Cohomology of affine "formal" schemes

by

O.A. Laudal
Let A be any commutative ring with unit and let M be an A-module. Then M defines a sheaf of O_X-Modules \tilde{M} on the affine scheme $X = \text{Spec}(A)$, and by a well known theorem of Serre

$$
\begin{align*}
H^i(X,\tilde{M}) &= 0 \quad \text{for all } i \geq 1 \\
H^0(X,\tilde{M}) &= M.
\end{align*}
$$

Suppose now that A is an O-algebra with O a complete valuation ring, then the topology of O induces a topology on A and one may consider the topological subspace $\text{Sp}(A)$ of $\text{Spec}(A)$ defined by

$$
\text{Sp}(A) = \{ \mathfrak{p} \in \text{Spec}(A)/ \mathfrak{p} \text{ open}\}.
$$

It is easy to see that $\text{Sp}(A)$ is the closed fiber of the morphism

$$
\text{Spec}(A) \rightarrow \text{Spec}(O).
$$

Now the completion A^1 of A in the topology defined by O defines a sheaf \tilde{A}^1 on $\text{Sp}(A)$ and the pair $(\text{Sp}(A),\tilde{A}^1)$ is a formal scheme. Given any A-module M the completion M^1 defines a sheaf of \tilde{A}^1-Modules, \tilde{M}^1, and one easily proves the following

$$
\begin{align*}
H^i(\text{Sp}(A),\tilde{M}^1) &= 0 \quad \text{for all } i \geq 1 \\
H^0(\text{Sp}(A),\tilde{M}^1) &= M^1.
\end{align*}
$$

Washnitzer and Monsky [2], have introduced another completion of A — the Washnitzer-Monsky completion A^+ (shortened to W.M. completion) defined as follows.
\[A^+ = \{ \alpha = \sum_{m \geq 0} a_m t^m \in A^1 \mid a_m \in \mathbb{Z}, t_1, \ldots, t_n \in A \text{ and } \] \[\text{ord } a_m \geq c_\alpha(||m||) \cdot ||m|| \} \]

where \(c_\alpha \) is a function \(\mathbb{Z}^+ \to \mathbb{Z}^+ \), depending on \(\alpha \) and constant outside a finite set.

One may prove (see Lubkin [1])

Lemma 1. Let \(\psi: A \to B \) be a surjective homomorphism of \(\mathbb{Z} \)-algebras and let \(M \) be a finitely generated \(B \)-module, then

\[M \otimes A^+ \cong M \otimes B^+ \]

Lemma 2. \(A^+ \) is a flat \(A \)-module.

Let \(B \) be an \(A \)-algebra and let for every \(a \in A \) the open subset \(D(a) = \{ \mathfrak{p} \in \text{Spec}(A) \mid a \not\in \mathfrak{p} \} \) of \(\text{Spec}(A) \) correspond to the \(0 \)-module \(B^+_{\{a\}} \).

This defines a presheaf \(\widehat{B}^+ \) on \(\text{Spec}(A) \) and Lubkin proves the following,

Theorem Let \(B \) be an \(A \)-algebra and \(M \) a \(B \)-module then the presheaf \(\widehat{B}^+ \otimes M \) is a sheaf concentrated on \(\text{Sp}(A) \) and

\[H^i(\text{Sp}(A), \widehat{B}^+ \otimes M) = 0 \text{ for } i > 1 \]

\[H^0(\text{Sp}(A), \widehat{B}^+ \otimes M) = B^+ \otimes M \]

The purpose of this note is to give another proof of this theorem which also applies to more general completions.

From now on we shall therefore assume that \(A^+ \) is any odd "completion" of \(A \) defined by:
\[A^+ = \{ a = \sum_{m} a_m t^m \mid a_m \in \mathcal{O}, t_1, \ldots, t_n \in A \} \]

\[\text{ord } a_m \geq c_\alpha(||m||) \cdot ||m|| \]

where the (order) maps \(c_\alpha : \mathbb{Z}^+ \to \mathbb{Z}^+ \) are given in such a way that \(A \to A^+ \) is a functor \(\text{Rings} \to \text{Rings} \).

We shall moreover assume that \textbf{lemma 1} and \textbf{lemma 2} holds for this completion, and that there exist a sequence \(\{c_n\}_{n \geq 1} \) of order maps \(\mathbb{Z}^+ \to \mathbb{Z}^+ \) such that for any order map \(c_\alpha \) there exist an \(n \geq 1 \) with \(c_\alpha \geq c_n \).

\textbf{Lemma 3.} (Cohomology of projective space)

Let \(S = 0[T_0, \ldots, T_N] \), and let \(B \) be any \(S \)-algebra. Denote by \(\mathcal{U} \) the covering of \(\text{Spec}(S) - V(T_0, \ldots, T_N) \supset \text{Sp}(S) - \{m\} \) given by all intersections of \(D(T_1), \ldots, D(T_m) \). Let \(B(i_1, i_2, \ldots, i_k) \) denote \(B(T_{i_1}, T_{i_2}, \ldots, T_{i_k}) \) and assume:

1. For all \(1 \leq i_1 < i_2 < \cdots < i_s \leq N \) the homomorphism

\[B(1, 2, \ldots, N)^+ \to B(i_1, i_2, \ldots, i_s)^+ \]

is one-to-one.

(We shall therefore identify \(B(i_1, \ldots, i_s)^+ \) with its image in \(B(1, 2, \ldots, N)^+ \).)

2. If \(\{i_1, \ldots, i_s\} \cap \{j_1, \ldots, j_r\} = \{k_1, \ldots, k_n\} \) and if \(f \in B(i_1, \ldots, i_s)^+ \), \(g \in B(j_1, \ldots, j_r)^+ \) with \(f = g \) then \(f = g \in B(k_1, \ldots, k_n)^+ \).

3. If \(f \in B(i_1, \ldots, i_k, \ldots, i_n)^+ \cap \sum_{r=k+1}^n B(i_1, \ldots, i_k, \ldots, \hat{i}_r, \ldots, i_n)^+ \) then \(f \in \sum_{r=k+1}^n B(i_1, \ldots, i_k, \ldots, \hat{i}_r, \ldots, i_n)^+ \).
then, for $N \geq 1$

$$H^i(\mathcal{U}, \mathcal{B}^+) = \begin{cases}
B^+ & \text{if } i = 0 \\
0 & \text{if } i \neq 0, N \\
\frac{B(0,1,\ldots,N)^+}{\sum_{k=0}^N B(0,\ldots,k,\ldots,N)^+} & \text{if } i = N
\end{cases}$$

Proof. If $N = 0$ then

$$H^i(\mathcal{U}, \mathcal{B}^+) = \begin{cases}
\mathcal{B}_0^+ & \text{for } i = 0 \\
0 & \text{for } i \neq 0
\end{cases}$$

If $N = 1$ then

$$H^i(\mathcal{U}, \mathcal{B}^+) = \begin{cases}
B^+ & \text{for } i = 0 \\
B(0,1)^+ / B(0)^+ + B(1)^+ & \text{for } i = 1 \\
0 & \text{for } i \neq 0, 1
\end{cases}$$

Therefore the lemma is true for $N = 1$, and we may try induction on N. Suppose $N \geq 2$. Let \mathcal{W}' be the subcovering of \mathcal{W} given by all intersections of $D(T_1)$, \ldots, $D(T_N)$. Let \mathcal{W}^2 be the subcovering of \mathcal{W} given by all intersections of $D(T_0 T_1)$, $D(T_0 T_2)$, \ldots, $D(T_0 T_N)$ and let \mathcal{W}^3 be the subcovering given by $D(T_0)$ alone.

By a spectral sequence-argument or by a Mayer-Vietoris sequence we find an exact sequence

$$0 \to H^{i-1}(\mathcal{W}^2, \mathcal{B}^+) \to H^i(\mathcal{W}, \mathcal{B}^+) \to H^{i-1}(\mathcal{W}^3, \mathcal{B}^+) + H^{i-1}(\mathcal{W}^1, \mathcal{B}^+)$$

The result follows from the hypotheses and by noting that if \mathcal{B} satisfies the conditions (1), (2) and (3) then so does \mathcal{B}_0.
Lemma 4. Let R be any commutative ring and consider $S = R[X_0, \ldots, X_N]$. Let C be an S-module such that for all $c \in C$ there exists an $n \geq 1$ for which $X_i^c \in \text{Ann}(C)$ for $i = 0, \ldots, N$. Let M be an S-module and suppose there exists an element $Q = \sum_{i=0}^{N} Q_i X_i$ in S operating on M as the identity. Then

$$\text{Tor}_p^S(M, C) = 0 \text{ for all } p = 0, 1, \ldots, N.$$

Proof. Q acts as the identity on $\text{Tor}_p^S(M, C)$ since Q acts as the identity on M. On the other hand, taking a free resolution of M, we find that every element in $\text{Tor}_p^S(M, C)$ is annihilated by some power of Q, it follows that $\text{Tor}_p^S(M, C) = 0$ for all $p \geq 0$.

QED.

Lemma 5. Let $U = 0[T_0, T_1, \ldots, T_N, T_{N+1}, \ldots, T_{N+M}]$ Then

$$D = \frac{U(0,1,\ldots,N)^+}{\sum_{k=0}^{N} U(0,\ldots,k,\ldots,N)^+}$$

$$\cong \{ \alpha = \sum_{m_i < 0 \text{ for } 0 \leq i \leq N} a_m T_i^m \mid a_m \in O, \text{ord } a_m \geq c_a(m) \|m\| \} \quad \text{for } m_i > 0 \text{ for } i > N+1$$

Let $D_n = \{ x \in D \mid x = \sum a_m T_i^m, \text{ord } a_m \geq c_n(m) \|m\| + d_x \}$ where d_x is a constant depending on x. Then $D_n = \hat{D}_n$ and $D = \lim_{n \to \infty} D_n$, as S-modules.

Proof. Clearly D_n is an S-module, the rest is equally obvious.

QED.
Let \(D_n,k = D_n/k D_n \), then as we have seen

\[
D_n = \lim_{k \to \infty} D_n,k
\]

and, for all \(i = 0, \ldots, N \) there exists an \(n_k \) such that

\[
T^*_{i} \in \text{Ann}(D_n,k).
\]

Lemma 6. Suppose \(M \) is a \(U \)-module such that there is an element \(A = \sum_{i=0}^{N} Q_i T_i \) in \(U \) operating on \(M \) as the identity, then

\[
\text{Tor}_p^U(D,M) = 0 \quad \text{for all } p.
\]

Proof. By **Lemma 4** \(\text{Tor}_p^U(D_n,k,M) = 0 \) for all \(p \). By a standard argument

\[
\text{Tor}_p^U(D_n,M') = 0 \quad \text{for all } p
\]

and all finitely generated \(U \)-modules \(M' \). Since \(\text{Tor}_p^U \) commutes with \(\lim \), we find

\[
\text{Tor}_p^U(D,M) = 0 \quad \text{for all } p.
\]

QED.

Let \(A \) be any finitely generated \(\mathbb{O} \)-algebra. Let \(B \) be a finitely generated \(A \)-algebra. Let \(x_1, \ldots, x_n \) be generators for \(A \) as \(\mathbb{O} \)-algebra, and let \(y_1, \ldots, y_M \) be generators for \(B \) as \(A \)-algebra.

Let \(\mathbb{W} \) be a covering of \(\text{Spec}(A) \), \(\mathbb{W} = \{ D(a_i) \}_{i=1}^{r} \). Then the ideal of \(A \) generated by the \(a_i \)'s is equal to \(A \). Therefore there exist elements \(b_i \in A \) such that
\[\sum_{i=1}^{r} b_i a_i = 1 \quad (7) \]

\[x_j = \sum_{i=1}^{r} (x_j b_i) a_i \quad \text{for} \quad j = 1, \ldots, n \]

Let \(\mathcal{W}' \) be the covering consisting of all \(D(a_i) \quad i = 1, \ldots, r \) and all \(\mathcal{D}(x_j b_i a_i) \quad i = 1, \ldots, r, \quad j = 1, \ldots, n \) and of all intersections of these sets. Clearly \(\mathcal{W}' \) is finer than \(\mathcal{W}' \) and we may write

\[\mathcal{W}' = \{D(a_i)\}_{i=0}^{N} \quad \text{for some} \quad a_1 \in A. \]

Obviously \(a_1, l = 0, \ldots, N \) generates \(A \) as \(0 \)-algebra and \(a_1, l = 0, \ldots, N \) (strictly speaking the image of \(a_1 \) in \(B \)) and \(y_k, k = 1, \ldots, M \) generate \(B \) as \(0 \)-algebra. Therefore there is a commutative diagram of homomorphisms of \(0 \)-algebras

\[
\begin{cases}
S = O[T_0, \ldots, T_N] & \xrightarrow{\varphi} A \\
{
s}
U = O[T_0, \ldots, T_N, T_{N+1}, \ldots, T_{N+M}] & \xrightarrow{\psi} B
\end{cases}
\]

the horizontal homomorphisms being onto.

Let \(M \) be a \(B \)-module.

By lemma 1 we have isomorphisms of \(\check{\text{Č}} \vspace{1.5pt} \text{ech-complexes} \)

\[C^*(\mathcal{W}, \widetilde{U}^+_* \otimes M) \cong C^*(\mathcal{W}', \widetilde{B}^+_* \otimes M) \]

\[
\]

\[C^*(\mathcal{W}, \widetilde{U}^+) \otimes M \]

Let \(L \) be a free resolution of \(M \) as \(U \)-module, and look at the double complex

\[C^*(\mathcal{W}, \widetilde{U}^+) \otimes L. \quad (8) \]

Since the completion is flat \(C^*(\mathcal{W}, \widetilde{U}^+) \) is flat over \(U \).
The first spectral sequence of the double-complex (8) degenerates, i.e.
\[E_{2}^{p,q} = \begin{cases} 0 & \text{if } q \neq 0 \\ H^{p}(\mathbb{W}, \mathbb{B}^{+} \otimes M) & \text{if } q = 0 \end{cases} \]

The second spectral sequence has the form
\[E_{2}^{p,q} = \text{Tor}^{B}_{p}(H^{q}(\mathbb{W}, \mathbb{B}^{+}), M) \]

Assuming $N \geq 1$ it follows from lemma 2 that
\[E_{2}^{p,q} = 0 \quad \text{for } q \neq 0, N \]
\[E_{2}^{p,0} = 0 \quad \text{for } p \neq 0. \]

By (7) there is a $Q = \sum_{i=0}^{N} Q_{i}T_{i}$ in S operating as the identity on A therefore on B and consequently on M.

Lemma 6 implies
\[E_{2}^{p,N} = \text{Tor}^{B}_{p}(D, M) = 0 \quad \text{for all } p. \]

Since both spectral sequences converge we have proved:

Theorem. In the situation above:
\[H^{n}(\mathbb{W}, \mathbb{B}^{+} \otimes M) = \begin{cases} \mathbb{B}^{+} \otimes M & \text{if } n = 0 \\ B \otimes M & \text{if } n \neq 0 \end{cases} \]

In particular $\mathbb{B}^{+} \otimes M$ is a sheaf on Spec(A).

Bibliography.
