ~~ = o • 
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Let o($) = on($,A' ,B') be the corresponding cohomology class, 

then an easy check shows that o(w) is independent of the choice 

of the ~uasisection o and of the choice of the map v • 

Suppose o($) = o , then there exists a s E C0 (S,A;B®kern) 

such that C = d s . Put 

v1 (r:p) = v(cp)- s(cp) 

then for any morphism p: cp1 ~ cp2 in M (A) -o we have 

a ( P) a v 1 ( cp2) - v 1 ( cp1 ) = a ( P) v ( cp2) - a ( P) S ( cp2) 

v(cp1 ) + s(cp1 ) = C(p)- (ps(cp2 )- s(cp1 )) = (C -dS)(p) = o • 

This implies that for any morphism p: cp1 ~ cp2 

diagram 

is commutative. 

Conse~uently v1 defines an R-algebra morphism 

$' : A' = lim a ~ B' • 
~ 

M (A) -o 

in M (A) -o the 

Clearly $' is a lifting of • to R with respect to A' and B!. 

The rest of the conclusion of the theorem is obvious. 

QED. 

Let n: R ~ S , 1\r: A __, B be as above, and put I = kern. 

Remark (3.1.2) If S[X] : A is a surjective homomorphism of S­
J 

algebras then we know that 
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H1 (S,A;B ®I) 
Homsrx] (ker j 9 B ®I) I . . 

L Derlvatlons 

Let R[X] .... A' 
j I 

be a lifting of j 

ker j' ® S ::::::. ker j 
R 

to R and observe that 

Let v': R[X] .... B' be a lifting of j o ~r , then v' defines an 

R[X]-module homomorphism 

vanishing on 

ker j' .... B' ®I 
R 

ker j' ® I • 
R 

Therefore v' induces a homomorphism 

v: ker j .... B'OI.:::::B®I. 
R S 

One may check that v represents the class 

0 ( 1V ; A I ' B I ) • 
TT 

Let A' and B' be liftings of A and B respectively and con­

sider the map 
1 1 

'1' • H (S A·ASJI) .... H (S A·A®I) 
*' ' ' ' ' 

defined by 

6 (•~reA• B')-
TT 'I' ' ' 

where A corresponds to the difference A' - A11 • 

Theorerr. (3.1.3) 'i' * is induced by ~ ® 1 I : A® I .... B ®I • 

Proof. Let A• be a 1-cocycle representing A and consider a 

quasisection a' of 



- 37 -

then 

d'( p ) = (j I ( p ) - A ( p ) 

is a quasisection of 

n: M (A") -+ M (A) -o -o 

It follows that 

C (a') -

(see proof of (3.1.1)) 

c ( (J ") 

QED. 

Corollary (3.~4) Suppose A and B can be lifted to R and 

suppose on(w: A' ,B') E im ~-)\C for some A' and B' lifting A 

and B respectively. Then there exists an A" lifting A and 

a ljf": A11 .... B' lifting ~ . 

Corollary (3.1.5) Let ': A .... B be an isomorphism and suppose 

A and B can be lifted to R • Then there exists for every 

lifting B' o£ B a unique lifting A' of A and a morphism 

'': A' .... B' 

lifting r 
\:, . 

Consider the map 

defined by 

'l.'*(!-1) = on(,~: A',B')- on(w;A',B") 

where iJ. corresponds to the difference B 11 - B' • 

Theorem (3.1.6) '¥* is induced by *: A-+ B • 
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Proof. We know that lim(i) ::; lim(i) • Let EA. be the resol-
..... ..... 

~(A) o Mo (A) o 

ving complex for 

lim 

M CA) 0 
-o 

(see p. 

lim 
]1(A)o 

20). 

and 

The canonical homomorphism 

c· 
A 

the resolving comples for 

therefore induces isomorphisms in cohomology. 

Let cr be a quasisection of rr: R-free ..... S-free let v1 be a 

section of the map rr: obM(A') ..... ob M(A) and let v2 be a sec-

tion of the map TT: obM(B') ..... ob M(B) . Let p: cpo ... cp1 be a 

morphism of M(A) and put 

E(p) = (a(p)v2 (r:r1w)- v2 (cp0 '1J))- (cr(p)v1(cp1)- v1(cp0 ))w 

Then 1 E E EA(Der8 (-,B®I)) and one checks that E is a cocycle 

in E" 
A 

Moreover it is easily seen that the corresponding coho-

mology class is independent of the choice of a, v1 and v2 • 
1 and let Let c be the image of E in 0 A ( Der S ( - , B 0 I ) ) 

' 
cr' 

be a quasisection of rr: M (A') -o ..... M (A) -o • Since the cohomology 

class c of 0 is independent of the choice of a and v1 we 

find that c is represented by the 1-cocycle 0' defined by: 

O'(p) = (v-'(p)v2 (cpfl;)- \J 2 (cp 0 1~))- (a'(p)a'(cp1)- a'(cp0 ))~ 

= a'(p) v 2 (~p1'1J)- v2(c,o 0 w) 

This shows that c = orr($,A' ,B') • 

orr(lv,A',B') E l~m( 1 )Der8 (-,B®I) = 
M(A) 0 

Thus E represents 
1 

H (S,A;B®I) • 

Let v3 be a section of rr: obM(Bn) ..... obM(B) , and let for any 

morphism p: cp0 ..... cp 1 of ~(A) 
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then F is a 1-cocycle of E~(Der3 (-,B0I)) 
1 

and we know that 

F represents oTT(1V 9 A',B") E H (S,A;B®I) • 

Let a. • T _, T 
• 0 1 be a morphism of M(B) and put 

then is a cocycle and a moments refexion 

will convince the reader that G represents the cohomology class 

fl corresponding to the difference B"- B (i.e. A.(B" ,B') see 

p. 30). In fact, consider the image H of G in C~(Ders(-,B®I)), 
let a be a quasisection of TT: M0 (B') ...... M0 (B) and let cr" be 

a quasisection of TT: M_0 (B") .... ~0 (B) • Then H represents the 

same cohomology class as H' defined by: 

H'(a.) = (cr 11 (a.)cr'(-r 1)- cr'('1' 0 ))- (cr"(a.)cr 11 (,- 1)- cr 11 (T 0 )) 

= cr 11 (a)cr'(T1 )-a'(T0 ) 

= (a"(a) -cr'(a))a'(r 1 ) = (cr"(a) -cr'(a)),- 1 

By definition the cohomology class of H' is A.(B 11 ,B') (see p.30). 

Now let ~ also denote the functor 

M_(A) ...... M(B) 

defined by ~~ ( cp) = rp o ~ • Then 

E-F = IJ!G 

which implies 

0 ( 1\r A 1 B 1 ) - 0 ( 1lr A 1 B 11 ) = '" * ( B 11 - B 1 ) rr''' rr'~''' '~' 

QED. 
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Corollary (3.1.7) A and B can be lifted to R and suppose 

on(1jr;A'~B') E im~* for some A',B' lifting A and B respec­

tively. Then there exists an B" lifting B and a ljr": A' -+ B" 

lifting ~ . 

Corollary (3.1.8) Let $: A-+ B be an isomorphism and suppose 

A and B can be lifted to R • Then there exists for every 

lifting A' of A a unique lifting B' of B and a morphism 

~':A' -+ B' lifting $ • 

Corollary (3.1.9) Let correspond to A' -A" 

where A' and A" are two liftings of A to R • Then 

U, = 0 (1 A' A") n A' 9 

Proof. By (3.1.6) on(1A,A' ,A')- oTT(1A,A' ,A") =-1A*(I.l) =-!l· 

Since orr(1A,A' ,A') = o the Corollary follows immediately. 

QED. 

Theorem (3.1.10) 

bra homomorphisms and let A',B' and C' be liftings of A,B and C 

respectively, then 

Proof. Let a be a quasisection of n: R-free -+ S-free . Let 

v 1 be a section of n: ob ~(A') -+ ob M(A) , v 2 a section of 

n: obM(B') _, obM(B) and a section of n: obM(C')-obM(C). 

Let be a morphism of M(A) then the 1-cocycle 

given by 
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represents o1/ur 1,A',B') , and the 1-cocycle c3 given by: 

represents oTI(w 1w2 ,A',0') • 

Let a: T0 ~ T1 be a morphism of M(B) , then the 1-cocycle c2 

given by 

Considering the canonical functors 

~1 1 ~ 2 
M(A) ---> !(B) ---> M(C) 

defined by the morphisms w1 and ~~ 2 we find 

proving the theorem. 

QED. 
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Remark (3.1 . .11l Consider the morphisms 

T """ R .-. S • 
p TT 

Assume p and n both surjective and put 

r 1 = ker TT r 2 = ker p 

Suppose r 2 = o then 
0 

2 2 r 1 = r 2 = o , and we have an exact sequence 

of S-modules 

i j 
0 -+ -+ 0 

Let A' be an R-algebra lifting the S-algebra A , and consider 

the exact sequence 

H2 ( R A I • A I ® I ) ... 
7 ' 0 

induced by 1 ) • 

We know (see [A]) that there are canonical isomorphisms 

k = 0,1,2, i > 0 

and we may verify that by these isomorphisms 

(i) o (A')- o (A") 
p p 

if corresponds to the difference between two 

liftings A' and A" of A to R • 

Suppose given a lifting ~':A' -+ B' of the morphism of S-algebras 
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w: A .... B to R with respect to the liftings A' and B' of A 

respectively B . 

Consider the exact 

.... Der (A' B 1 ® I ) 
R ' R 1 

sequence 

60 
.... H1 (R A'·B' ®I) 

' ' 2 
i~'(- H 1 (R A'· B' ®I ) .... 

' ' 0 R 

induced by 1 ) • 

As above we have canonical isomorphisms 

Hi ( R A I • B i ,0., I ) ,...., Hi ( s A B 10. I ) 
' ' vy k - ' ; \61 k R S 

k = 0,1,2, i > 0 

and we may verify that by these isomorphisms 

(iii) ·S 0 ( s ) = 0 ( \V i • A" B " ) - 0 ( •1• II 0 A" B " ) 
p . ' ' p''¥ ' ' 

if corresponds to the difference between two 

liftings ljr' and 1v" of ~ to R with respect to A', B'., and 

if A", B" are liftings of A', B 1 respectively, to T. 

(3.2) Lifting diagrams of morphisms of algebras 

Let c be a small subcategory of S-alg , and let n: R .... S be 

as before. 

Let w: A .... B be a morphism of c 9 consider B as an A module 

and put 

i > 0 • 

Let (1..,!.1)~ <:p .... \!r be a morphism of Mor c so that the diagram --
'A 

A1 -> A2 

~~ l t t!J 
B1 <- B2 u 
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commutes, and define the homomorphism 

by 

where 

Hi(~Vo~-t) _, Hi(cp) 

Hi(~) .... Hi(*o~-t) 

are induced by A~ A, u and 11 respectively. 

As in (1.1) we shall use the notations 

Now, consider the complex D"(Hi) as defined in the proof of 

(1.2.1). Recall that D" looks like 

Do(Hi) 

d 0 I v 

D1(Hi) 

d 1 t 
D2(Hi) 

= 

= 

= 

II Hi(~) 
¢EM or.£ 

II Hi(~1o1j12) 
¢ 1, 1)1 2 EMor .£ 

II Hi ( S, A; A 0 ker TT ) 

AEob c 

with d 0 ( s) ( 1!1) = !Y SB - ~A ¢ for 1jT: A .... B , 

1 
d ( c ) ( •t 1 ' 1~ 2 ) = 1~ 1 c ( w 2 ) - c ( w 1 ° * 2 ) + c ( l~ 1 ) * 2 

Consider the o-cochain o0 of D"(H2 ) defined by: 

2 o (A)= o(A,n) E H (S,A;A®kern) 
0 

By (2.2.5) is a o-cocycle. Let 0 -o 
be the corresponding 
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cohomology class, then we have proved 9 

Theorem (3.2.1) There exists an obstruction 

o E lim H2 
-o ,_ 

Mor c 

such that o = o if and only if every object of c can be -o 
lifted to R . 

Consider the 1-cochain o1 of D"(H1 ) defined by 

o 1 (w) = o11 (1!J,A'.B') E H 1 (~) 

supposing of course that 1\r: A _, B and that A and B admit 

liftings A', B' respectively. 

By (3.1.10) o1 is a 1-cocyilile. Let £1 be the corresponding 

cohomology class. 

Let C be the subcategory of R-alg defined by: 

o b C = [A ' E o b R-al.g R n (A 1 ) E o b .£ , Tor 1 (A 1 • S) = o } 

mor C = [ 1lr 1 E mor R-alg I n( ~ 1 ) E mor c } 

and let 

n: C _, c 

denote the functor tensorization with S over R • 

Then we have 9 

Theorem (3.2.2) Suppose £o = o , then there exists an obstruc-

tion 

such that 2 1 = o if and only if there exists a quasisection of 

1T~ c _, c • 
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The set of stems of such quasisections is a principal homogenous 

space over 1 . ( o )H1 
liD • .... 

Mor c 

Proof. An easy check shows that 2 1 is independent of the choice 

of liftings A', B' used to define o1 • 

S th th · t h · ~=" E D0 (H 1) such uppose £ 1 = o , en ere ex1s s a o-coc a1n ~ 

that for $: A~ B in mor c 

By (3.1.9) sA=- on(1A,A' ,A") for some lifting A" of A and 

SB=-on(1B,B',B") forsomelifting B" of B. 

Apply (3.1.10) to the compositions 1Ao$ = wo1B and the liftings 

A',A",B" and A',B',B" respectively, then we find 

0 ( 1lr A 1 B 11 ) = 1 0 ( 1lr A 11 B 11 ) + 0 ( 1 A 1 A 11 ) ''' n y' • A n y' ' TT A' ' '~' 

= 111 0 ( 1 B ' B II ) + 0 ( ,,, A I B I ) 1 
,. n B' ' n '~'' ' B 

or equivalentely 

- on(1A,A' ,A")w = on('!',A' ,B')- w sB +sAw = o . 

The rest will be left to the reader as an exercise. 

QED. 

Combining (1.2.1), (3.2.1) and (3.2.2) we have proved. 

Theorem (3.2.3) Suppose 2o = o , Q1 = o then there exists a 

set of obstructions 

O(n) c lim H0 
<-

Mor c 
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such that n has a section if and only if 

o E O(n) 

The set of sections with a fixed stem is a principal homogenous 

space over 1 . ( 1 )Ho 
liD .. ... 

Mor c 

Let c consist of the two objects A and B and the three mor-

phisms 1A, 1V: A-+ B and 1B • Then Mor .£ consists of 3 ob­

jects and 5 morphisms ilustrated in the following diagram 

(1A,1A) 

0 
A 

(1A,,v) ,, 

Then (see [L]) we have: 

lim(o)H1 ... 
Mor c 

= H1 (S,A;A®kern) x H1 (S,B;B®kern) 

H 1 ( S, A; B 0 ker TI ) 

where the fibered product is taken with respect to the homomor­

phisms ljr* and $* respectively, and 

= H 1 ( S, A; B ® ker TT ) / • 
1m ¢ -x- + im ljr * ... 

Mor c 

This proves the following result, 

Corollary (3.2.4) Given a morphism *: A-+ B of 8-algebras. 

Suppose A and B can be lifted to R , then ljr admits a lift­

ing if and only if 

oTI(Iji,A',B') E imljr*+im1\f-x-
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for some liftings A', B' of A and B respectively. 

((3.2.4) is~ of course, a trivial consequence of (3.1.9) and 

(3.1.10).) 

Lemma (3.2.51 Let c be any small category and assume that 

every morphism of c is an isomorphism. Then there is a full 

equivalence of categories 

inducing an isomorphism of functors 

c Mor c 

Proof. If ~: c ~ d is a morphism of c put s(w) = c ~ 

B(~) = d • 

Let F be an object of Ab£ and define the object v(F) of 

AbMor .£ by 

for 

v(F)(w) = F(S~) 

v(F)(A,!l) = F(A) 

im Mor c . 

Let G be an object of Ab!Yf_C'::££ and define the object x.(G) by 

Obviously V 0 1-t 

rt(G)(c) = G(1c) 

x.(G)(t) = G(~,.- 1 ) 

= 1 and if 

A 
c1 -> c2 

\f)~ ~\jr 

d1 <- d2 
11 
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is a morphism in Mor c we find that 

(~ov)(G)(c:p) = v(n(G) )(c.p) = G(1c1)G(1~c:p) G(c:p) 

(ttov)(G)(A.,~) t t tG(),,A.-1) tG(A.,~) ._y 

(~ov)(G)(w) = v(K(G))(1V) = G( 1 c ) ~ G(~) 
2 G(1,1jr) 

commutes since 

But this proves that there exists an isomorphism of functors 

The rest is clear. 

QED. 

Corollary (3.2.6) Let G be a group acting on the S-algebra A. 
Then there exists an obstruction 

such that 0 = 0 -o if and only if A can be lifted. 

If o = o there exists an obstruction -o 

such that if and only if for every g E G 

can be lifted to a common lifting A' of A . 

the action g 

If £0 = o , £1 = o there exists a set of obstructions 

O(rr) ,::: H2 (G,H0(S,A;A ®ker TT)) 

such that o E O(rr) if and only if the action of G can be lif­

ted to a lifting A' of A • 
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Proof. This follows from ( 3. 2. 1 ) , ( 3. 2. 2) 9 ( 3. 2. 3) and ( 3. 2. 5) • 

In fact, by (3.245), if c is the category consisting of one ob-

ject A and the morphisms corresponding to the elements in G , 

then 

Hi(G _) 
' ' <- <-

Mor c c ---
(see [La]). 

QED. 

Example (3.2.7) If one wants to lift affine group-schemes, or 

equivalently, bialgebras, the main problem is the following: 

Let A be an S-bialgebra with coalgebra structure defined by 

m: A ..... A & A. 
s 

Find a lifting A' of the S-algebra A to R , and a lifting 

m' of m with 

m': A' _, .A.' ® A' ! 
R 

I claim that this can be done if and only if we can lift the dia-

gram c 

1 ~ E: 
A ==5 A 0 A 

m s 
-> 

E: ® 1 

where e: S _,A is the structure morphism. 

In fact, suppose we can lift this diagram to the diagram 

(1 ®e)' 
A' --> B' --> 

m" 
--> 

(e ®1)' 

Then the morphism of R-algebras a.: A' ®A' ..... B' 
R 

defined by 

( 1 ® E:) ' and ( e ® 1) ' is a lifting of 1 AOA • In particular a. 
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-1 m ' = m" o a , then m': A' ..... A' ®A' 
R 

Next we notice that Mor c is the ordered set with 5 objects 

and 6 non-trivial relations illustrated by the diagram 

1 ® € m 

An easy calculation (see [L]) then shows that 

lim H 1 = ker $ .... 
Mor c 

... coker ljr 

Mor c 

where 

~: H 1 ( S, A; A 0 ker TT ) X H 1 ( S, A ® A; A® A ® ker TT ) 

..... H1 (10e:) x H1 (m) X H1 (e: 01) 

is defined by 

* (a' s) = ( ( 1 ® e:) * (a) - ( 1 ® € r"· ( ~) 'm* (a) - m * ( s) ' 

(e:®1)*(a)-(e:®1)*(s)). 

Having this, we obtain the following result, 

Corollary (3.2.8) In the situation above m can be lifted to 

an m': A' ..... A' ®A' if and only if 
R 

( o ( 1 ® e: A" A" ® A" ) o ( m A" A 11 ® A 11 ) o ( e: ® 1 A 11 A 11 ® A 11 ) ) E im •1• 
TT ' ' R ' TT ' ' R ' TT ' ' R 'I' 

for some lifting A" of A • 

We shall, hopefully, return to this problem in a later paper. 

is 



THE REA.DER SHOU;LD iiLSO CONSULT 

Luc. Illusie: Complexe Cotangent et Deformations I. 
Lecture Notes in Mathematics. Vol. 239. 
Springer-Verlag 1971. 

Among other things Illusie's papery which appeared while this 
paper was in print, contains some of the material covered in 
this repport. Exa.ctely how much I do not know yet. 

Anyway~ our methods seem to be quite different. 

Encl. to: 
PREPRINT SERIES- Mathematics. No 12. O.A. Lauda.l: Sections of 
1971. 'runctors and the problem of lifting algebraic 

structures. 
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