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Introduction.

Let mm: R - S be a surjectivé homomorphism of rings and suppose
(kerﬁ)2 =0 .
Let A be an ©S-algebra and let A' be an R-algebra such that

A'® S =2xA , A' is called a lifting of A to R , if

Tori(A',S) = 0 .

In particular, if A is ©S-flat then A' 1is a lifting of A ‘1o
R if, and only if, A! ®R S =z A and A' if R-flat. We may
then ask the following question.

When do liftings exist, and if there are some, how many liftings

will there be?®

If A is S-flat the answer was given by Schlessinger and
Lichtenbaum [S].

Using their cohomology theory of algebras, they proved that there
exists an obstruction o€ H(S,A; A® ker m) such that O'= O

if and only if there exists a lifting, and the set of liftings,
modulo isomorphisms reducing to the identity, is then a principal

homogenoue space over H1(S,A;A ®ker m) .

This is the kind of problem we shall be concerned with in this
paper.

We shall eventually consider a variety of'algebraic objects de-
fined over S , such as an algebra, a morphism of algebras, a
diagram of morphisms of algebras, a bialgebra etc. In each case

we will study the corresponding lifting problem.

A good starting point for the theory of 1lifting seems to be to

consider the following general problem,

Let m: C - ¢ be any functor. When does m admit a section

(i.e. a functor o: ¢ = C such that om=1¢c ) ?



Chapter 1 1is concerned with this general problem. We prove

that under certain conditions on m (we need coefficients for

a cohomology theory) there exists a sequence of cohomology groups
Hi(g,n) and an obstruction @¢ Hg(g,ﬂ) such that @@= 0 if
and only if ™ has a section. Moreover, if there is one section,
then the set of all sections is a union of principal homogenous

spaces over H1(g,ﬁ) .

In Chapter 2 we shall use the methods of Chapter 1 to give a new
proof of a slightly improved version of the result of Lichtenbaum
and Schlessinger. The cohomology involved here will be the co-

homology of André [A],

Finally in Chapter 3 we shall consider diagrams of morphisms of
algebras.

The main result is not too startling. If ¥: A - B is a homomor-.
phism of S-algebras, and if A*' and B' are liftings of A

resp. B to R , then there exist an obstruction
o(A'.B') € H'(S,A;B ® kerm)

such that ©(A',B') = 0 if and only if there exists a homomor-
phism of R-algebras ¢{': A' - B' such that ' ®R S v .

The set of such liftings is a principal homogenous space over
DerS(A,B ® kerm) .

This paper grew out of a seminar given at the Department of Mathe-

matics at the University of 0Oslo through the spring and fall of

1970. The author wishes to thank the audience for its unfailing

patience.



Chapter 1. Sections of functors,

(1.1) Derivation functors associated to a functor

Let m: C - ¢ be a functor of small categories, We shall con-
sider the category Mor ¢ , for which

1. The objects are the morphisms of ¢ .

2, If o,p' are objects in Mor ¢ then the set of morphisms

Mor(wp,p') is the set of commutative diagrams

* J’__> *

o| Lm'

A’

¥ < *
!

We write (w,¥'): o = o' for such a morphism.

Let o € Mor ¢ be an object (i.e. a morphism of ¢ ) and let
n'1(m) = {x € Mor C | m(A) = o} .
If ®4 and v, are morphisms in ¢ which can be composed then

we have a partially defined map:
-1 -1 -1
m: o (o) x 7 (pp) = (pg009,)

defined by composition of morphisms in C .

We shall suppose that there exists a contravariant functor
Der: Mor ¢ - Ab
with the properties:
(Der 1) There exists a map:
u: (@) x Der(y) - n'1(w)
and a partially defined map
v i (9) x 1 () - Der(e)
defined on the subset of those pairs (x1,x2) having same "source"

and same "aim" . These maps satisfy the following relations
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wlu(r,a),B)

a is equivalent to Ay = u(kz,a) .

w(X,a+8)
v(k1,X2)

(Der 2) Suppose o, and ¢, can be composed in ¢ ,

then the diagram
1 eg) x 1 (0y) —> 7 (9 0 9)
Joxs I _

(7 (1) xDex(ey)) x (7 (p,) x Dex(epy)) —> ™ (@) x Der(p,0, )
commutes, with & defined by:

6((Aq,a),(X5,8)) = (m(ry,25), Der(id,p,)(a) + Der(yp,1id)(B))
Note that (id,p,): @09, = @1 and (¢,,1d): oo, = 9, are
morphisms in Mor ¢ , since the diagrams

?1q

*
cp1°°le

* <&

>

*
*

* E—— %

1 ®o

commute,

We shall from now on use the following notations:

©4B8 = Der(p,,1id)(8)
ap, = Der(id,p,)(a)

A functor with these properties will be called a derivation

functor associated to

There are some obvious examples,

Ex.1, Let m: R - S Dbe a surjective homomorphism of rings. Let

I = ker m and suppose 12 = 0 ., Consider the category C of
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flat R-algebras and the category ¢ of flat S-algebras, Tensori-
zation with S over R defines a functor

me C = ¢

and the ordinary derivation functor
Der: Mor ¢ - Ab
given by:

Der(ep) = DerS(A,B g I)

where o: A - B defines the A-module structure on B g I, is

a derivation functor for m.

Ex,2, Let go be the full subcategory of C defined by the free
R-algebras (i.e. the polynomial rings over R in any set of
variables), and let ¢, be the full subcategory of ¢ defined
by the free S-algebras. As above the ordinary derivation functor
induces a derivation functor for the restriction T of m to-

c. .
—0

Ex.3. Let m: R - S be as before and let C be the category of
R-flat affine group schemes over R and ¢ the category of S~
flat affine groups schemes over S .

Tensorization by S over R defines a functor
LR
Let o be an object in Mor ¢ (i.e., p: Spec(B) - Spec(d) is
a homomorphism of S-flat affine group schemes over S ) and con-
sider
Der(p) = {§€Derg(4,BO®kerm) | Sopy=u,0(p 85+ @)
where Mpt A - A®A and Mg B - B®B are the oomultiplicaj

tions defining the group scheme structure on Spec(A) and



Spec(B) respectively.

Then Der is a derivation functor for m.

Remark., If m (p) is empty then the conditions (Der 1) and

(Der 2) are vacuous.

(1.2,) Obstructions for the existence of sections of functors

Given a functor m with a derivation functor Der: Mor c - Ab,
let us try to find conditions on ¢ and m wunder which there

exists a section o for m , i.e, a functor o: ¢ = C such that

O‘O‘]T=12

We observe immediately that if such a o exists then certainly

we must have

(o) £ & for all o € Mor c ,

and moreover there must exist a quasisection i.e. a map

o': Mor ¢ = Mor C such that if ¢, and ¢, can be composed
then o'(p,) and o'(p,) can be composed and o' (eq) °0'(¢,)
have the same "source" and "aim" as o'(gq° ¢,) . Given such a
quasisection o' we deduce a map Oyt ob ¢ -» ob C , which we

shall call the stem of the quasisection o' .

Now, with all this we may prove:

Theorem 1.2.1) Suppose given a quasisection o' of m . Then

there exists an obstruction

&(o') € lim(2) Der
Mor ¢
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such that @(o') = 0 if and only if there exists a section o

of m with the same stem o  as o' . Moreover, if Clo') =0

then the set of sections having the stem Oy s modulo isomorphﬁmm

reducing to the identity, is a principal homogenous space over

1;511(1 ) Der
Mor c

Proof. Consider the complex D' = D'(Der) of abelian groups

defined by

D°(Der) = ™ Der(10)
ce€obgc

Dn(Der) = ™ Der(d;.'otpzo...oq;n) n 2 1
Cogy 47 Ton-1 i “n

where the indices are chains of morphisms in ¢ , and where

a?: pt - Dn+1
is defined by:
(a°8) (44) = v, Sc, = Bey V1
(a%€) (4q5ennty q) = ¥q E(¥psueestp,q) +
;51(-1)1 E(Hgy e ea g @ biqneee i) + (=D G0t ) vy
for n>1.,

One easily verifies that a o dn+1 =0 for all n >0 .

Lemma (1,2.2) YD) ~ lim(n) Der
Mor c

The proof will be given in (1.3).
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Now consider the quasisection o' and define the elsment (o')

of D2 by:

Olo') (41,45) = o' (4y00,) = 0" (¥7) 0 " (¥,) .
By assumption O(o')(¥4,¥,) € Der ( yq09,)
In fact (o') € kerd® since
(4% 0o )) (¥t ¥3) = 47000") (4, ¥5) = OL0") (4424, ¥5)
+ C(a) Chqstp003) = Oo")(iq,05)05

\111 (o (¢2°‘l’3) -0o! (""2)"0" (\‘13)) - (0'(¢1°¢2°\‘|’3) - 0"(\};10\[12) oc'(¢3))

-+

(0" k4o 402 ¥5) = 0'(14) 20 Ghpous)) - (0'(k3o4p) = 0 (49)00" (¥p)) ¥

1l

(U'("!J-]) o U'(\'fgo‘bB)" O'(‘l’-{) ° c'(‘l’z) DG'(‘#B))
- (0'(‘1’1°¢2"¢3)'O"(‘1’1°¢’2) O"(‘!JB))

+ (O"(‘l’1°‘i’2°1113) - 0'(‘!’1)°°'(‘|’2°¢'3))

(51 (472¥)0" (43) = 0" (47)00" ()00 (45))

=0 .,

It follows that Cf(o') defines an element ©(o') € H2(D') .
Suppose ©(oc') = 0 , then there is a & € D' such that

dg = O(o') .

Now put

o(p) = o'(p) + E(ep)

Then o(y 0¥,) - o(¥q) e a(yy)

= (G'($1°‘1’2) + 5(‘!'10\'}2)) - (0'(\1’1)*' g(\h))o(cj(\"z)"' §(\!!2))

U'(¢1°‘l’2) - 0'(‘1’1)"0' (‘1’2) - (0'(¢1)§(¢2) - g(‘l"]o‘l’z)
+ §(¢1) 0'(¢2)) = C?(c')(¢19¢2) - (d@)(¢1,¢2) = 0.

i,e, 0 is a functor, (we easily find that 0(10) = 100(0)).
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Obviously the stem of o is equal to the stem of o' (i.e. = o ).

Now let 04 and 02 be two sections of 1 with the same stem

Oy o Then (01- 02) defines an element in D1 , Dy

(01" 02)(’1’) = 01(‘]’) “02(¢) .

Since o, and 0, both are sections (d1(01-02))(w1,¢2)

= \!’1(0'1 ‘02)(‘1’2) - (01- 52)(‘V1°‘|’2) + (01- 02)("#1) ¢2 = 0, and
therefore (01-02) defines an element in H1(D') .

Suppose this element is zero, then there exists an element ( € D°

such that

01(\“ ‘02(‘!1)=‘1’C - ¢y

01(‘!‘)"(100(01)"‘;01) = (100(00)"'gco) °02(‘l’)
for all

Ve Co = Cq .

Conversely, suppose S € H1(D') is represented by § € D then
given any section o of m, &+ 0 is another section with the

same stem as o .
QED.,

(1.3.) Proof of lemma 1.2,2, In this section we shall prove lemma

(1.2.2) by proving a more general theorem.

Theorem (1.3.1) The functor

0
D*: éﬁMgz £ - Complexes is a resolving functor for lim .

MoTr c©

Proof. ILet L be the constant functor on Mor ¢ with L(y)= %
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for all o .

We shall construct a projective resolution of I in AbMQE .

Let o@: x =y be any object of Mor ¢ and consider the sets

€ P
2°(9) = {x=c =~y | con =09},
n € U9 ¥n )
A (m) = {X - CO - 01 e N Cn—1 - cn =y | € o¢1o..o¢no p = ¢}

There exist maps:

1
nt o A% () = AT ()
1

8% ¢ aA%(w) - A% (o)

i
defined by:
€ ] V. 0 € id )
n - J —o o= Itl - - - -t o= - - -
ni(x c, = Cy 1 c y) = (x c, cy = cymeoC) v)
€o ¥ P
' ' (x -»qLIC1 2, c2—n..—ocn - y) i=0.
€ 1 v p € bsols.q )
n -d - - e 08— g - - "1 1+
51(X Co 01 . Cn__1 Cn y) = (\X—)Co-o u--ooi_1 - Ci+1 —o».—»cn-—»y)
for o<i<n
€ LA .
(x---oo-m--»cn_1 - y) i=n

giving A%9) , =n > 0 the structure of a simplicial set,

Moreover for each n > 0 , An(m) is functorial in ¢ defining .

a functor

A: Mor ¢ = Simplicial sets

Composing A with the functor C.(-,%Z) we have constructed a

complex of functors

C.: Mor ¢ - Ab

Now, by a standard argument we construct a contracting homotopy

for C., thereby proving
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0 for i#£0

Moreover

C (@) = 1 {1 =z }
. (esp):cP‘ - ‘]r"]s“':‘l‘n
in Mor ¢® yyomeey =0

Using ([Lal,Prop.l.la) it follows that each C, is projective as

0
object of ABLMCE &
o

Therefore C. is a projective resolution of I in AQEQE s -
Since

Mor (Cn,F) =1 F(¢1o...a¢n)

Apor ¢ C 7 Ot 17 %y

- LI )

we find by a dull computation that
D*(F) ~ Mor (C.,F)
ALMor-g

thereby proving the theorem.
QED.
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Chapter 2, Lifting of algebras,

(2.1) TLeray spectral sequence for 1lim,

Let ¢ be any small category and let c¢ be an object of ¢ .

Consider the contravariant functor C(Z,c) defined by:

C(Z,c)(ct) = I Z
c'ao

We know (see [La]) that these functors are projective objects in
e,

Suppose M is a full subcategory of ¢ and consider the restric-
tion of C(Z,c) to M . Let F ©be any contravariant functor

on M with values in Ab , then we find,

u°
Ab= (C(Z,c),F) =~ 1im F ,

(M/c)®

=

¢ in ¢ is an M epimorphism, i.e. c_ €o0b

Now, suppose ¢ o

o
and the map

Mor(c',co) - Mor(c',c)

is surjective for every c¢' € ob M .

Suppose further that ¢ has fibered products and consider the

system of morphisms

- - - -
8] ~ C - C C - 600 s 80 C =
0 0 é o« ' : Co‘ﬁ ‘ é o
- w -

b

Put c_ = c¢c_xeee xcC and denote by
P 0 e c ©
p+1
dl (6] - C i=O,-..9P

the p+1 projection morphisms,



- 14 -

Consider for each d;' the corresponding morphism

i, - _ iyi
ap : C(%,cp) C(%,cp_1) and let ap = igo(—1) ap . Then

ap ap_1 =0 for all p >1.,
Lemma (2.1.,1) The complex C., = {C(Z, c, ), aP}P>0 is a resolu-
MO

tion of C(Z,c) in Ab= .

Proof. See M, Artin [1] p. 18,

0
Let F' ©De an injective resolution of F in AQM and consider

the double complex
Mor(C, ,F*)

We shall compute the two associated spectral sequences, But

first we have to establish the following lemma.

Lemma (2,1.2) Let £ M/c - M be the canonical forgetful

o
functor and let F ©be injective in AQM , then the composed

o
functor f eF: (M/c)o - Ab 1is injective as an object of A.E@I-/C) .

Proof, The functor f induces a functor
£o: A’ - ap(l/e)®

We want to prove that f, takes injectives into injectives.

To prove this we construct a left adjoint
o
F Ab(—/C) - Ab—
Let G be an object of Ab/C)® ang put

o(@)(m) = I a(m > c)
® € Mor(m,c)
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(0]
so that p(G) isanobject of AbE .

One easily checks that there is a canonical isomorphism
MOT(p(G),F) = MOI(G,f*(F))

proving that p 1is left adjoint to f, . Since p 1is exact

we know that f, takes injectives into injectives.
QED.

Going back to the double complex Mor(C.,F*) we find the E,

terms of the two associated spectral sequences:

'Epéq - HP(Hé(Mor(C.,F?)))

"Epéq Hp(Mor(Hq(C.),F.))

We know already that
"Epéq=0 for q £ 0

"En,o

;0= E'( 1im (7))

(M/c)°

and by Lemma (2.1.2) we deduce that

1l

g0 - 1in (Mg,
2 -
(M/c)°

Since

Mor(Cp,F‘) = 1lim P* ,
M
_/cp

we find, using Lemma (2,1,1) once more that

'Epéq = Hp( 1im (Q)F) .

M/c.

We have proved the following theorem.



Theorem (2.1.3) Tet M c ¢ and @: c = c be given as above.

Then there exists a Leray spectral sequence given by:

B5r 9 = Eg’q(M) = HP( 1im (a)p)
(M/c,)°
converging to
1im (3,
(1 /0)°

Remark 1, The spectral sequence above is nothing but the Leray
spectral sequence associated to the "covering" o: ¢, * ¢ in an
appropriate Grothendieck topology.

2., Since c, € ob M the category M/oo has a final object.

Therefore Eoéq =0 for all q >1.,

We deduce from this the formulas

’o

im F =~ E®
1&m 5

(M/c)©
1im (Vp 2 B0,
(M/e)©

and the exact sequence

0 - 8%° o 1an Pp g’ o 5504 14p Gy,
- 2 2 -
(M/c)© (1/c)°

Corollary (2.1.4) Suppose that 1lim (i)F =0 for 1i>1,
M/a~.)C
(_/CJ)

i+jJ = p and for i+j = p-1 . Then

1lim (®)p o EP2° .
(M/c)°



- 17 =

Assume for a moment that there exists a functor i: ¢ - Ab

commuting with fibered products.

Corollary (2.1,5) Put g = f<i and suppose

lim g = i(c_) for all p >0 .
M b -

c

P

Then

lim g =0 .

(1)
We

Proof, Let E ©be an injective abelian group and consider the

functor

F(-) = Ab (&(-),E) .

We know that

Ab ( lim g, E) = 1im(1)F
M/c(1) M/c)°

= ker{ lim F - lim F}/im{l‘:i_.m F - 1‘3_'._m,F}
(M/cq)° W/, We)® W)

= Ab (ker {i(cy) =~ i(c )}/ im{i(ey) =~ i(cq)1},E)

But since i(cp) = i(co)(x)...(x)i(co)

i ile ilc

p+1

this last group is zero,

Since this holds for all injective abelian groups E we have

proved that lim(1) g =0 .

M
We QED.
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Remark The last corollary and the next one are important in

our development of the lifting theory for algebras,

Corollary (2.1.6) Let M, 2 M be two full subcategories of

¢ . Suppose ¢ has fibered products and let c¢ € ob ¢ .

Assume that ¢ satisfies the following conditions:

(c,) There exists an object c¢_. of M. and an M-epimorphism
1 o} -0 -

N S A ¢
ch

(cy) TFor any M-epimorphism ¢:d  ~d im ¢ with d € M there

exist objects ep € Mo and M-epimorphisms

Then we may conclude

1im(*) ~ 14m(*)

We)° W)

Proof., We first observe that (01) and (02) together with (2.1.1)

imply that there are canonical isomorphisms

(1) lim = 1lim
Wey)® Uy

Where C. = C_ X eeoe XC_ &
P o, o ©
p+1

Now the canonical morphism

2 1m(®) 1in(®)

/) M 4)°

induces morphisms of spectral sequences
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P54, pP,4 - wP,a
t20%: 220%(w) - BD-%(u)

Using (1) we find isomorphisms

P;0, b0 = PO

t2 : E2 (M) = E2 (Mo) p>0.
Thereby proving that t; is an isomorphism. By an easy induc-
tion argument we may assume that tP2 2 gre isomorphisms for all

2
Ps4 with p+d <n or q <n ., This implies that

b4, pPsa - pPya
-th ° Ew9 (M ) Ew’ ( M"O )

are isomorphisms for all p,q with p+q = n , thereby proving

that t" is an isomorphism.

QED.,

(2.2.) Lifting of algebras

Let S ©be any commutative ring with unit. Let S-alg de-
note the category of S-algebras and let S-free denote the
category of free S-algebras (i.e., the category of polynomial

algebras, in any set of variables, over S).

Let A be any object of S-alg and consider the subcategories
M, and M of BS-alg/, given by: M = S-free/) and M  is the
full subcategory of M defined by the epimorphisms F - A .

Thus we have M c M c S-alg/, .

We observe that we have isomorphisms of categories:
Mo = Il‘[-o/(-A' 1—' A-)
A
M = W(A T A)
A

S-elg/, = (S-alg/y)/ (Af& A) .
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By a straight forward verification we find that M, c M c S-alg/p
and the object (A.r 4) satisfy the conditions of Corollary

A
(2.1.6).

We therefore conclude:

Lemma (2,2,1) 1}m(') o~ 1£m(')
I i,

Now recall that given any A-module M the cohomology H*(S,A;M)
is defined by

13m(n)Ders(-,M)
MO

Hn(SsA§M)

1]

(see André [A]).
Using (2.2.1) we find

H(S,A3M)

i

1in(®) Derg (- ,M)
)
L
(i.e. we may compute the cohomology of A wusing only surjective

homomorphisms of free S-algebras onto A),.

Recall also (see [La]) the standard resolving complex C* for
1im (called 0N°* in [La]), for which

lim(n) ~ ®c*) .

cO

C* 1is defined by

cP(F) = T F (c)
12 ‘Vp p

with dP: cP(®) - cP*1(F) given by
dp(g)(\U",...,‘!Jp_H) = F(‘l’1)(§(¢290-09¢p+1))

u i n+1
+ 151(-1) g(ll!.],...,lllifﬂﬂ!i+1,...,¢p+1) + (-1) g(w‘l""swp) e
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Let m: R = S be a surjective homomorphism of commutative rings

and let I = kerm . Assume that I°

o .

Consider the functor
m': R-alg - S-alg

defined by tensorization with S over R .

Definition (2.2.2) An R-algebra A' is called a lifting of

the S-algebra A to R if m'(A') = A and Tor?(A',S) =0,

Let ™ be the restriction of m' to R-free ,
m: R-free - S-free

We have observed already in (1.1) that
Der(eop) = DerS(F1,F2 % I)

where ¢: F1 - F2 is a homomorphism of free S-algebras is a

derivation functor for mw .

There are lots of quasisections of m , and we pick one quasi-

section o' ., Note that all stems are equal,

Suppose now that there exists a section o for m . Given any

S-algebra A , a good candidate for a lifting of A to R would

be the R-algebra

A' = 1lim (foo) .
S-ﬂee/A

In fact we shall see later that A' is a lifting of A .

Since there are, in general, S-algebras that cannot be lifted

to R we deduce that such a o cannot always exist.
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To settle the case of a single S-algebra we must therefore be

2 little more subtle.

Consider the restriction 8, of g: M - S-free to Mo and look

at the complexes

DO

Il

])‘(go o Der )
C.

C'(gOODer(-,A ® I))
defined above (with ¢ = M), see (1.2).

Let us first show that there exists a surjective morphism
je D* - C* ,

In fact we have that

7

D = I @FTS(F Fn ® I)
F '-0 F-l —Dna-)
cpo\i" /qh

n

ct = il ‘PerS(F A®I)

F —-OF_I —uno-"F
® l?;//ﬁh

where the indices run over all sequences of morphisms @O‘F pq et
n

J}¢ in M .

Now for each such index, P defines a homomorphism

oyt Derg(P ,F ® I) = Derg(P ,A ® I)

Since Fo is free and o, is surjective we conclude that P x
is surjective. (This is in fact the only reason why we have to

consider M, instead of M .)
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But these induce a surjective morphism

Pnx

in? p* - o

and a trivial verification shows that these jn's commute with
the differentials in D* and C* . Put K° = ker j, then the

sequence

O0-K*"=>=D*=0C" =0
is exact.

Corresponding to the quasisection o' we have the 2-cocycle

J(o') € D° given by

Oo')(hq,¥5) = 0" (¥g24,) - a'(44) 20’ (¥,) € Derg(F_,F, ®I)

where ¥y and b, are morphisms in Mo such that:

¥ ¥
F, = Ty 5T,
CPONM ‘/cpg/
A

Let O(A,0') = j(O(o')) and consider the corresponding element

o(h,0') € H(C*) = HO(S,A;4 @ I)

Theorem (2.2,3) (i) The cohomology class O(A,n) = ©&(A,0') is

independent of the choice of quasisection o' .

(ii) There exists a lifting A' of A to R if and only if

G(A,m) = 0 .

(iii) If ©(A,m) = O then the set:

F,(R) = {A' € ob R-2lg | A' 1ifting of A}

{isomorphisms
A? ~ AII
reducing to the

is a principal homogenous identity on A}
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space over H1(S,A;A ® I) .

Proof. Suppose o' and o" are two quasisections. Let ( Dbe

the 1-cochain of D* given by

C¥q) = 0" (49) = 0"(¥) .
Then one verifies that

Oa") - Olor) = ac .
Thus ©(o") = O(¢') , andh fortiori

O(A,0") = ©(A,0')

proving (i).

Suppose there exists a lifting A' c¢f A to R and consider

the obvious functor
nz: I\_/I,O(A') - B_/I_O(A) )

where MO(A') is the full subcategory of R~free/,, defined by

the surjective homomorphisms.

There are lots of quasisections of m, , and we pick one quasi-

section o" . If

1
Fo -
@;\Q Z/;1
A
is a morphism V¥, in S-free/, , let

0"(‘1’1)
] > F,’I

F
o"(cpoc;\l L/o"(cm
e

be the morphism o"($1) of R-free/, .
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Computing O(o") we find j(@(o") = 0 since, on one hand, all
triangles with A' as vertex in the diagram

t

f 1
7 —— B .
o G"(‘l’1) L G"(‘l’g 2

/
U"(CPO)\ icll(cp1) Gn(ch)
Y4

A'

commute; and, on the other hand, the diagram

F'®@I~7F ®Iq>i®11> AT ~A®I
' ~ P, ~

1R S R S
7. > Al

]
" (o, )
commute as a result of Tor?( Av,3) =0 .

Therefore @(A,m) = 0 , proving the "only if" part of (ii).

Suppose ©(A,m) = 0 . Then jO(o') = d¢ where ( is a 1-co-
chain of C* , Since j is surjective there exists a 1-cochain
¢ of D* such that j(€) = ¢ . Let o" be the map

Mor M, - Mor R-free
given by:

oM (¥) = o' (g, (¥)) + E(4) .

o b2
Let Py = O - 9, be two morphisms in Mo , then

0'"'(‘!"1 °1'J2) - 0"(‘31) °>‘0v'"(‘4’2)

= Oo")(47,¥5) = a8(4q,05) = wlyy,¥,)

Since jO(o') = j(AE) we may assume o € g2 .
Now
A' = 1im ao"
M
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exists as an R-module,

lim o" = coker ( IO o"(p_ ) 2 0 o"(op)) .
- 1 © ®

M

Consider the resolving complex C. (the dual of C*) of 1lim ,

Lo

Recall that:

C(F) = I P (cp)

p Ll Choed
CO % C1 q’pcp

Since o¢" 1is not a functor C.(o") will not necessarily be a com-
plex, but nevertheless we may consider the diagram:
0] 0 0 A®TI
b | b :
8 Sl

Co(o") ® T ==5>C,(0") ® T —> C_(0") ® I —> A' ® I —> 0
R R © R R

1
y | y o
) Y
02(0") ——— C1(0") > Co(c") > A —_> 0

b v b b

Co(c") ® 8 —>0Cy(0") ® 8§ —> C_(o") ® § —> A —> 0
R R °©

b b b b

0 0] 0 0

In which we know that all sequences of maps marked with solid
arrows are exact, The vertical sequences are exact since all

Cp(c") are R-flat, the lower horizontal sequences is exact

since
C(o") ®S = ¢C
p(o") @ o (&)
and because of Corollary (2.1.5),
The solid part of the upper horizontal sequence is exact since

C.(o") ® I = C.(go) ® I,
R S
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and finally, part of the middle horizontal sequence is exact by

the definition of A" ,

Remember that we do not know that § ey = 0 ., In fact it may well
be that &oy # 0, However im (8evy) C Co(c") % I and fortu-

nately we hawe arranged the situation such that
B (im(sey)) =0 .
This follows by observing that the image of 6 oy consists of

sums of elements of the form

(0'"(\V1°‘b2) - 0"(‘1’1) 00"(¢2))(§) = W (‘\"19‘”2)(5)

for

in M_, and by recalling that w € K° , such that
B(w(¥y,¥5)(8) =0,
Using this we may easily see that o 1is injective.
But o is injective if and only if
Tort(A',S) = 0 .

We have to show that A' is an R-algebra., Consider a system

of homomorphisms

in which p and d are surjective, P} and Pé are the pro-
jections and A' is the diagonal., Let A: FO - F1 be a homomor-

phism such that A ed = A' , and put p; =4 cpi .

Then A is the inductive limit of the system
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Pq
F, 2 Py
"Fe /

Now use the quasisection o™ on these morphisms, and get a

diagram quﬁ) o

F' 3 F' - A'
N

o ( A)

Since we have the commutative diagram

0 0
l/ \l/ p®’lI
F1 ® I > FO ® I -~"A®I —> 0
! Y Y \\\\\\\g\
0"@0 3
P! 2 P -coker(o"(p1),o"(p2))-A'

1 ") 0
! | v

Py
F 3 F — A —_— 0
1 p2 o)
Y ! y
0 0 0

in which a dis injective and all sequences are exact we deduce
that
A" x coker (0"(pq),0"(py)). = Fo/im(a"(pq) - o"(py,)) .

If we can show that im(c"(p1)-c"(p2)) is an ideal of F! we
are through.
Suppose o"(1p ) = 1p' + &p , then since
o o 0
o"(1n ) oo"(1m ) = o"(1 - o (1 1
F, F, (1p ) (1p_»7p )

we find that § = —~w(1 1
FO ( Fos FO)

and that
p'(gpo(x)) =0
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for all x ¢ Fé ,50 that we have
gp (x) € im (a"(py) = 0"(py)) .
0

Obviously o"(1p ) is an automorphism, such that given any
0

x € F'* we may find a y € Fé such that
0

x = o"(1p ) (y) .

Iet 2z = (O"(p1)-0“(p2))(u) and look at

xez = 0"(1p )(y) » (o"(pq)(w) =" (pp)(u) .

We recall that

]

0" (pq1) (a"(2)(y)) + w(a,py)(¥)
" (py) (0" (2)(¥)) + wla,pr)(¥) .

0"(1F0)(Y)

Therefore we get:

X e 3z

o"(pq) (wec" (A)(y)) = o"(py) (u-0"(a)(y))

W(Asp1)(Y) . 0"(P1)(u)

+

w(Aypz)(Y) . G"(Pz)(u) .

Now for i = 1,2, the element

I P ! ~

w(b,p;)(y) » o"(py)(u) € B ®I=F 81
is equal to

w(8,04)(y) + py(H)

where U is the image of u in F, .

Since p ® 1I is a homomorphism of Fo—modules we find:

(b ® 17)(w(8,05)(¥) + p;(R))

1

= p(Pi(ﬁ)) ¢ (p ® 11)(W(A9Pi)(y))= 0 i

In particular we have proved
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Xe+2z € ker p' ,

thus ker p' is an ideal of Fé and therefore A' is an alge-

bra, which proves (ii).

Suppose now that @(A) = 0 and consider the quasisection o"

defined in the beginning of the proof (p. 24).

Let c¢ be any element of H1(S,A;A ® I) and let & € ¢! repre-
S

sent ¢ .

Then o" + €& 1is another quasisection with the property that
C(o"+€) = O(o") .

Therefore

lim (o"+§) = A"
Lo
is a lifting of A .
Suppose on the other hand that we have two liftings A', A"

We may, as we claimed above, construct quasisections o', o" of

Myr? M-o(A') - 1

and

MO(A") - M, respectively.

Let
E(¥) = o' (v) -o"(¥) .

Then €& € D1 and we know that j(dg) = 0 . Therefore j(§)

defines an element

A(A',A") € H (S,A;A 2 1) .

If there exists an isomorphism

W: At = A"



reducing to the identity on A , one checks that j(g) is a

coeycle such that X(A',A") = O .

Conversely if A(A',A")

fl

O one easily shows that the O-cochain

¢ € D° for which

il
O

j(&-ag)
defines an isomorphism
M: A' - AV

reducing to the identity on A .

From this we deduce (iii), thereby proving the theorem.

BExample 2.2.4. Let R = Z5/(132)[}<I]/(X2—p), S = Z/(p)[X]/(X2-P)

and let m: R - S ©be the obvious homomorphism. Let A = Z/(p)
and consider A as an S-algebra by the homomorphism S - A
mapping X to O . Suppose there exists a 1lifting A' of A +to

R , and consider the diagram

0 0 0
| v v
I R ®,I A' ® (R®I) ~ A'®1
! ' \L R Vv \%
v % )

V = %/(p°) —> B/(p?)[X]/(X-p) —> A

Lo T

P =%/(p) —>Z/(p)[X)/(X°) ——>Z/(p)
v v Y
0 0 0

Since A' @ B ~ A' @ (RQF ) ~ L' @ S ~ A
Vv P R v P R

we find by inspecting the diagram that A' is a 1lifting of the
Eb-algebra A to V . But them A' = V and this is impossible

gsince p 1is not a square in V .,
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This example shows that oﬂ(A) is nonzero in

H2(S,A;A)

We shall end this section by proving a result which will be used

in section (3.2).

Theorem (2.2.5) Let ¢: A - B be a morphsm of S-algebras, then

U o(a,m) = (o (B,m))

Proof, Let o' ©be a quasisection of m: R-free - S-free ,

Let 4t @, = ®q , U ©; = @, be two morphisms of Mo(A) , then

by( o(A,m)) 1is represented by the 2-cocycle 0, given by:
04(by,05) = (Lot (¥y odp) =0 (¥q) =o' (¥,) Joy)

and ¢*( o(B,m)) is represented by the 2-cocycle 0,
0,(b,45) = (50 (hy @ up) =00 (47) * 0" (4,) 1w * ¥)

Obviously O1 = O2 which proves the theorem.

QED.
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Chapter 3., Lifting morphisms,

(3.1) Obstructions for lifting morphisms of algebras

Let m: R - S be a surjective homomorphism of rings with
(ker11)2 =0 . Let ¢: A - B be a morphism of S-algebras, and
suppose that A and B can be lifted to R . If A' is a 1lif-
ting of A to R , and B' is a lifting of B to R and

v': A' - B' 1is a morphism of R-algebras, then we shall call '

a lifting of & to R with respect to A', B' , provided

¢'§1S:$.

Theorem (3.71.1) Given liftings A' and B' of A and B re-

spectively there exists an obstruction
o(t) = oﬁ()y’A',B') €H1(S,A;B®kern)
such that o(§) = o if and only if there exists a lifting

of ¥+ to R with respect to A', B' . The set of such liftings

is a principal homogenous space over DerS(A,Béaker1T) .

Proof. Let o Dbe a quasisection of

nA,A' : MO(A') - Mo(A)
(see p. 24). Since B' = B is surjective there exists for any

0] EcﬂJMO(A) with o(p): F' - A' a morphism of R-algebras
v(ip): F' - B!

such that

V(cp>§1s=cp°\‘}.
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Let

p
F, —> F2

R
Cp1\:/“?2
A

be a morphism p: @q = @, of Q{I_O(A) and consider the diagram

Bl o) v(o)

l 2 v(ep )>
L

\!/

A > ;

Since P °b =09y, wWe Inow that

C(o) = (o) v(qoz)—v(cp1) € DerS(F1,B®kerﬁ) .

When o and v have been fixed, this formula defines an element
C e 0l (S,A;BO®kerm) .

Moreover C is a 1l1-cocycle as for any pair of morphisms

P3Py = ®g, Ppily = Oz in MO(A) vie have:

dC(p1,p2) = Pq° 0(92) —C(p1°p2)+0(p1)

p1Lo(ps)ov(es) = v(gy) T =Tolpqony)® vieg) = vieg)]
+ [0(91)°\)(c92) - V(CP1)]

5(04)0(05) *v(w5) = 9(p;) *v(wy) - (g 705) *v(es)

+ V() +0(0q)ovle,y) =v(pg) = o
knowing, as we do, that
[0(91)°0(92) “0(p1°92)]\)(c93) = [O(p1)°0(p1°p2)—O'(p1°p2)](cp3°\l!)
= ([0(p1)°0(02) -0(p1°02)]°0(¢3))¢ = [0(91)°0(92)°0(993) -

5(pyo0p)°0(w5) 10 = 0 .
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Let o(Y¥) = o (¥,A",B') Dbe the corresponding cohomology class,

then an easy check shows that o(¥) is independent of the choice

of the quasisection o and of the choice of the map v .

Suppose o(y) = o , then there exists a £ € C°(S,A;B®kerm)

such that C =4§ . Put
ve(e) = viv) - €(p)
then for any morphism p: @, = ¢, in MO(A) we have
a(p)ovy(my) =vi(eq) = a(p)v(e,) -o(p)E(y,)

- v(gq) +8(wq) = C(p) = (p8(wy) = 8(pq)) = (C-dE)(p) = o .

This implies that for any morphism p: ¢, = @, in MO(A) the

diagram
; —_ V1(@1)
O \
% “jB,
F' —

2 vy ()
Z, %(cpz) °

U(@1)

is commutative,
Consequently v, defines an R-algebra morphism

$': A' = limo ~ B' .
i ,(4)

Clearly ' is a l1lifting of ¢ to R with respect to A' and B!'.

The rest of the conclusion of the theorem is obvious.

QED.

Let m¢: R- S, #: A - B Dbe as above, and put I = kerm.

Remark (3.1.2) If S[X] - A is a surjective homomorphism of
J

algebras then we know that
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HomS[XJ(ker i,

H (S,A;B®I) = Derivations

Let R[X] - A' be a lifting of J to R and observe that
J
ker j' ® S = ker j
J R J

since TorE{(A;S) =0

Let wv': R[X] - B' be a lifting of je°¢ , then V' defines an

R[X]-module homomorphism
ker j' - B'® I
R
vanishing on ker j'% I.
Therefore v' induces a homomorphism

vi kerj - B'"929I =2xB®7I .
R S
One may check that v represents the class
o (¥;4",B") .

Let A' and B' be liftings of A and B respectively and con-

sider the map

¥,: H (S,A;A8T) - H(S,A;4871)

defined by
,(A) = o (¥341,B') = o (4;A",B')

where \ corresponds to the difference A' - A"

Theoren (3.1.3) ¥, is induced by ¢®1;:A®I ~B®I .

Proof., Let Ay be a 1-cocycle representing A and consider a

quasisection o' of

me M (AY) - M (4)
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then
d(p) = o' (p) - A(p)
is a quasisection of
o " -
M (A) = M (4)
It follows that

C(c') = C(o™m = Aoy .
(see proof of (3.1.1)) QED.

Corollary (3.1.4) Suppose A and B can be lifted to R and

suppose on(m: A',B') € im{, for some A' and B' 1lifting A
and B respectively. Then there exists an A" 1lifting A and

a (": A" - B' 1lifting ¢ .

Corollary (3.1.5) Let (: A - B be an isomorphism and suppose

A and B can be lifted to R . Then there exists for every

lifting B' of B a unique lifting A' of A and a morphism

C': A' - B!

lifting ¢ .

Consider the map

¥*: H'(S,B;B®I) - H' (S,A;B07T)
defined by

Y*(,U«) = oﬂ'(lb: A'9B')" Oﬂ_(\',l;A',B")

where u corresponds to the difference B"-B' .

*

Theorem (3.1.6) ¥ is induced by %: A - B .
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Proof. We know that lim(l) =~ lim(i) . Let EA be the resol-

u(1)°  u (w0
ving complex for lgm and CA the resolving comples for
u(a)°
lim (see p. 20).
M (4)°

The canonical homomorphism

EA(DerS(-,B ®I)) = OA(DerS(—,B® 1))

therefore induces isomorphisms in cohomology.

Let o be a quasisection of m: R-free - S-free , let vy be a
section of the map m: obM(A') = obM(A) and let v, be a sec-
tion of the map m: obM(B') - obM(B) . Let op: ¢, = ®q be a

morphism of M(4A) and put
E(p) = (o(p)vyloqt) =volo ¥)) = (o(0)vy(eq) = vile ))¥

Then E € EL(DerSO—JB®]j) and one checks that E is a cocycle
in EA . Moreover it is easily seen that the corresponding coho-
mology class is independent of the choice of o, Vq and Vo .

Let C be the image of E in Cl(DerS(—,Bébl)) , and let o'

be a quasisection of 1 MO(A’) - MO(A) . Since the cohomology
class ¢ of C 4is independent of the choice of o and v, we

find that ¢ is represented by the 1-cocycle C' defined by:

¢ (p) = (37 (p)vylepg?) = vl #)) = (o' (p)o" (2y) = 5" (1)) ¥

o' (p) vy (q9) = vyl ¥)

This shows that c¢ = oﬁ(w,A',B') . Thus E represents
o (¥,A",B") € 1£m(1)DerS(-,B®I) = H1(S,A;B®I) .
u(%)o

Let be a section of m: obM(B") - obM(B) , and let for any

V3
morphism p: @ = @, of M(4)
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F(o) = (G(D)Vs('ﬁ.’)']‘l’) - VB(CPO‘D)) - (0(9)\)1((91) - V1(CPO))W
then F is a 1-cocycle of EA(DerS(—,BCEI)) and we know that
F represents on(w,A',B") € H1(S,A;B§§I) .

Let a: T = Ty Dbe a morphism of M(B) and put

G(a) = (U(@)V2(71)‘V2(TO))‘(0<Q)V3(T1)“V3(TO)) 9

then G € E;(Ders(-,B8>I)) is a cocycle and a momenté refexion
will convince the reader that G represents the cohomology class
u corresponding to the difference B" -B (i.e. A(B",B') see

p. 30). In fact, consider the image H of G in C%(Deaﬁ-,B(&I)L
let o be a quasisection of m: MO(B') - MO(B) and let o" Dbe
a quasisection of m: MO(B") - MO(B) . Then H represents the

same cohomology class as H' defined by:

H'(a)

(a"(a)a' (1q) =o' (7)) = (0"(a)o"(7y) =c"(7,))

0"(&)0'(71)—(3'(TO)

1l

(0"(a) =0'(a))o'(rq) = (0"(a) =o' (a)) 7y
By definition the cohomology class of H' dis A(B",B') (see p.30).
Now let ¢ also denote the functor
M(A) - M(B)
defined by ¢(g) = we ¢ . Then
E-F = VG
which implies

On(‘!’sA'9B') ‘OF(¢9A'9B") = ‘l‘*(B"-B')
QED.



Corollary (3.1.7) A and B can be lifted to R and suppose

o (¥34',B") € im¢* for some A',B' 1ifting A and B respec-
tively. Then there exists an B" 1lifting B and a ¢": A' - B"

lifting V¢ .

Corollary (3.1.8) Iet y: A - B be an isomorphism and suppose
A and B can be lifted to R . Then there exists for every
lifting A' of A a unique lifting B' of B and a morphism
yre: A' - B' 1ifting ¢ .

Corollary (3,1.9) TILet u € H'(S,A;A®I) correspond to A' - A"

where A' and A" are two liftings of A to R . Then

U= Oﬂ(1A9A'9A") .

Proof. By (3.1.6) On(1A,A',A')- Oﬂ(1A,A’,A") =-1A*(p) ==u.
Since oﬂ(1A,A',A') = o the Corollary follows immediately.
QED.,

Theorem (3.1.10) Let {4: A - B and {§,: B~ C be two S-alge-
bra homomorphisms and let A',B' and C' be 1liftings of A,B and C

respectively, then

Oﬂ(¢1°¢2sA'sC') = ¥y On(¢29B'9C')'+ on(¢1,A',B’)¢2

Proof., Let o Dbe a quasisection of m: R-free - S-free . Let
vy Dbe a section of ms obM(A') - obM(4) , v, a section of

ms obM(B') - obM(B) and vz @ section of s obM(C) = obM(C) .
Let p: o, = v, be a morphism of M(A) then the 1-cocycle C,

given by
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C1(p) = (o(p)voloqig) = volo t4)) = (0(p)vy(eg) = vele ),
represents on(w1,A',B') , and the 1-cocycle C; given by:

C5(p) = (5(p)vs(pq¥3¥5) = vs (@ ¥1¥5)) = (0(p)vy(@) = v(@) ) ¥y ¥,
represents on($1¢2,A',C') .
Let a: T, ™ Tq be a morphism of M(B) , then the T-cocycle Cy
given by

6p(0) = (o(a)vg(ry4p) = v5(To¥,)) = (5(@)vylry) = (7)) by
represents on(wz,B',C') .

Considering the canonical functors

w(a) > u(m) —2> (o)

defined by the morphisms ¥q and by we find

proving the theorem,

QED.
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Remark (3.1.11) Consider the morphisms

T R S .

- -
P ﬂ
Assume p and 1m Dboth surjective and put

I, = ker(pem) , I, =kerm , I, =kerp .

Suppose Ii = o then I? = Ig = 0 , and we have an exact sequence

of S-modules
1) o - I, I

Let A' Dbe an R-algebra lifting the S-algebra A , and consider

the exact sequence
,
o Lt
2) - H'(R,A';A'®1,) » HO(R,A'34'©1,) —~ H(R,A';A'8T) -

induced by 1).

We know (see [A]) that there are canonical isomorphisms

Hi(R,A';A'glk) ~ Hi(S,A;AGSDIk) k= 0,1,2, i >0
and we may verify that by these isomorphisms
(1) 51(A) = o (41) = o (a"M)
if A € H1(S,A;A§]H) corresponds to the difference between two

liftings A' and A" of A to R .
g . N .
(11) ix(o (A1) = o .. (4)

Suppose given a lifting ¢': A' - B' of the morphism of S-algebras
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y: A-B to R with respect to the liftings A' and B' of A

respectively B .

Consider the exact sequence
v ' 60 1 1 1
- DerR(A ,B §I1) - H (R,A';B'%Ig) - H (R,A';B!' ®IO) -

induced by 1).

As above we have canonical isomorphisms
HI(R,A';B" 91) = Hi(S,A;Bglk) X =0,1,2, i3>0
and we may verify that by these isomorphisms
(iii) 59(g) = o, (4154",B") =0 (y";A",B")
if € € DerS(Aqfiglﬁ) corresponds to the difference between two

liftings ¢' and " of ¢ to R with respect to A', B', and

if A", B" are liftings of A', B' &respectively, to T .

(1iv) ix(o (¥'54",B")) = o . (4;4",B")

P

(3,2) Lifting diagrams of morphisms of algebras

Let ¢ be a small subcategory of S-alg , and let m: R - S be

as before,

Let ¢: A - B be a morphism of ¢ , consider B as an A module

and put
HY () = Hl(s,A;ngern) i>0.
Let (A,u): ® = ¢ be a morphism of Nor ¢ so that the diagram
A
A,1 —_— A2
0 I
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commutes, and define the homomorphism
HY(A,u): H'(¥) = H' (o)

by
RO (a) = wx A ¥(a) = 3 px(a)

where

A HE(Y) = B (vey) , AYs BN (ven) - E (o)
T . . .
ux: HU(hew) = H' () , ux: HY(Y) - H (yeou)
are induced by X, A, u and pu respectively.
Then ¢ —> Hi(4) and (A,u) —> HX(),u) define a functor

H': Mor ¢ - 4b .

As in (1.,1) we shall use the notations

Ao o= B 1)(a) , aun = BH(1,u)(a) .

Now, consider the complex D*(HT) as defined in the proof of

(1.2,1). Recall that D* 1looks like

p°xt) = nE'(1,) = mHY(S,A;A@kerm)
Acob c Acob c
a° | -
\
p'(s}) = ©EN(y)
al J/ y€Mor ¢
p2(gt) = 1 EM(y,00,)

¢1,¢2€Mor_g_
with d°(g)(¥) =vég-5, ¢ for y: A~B,
a () (41,5) = 1,0(4,) = Cl¥q°¥p) +CLoq) ¥,
Consider the o-cochain o of D‘(Hz) defined by:
0 (4) = o(A,m) € H(S,A;4®ker )

By (2.2.5) °, is a o=-cocycle, Let % be the corresponding
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cohomology class, then we have proved,

Theorem (3.2.1) There exists an obstruction

o € lim H°
Mo ¢
such that 9, = © if and only if every object of ¢ can be

lifted to R .

Consider the 1-cochain o4 of D'(H1) defined by
1
0o1(¥) = o (¥,A".B") € H (¥)
supposing of course that w: A - B and that A and B admit
liftings A', B' respectively.

By (3.1.10) o4 1is a 1-cocytle. Let o4 be the corresponding
cohomology class.,

Let C ©be the subcategory of R-alg defined by:

obC = {A'€ obR-alg | m(4') € obec , Tor?(A'.S) =0}
morC = {#' €morR-alg| m(¥') € morc }
and let

LERNCRE
denote the functor tensorization with S over R .

Then we have,

Theorem (3.2,2) Suppose 9 = 0 then there exists an obstruc-
tion
o4 € 1‘_i_m(1)H1
Morc
such that 01 =0 if and only if there exists a quasisection of

m: C = ¢ .,
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The set of stems of such quasisections is a principal homogenous

space over 1g';m(o)H1
Mor ¢

]

Proof. An easy check shows that 91 is independent of the choice
of 1iftings A', B' wused to define Oq
Suppose 94 = 0 then there exists a o-cochain § € DO(H1) such

that for ¢¥: A - B in mor ¢

0, (¥,47,B') = d&(¥) = 455~ 5,

By (3.1.9) &, =-o_(1,,A",A") for some lifting A" of A and

g = -on(1B,B',B") for some lifting B" of B .

Apply (3.1.70) to the compositions 1,°0 = y°15 and the liftings
A',A",B" and A',B',B" respectively, then we find

op(4,41.B") = 1) 0 (4,A",B") + 0 (1,,4",4")y
= yo (15,B',B") +o_(y,4",B")15
or equivalentely
on(w,A",B") = oﬁ(w,A',B')+\yon(1B,B',B”)
- on(1A,A',A")¢ = On($sA’9B')'-¢ Eg+ 8y =0 .

The rest will be left to the reader as an exercise.

QED.

Combining (1.2.1), (3.2.1) and (3.2.2) we have proved.

Theorem (3.2.3) Suppose o = o , 04 = o ‘then there exists a

set of obstructions

o(m) ¢ 1lim H°
Mor c



- 46 -

such that m has a section if and only if
o € 0(m)

The set of sections with a fixed stem is a principal homogenous

space over lim(1)Ho .
Mor c

Let ¢ consist of the two objects A and B and the three mor-

phisms 1A’ s A - B and 1B . Then Mor ¢ consists of 3 ob-
jects and 5 morphisms ilustrated in the following diagram
14 'z
= ////;7
(1A’1b) \\ (¢’1B>
¥
( )
—
(1,,75)

Then (see [L]) we have:

1im(®)n" = H'(s,a;00%er ) x H'(S,B;Boker )
Mor ¢ H'(S,A;B®ker )

where the fibered product is taken with respect to the homomor-

phisms {, and ¢* respectively, and
13'5111(1)1-11 = H1(S,A;Bc§kerTT)/ "
Wor c im y%+ im

This proves the following result,

Corollary (3.2.4) Given a morphism +¢: A - B of S-algebras.

Suppose A and B can be lifted to R , then ¢ admits a 1ift-
ing if and only if

on(w,A',B') € im ¢™ + im Y«
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for some liftings A', B' of A and B respectively.

((3.2.4) is, of course, a trivial consequence of (3.1.9) and

(3.1.10).)

Lemma (3.2.5) Let ¢ be any small category and assume that

every morphism of ¢ 1is an isomorphism. Then there is a full

equivalence of categories
AEE = A== S

inducing an isomorphism of functors

1in(1) _ 1)
c Mor ¢

Proof, If ¢: ¢ - d is a morphism of ¢ , put S(y) = ¢ ,

B(y) = d .

Let F %be an object of éﬁg and define the object v(F) of
éhyorgg by

V() = B(5,)

v(F)(h,u) =F())

for (A,u): ©® - ¢ im Mor c .

Let G be an object of ApEES  and define the object «(G)
x(@)(c) = G(1c)
-1
w(G)(¥) = G(y,v )
Obviously wvex = 1 and if
A
C.] —> 02
Py Y
d, <— d
1 <5 %

by
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is a morphism in Mor ¢ we find thet

(%) (6) () = v(1(6))(0) = 6(15)%12%) a(o)

(rev)(6) () |, ) O e

(xev) (&) () = v(n(G)) () G(102)G(1‘—w) G(y)

R

commutes since

(1,0) c (A1) e (1,07 = (L e Ten) = (O,n) .

But this proves that there exists an isomorphism of functors

new = 1 .,

The rest is clear.

QED.

Corollary (3.2.6) Let G Dbe a group acting on the S-algebra A.

Then there exists an obstruction

o, € H°(6,H°(S,A;A®kerm))

such that 9, = 0 if and only if A can be lifted.

If o there exists an obstruction

1]
o)

o, € H'(&,H'(S,A382kerm))

such that 01 =0 if and only if for every g € G the action g

can be lifted to a common lifting A' of A .
If o =o0, 04 =0 there exists a set of obstructions
o(m) < H2(G,HO(S,A;A@ker m))

such that o € 0(m) if and only if the action of G can be 1lif-

ted to a lifting A' of A .
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Proof. This follows from (3.2.1), (3.2.2), (3.2.3) and (3.2.5).
In fact, by (3.2.5), if ¢ is the category consisting of one ob-
ject A and the morphisms corresponding to the elements in G ,
then

1im'* ~ 140!t ~ '(G,—)

(see [Lal).
QED.

Example (3.2.7) If one wants to 1ift affine group-schemes, or

equivalently, bialgebras, the main problem is the following:

Let A Dbe an S-bialgebra with coalgebra structure defined by

m: A - AQ®A,
S

Find a lifting A' of the S-algebra A to R , and a lifting

m' of m with

m': A' - A'® A' !
R

I claim that this can be done if and only if we can 1ift the dia-

gram C ;
1®¢
A — A ® A
m S
—_—
e®1

where e€: S - A is the structure morphism.

In fact, suppose we can 1lift this diagram to the diagram

B'

Then the morphism of R-algebras a: AJ:SAJ - B' defined by

(1®e)' and (e®1)' is a lifting of Tyop + In particular a
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is an isomorphism, Put m' = n" - or,-1 , them m': A' - A'%A' is
a lifting of m .,
Next we notice that Mor ¢ is the ordered set with 5 objects

and 6 non-trivial relations illustrated by the diagram

Ta Tron

1T®¢ m e®1
An easy calculation (see [L]) then shows that

lim H1 = ker |
Mor ¢

lim(i)H1 = coker |
Mor c

where
UK H1(S,A;A®kern) X H1(S,A®A;A®A®kern)

o H'(1®e) x H(m) x H(e®1)

is defined by
i(a,8) = ((18¢e)y(a) - (18e)*(8),mx(a)-m"(8),
(e®1),(a) - (e®1)(B)) .

Having this, we obtain the following result,

Corollary (3.2.8) In the situation above m can be lifted to

an nm': A' - A %A' if and only if
(on(1 ®e A" A %A"),on(m,A",A"%A"),on(e®1,A",A"%A")) € im ¥

for some 1lifting A" of A .

We shall, hopefully, return to this problem in a later paper,




THE READER SHOULD ALSO CONSULT

Luc. Illusie: Complexe Cotangent et Déformations I.
Lecture Notes in Mathematics, Vol. 239.
Springer-Verlag 1971.

Among other things Illusie's paper, which appeared while this
paper was in print; contains some of the material covered in
this repport. Exactely how much I do not know yet.

Anyway, our methods seem to be quite different.

Encl., to:
PREPRINT SERIES - Mathematics. No 12. O.A. Laudal: Sections of
1971, functors and the problem of lifting algebraic

structures.
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