Compact convex sets where all continuous convex functions have continuous envelopes and some results on split faces.

Åsvald Lima

Abstract

It is well known that a compact convex set K is a Bauer simplex if and only if for every continuous convex function f on K, the upper envelope \hat{f} is continuous and affine [4]. In this paper we shall study compact convex sets with the property that \hat{f} is merely continuous for every continuous convex function f and we shall see how they are related to Bauer simplexes. Furthermore we shall generalize some results of E.M. Alfsen and T.B Andersen [3] (cf. also [2]) and M. Rogalski [15] to obtain new characterizations of Bauer simplexes by faces.

My Theorem 5 is based on a recent result of J. Vesterstr $\phi \mathrm{m}$ (Theorem 2.1 in [17]). I am indebted to J. Vesterstrøm who kindly communicated to me a preliminary version of [17] during the preparation of this paper. I also want to thank E. Alfsen and T. B. Andersen for helpful comments.

1. Preliminaries and notation.

Let K be a compact convex set in a real locally convex Hausdorff space E.

We shall use the following symbols:

$$
\begin{array}{ll}
\partial_{e} K: & \text { the set of extreme points in } K . \\
C(K): & \begin{array}{l}
\text { the Banach space of continuous real-valued }
\end{array} \\
A(K): \quad \begin{array}{l}
\text { functions on } K .
\end{array} \\
P(K): \quad \begin{array}{l}
\text { the Banach space of continuous affine real- }
\end{array} \\
\quad \begin{array}{l}
\text { the uniformly closed convex cone of continuous } \\
\text { convex real-valued functions on } K .
\end{array}
\end{array}
$$

If X is a compact subset of K , then we shall denote by $M(X)$ the Banach space of all signed (Radon-)measures on X, and by $M_{1}^{+}(X)$ the w^{*}-compact convex set of normalized positive (Radon-) measures on X.

A signed measure μ on K is said to be a boundary measure if $|\mu|$ is maximal in Choquet's ordering of positive measures. Cf. [6] or [2]. The linear subspace of $M(K)$ of all (signed) boundary measures is denoted by Q, and $Q_{1}=Q \cap M_{1}^{+}(K)$.

If $x \in K$, then

$$
M_{x}=\left\{\mu \in M_{1}^{+}(K): \quad \int_{K} f d \mu=f(x), \quad \text { all } f \in A(K)\right\}
$$

and $Q_{X}=M_{x} \cap Q_{1} . M_{x}$ is a w^{*}-compact convex set and Q_{x} is a face in M_{X}, just as Q_{1} is a face in $M_{1}^{+}(K)$. See e.g. [2].

If $\mu \in M_{1}^{+}(K)$, then the barycenter of μ is the unique point $x \in K$, such that $\mu \in M_{x}$, and we shall write $x=r(\mu)$. See e.g. [2]. The map $r: M_{i}^{+}(K) \rightarrow K$ defined by $\mu \leadsto r(\mu)$ is continuous and
affine. See e.g. [13]. Clearly this map is surjective since $r\left(\varepsilon_{x}\right)=x$ for all $x \in K$. Note, however, that the restricted map from Q_{1} to K is also surjective by virtue of the Choquet-Bishop-de Leeuw theorem [5],[6]. In particular it follows that the restriction r_{e} of the barycenter map to the set $M_{1}^{+}\left(\overline{\partial_{e} K}\right)$ containing Q_{1} will also be surjective.

If $f, g: K \rightarrow \mathbb{R}$, then $f<g$ means that $f(x)<g(x)$ for all $x \in K$.

If $f: K \rightarrow \mathbb{R}$ is bounded, we define

$$
\begin{array}{ll}
\hat{f}(x)=\inf \{a(x): a \in A(K), & a>f\}, \\
f(x)=\sup \{a(x): a \in A(K), & a<f\} .
\end{array}
$$

The function \hat{f} is the smallest upper semi-continuous (u.s.c.) concave function majorizing f. Dually \dot{f} is the greatest lower semi-continuous (l.s.c.) convex function majorized by f.

If S is a subset of K, then $c o(S)$ is the convex hull of S and $\overline{c o(S)}$ is the closed convex hull of S.
2. Continuous convex extension of functions defined on $\partial_{e} K$.

Our first lemma can be deduced from a general theorem of Edwards [7], but for the sake of completeness we have included a proof.

Lemma 1: Suppose $X \subseteq \partial_{e} K$ is compact and let $f \in C(X)$. Then there exists a $g \in P(K)$ such that $g \mid X=f$.

Our method of proof is based on an approximation technique used in [16].

Proof: We may suppose $0<f \leq 1$. Let $0<\varepsilon<1$, and let the restriction map $g \cap g \mid X$ of $P(K)$ into $C(X)$ be denoted by T.

Define functions f_{1} and g_{1} by

$$
f_{1}(x)=\left\{\begin{array}{l}
f(x) \quad \text { if } x \in X \\
\sup \{f(y): y \in X\} \quad \text { if } x \in K \backslash X,
\end{array}\right.
$$

and

$$
g_{1}(x)=\left\{\begin{array}{l}
f(x) \quad \text { if } x \in X \\
\inf \{f(y): y \in X\} \quad \text { if } x \in K \backslash X
\end{array}\right.
$$

Now $f_{1} \geq g_{1}$ and $f_{1},-g_{1}$ is l.s.c. and concave. Since f_{1} is l.s.c. we have $f_{i}\left|\partial_{e} K={\underset{f}{f}}_{1}\right| \partial_{e} K$ and hence $f_{1} \geq{\underset{f}{f}}_{1} \geq g_{1}$. Let $g_{1}^{\prime}=\max \left(g_{1}-\varepsilon, 0\right)$. Then we have $\stackrel{V}{f}_{1}>g_{1}^{\prime}$ and g_{1}^{\prime} is u.s.c. For each $x \in K$ we can find a $g_{x} \in A(K) \subseteq P(K)$ such that $g_{x}<f_{1}$ and $g_{1}^{\prime}(x)<g_{x}(x)$. Since g_{i}^{\prime} is u.s.c., $V_{x}=\left\{y \in K: g_{i}^{\prime}(y)-g_{x}(y)\right.$ $<0\}$ is open and $x \in V_{x}$. By compactness we can find $x_{1}, \cdots, x_{n} \in K$ such that $K \subseteq \bigcup_{i=1}^{n} V_{x_{1}}$. Define $k_{v_{1}}=\max \left(g_{x_{1}}, \cdots, g_{x_{n}}\right)$. Then $k_{1} \in P(K), \quad g_{1}^{\rho}<k_{1}<\stackrel{\vee}{f_{1}}$, hence $T\left(k_{1}\right)<f$ and $\left\|f-T\left(k_{1}\right)\right\|<\varepsilon$. Furthermore $0<k_{1}<1$ and

$$
0<\varepsilon^{-1}\left(f-T\left(k_{1}\right)\right) \leq 1
$$

Suppose for induction that we have found $k_{1}, \cdots, k_{n} \in P(K)$ such that for $i=1, \cdots, n$:
(2.1) $0<k_{i}<\varepsilon^{i-1}$
(2.2) $T\left(k_{i}+\cdots+k_{i}\right)<f$
(2.3) $\left\|f-T\left(k_{i}+\cdots+k_{i}\right)\right\|<\varepsilon^{i}$

Then we have
(2.4) $0<\varepsilon^{-n}\left(f-T\left(k_{1}+\cdots+k_{n}\right)\right)<1$,
and we can repeat the argument above to get $k_{n+1}^{\prime} \in P(K)$ such that

$$
\begin{aligned}
& 0<k_{n+1}^{\prime}<1 \\
& T\left(k_{n+1}^{\prime}\right)<\varepsilon^{-n}\left(f-T\left(k_{1}+\cdots+k_{n}\right)\right) \\
& \left\|\varepsilon^{-n}\left(f-T\left(k_{1}+\cdots+k_{n}\right)\right)-k_{n+1}^{\prime}\right\|<\varepsilon .
\end{aligned}
$$

Defining $k_{n+1}=\varepsilon^{n_{k+1}^{\prime}}$, we see that (2.1), (2.2) and (2.3) are $_{n}$, fulfilled with $n+1$ in place of n. Hence there exists a sequence $\left\{k_{i}\right\}_{i=1}^{\infty} \subseteq P(K)$ such that (2.1), (2.2) and (2.3) are fulfilled for every i。

Defining $g=\sum_{i=1}^{\infty} k_{i}$, we have $g \in P(K)$ and $g \mid X=f$, and the proof is complete.

Corollary 2: The following statements are equivalent :
(1) $\partial_{e} K$ is closed
(ii) There exists for every $f \in C\left(\partial_{e} K\right)$ a $g \in P(K)$ such that $g \mid \partial_{e} K=f$.
(iii) There exists for every $f \in P(K)$ a $g \in-P(K)$ such that $g\left|\partial_{e} K=f\right| \partial_{e} K$.

Proof: (i) \Rightarrow (ii) follows from Lemma 1.

$$
\text { (ii) } \Rightarrow \text { (iii) is obvious. }
$$

$$
(1 i i) \Rightarrow \text { (i) For } f \in C(K) \text { we define }
$$

$$
B_{f}=\{x \in K: f(x)=\hat{f}(x)\}
$$

It is well known that $\partial_{e} K=\cap\left\{B_{f}: f \in P(K)\right\}$ [13]. Now it follows
from (iii) that $\overline{\partial_{e} K} \subseteq B_{f}$ for $f \in P(K)$, hence $\overline{\partial_{e} K} \subseteq \cap\left\{B_{f}\right.$: $f \in P(K)\}=\partial_{e} K$. The proof is complete.

Remark 3: If $\partial_{e} K$ is closed, then by Corollary 2 every $f \in A\left(M_{1}^{+}\left(\overline{\partial_{e} K}\right)\right.$) is of the form gor for some $g \in P(K)$. (If $\partial_{e}{ }^{K}$ is closed then $\partial_{e} K$ and $\partial_{e} M_{i}^{+}\left(\overline{\partial_{e}} \bar{K}\right)$ are homeomorphic by $\left.r_{e}.\right)$

3. Continuous convex functions with continuous envelopes.

Let X be a compact convex set in a Hausdorff locally convex space and let $p: X \rightarrow K$ be a continuous, surjective and affine map.

Proposition 4: Let K, X and p be as above. If $f: X \rightarrow \mathbb{R}$ is u.s.c. and concave, then for each $y \in K$ we have
$\sup \left\{f(x): x \in p^{-1}(y)\right\}=\inf \{g(y): g \in A(K), g \circ p>f\}$.

Definition: If $f: X \rightarrow \mathbb{R}$ is u.s.c. we define $\hat{f}^{p}: K \rightarrow \mathbb{R}$ by $\hat{f}^{p}(y)=\sup \left\{f(x): x \in p^{-1}(y)\right\}$
for each $y \in K$.

Proof: Let $\alpha \in \mathbb{R}$. To each $y \in K$ there exists $a \quad x \in p^{-1}(y)$ such that $\hat{f}^{p}(y)=f(x)$. Hence we have
$\left\{y \in K: \hat{f}^{p}(y) \geq \alpha\right\}=p(\{x \in X: f(x) \geq \alpha\})$
such that $\hat{\mathrm{f}}^{\mathrm{p}}$ is u.s.c.
Let $\left(y_{1}, \mathrm{y}_{2}, \lambda\right) \in \mathrm{K} \times \mathrm{K} \times[0,1]$ and let $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{X}$ be
such that $p\left(x_{i}\right)=y_{i}$ and $\hat{f}^{p}\left(y_{i}\right)=f\left(x_{i}\right)$. Then we have:

$$
\begin{aligned}
& \hat{f}^{p}\left(\lambda y_{1}+(1-\lambda) y_{2}\right) \geq \\
& f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \geq \\
& \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)= \\
& \lambda \hat{f}^{p}\left(y_{1}\right)+(1-\lambda) \hat{f}^{p}\left(y_{2}\right)
\end{aligned}
$$

such that $\hat{\mathrm{f}}^{\mathrm{p}}$ is concave.
It follows that

$$
\hat{f}^{p}(y)=\inf \left\{g(y): g \in A(K), \quad g>\hat{f}^{p}\right\}
$$

and since for every $g \in A(K), g>\hat{f}^{p}$ if and only if $g \circ p>f$, we have

$$
\hat{f}^{p}(y)=\inf \{g(y): g \in A(K), \quad g \circ p>f\} .
$$

The proof is complete.

Observation: Let K, X and p be as above and let $f \in C(K)$. If we define $g=\widehat{f o p}$, then we have $\hat{f}=\hat{g} p$. Suppose $k \in-P(K)$ and $k \geq f$. Then we have $f \circ p \leq k \circ p$, hence $f \circ p \leq g=\widehat{f o p} \leq k \circ p$ and $f \leq \hat{g}^{p} \leq k$. Thus we have $\hat{f}=\hat{g}^{p}$.

Theorem 5: Let K, X and p be as above. The following statements are equivalent:
(i) p is open
(ii) $\quad \hat{f}^{p} \in C(K)$ for every $f \in C(X)$
(iii) $\quad \hat{f}^{p} \rho_{\epsilon}-P(K)$ for every $f \in-P(X)$
(iv) $\hat{f}^{p} \epsilon-P(K)$ for every $f \in A(X)$
(v) $p(\{x \in X: f(x)>0\}$) is open in K for every $f \in A(X)$.

Proof: (i) \Rightarrow (ii). In the proof of Proposition 4 we showed that \hat{f}^{p} is u.s.c. if $f \in C(X)$. Let $\alpha \in \mathbb{R}$ and observe that $p(\{x \in X: f(x)>\alpha\})=\left\{y \in K: \hat{f}^{p}(y)>\alpha\right\}$. Thus we have that f^{p} is I.s.c.
(ii) \Rightarrow (iii) \Rightarrow (iv) is obvious since it follows as in the proof of Proposition 4 that \hat{f}^{p} is concave when f is concave.
(iv) \Leftrightarrow (v) is obvious.
(iv) \Leftrightarrow (i) follows from Proposition 4 and Theorem 2.1 in [17], and the proof is complete.

Remark 6: The deep part of Theorem 5, (iv) \Rightarrow (i) is due to J. Vesterstr申m [17].

It is easy to give a direct prooi of (iii) \Rightarrow (i).

Definition: We shall say that K is a CE-compact convex set if \hat{f} is continuous for every $f \in P(K)$.

Observation: Suppose K is a CE-compact convex set and let F be a closed face in K. Then F is a CE-compact convex set.

Proof: If $g \in P(F)$, then by Corollary 2 and Tietze's theorem there exists a $f \in P(K)$ such that $f\left|\partial_{e} F=g\right| \partial_{e} F$. Now we have $\hat{g}=\widehat{f}|F=\hat{f}| F$, and the proof is complete.

Theorem 7: The statements (i) - (v) below are related as follows: (i) \Rightarrow (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v).
(i) K is a Bauer simplex.
(ii) There exists a CE-compact convex set X and an open, continuous,surjective and affine map $p: X \rightarrow K$.

$$
\begin{equation*}
r_{e}: M_{1}^{+}\left(\overline{\partial_{e} K}\right) \rightarrow K \text { is open } \tag{iii}
\end{equation*}
$$

(iv) K is a CE-compact convex set.
(v) $\quad \partial_{e} K$ is closed.

Proof:
(i) \Rightarrow (ii). Let $X=M_{i}^{+}\left(\overline{\partial_{e}}\right)$ and let $p=r_{e}$. If K is a Bauer simplex, then r_{e} is a homeomorphism by a theorem of Bauer [4].
(ii) \Rightarrow (iv). If $f \in P(K)$, then by Theorem 5 and the observation before Theorem 5, \hat{f} is continuous.
(iv) \Rightarrow (v). Follows from Corollary 2.
(iv) \Rightarrow (iii). By Remark 3 and the observation before Theorem 5,
if $f \in A\left(M_{1}^{+}\left(\overline{\partial_{e} K}\right)\right.$, then $\hat{f}^{p}=\hat{g}$ for some $g \in P(K)$. (iii) now follows from Theorem 5.
(iii) \Rightarrow (ii) is obvious, and the proof is complete.

Remark 8: We will later give two examples where (v) in Theorem 7 is satisfied but not (iv).

If K is a square in \mathbb{R}^{2}, then obvioulsy (iv) in Theorem 7 is satisfied but not (i).

If K is a CE-compact convex set, then since $\partial_{e} K$ is closed we have $M_{1}^{+}\left(\bar{\partial} e^{K}\right)=M_{1}^{+}\left(\partial_{e} K\right)=Q_{1}$.
J. Vesterstrøm proved in [17] that (iii) \Leftrightarrow (iv), but his proof is quite different from that of mine.

Definition: A subset S of K is called a σ-face if S is a union of faces in K.

The term σ-face was introduced by Goullet dé Rugy in [10]. Closed o-faces were also studied by Alfsen in [1] under the name
stable subsets.
If $f \in C(K)$ we define

$$
\Lambda(f)=\left\{\mu \in M_{1}^{+}\left(\overline{\partial e^{K}}\right): \quad \mu(f)=\hat{f}\left(r_{e}(\mu)\right)\right\}
$$

We have that $\Lambda(f)$ is a. σ-face in $M_{1}^{+}\left(\overline{\partial_{e} \bar{K}}\right)$, in fact if $\mu=\lambda \nu_{1}+(1-\lambda) \nu_{2} \in \Lambda(f)$ with $\lambda \in[0,1]$ and $\nu_{1}, \nu_{2} \in M_{1}^{+}\left(\overline{\partial_{e} K}\right)$, then

$$
\begin{aligned}
& \lambda \hat{f}\left(r_{e}\left(\nu_{1}\right)\right)+(1-\lambda) \hat{f}\left(r_{e}\left(\nu_{2}\right)\right) \geq \\
& \lambda \nu_{1}(f)+(1-\lambda) \nu_{2}(f)=\mu(f)=\hat{f}\left(r_{e}(\mu)\right)= \\
& \left.\hat{f}\left(\lambda r_{e}\left(\nu_{1}\right)\right)+(1-\lambda) r_{e}\left(\nu_{2}\right)\right) \geq \lambda \hat{f}\left(r_{e}\left(\nu_{1}\right)\right)+(1-\lambda) \hat{f}\left(r_{e}\left(\nu_{2}\right)\right)
\end{aligned}
$$

such that $\hat{r}\left(r_{e}\left(v_{1}\right)\right)=v_{1}(f)$, ie. $\quad v_{1} \in \Lambda(f)$.

Proposition 9: The following are equivalent :

(i) $\quad K$ is a CE-compact convex set.
(ii) If $f \in C\left(\partial_{e} K\right)$ then \hat{f} is continuous and $\hat{f} \mid \partial_{e} K=f$.
(iii) $\quad \Lambda(f)$ is a w^{*}-closed σ-face in $M_{1}^{+}\left(\bar{\partial} e^{K}\right)$ for every $f \in P(K)$.

Proof:

(i) \Rightarrow (ii). Suppose (i) is fulfilled and let $f \in C\left(\partial_{e} K\right)$. By Theorem 7 and Corollary 2, $f=g \mid \partial_{e} K$ for some $g \in P(K)$, and by Theorem $7 \hat{f}=\hat{g}$ is continuous.
(ii) \Rightarrow (i) is trivial.
(i) \Rightarrow (iii). If $f \in P(K)$ we define $\phi_{f}: M_{1}^{+}\left(\overline{\partial_{e}}\right) \rightarrow R \quad$ by by $\phi_{f}(\mu)=\hat{f}\left(r_{e}(\mu)\right)-\mu(f)$. Then $\phi_{f}(\mu) \geq 0$ for every μ (see e.g. [2]) and $\Lambda(f)=\phi_{f}{ }^{-1}(0)$. Hence $\Lambda(f)$ is closed since f is continuous.
(iii) \Rightarrow (i). Let $f \in P(K)$ and let $\alpha \in \mathbb{R}$. We only need to show that \hat{f} is l.s.c. The set $\left\{\mu \in M_{1}^{+}\left(\overline{\partial_{e}}\right): \mu(f) \leq \alpha\right\}$ is closed and hence $A_{\alpha}=\left\{\mu \in \Lambda(f): \mu(f)=\hat{f}\left(r_{e}(\mu)\right) \leq \alpha\right\}$ is compact. Thus $r_{e}\left(A_{\alpha}\right)$ is compact. Since for $f \in P(K), r_{e}(\Lambda(f))=K$ [2], it easily follows that $r_{e}\left(A_{\alpha}\right)=\{x \in K: \hat{f}(x) \leq \alpha\}$. Thus \hat{f} is l.s.c. and the proof is complete.

Theorem 10: Let K be a metrizable CE-compact convex set and suppose that X is a simplex and that $p: X \rightarrow K$ is a continuous, surjective and affine map. Then there exists a continuous, surjective and affine map $\phi: X \rightarrow M_{1}^{+}\left(\overline{\partial e^{K}}\right)=Q_{1}$ such that $p=r_{e} \circ \phi$.

Proof. We define a multivalued map $\psi \cdot X \rightarrow 2^{M_{1}^{+}\left(\bar{\partial} e^{K}\right)}$ $\psi(x)=r_{e}^{-1}(p(x))$. Since p and r_{e} is affine it is easily seen that ψ is convex, i.e.

$$
\lambda \psi(x)+(1-\lambda) \psi(y) \subseteq \psi(\lambda x+(1-\lambda) y)
$$

when $\quad(x, y, \lambda) \in X \times X \times[0,1]$.
If $U \subseteq M_{1}^{+}\left(\overline{\partial_{e} K}\right)$ is open, then $p^{-1}\left(r_{e}(U)\right)$ is open in X since r_{e} is an open map by Theorem 7. The statement $x \in p^{-1}\left(r_{e}(U)\right)$ is equivalent to $r_{e}^{-1}(p(x)) \subseteq r_{e}^{-1}\left(r_{e}(U)\right)$, which in turn is equivalent to $\psi(x) \cap U \neq \phi$. This shows that

$$
\{x \in X: \psi(x) \cap U \neq \phi\}=p^{-1}\left(r_{e}(U)\right)
$$

Hence ψ is l.s.c.
Now it follows by Lazar's selection theorem [12] (cf. [18] or [10] for a simple proof) that there exists a continuous affine function $\phi: X \rightarrow M_{1}^{+}\left(\bar{\partial} e^{K}\right)$ such that $\phi(x) \in r_{e}^{-1}(p(x))$ for all $x \in X$. Obviously $\partial_{e} M_{l}^{+}\left(\bar{\partial} e^{K}\right) \subseteq \phi(x)$, hence ϕ is surjective. Now we have $p=r_{e} \circ \phi$ and the proof is complete.

Theorem 11: Let K be a CE-compact convex set. If $F \subseteq K$ is a face, then \bar{F} is a face.

Proof: If $S=\partial_{e} K \cap \bar{F}$, then S is a closed σ-face and we have $\overline{\mathrm{co}}(\mathrm{S}) \subseteq \overline{\mathrm{F}}$. Let $\mathrm{x} \in \mathrm{F}$. Every discrete measure on K representing x is supported by F, and since the set of discrete measures in M_{x} is dense in M_{x} (cf. [2]) it follows that every representing measure for x is supported by \bar{F}. If $\mu \in Q_{X}$, then μ is supported by S,

Let $G \subseteq K$ be a closed σ-face. Then we have that X_{G} (the characteristic function to G) is u.s.c. and convex, and by Proposition 5.6 in $[10]$ we have for all $x \in K$:

$$
\begin{equation*}
\hat{x}_{G}(x)=\sup _{\mu \in M_{x}} \mu\left(x_{G}\right)=\sup _{\mu \in Q_{x}} \mu\left(x_{G}\right) \tag{3.1}
\end{equation*}
$$

From this it follows that $\overline{\operatorname{co}(G)}=\hat{X}_{G}{ }^{-1}(1)$ and in particular $\bar{F}=\overline{\operatorname{co}}(S)=\hat{X}_{S}^{-1}(1)$.

Define

$$
P=\left\{f \in C\left(\partial_{e} K\right): 0 \leq f \leq 1 \text { and } f \mid S=1\right\}
$$

Then P is a convex set, and $\{f\}_{f \in P}$ converges at every point $x \in \partial_{e} K$ to $X_{s}(x)=\hat{X}_{s}(x)$.

By Proposition $9 \hat{f}$ and \hat{f} are continuous for every $f \in P$. If we define for every $f \in P$ a set F_{f} by

$$
F_{f}=\{x \in K: \hat{f}(x)=\stackrel{\vee}{f}(x)=1\} .
$$

then F_{f} is closed for every $f \in P$.
Let $f \in P$ and let $x, y, z \in K$ and $\lambda \in[0,1]$ be such that $x=\lambda y+(1-\lambda) z \in F_{f}$. Then we have that

$$
\begin{aligned}
I= & \hat{f}(x)=\hat{f}(\lambda y+(1-\lambda) z) \geq \lambda \hat{f}(y)+(1-\lambda) \hat{f}(z) \geq \\
& \lambda \tilde{f}(y)+(1-\lambda) \hat{f}(z) \geq \check{f}(\lambda y+(1-\lambda) z)=\check{f}(x)=1
\end{aligned}
$$

Hence

$$
I=\hat{f}(y)=\hat{f}(y)=\hat{f}(z)=\stackrel{v}{f}(z)
$$

so $y, z \in F_{f}$. This shows that each F_{f} is a closed o-face, and hence $\cap\left\{F_{f}: f \in P\right\}$ is a closed $\sigma-f a c e$.

By the known formulas (see e.g. [2])
(3.2) $\quad \hat{f}(x)=\sup _{\mu \in Q_{X}} \mu(f)$
and

$$
\begin{equation*}
\stackrel{v}{f(x)}=\inf _{\mu \in Q_{x}} \mu(f) \tag{3.3}
\end{equation*}
$$

which hold for every $f \in P$ and all $x \in K$, and by the density of F in \bar{F}, we have $\bar{F} \subseteq \cap\left\{F_{f}: f \in P\right\}$.

Suppose $x \in K \backslash \bar{F}$. Then $\hat{X}_{S}(x)<1$ and by (3.1), (3.2), (3.3) and Theorem 7.1 in [9] (or Lemma 5.4 in [10]) we get that:

$$
\begin{aligned}
1>\hat{X}_{S}(x) & =\sup _{\mu \in Q_{X}} \mu\left(x_{S}\right)=\sup _{\mu \in Q_{X}} \inf _{f \in P} \mu(f) \\
& =\inf _{f \in P} \sup _{\mu \in Q_{x}} \mu(f)=\inf _{f \in P} \hat{f}(x)
\end{aligned}
$$

Hence we can find a $f \in P$ such that $X \notin F_{f}$. Thus we have that $\bar{F}=\bigcap\left\{F_{f}: f \in P\right\}$, and \bar{F} must be a closed σ-face. But since \bar{F} is convex, \bar{F} is a closed face (see e.g. [l]), and the proof is complete.
4. Split faces and Bauer simplexes.

If F is a non-empty subset of K then $F^{\prime}=U\{G: G$ is a face in K and $G \cap F=\varnothing\}$ is called the complementary set of F.

A complementary set is a σ-face and it is a face if and only if it is convex (see e.g. [10] [2]).

If F is a proper closed face in K, then for every $x \in K$ there exists a convex combination
(4.1) $x=\lambda y+(1-\lambda) z$ where $y \in F, z \in F^{\prime}, \lambda \leq \hat{X}_{F}(x)$
(see e.g. [2]). The face F is said to be a split face if F^{\prime} is a face and if for every $x \in K \backslash\left(F \cup F^{\prime}\right) y$ and λ in the above decomposition (4.1) are uniquely determined. The face F is said to be a parallel face if F^{\prime} is a face and if for every $x \in K \backslash\left(F \cup F^{\prime}\right)$, λ in the above decomposition (4.1) is uniquely determined.

For results on split and parallel faces see [2], [3], [11], [14] and [15]. Every split face is a parallel face and a closed face F in K is parallel if and only if \hat{X}_{F} is affine.

In [3] it is proved that the collection of all split faces is closed under finite convex hulls and arbitrary intersections. Thus the collection of all sets $F \cap \partial_{e} K$ where F is a split face, satisfies the axioms of closed sets for a topology, which is called the facial topology on ∂ K. The facial topology is compact and it is Hausdorff if and only if K is a Bauer simplex.

If $x \in K$, then the smallest face of K containing x will be denoted by face (x).

Remark 12: It is easy to see that if $x_{1}, \cdots, x_{n} \in \partial_{x} K$ and all $\left\{x_{i}\right\}$ are split faces, then the set $c o\left(x_{1}, \cdots 0, x_{n}\right)$ is a face in K and that this set is a Bauer simplex. In particular if $x \in \operatorname{co}\left(x_{1}, \cdots, x_{n}\right)$, then x has a unique maximal representing measure on K .

Proposition 13: Let K be a CE-compact convex set. Suppose that $B \subseteq \partial_{e} K$ and that $\{x\}$ is a split face for every $x \in B$. Then the set $\overline{\mathrm{CO}}(\mathrm{B})$ is a face in K and this set is a Bauer simplex.

Proof: $c o(B)$ is a convex σ-face and hence a face. By Theorem $11 \overline{\mathrm{co}}(\mathrm{B})$ is a face.

We have $\bar{B} \subseteq \partial_{e} \mathrm{~K} \cap \overline{\mathrm{CO}(B), \overline{\mathrm{CO}}(\overline{\mathrm{B}})=\overline{\mathrm{CO}}(\mathrm{B})}$ and by Milman's theorem it follows that $\partial_{e} \overline{\operatorname{co}(B)}=\bar{B}$. Let $g \in C(\bar{B})$ and let $f \in C\left(\partial_{e} K\right)$ be an extension of g to $\partial_{e} K$. By Proposition $9 \hat{f}$ is continuous, so $g^{\prime}=\hat{f} \mid F$ is a continuous concave extension on g to $\overline{c o(B) . ~ B y ~}$ formula (3.2) and Remark $12 \mathrm{~g}^{\mathrm{g}}$ is affine on $\mathrm{co}(\mathrm{B})$. Thus by continuity, g^{\prime} is affine on $\overline{\mathrm{CO}}(\mathrm{B})$. This proves that $\overline{\mathrm{CO}}(\mathrm{B})$ is a Bauer simplex, and the proof is complete.

Corollary 14: The following are equivalent:
(1) $\quad K$ is a Bauer simplex.
(1i) K is a CE-compact convex set and the set $S F(K)=\left\{x \in \partial_{e} K:\{x\}\right.$ is a split face $\}$ is dense in $\partial_{e} K$.

Remark 15: There exist compact convex sets K_{1} and K_{2} such that
(1) $\partial_{e} K_{1}$ is closed, K_{1} is an a-polytope but no CE-compact convex set.
(ii) $\quad \partial_{e} K_{2}$ is closed, K_{2} is no α-polytope and no CE-compact convex set.

The compact convex sets in Proposition 20 in [15] and in Theorem 6.4 in [3] satisfy the assertions.

Remark 16: The compact convex set K_{1} in Remark 15 constructed by M. Rogalski [15] has the property that $\partial_{e} K_{1}$ is homeomorphic to $[0,1]$. Rogalski showed that every irrational number in $[0,1]$ is a split face (Corollary 25) and he left it as an open problem whether the rational numbers are split faces. By Theorem 2.12 in [1I] it follows that the rational numbers in $[0,1]$ are not split faces.

Proposition 17: The following statements hold in a compact convex set K.
(a) A subset $S \subseteq K$ is a closed σ-face if and only if X_{S} is u.s.c. and convex.
(b) The collection of all closed o-faces in K is closed under finite unions and arbitrary intersections. Hence the collection of all sets of the form $S \cap \partial_{e} K$, where S is a closed σ-face, satisfies the axioms of closed sets for a topology on ∂^{K}.
(c) There is for each $x \in K$ a smallest σ-face, $S(x)$, containing x.
(d) Each face is a σ-face and if F is a face in K and S is a σ-face in F, then S is a σ-face in K.
(e) If $S \subseteq K$ is a closed subset, then S is a $\sigma-f a c e$ if and only if for every $x \in S$ and every $\mu \in M_{x}, \mu$ is supported by S.
(f) If $S \subseteq K$ is a closed σ-face, then $S \cap \partial_{e} K \neq \varnothing$ and if $S \subseteq \partial_{e} K$, then $S \cap \partial_{e} K$ consists of more than one point.

Proof: (a), (b), (c) and (d) are easy to prove.
(e) is proved in [1].

It only remains to prove (f).
Let $S \subseteq K$ be a closed σ-face. Let $\left\{S_{\alpha}\right\}_{\alpha \in I}$ be all closed σ-faces in K such that $S \cap S_{\alpha} \neq \varnothing$ for each $\alpha \in I$. Then by Zorn's lemma the family $\left\{S \cap S_{\alpha}\right\}_{\alpha \in I}$ has a minimal element S_{0}. Suppose $x, y \in S_{o}$ and $x \neq y$. Let $f \in A(K)$ and $f(x)<f(y)$. Then $\left\{z \in S_{0}: f(z)=\sup _{v \in S_{0}} f(v)\right\}$ is a non-empty closed σ-face by (e) and this set is properly contained in S_{0}. Since S_{o} is minimal, S_{o} can not contain more than one element, and this element must be extreme in K, since $X_{S_{O}}$ is convex. Hence we have $S \cap \partial_{e} K \neq \varnothing$.

Suppose $S \nsubseteq \partial_{e} K$. Let $x \in S \cap \partial_{e} K$ and let $y \in S \backslash \partial_{e} K$. There exists a $f \in A(K)$ such that $f(x)<f(y)$. Hence the set
$S_{1}=\left\{z \in S: f(z)=\sup _{v \in S} f(v)\right\}$
is a closed σ-face by (e) and $x \notin S_{1}$. Let $z \in S_{1} \cap \partial_{e} K$. Then $z \in S \cap \partial_{e} K$ and $z \neq x$, and the proof is complete.

Definition: The topology on $\partial_{e} K$ described in (b) above will be called the σ-face topology and it will be denoted by the letter σ.

Proposition 18: $\partial_{e} K$ with the topology σ is a compact T_{1} space, and σ is Hausdorff if and only if $\partial_{e^{K}}$ is closed.

Proof: Trivially σ is T_{1}. It is also easily seen that $\partial_{e} K$ is compact in the topology σ. (The proof is the same as that of

Proposition 4.2 in [3]).
Obviously the identity map $\Pi:\left(\partial_{e} K\right.$, rel.top. $) \rightarrow\left(\partial_{e} K, \sigma\right)$ is continuous and bijective, and hence if $\partial_{e} K$ is compact then Π is a homeomorphism. Thus if $\partial_{e} K$ is closed, then σ is Hausdorff.

Suppose now that $\partial_{e} K$ is not closed, and let $x \in \overline{\partial_{e} K} \backslash \partial_{e}{ }^{K}$. Then by (f) $S(x) \cap \partial_{e} K$ will consist of more than one point. Let $\left\{x_{\alpha}\right\} \subseteq \partial_{e} K$ be a net that converges to x, and let $z \in S(x) \cap \partial_{e} K$. Let S be a closed σ-face such that $z \in \partial_{e} K \backslash S$. If $x \in S$, then $S(x) \subseteq S$ and hence $z \in S$. Thus $x \notin S$, so $K \backslash S$ is an open neighbourhood of x, and hence there exists an α_{0} such that $x_{\alpha} \in \partial_{e} K \backslash S$ for all $\alpha \geq \alpha_{0}$. This shows that $x_{\alpha} \rightarrow z$ in the σ-face topology for all $z \in S(x) \cap \partial_{e} K$, so σ can not be Hausdorff, and the proof is complete.

Remark 19: The idea to the proof of Proposition 18 has been taken from [8]. We also could have proved the proposition as Lemma 6.1 in [3] was proved.

Definition: Following [2] we shall say that K satisfies St申rmer's axiom if for every family $\left\{F_{\alpha}\right\}$ of split faces in K, the set $\overline{\operatorname{co}}\left(\bigcup_{\alpha} F_{\alpha}\right)$ is a split face in K.

We will now prove a generalization of Theorem II.7.19 in [2] and of Corollary 38 in [15].

Theorem 20: The following statements are equivalent:
(i) K is a Bauer simplex.
(ii) If F is any face in K, then \bar{F} is a split face. (iii) K satisfies St申rmer's axiom and every extreme point in K is a split face.
(iv) If $B \subseteq \partial_{e} K$, then $\overline{c o(B)}$ is a split face.
(v) If $B \subseteq \partial_{e} K$, then $\overline{C O}(B)$ is a parallel face.
(vi) The facial topology on $\partial_{e} K$ is Hausdorff.
(vii) If $f \in A(K)$, then there exists a split face F such that $F \cap \partial_{e} K=\partial_{e} K \cap\{x \in K: f(x) \leq 0\}$.

Proof: (i) \Rightarrow (ii) \Rightarrow (1ii) is proved in [2] (Theorem II.7.19 and Theorem II.6.22).
(iii) \Rightarrow (iv) \Rightarrow (v) is trivial.
(iv) \Rightarrow (vi). Suppose $B \subseteq \partial_{e} K$ is relatively closed. Then $\bar{B} \cap \partial_{e} K=B$. By (iv), $F=\overline{c o(B)}=\overline{c o}(\bar{B})$ is a split face. By Milman's theorem we have that $\partial_{e} F \subseteq \bar{B}$ and since F is a face, we have that $\partial_{e} F \subseteq \partial_{e} K \cap \bar{B}=B$. Hence $\partial_{e} F=B$. Thus the facial topology on $\partial_{e} K$ equals the relative topology on $\partial_{e} K$.
(vi) \Rightarrow (iv). $\partial_{e} K$ is Hausdorff in the topology σ since σ is afiner topology than the facial topology. By Proposition $18 \partial_{e} K$ is closed. Let $B \subseteq \partial_{e} K$. Then we have that $\bar{B} \subseteq \partial_{e} K$ and $\overline{C O}(B)=\overline{C O}(\bar{B}) . \quad \bar{B}$ is closed in the facial topology, and hence there exists a split face F such that $\partial_{e} F=F \cap \partial_{e} K=\bar{B}$. Thus we have $F=\overline{C O}(B)$.
(v) \Rightarrow (i). Just as in the proof of (iv) \Rightarrow (vi) we get that if $B \subseteq \partial_{e} K$ is relatively closed, then B is of the form $B=F \cap \partial_{e} K=\partial_{e} F$ where F is a parallel face. Thus σ is Hausdorff and, by Proposition 18, $\partial_{e} K$ is closed.

Let $x \in K$ and let $\mu, \nu \in Q_{X}$. Since we can $v i e w ~ \mu$ and v as positive regular Borel measures, if $\mu(X)=\nu(X)$ for each compact set $X \subseteq \partial_{e} K$, then we have $\mu=\nu$. Hence x has a unique maximal representing measure.

Suppose $X \subseteq \partial_{e} K$ is compact. Then by (v), $F=\overline{c o}(X)$ is a parallel face. Since \hat{X}_{F} is affine, the set of functions $\left\{a_{\alpha}\right\}=\left\{a \in A(K): a>X_{F}\right\}$ is directed downwards and $\left\{a_{\alpha}\right\}$ converges pointwise to \hat{X}_{F}. Hence we have

$$
\begin{aligned}
\mu(X) & =\mu(F)=\mu\left(X_{F}\right)=\mu\left(\hat{X}_{F}\right)=\lim _{\alpha} \mu\left(a_{\alpha}\right)=\lim _{\alpha} \nu\left(a_{\alpha}\right) \\
& =\nu\left(\hat{X}_{F}\right)=\nu\left(X_{F}\right)=\nu(F)=\nu(X) . \\
(i v) & \Rightarrow(v i i) . \text { Let } f \in A(K) \text { and define } B=\{x \in K: f(x) \leq 0\} .
\end{aligned}
$$ $B \cap \partial_{e} K$ is relatively closed and $F=\overline{c o}\left(B \cap \partial_{e} K\right)$ is a split face by (iv) such that $F \cap \partial_{e} K=\partial_{e} F=B \cap \partial_{e} K$.

(vii) \Rightarrow (vi). Let $x, y \in \partial_{e} K$ and $x \neq y$. Then we can find a $f \in A(K)$ such that $f(x)<0<f(y)$. Define sets

$$
B=\{z \in K: f(x) \leq 0\}
$$

and

$$
C=\{z \in K: f(z) \geq 0\}
$$

Let F_{x} and F_{y} be split faces such that $F_{x} \cap \partial_{e} K=B \cap \partial_{e} K$ and $F_{y} \cap \partial_{e} K=C \cap \partial_{e} K$. Now we have that $K=B \cup C$ such that $\partial_{e} K=\partial_{e} K \cap\left(F_{x} \cup F_{y}\right)=\partial_{e} F_{x} \cup \partial_{e} F_{y}$. This shows that the facial topology is Hausdorff, and the proof is complete.

Remark 21: The equivalence of (i) and (vi) was proved by E. Alfsen and T.B. Andersen in [3]. In [3] (vi) \Rightarrow (i) was proved by showing that (vi) implies that every $f \in C\left(\partial_{e} K\right)$ has a continuous affine extention to K.

In [15] M. Rogalski proved the equivalence of (i) and (iii) for a large class of compact convex sets.

Proposition 22: Let F be a closed face in a compact convex set K. The following statements are equivalent :
(i) $\quad \mathrm{F}$ is a split face.
(1i) If G is any face in K, then $c o(F \cup G)$ is a face in K. (iii) For all $z \in F^{\prime}, \quad \operatorname{co}(F \cup f a c e(z))$ is a face in K.

Proof:

(i) \Rightarrow (ii). Let G be a face in K and let $u, v \in K$ and $\alpha \in<0,1>$ be such that

$$
z=\alpha u+(1-\alpha) v \in \operatorname{co}(F \cup G) .
$$

If $z \in F \cup G$, then $u, v \in F U G$, so we will suppose that $z \in c o(F \cup G) \backslash(F \cup G)$. Then z has a decomposition

$$
z=\lambda x+(1-\lambda) y
$$

where $x \in F, y \in G$ and $\lambda \in<0,1>$. By (4.1),

$$
y=\gamma y_{1}+(1-\gamma) y_{2}
$$

where $\quad y_{1} \in F, y_{2} \in F^{\prime}$ and $\gamma \in[0,1>$, and hence

$$
z=\lambda x+(1-\lambda) \gamma y_{1}+(1-\lambda)(1-\gamma) y_{2}
$$

where

$$
(\lambda+(1-\lambda) \gamma)^{-1}\left(\lambda x+(1-\lambda) \gamma y_{1}\right) \in F .
$$

By (4.1)

$$
\begin{aligned}
& u=\beta u_{1}+(1-\beta) u_{2}, \\
& v=\delta v_{1}+(1-\delta) v_{2}
\end{aligned}
$$

where $\quad u_{1}, v_{1} \in F, u_{2}, v_{2} \in F^{\prime}$ and $\beta, \delta \in[0,1]$.
Hence we have that

$$
\begin{aligned}
& \quad z=\alpha \beta u_{1}+(1-\alpha) \delta v_{1}+\alpha(1-\beta) u_{2}+(1-\alpha)(1-\delta) v_{2} \\
& \text { where } \quad(\alpha \beta+(1-\alpha) \delta)^{-1}\left(\alpha \beta u_{1}+(1-\alpha) \delta v_{1}\right) \in F \\
& \text { and }(1-\alpha \beta-(1-\alpha) \delta)^{-1}\left(\alpha(1-\beta) u_{2}+(1-\alpha)(1-\delta) v_{2}\right) \in F^{\prime} .
\end{aligned}
$$

If $\beta=\delta=0$, then $u, v \in F^{\prime}$, and hence $z \in F^{\prime}$. Since $\lambda \neq 0$, this is impossible, so not both β and δ are zero. By the uniqueness of the decomposition of Z after F and F^{\prime}, we find that

$$
y_{2}=(1-\alpha \beta-(1-\alpha) \delta)^{-1}\left(\alpha(1-\beta) u_{2}+(1-\alpha)(1-\delta) v_{2}\right),
$$

and since $y_{2} \in F^{\prime} \cap G$ we have that $u_{2}, v_{2} \in G$. Thus we have that $u, v \in \operatorname{co}(F \cup G)$, and hence $\operatorname{co}(F \cup G)$ is a face.
(ii) \Rightarrow (iii) is trivial.
(iii) \Rightarrow (i). Without loss of generality, we can suppose that for some $f_{0} \in E^{*}, f_{0} \neq 0$, we have that $K \subseteq f_{0}^{-1}(1)$. First we want to show that if $z \in F^{\prime}$, then

$$
F^{\prime} \cap \operatorname{co}(F \cup \text { face }(z))=\text { face }(z) .
$$

Suppose $u \in F^{\prime} \cap \operatorname{co}(F \cup f a c e(z))$. Then

$$
u=\alpha u_{1}+(1-\alpha) u_{2}
$$

where $u_{1} \in F, u_{2} \in$ face (z) and $\alpha \in[0,1]$. Since $u \in F^{\prime}$, we have that $u=u_{2} \in f a c e(z)$ and hence $F^{\prime} \cap \operatorname{co}(F U f a c e(z)) \subseteq$ face (z). The other inclusion is trivial.

Next we want to show that F^{\prime} is a face. We only need to show that F^{\prime} is convex. Suppose $z_{1}, z_{2} \in F^{\prime}$ and $\lambda \in<0,1>$ and let

$$
x=\lambda z_{1}+(1-\lambda) z_{2} .
$$

If $x \notin F^{\prime}$, then $x \in K \backslash\left(F \cup F^{\prime}\right)$ and by (4.1)

$$
x=\delta y+(1-\delta) z
$$

where $y \in F, z \in F^{\prime}$ and $\delta \in<0,1>$. Since $c o(F U f a c e(z))$ is a face and $x \in \operatorname{co}(F \cup f a c e(z))$, we have that $z_{1}, z_{2} \in F^{\prime} \cap \operatorname{co}(F \cup f a c e(z))=$ face (z).

Hence

$$
x=\lambda z_{1}+(1-\lambda) z_{2} \in \text { face }(z) \subseteq F^{\prime}
$$

This contradiction shows that F^{\prime} is a face.
Let $x \in K \backslash\left(F \cup F^{\prime}\right)$ and suppose for $i=1,2$ that

$$
x=\lambda_{i} y_{i}+\left(1-\lambda_{i}\right) u_{i}
$$

where $y_{i} \in F, u_{i} \in F^{\prime}$ and $\lambda_{i} \in<0, l>$.

Since $\operatorname{co}\left(F\right.$ Uface $\left.\left(u_{1}\right)\right)$ is a face, we have that $y_{2}, u_{2} \in \operatorname{co}\left(F\right.$ Uface $\left.\left(u_{1}\right)\right)$, and hence $u_{2} \in \operatorname{face}\left(u_{1}\right)$. Thus we have (see e.g. [I])

$$
u_{1}=\beta u_{2}+(1-\beta) z^{\prime}
$$

where $z^{\prime} \in K$ and $\left.\beta \in<0, I\right]$, and hence $x=\lambda_{1} y_{1}+\left(1-\lambda_{1}\right) \beta u_{2}+\left(1-\lambda_{1}\right)(1-\beta) z^{\prime}$.

Let $f \in E^{*}$ such that $f\left(\mathbf{u}_{2}\right)=0$. Then we have

$$
f\left(\lambda_{2} y_{2}\right)=f\left(\lambda_{1} y_{1}+\left(1-\lambda_{1}\right)(1-\beta) z^{\prime}\right)
$$

and since these f's separate points in E, we have

$$
\lambda_{2} y_{2}=\lambda_{1} y_{1}+\left(1-\lambda_{1}\right)(1-\beta) z^{\prime} .
$$

Now $\quad K \subseteq f_{o}^{-1}(1)$ implies that

$$
\lambda_{2}=\lambda_{1}+\left(1-\lambda_{1}\right)(1-\beta)
$$

so

$$
\lambda_{2} \geq \lambda_{1}
$$

By a dual argument, we find that $u_{1} \in f a c e\left(u_{2}\right)$ and $\lambda_{1} \geq \lambda_{2}$. Hence we have $\lambda_{1}=\lambda_{2}$ and $\beta=1$ such that $u_{1}=u_{2}$ and $y_{1}=y_{2}$, and the proof is complete.

Remark 23: (i) \Rightarrow (ii) in Proposition 22 was pointed out to me by T. B. Andersen.

REFERENCES:

[1] E.M. Alfsen, $\frac{\text { On the geometry of Choquet simplexes }}{\text { Math. Scand. } 15 \text { (1964), 97-110. }}$
[2] E. M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik, Springer Verlag, Germany, 1971.
[3] E.M. Alfsen, and T. B. Andersen, Split faces of compact convex sets, Proc. London Math. Soc. 21 (1970) 415-442.
[4] H. Bauer,
Kennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunktmenge, Archiv der Mathematik, 14 (1963), 415-421.
[5] E. Bishop and K. de Leeuw, The representation of linear functionals by measures on sets of extreme points, Ann. Inst. Fourier, 9(1959), 305-331.
[6] G. Choquet and P. A. Meyer, Existence et unicité des représentationes intégrales dans les convexes compacts quelconques, Ann. Inst. Fourier, 13(1963), 139-754.
[7] D.A. Edwards,
Minimum-stable wedges of semicontinuous functions, Math. Scand. 19(1966),15-26.
[8] E. Effros and A. Gleit, Structure in simplexes III, Trans. Amer. Math. Soc. 142 (1969), 355-380.
[9] T. W. Gamelin, Uniform algebras, Prentice-Hall, 1969.
[10] A. Goullet de Rugy, Géometrie des simplexes, Centre de Documentation Universitaire, Paris 1968.

[II]	B. Hirsberg,	A measure theoretic characterization of
		parallel- and split faces and their
		connection with function spaces and algebras
		Aarhus Universitet, Various Publication Series, No. 16, 1970.
[12]	A. Lazar,	Spaces of affine continuous functions on
		$\frac{\text { simplexes, }}{503-525 .} \text { Trans. Amer. Math. Soc. } 134(1968)$
[13]	R. R. Phelps,	Lectures on Choquet's theorem,
		van Nostrand 1966.
[14]	M. Rogalski,	Topologies faciales dans les convexes
		compacts, calcul fonctionnel et décompo-
		sition spectrale dans le centre d'un
		expace $A(X)$, Séminaire Choquet, 1969-70.
[15]	M. Rogalski,	Caracterisationdes simplexes par des
		proprietes portant sur les faces fermees
		et sur les ensembles compacts de points
		extremaux, To appear in Math. Scand.
[16]	A. Stray,	Approximation and interpolation, University
		of Oslo, Preprint No. 15, 1970.
[17]	J. Vesterstr $\phi \mathrm{m}$,	On open maps, compact convex sets, and
		operator algebras, Aarhus Universitet,
		Preprint No. 28, 1970-71.
[18]	M. C. Léger,	Une démonstration du théorème de A.J.Lazar
		sur les simplexes compacts,
		C.R.Acad.Sci. Paris,265 (1967), 830-831.

