
Compact convex sets where all continuous 

convex functions have continuous envelopes 

and some results on split faces. 

Asvald Lima 

Abstract 

It is we 11 l{nown that a compact convex set K is a Bauer 

simplex if and only if for every continuous convex function f 
A 

[4]. on K, the upper envelope f is continuous and affine In 

this paper we shall study compact convex sets with the property 
,.. 

that f is merely continuous for every continuous convex function 

f and we shall see how they are related to Bauer simplexes. 

Furthermor~ we shall generalize some results of E.M. Alfsen and 

T.B Andersen (3] (cf. also [2]) and M. Rogalski [15] to obtain 

new characterizations of Bauer simplexes by faces. 

My Theorem 5 is based on a recent result of J. Vesterstr¢m 

(Theorem 2.1 in [17]). I am indebted to J. Vesterstr¢m who kindly 

.communicated to me a preliminary version of [17] during the prepa

ration of this paper. I also want to thank E. Alfsen and T. B. 

Andersen for helpful comments. 
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1. Preliminaries and notation. 

Let K be a compact convex set in a real locally convex 

Hausdorff space E. 

We shall use the following symbols: 

a K: the set of extreme points in K. e 
C(K): 

A(K): 

P(K): 

the Banach space of continuous real-valued 
functions on K. 

the Banach space of continuous affine real
valued functions on K. 

the uniformly closed convex cone of continuous 
convex real-valued functions on K. 

If X is a compact subset of K, then we shall denote by 

M(X) the Banach space of all signed (Radon-)measures on X, and 

the liE w -compact convex set of normalized positive 

(Radon-) measures on X. 

A signed measure ~ on K is said to be a boundary measure 

if 1~1 is maximal in Choquet's ordering of positive measures. 

Cf. [6] or [2] . The linear subspace of M(K) of all (signed) 

Q1 =QnM;(K). boundary measures is denoted by Q, and 

If x € K, then 

= r"lx n Ql. and Qx M 
X 

f fd~ = f(x), all f£A(K)} 
K 

is a * w -~ompact convex set and Qx ·'is a 

face in Mx, just as Ql is a face in + M1 (K). See e.g.(2). 

+ point If ~ ~ M1 (K) '· then the barycenter of ~ is the unique 

x E. K, such that ~EM , 
X 

and we shall write X : r(~). See e.g. 

+ 
·"-+ r(~) is continuous and The map r: M1 (K) -+ K defined by ~ 

[2]. 
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affine~ See e.g. [13]. Clearly this map is surjective since 

r( Ex) = x for all x € K. Note, however, that the restricted map 

from Q1 to K is also surjective by virtue of the Choquet

Bishop-de Leeuw theorem [5] ,l6J. In particular it follows that 

the restriction re of the barycenter map to the set M;(aeK) 

containing Q1 will also be surjective. 

If f,g: K -+fR 
' 

then f < g means that f(x) <: g(x) for all -
X €K. 

If f: K -+IR is bounded, we define 
;. 

f(x) = inf{a(x): at:.A(K), a > f}, 

1(x) :. sup{a(x): aE.A(K), a < f}. 

"" The function f is the smallest upper semi-continuous (u.s.c.) 

"' concave function majorizing f. Dually f is the greatest lower 

semi-continuous (l.s.c.) convex function majorized by f. 

If S is a subset of K, then co(S) is the convex hull of 

S and co(S) is the closed convex hull of S. 

2. Continuous convex extension of functions defined on a K. e 

Our first lerr@a can be deduced from a general theorem of 

Edwards C7J, but for the sake of completeness we have included 

a proof. 

Lemma 1: Suppose XC a K 
e is compact and let 

there exists a g£P(K) such that gjX =f. 

f E. C(X). 

Our method of proof is based on an approximation technique 

used in [16] • 

Then 
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Proof: We may suppose 0 < f < 1. Let 0 < E < 1, and 

let the restriction map g ~ gjX of P(K) into C(X) be denoted 

by T. 

Define functions f 1 and g1 by 

if X E. X 

f 1(x) = 
sup{f(y): yE. X} if X€ K'\.X, 

and 

(x) if xt:X 

g1(x) = 
inf{f(y): ye:X} if X€-K,X. 

·Now f1 > g - 1 and f1, -g1 is 1. s .. c. and concave. Since f1 
... ...; 

is l.s.c. we have f -Ia K = f I a K and hence fl > fl > g • Let 
J. e 1 e - - 1 

v 
g' = max(g -E!)O). Then we have f1 > g~ and g' is u.s.c. For 1 1 1 

each x e; K we can find a gx e. A(K) c:=- P(K) such that gx < f 1 

and g~ (x) < gx(x). Since g: is u.s .c., Vx = {y €K: g~ (y) - gx(y) 

< 0} is open and x € Vx. By compactness we can find x •••xeK 
1' ' n 

n 
such that K c U Vxi. Define 

i=l " 
k 1 = max(gx ,•••,gx ). Then 

1 n 

k 1E. P(K), g; < k 1 < f 1 , hence T ( k 1 ) < f and II f - T ( k 1 )II < Eo 

Furthermore 0 < k 1 < 1 and 

0 < E- 1 (f-T(k 1)) < 1. 

Suppose for induction that we have round k 1,•••,kneP(K) 

such that for i = l,•••,n: 

(2.1) 

(2.2) 

(2.3) 

i-1 
0 < ki < E 

T(k1 +• • •+ki) < f 

i II f - T ( k 1 + ••• + ki ) II < E 
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Then we have 

(2.4) 0 < E-n(f-T(k +•••+k )) < 1 
1 n , 

and we can repeat the argument above to get k~+l E: P (K) such that 

0 < k~+l < 1 

T(k'+l) < E-n(f-T(k +ooo+k )) 
n 1 n 

Defining kn+l = enk~+l' we see that (2.1), (2.2) and (2.3) are 

fulfilled with n+l in place of n. Hence there exists a sequence 
CIO 

{ki}i=l c P(K) such that (2.1), (2~2) and (2.3) are fulfilled for 

every i. 
00 

De fining g = }: ki, we have g £ P ( K) and g I X = f, and the 
i=l 

proof is complete. 

Corollary 2: The following statements are equivalent 

(i) a K is closed e 
(ii) There exists for every f e. c c a K) a g€-P(K) such that e 

gl a K = f. e 
(iii) There exists for every f E P(K) a ge. -P (K) such that 

gj aeK = fl aeK. 

Proof: (i) -> (ii) follows from Lemma 1. 

(ii) => (iii) is obvious. 

(iii) => (i) For f e. C (K) we define 
,.. 

Bf = {x E. K: f(x) = f(x)}. 

It is well known that aeK =I"'HBf: f~P(K)} [13]. Now it follows 
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from (iii) that a-K CBf for 
e -

f€:. P (K), hence a-K c. n {Bf: e -

fe; P (K)} = aeK. The proof is complete. 

Remark 3: If a K e is closed, then by Corollary 2 every 

f€ A(M: (~)) is of the form g~ for some gEP(K). (If a K e e 
is closed then aeK and aeM:(aeK) are homeomorphic by r e.) 

3. Continuous convex functions with continuous envelopes. 

Let X be a compact convex set in a Hausdorff locally convex 

space and let p: X-+ K be a continuous, surjective and affine map. 

Proposition 4: Let K,X and p be as above. If f: X -+ R 

is u.s.c. and concave, then for each y€K we have 

sup{f(x): xe. p- 1 (y)} = inf{g(y): gE:. A(K), gop > f}. 

"' Definition: If f: X + ffi is u.s.c. we define fp: K -+ ~ by 

"' fp ( y) = sup { f (X) : X e. p -l ( y) } 

for each y E.K. 

Proof: Let a.£1R. To each yE:.K there exists a xe.p- 1 (y) 

" such that fP(y) = f(x). Hence we have 

{ y E: K : fp ( y ) > a.} = p ( { x E. X : f (X ) > a.}) 

such that 
"'p f is u.s.c. 
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A 

such that p(xi) = yi and fP(yi) = f(xi). Then we have: 

A 

fp(Ay 1 + (l-A)y 2 ) ~ 

f(Ax 1 + (l-A)X 2 ) > 

Af(x 1 ) + (l-A)f(x 2 ) = 
,.. ,. 

AfP(y 1 ) + (l-A)fP(y 2 ) 

"'fp such that is concave. 
It follows that 

,.. 
fP(y) = inf{g(y) : gt:.A(K), 

.,. 
g > fP} 

and since for every g E:. A (K), g > rP if and only if g o p > f, 

we have 
,. 
fP(y) = inf{g(y) gE:A(K), g 0 p > f}. 

The proof is complete. 

Observation; Let K,X and p be as above and let f€C(K). 
./'-..... A ""'p If we define g = f 0 p, then we have f = g • Suppose k €.- P(K) 

/"'--.. 
and k > f. Then we have fop~kop, hence fop < g = fop < k 0 p -

f ~ gP 
,. "'p and < k. Thus we have f = g • 

Theorem 5: Let K,X and p be as above. The following 

statements are equivalent: 

(i) p is open 
,. 

(ii) fp e C(K) for every f€C(X) 
A 

(iii) fPt: - P (K) for every f€ -P (X) 
,. 

(iv) fPe; -P(K) for every f € A(X) 

(v) p({xE:X : f(x) > 0}) is open in K for every f€A(X). 
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Proof: (i) -> (ii). In the proof of Proposition 4 we 

showed that ""p f is u.s.c. if fe C(X). Let a.£ R and observe 

that p({x£X: f(x) >a.}) = {y~K: rP(y) > a.}~ Thus we have 

that rP is l.s.c. 

(ii) => (iii) => (iv) is obvious since it follows as in the 

proof of Proposition 4 that ""p 
f is concave when f is concave. 

(iv) <=> (v) is obvious. 

(iv) <=> (i) follows from Proposition 4 and Theorem 2.1 in 

[17], and the proof is complete. 

Remark 6: The deep part of Theorem 5, (iv) => (i) is due 

to J. Vesterstr¢m [17] • 

It is easy to give a direct proof of (iii) => (i). 

Definition: We shall say that K is a CE-compact convex 

set if f is continuous for every ft. P (K). 

Observation: Suppose K is a CE-compact convex set and let 

F be a closed face in K. Then F is a CE-compact convex set. 

Proof: If g£:-P(F), then by Corollary 2 and Tietze's theorem 

there exists a f~P(K) such that ria F = gla F. e e Now we have 
A ~ A 

g = fiF = fiF, and the proof is complete. 

Theorem 7: The statements (1) - (v) below are related as 

follows: (i) -> (ii) <=>(iii) <=> (iv) => (v). 

(i) K is a Bauer simplex. 

(ii) There exists a CE-compact convex set X and an open, 

continuous,surjective and affine map p: X~ K. 
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(v) 
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r : M+1 (a-K) + K is open e e 

K is a CE-compact convex set. 

a K is closed. e 

Proof: 

(i) => (ii). Let and let P = r • e If K is a 

Bauer simplex, then re is a homeomorphism by a theorem of Bauer [4]. 

(ii) -> (iv). If fEP(K), then by Theorem 5 and the observa-
~ 

tion before Theorem 5, f is continuous. 

(iv) => (v). Follows from Corollary 2. 

(iv) => (iii). By Remark 3 and the observation before Theorem 5, 

if 
~ ~ 

fP = g for some ge.P(K). (iii) now 

follows from Theorem 5. 

(iii) => (ii) is obvious, and the proof is complete. 

Remark 8: We will later give two examples where (v) in Theorem 

7 is satisfied but not (iv). 

If K is a square in R2 , then obvioulsy (iv) in Theorem 7 is 

satisfied but not (i). 

If K is a CE-compact convex set, then since aeK is closed 

we have M+(a:K) = M+(a K) = Q1 • 
1 e 1 e 

J. Vesterstr¢m proved in [17] that (iii) <=> (iv), but his proof 

is quite different from that of mine. 

Definition: A subset S of K is called a a-face if S is 

a union of faces in K. 

The term a-face was introduced by Goullet de Rugy in [10]. 

Closed a-faces were also studied by Alfsen in [1] under the name 
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stable subsets. 

If f £C(K) we define 

A 

~(f) = f(r (~))}. e . 

+-We have that fl.( f) is a.cr-face in M1 ( aeK), in fact if 
- + ~ = A\1 1 + (l-A)v 2 e:. fl.(f) with A~ [o,1J and v 1 ,v 2 E. M1 (aeK), then 

A A 

).f(re(v 1 ))+(1-A)f(re(v 2 )) > 

,.. 
AV 1 (f)+ (l-A)V 2 (f) =~(f) = f(r (~)) = 

e 
,.. ,.. ,.. 
f(Are(v 1 ))+(1-A)re(v 2 )) ~ ).f(re(v 1 ))+ (1-A) f(re(v 2 )) 

,.. 
such that f(re(v1 )) = vi(f), i.e. vi~fl.(f). 

Proposition 9: The following are equivalent 

(i) K is a CE-compact convex set. 

(ii) 

(iii) 

A A 

If f~ C(aeK) then f is continuous and fl aeK = f. 

fl.(f) is a w*-closed a-face in M+(a-K) for every 
1 e 

f€ P(K). 

Proof: 

(i) => (ii). Suppose (i) is fulfilled and let fcC(aeK). By 

Theorem 7 and Corollary 2, f = glaeK for some gE.P(K), and by 
,.. ,.. 

Theorem 7 f = g is continuous. 

(ii) => (i) is trivial. 

( i) => (iii) • If f£P(K) we define +-<t>f: M (a K) -+ R by 
1 e 

" by <t>f(~) = f(r (~)) - ~(f). Then e <t>f<~> ~ o for every ~ (see 

[2] ) 
-1 

e.g. and A(f) = <t>f (o). Hence fl.(f) is closed since f 

is continuous. 
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(iii) => (i). Let fE. P(K) 
A 

show that f is l.s.c. The set 

and hence A = {]1 E:A(f) ll(f) a 

re(Aa) is compact. Since for 

and let aE..lR. We only need to 
+-{].l«t.Ml (aeK) : ll(f) < a} is closed 

A. 

= f(r (].l)) < a} is compact. Thus 
e -

f€..P(K), re (A(f)) = K [2], it 
A A. 

easily follows that re(Aa) = {xe:K : f(x) < a}. Thus f is l.s.c. 

and the proof is complete. 

Theorem 10: Let K be a metrizable CE-compact convex set and 

suppose that X is a simplex and that p: X~ K is a continuous, 

surjective and affine map. Then there exists a continuous, surjective 
+-and affine map <j>: X~ M1 (aeK) = Q1 such that p = reo <I>· 

+ --Ml ( aeK) 
Proof: We define a multivalued map ljJ: X ~ 2 by 

ljJ(x) -1 
=Fe (p(x)). Since p and re is affine it is easily seen 

that ljJ is convex, i.e. 

AljJ(x) + (1-A)ljJ(y) c ~(Ax+(l-A)y) 

when ( x , y, A) E. X x X x [ 0 , 1] • 

If U c M;(aeK) is open, then p- 1 (re(U)) is open in X since 
-1 r e is an open map by Theorem 7. The statement x € p (r e (U)) is 

equivalent to r - 1 (p(x)) cr - 1 (r (U)), which in turn is equivalent e - e e 
to ljJ(x) tiu ~ ¢. This shows that 

{x€.X: ljJ(x)nu ~ ¢} = p- 1 (re(U)). 

Hence ljJ is l.s.c. 

Now it follows by Lazar's selection theorem [_12] (cf.l)8] or I)O} 

for a simple proof) that there exists a continuous affine function 
+

<1>: X~ M1 (aeK) such that 
+-a M1 (a K) c <j>(x), hence e e -

<j>(x) £ re- 1 (p(x)) 

¢ is surjective. 

and the proof is complete. 

for all x E..X. Obviously 

Now we have 
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Theorem 11: Let K be a CE-compact convex set. If F c K 

is a face, then F is a face. 

Proof: If S = a eK f1 F, then S is a closed cr-face and we have 

co(S) c F. Let x o!: F. Every discrete measure on K representing 

x is supported by F, and since the set of discrete measures in Mx 

is dense in Mx(cf. [2]) it follows that every representing measure 

for x is supported by F. If 1..1 e: Q , then 1..1 is supported by S:; 
X 

and hence X€ co(S). This shows that F ~ co(S) and F = co(S). 

Let G c K be a closed cr-face. Then we have that Xa (the 

characteristic function to G) is u.s.c. and convex, and by Proposi

tion 5. 6 in [10} we have for all x € K: 

" (3.1) XG(x) = sup 1J(XG) = sup 1J(XG) 
lJE:.M 1J€.Q 

X X 

From this it follows that co(G) = XG- 1 (1) and in particular 
" 1 

F = co(S) = Xs- (1). 

Define 

P = { f e c (a K) : o < f < 1 and f Is = 1} • e 

Then P is a convex set, and {f}fE P converges at every point 
" 

X E" aeK to Xs (x) = Xs (x). 

By Proposition 9 f and ~ a1,e continuous for every f €. P. If 

we define for every f E: P a set F f by 

" . .., 
Ff = {x €K: f(x) = f(x) = 1}. 

then F f is closed for every f e P. 

Let f e P and let x,y ,z e.K and A.£ [o ,1] be such that 

x = A.y + (1-A.)z EFf. Then we have that 
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A A A A 

1 = f(x) = f(A.y + (1-A.)z) > "Af(y) + (1-A.)f(z) > 
v v v v 

A.f(y) + (1-A.)f(z) ~ f(A.y + (1-A.)z) = f(x) = 1 

Hence 
~ V A V 

1 = f(Y) = f(y) = f(z) = f(z) 

so y ,z c F f. This shows that each F f is a closed a-face, and hence 

n{Ff: f£P} is a closed o-face. 

(3.2) 

and 

(3.3) 

By the known formulas (see e.g. [2]) 

,.. 
f ( x ) = sup ll ( f) 

ll£ Qx 

v 
f(x) = inf ll(f) 

ll t£ Qx 

which hold for every f E P and all x E. K, and by the density of F 

in F, we have F cf'I{Ff: f~P}. 
,.. 

Suppose xe K\F. Then Xs (x) < 1 and by (3.1), (3.2), (3.3) 

and Theorem 7.1 in [9] (or Lemma 5.4 in (1o])we get that: 

,.. 
1 > Xs(x) = sup ll(X ) = sup inf ll(f) 

ll €. Qx s ll €. Qx f E. P 

,.. 
= inf sup J.l(f) = inf f(x) 

f e. P ll £.. Qx f e P 

Hence we can find a f £ P such that x 4 F f" Thus we have that 

F = n {F f: f €. P}, and F must be a closed o-face. But since 

F is convex, F is a closed face (see e.g.[l]), and the proof 

is complete. 
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4. Split faces and Bauer simplexes. 

If F is a non-empty subset of K then F' = u{G: G is a 

face in K and GnF = ¢} is called the complementary set of F. 

A complementary set is a a-face and it is a face if and only 

if it is convex (see e. g. [10] [2]). 

If F is a proper closed face in K, then for every x e:. K 

there exists a convex combination 

,.. 
(4.1) x = AY + ( 1-A) z where y € F, z E: F' , A ~ XF ( x) 

(see e.g. [2]). The face F is said to be a split face if F' is 

a face and if for every x e: K '\ (F u F') y and A in the above 

decomposition (4.1) are uniquely determined. The face F is said 

to be a parallel face if F' is a face and if for every x e. K \ (F LJ F')., 

A in the above decomposition (4.1) is uniquely determined. 

For results on split and parallel faces see [2] , [3], [11], [14] 

and [15]. Every split face is a parallel face and a closed face F 
,.. 

in K is parallel if and only if XF is affine. 

In [3] it is proved that the collection of all split faces is 

closed under finite convex hulls and arbitrary intersections. Thus 

the collection of all sets F n a K where F is a split face, e 
satisfies the axioms of closed sets for a topology, which is called 

the facial topology on ae~ The facial topology is compact and it 

is Hausdorff if and only if K is a Bauer simplex. 

If x e K, then the snallest face of K containing x will be 

denoted by face (x). 
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Remark 12: It is easy to see that if X o••xc.aK 
1' 'n x and 

all {xi} are split faces, then the set co (x oo• x ) 
1' ' n 

is a face 

in K and that this set is a Bauer simplex. In particular if 

x ~co(x ••• x ) then x has a unique maximal representing measure 
1' ' n ' 

on K. 

Proposition 13: Let K be a CE-compact convex set. Suppose 

that BeaK e and that · {x} is a split face for every X E: B. Then 

the set co(B) is a face in K and this set is a Bauer simplex. 

Proof: co(B) is a convex a-face and hence a face. By Theorem 

11 co(B) is a face. 

We have B ~ aeK f'l co(B), co(B) = co(B) and by Milman's theorem 

it follows that aeco(B) = B. Let g€.C(B) and let f€.C(aeK) be 
,. 

an extension of g to a K. e By Proposition 9 f is continuous, so 
,. 

g' = fiF is a continuous concave extension on g to co(B). By 

formula ( 3 ., 2) and Remark 12 g ' is affine on co (B) • Thus by 

continuity, g' is affine on co(B). This proves that co(B) is a 

Bauer simplex, and the proof is complete. 

Corollary 14: The following are equivalent: 

(i) K is a Bauer simplex. 

(ii) K is a CE-compact convex set and the set 

SF(K) = {x £ aeK: {x} is a split face} is dense in aeK. 

Remark 15: There exist compact convex sets K1 and K2 such 

that 
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(i) aeK 1 is closed, K1 is an a-polytope but no CE-compact 

convex set. 

(ii) aeK 2 is closed, K2 is no a-polytope and no CE-compact 

convex set. 

The compact convex sets in Proposition 20 in [15] and in 

Theorem 6.4 in [3] satisfy the assertions. 

Remark 16: The compact convex set K1 in Remark 15 constructed 

by M. Rogalski [15] has the property that aeK 1 is homeomorphic 

to [0,1]. Rogalski showed that every irrational number in [o,~ 

is a split face (Corollary 25) and he left it as an open problem 

whether the rational numbers are split faces. By Theorem 2.12 in 

[11] it follows that the rational numbers in [o ,i] are not split 

faces. 

Proposition 17: The following statements hold in a compact 

convex set K. 

(a) A subset S c K is a closed a-face if and only if Xs is u.s.c. 

and convex. 

(b) The collection of all closed a-faces in K is closed under finite 

unions and arbitrary intersections. Hence the collection of all 

sets of the form S n a eK, where S is a closed a-face, satisfies 

the axioms of closed sets for a topology on aeK. 

(c) There is for each x€K a smallest a-face, S(x), containing x. 

(d) Each face is a a-face and if F is a face in K and S is a 

a-face in F, then S is a a-face in K. 

(e) If S c K is a closed subset, then S is a a-face if and only 

if for every x € S and every ll (C: Mx, ll is supported by s. 
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(f) If S c K is a closed a-face, then s n a K ~ ¢ e and if s c a K, e 
then S n a eK consists of more than one point. 

Proof: (a), (b), (c) and (d) are easy to prove. 

(e) is proved in [1] . 

It only remains to prove (f). 

Let S c K be a closed a-face. Let {SaJaE: I be all closed 

a-faces in K such that S n S t. ¢ for each a E:: I. Then by Zorn's 
Ct 

lemma the family {SO Sa} a£ I has a minimal element S0 • Suppose 

x,y E: S0 and x ~ y. Let fE: A(K) and f(x) < f(y). Then 

{ze:s: f(z) =sup f(v)} is a non-empty closed a-face by (e) 
0 ve..S 

0 
and this set is properly contained in S0 • Since S0 is minimal, 

S0 can not contain more than one element, and this element must be 

extreme in K, since Xs is convex. Hence we have s ll a K ~ ¢. 
o e 

Suppose S i:_ aeK. Let X£ Sn()eK and let yc. S \ aeK. There 

exists a f€ A(K) such that f(x) < f(y). Hence the set 

S 1 = {zt.S: f(z) =sup f(v)} 
V€. S 

is a closed a-face by (e) and x 4 S 1 • Let z E. S 1 n 3eK. Then 

z 6 s n a K and z '1: x, and the proof is complete. e 

Definition: The topology on a K described in (b) above will e 

be called the a-face topology and it will be denoted by the letter cr. 

Proposition 18: a K with the topology a is a compact Tt e 

space, and a is Hausdorff if and only if aeK is closed. 

Proof: Trivially a is T • 
1 

It is also easily seen that a K 
e 

is compact in the topology cr. (The proof is the same as that of 
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Proposition 4.2 in (3]). 

Obviously the identity map IT:(a K, rel.top.) ~ (a K,cr) e e is 

continuous and bijective, and hence if aeK is compact then rr 

is a homeomorphism. Thus if aeK is closed, then cr is Hausdorff. 

Suppose now that a K is not closed, and let e X£3X \a K. e e 
Then by (f) S(x) n a K will consist of more than one point. e Let 

{xa} c aeK be a net that converges to 

Let S be a closed a-face such that 

x, and let z e:.S(x) () aeK. 

z e: a K \. S. If x ~ S , then e 

S(x)<:::_S and hence z€.S. Thus xfS, so K\S is an open 

neighbourhood of x, and hence there exists an a 0 such that 

x € a K \ S for all a > a 0 • This shows that x ~ z in the a e a 

cr-face topology for all z e: S(x) n aeK' so cr can not be Hausdorff, 

and the proof is complete. 

Remark 19: The idea to the proof of Proposition 18 has been 

taken from [8]. We also could have proved the proposition as 

Lemma 6. 1 in [3] was proved. 

Definition: Following [2] we shall say that K satisfies 

St¢rmer's axiom if for every family {F } 
a of split faces in K, 

the set co(UFa) is a split face in K. 
a 

We will now prove a generalization of Theorem II.7.19 in [2j 

and of Corollary 38 in [15) • 

Theorem 20: The following statements are equivalent: 

(i) K is a Bauer simplex. 

(ii) If F is any face in K, then F is a split face. 

(iii) K satisfies St¢rmer's axiom and every extreme point in 

K is a split face. 
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(iv) If B C a K, then co<B> is a split face. - e 
(v) If B c a K, - e then coCB> is a parallel face. 

(vi) The facial topology on aeK is Hausdorff. 

(vii) If fe A(K), then there exists a split face F such 

that F t1 a K = a Kr) {xE: K: f(x) < 0}. e e -

Proof: (i) => (ii) => (iii) is proved in [2] (Theorem II. 7.19 

and Theorem II.6.22). 

(iii) => (iv) => (v) is trivial. 

(iv) => (vi). Suppose B c a K e is relatively closed. Then 

B n aeK = B. By (iv), F = co(B) = co(B) is a split face. By 

Milman's theorem we have that a F c.. Ir e - and since F is a face, 

we have that aFcaKnB= e - e B. Hence aeF = B. Thus the facial 

topology on aeK equals the relative topology on aeK. 

(vi) => (iv). aeK is Hausdorff in the topology cr since cr 

is a.finer topology than the facial topology. By Proposition 18 aeK 
is closed. Let B C a K. 

e Then we have that B c a K 
- e and 

co(B) = co(B). B is closed in the facial topology, and hence there 

exists a split face F such that 

F=co(B). 

a F = F () a K = B. Thus we have e e 

(v) => (i). Just as in the proof of (iv) => (vi) we get that 

if B c: a K - e is relatively closed, then B is of the form 

B = Ff13K= a F where F is a parallel face. Thus cr is e e 
Hausdorff and, by Proposition 18, a K is closed. e 

!.ret xeK and let ll, V€.Q • Since we can view 1l and \) 
X 

positive regular Borel measures, if 'J.I(X) = v(X) for each compact 

set XC a K, then we have 1l = v. - e 

representing measure. 

Hence x has a unique maximal 

as 
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is compact. Then by (v), F = co(X) 

parallel face. Since XF is affine, the set of functions 

is a 

{aa} = {ae A(K): a > XF} is directed downwards and {a } converges 
a 

pointwise to XF. Hence we have 

ll(X) lim v(a ) 
a a 

,.. 
= v(XF) = v(XF) = v(F) =v(X). 

(iv) => (vii). Let f E: A(K) and define B = {x .cK: f(x) ~ 0}. 

B n aeK is relatively closed and F = co(B n aeK) is a split face 

by (iv) such that Ft"H.leK = aeF = BnaeK. 

(vii)=> (vi). Let x,yeC>eK and x ¢ y. Then we can find 

a fe A(K) such that f(x) < 0 < f(y). Define sets 

B = {z e K: f(x) ~ O}. 

and 

C = {z€ K: f(z) ~ O}. 

Let Fx and FY 

FynaeK = cnaeK. 

be split faces such that F () a K = B n aeK x e 

Now we have that K = B u C such that 

a K = a K (J (F U F ) = a F L1 a F • This shows that the facial e e x y e x e y 

topology is Hausdorff, and the proof is complete. 

and 

Remark 21: The equivalence of (i) and (vi) was proved by 

E. Alfsen and T.B. Andersen in f3]. In [3] (vi)=> (i) was proved 

by showing that (vi) implies that every 

affine extention to K. 

f t. C (a K) has a continuous e 

In [1~1 M. Rogalski proved the equivalence of (i) and (iii) 

for a large class of compact convex sets. 



- 21 -

Proposition 22: Let F be a closed face in a compact convex 

set K. The following statements are equivalent . . 
(i) F is a split face. 

(ii) If G is any face in K, then co(Fu G) is a face in 

(iii) For all z E. F', co(F uface(z)) is a face in K. 

Proof: 

(i) => (ii). Let G be a face in K and let u,v ~K and 

a e <0 ,1> be such that 

z =au+ (1-a)ve:co(Ft.JG). 

If z £ F v G, then u, v £ F uG, so we will suppose that 

z E. co (F u G) \ (F u G) • Then z has a decomposition 

z : AX + (1-A)y 

where x E. F, y € G and A e <0, 1>. By (4.1), 

where 

where 

where 

y = yyl + (l-y)y2 

y1EF, y2 eF' and ye..[O,l>, and hence 

z = AX+ (l-A)yy 1 + (l-A)(l-y)y2 

(A +(l-A)y)- 1 (AX + (l-A)yy 1)€ F. 

By (4.1) 

u = aul + (l-a)u2, 

v = ovl + (l~o)v2 

Hence we have that 

z = a~u 1 + (l-a)ov 1 + a(l-a)u 2 + (l-a)(l-o)v2 

where (aa + (l-a)o)- 1(aau 1 + (l-a)ov1) €F 

and (l-aB-(l-a)o)- 1 (a(l-a)u2 + (l-a.)(l-o)v2 ) C:F'. 

K. 
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If' B = o = 0, then u, v e F' , and hence z E.F'. Since ). ~ 0, 

this is impossible, so not both B and o are zero. By the 

uniqueness of the decomposition of z after F and F', we find 

that 

and since y 2 E F' (1 G we have that u 2 , v 2 £. G. Thus we have that 

u,vE:.co(FUG), and hence co(FUG) is a face. 

(ii) => (iii) is trivial. 

(iii)=> (i). Without loss of generality, we can suppose that 

for some 
~ 

f EE 0 , f 0 ~ O, we have that K c. f - 1 (1). 
- 0 

First we want to show that if z E. F', then 

F'nco(Fc.Jface(z)) = face(z). 

Suppose u£F'n co(FUface (z)). Then 

where u 1 €.F, u 2 E: face(z) and a.<:: ro,l]. Since U€ F', we have 

that u = u 2 Eface(z) and hence F'nco(FUface(z)) c face(z). The 

other inclusion is trivial. 

Next we want to show that F' is a face. We only need to 

show that F' is convex. Suppose z 1 ,z 2 E:F' and ).E.<O,l> and let 

If x G; F', then x E.K \ (F V F') and by ( 4 .1) 

x = oy + (1-o)z 

where y€.F, z EF' and o€ <0,1>. Since co(FUface(z)) is a face 

and xEco(FUface(z)), we have that zpz 2 EF'n co(Fuface(z)) = 
face(z). 
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Hence x = :.\Z 1 + (l-A.)z 2 c:face(z) ~ F'. 

This contradiction shows that F' is a face. 

Let X£ K \ (F UF') and suppose for i = 1,2 that 

where y i €.F, ui E. F' and A.i E. <0, 1>. 

Since co(FL.Jface (u 1 )) is a face, we have that y 2 , u 2 £co(FUface(u 1 )), 

and hence u 2 t:face(u 1 ). Thus we have (see e.g.[l]) 

u = au + (1-a)z' 
1 2 

where z' e: K and aE. <0,1], and hence 

x = A. y + (1-A )Su + (1-A )(1-S)z'. 
1 1 1 2 1 

Let f € E* such that f(u ) = o. Then we have 
2 

and since these f's separate points in E, we have 

-1 Now KCf0 (1) implies that 

so 

By a dual argument, we find that u 1 E.face(u 2 ) and A. 1 ~ A2 • 

Hence we have and a = 1 such that u = u 
1 2 

and 

and the proof is complete. 

Remark 23: (i) => (ii) in Proposition 22 was polnted out to 

me by T. B. Andersen. 
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