UNIFORM APPROXIMATION ON MANIFOLDS

Ву

John Erik Fornæss

1. Introduction.

Suppose that M is a real C¹-manifold of dimension m , and that Φ is a family of complex-valued C¹-functions on M . Then the exceptional set, $E(\Phi)$, is the set $\{x \in M; df_1 \land \ldots \land df_m(x) = 0, \forall (f_1, \ldots, f_m) \in \Phi^m\}$. We fix a compact subset X of M , and we shall often write E instead of $E(\Phi) \cap X$.

Let $A \subset C(X)$ denote the closed Banach-algebra generated by the restriction to X of the elements of Φ . Assume that A separates points in X and that $M_A = X$, where M_A is the maximal ideal space of A. It is an open problem, see [1] page 348-349, if A includes all continuous functions on X which vanish identically on E. Michael Freeman proved this in [2] under the additional hypothesis that both M and the functions in Φ are real-analytic. In this work we will solve the problem if M and the functions in Φ are of class C^F , for some sufficiently large real F.

Our result will be proved via the following corollary of theorem 3.1: If Σ is a C^r-manifold in Cⁿ without complex

tangents (see [4]for the precise meaning of the last term) and $K=\sigma\ (f_1,\ldots,f_n) \ \text{is the spectrum of some members of } A\ ,\ \text{then}$ all continuous functions on K which vanish on $K-\Sigma$ operate on K .

The proof will follow by adaptation of a technique developed in the work of Hörmander and Wermer [4].

2. Fundamental Constructions.

Assume that $r\geq 1$ and that Σ is a closed, real \mathbb{C}^r -submanifold, without complex tangents, of an open set Ω in \mathbb{C}^n . Let \mathbb{N}_1 and \mathbb{N}_2 be some open sets in \mathbb{C}^n , $\overline{\mathbb{N}}_2\subset\mathbb{N}_1$.

The Euclidean distance between the point $\,x\,$ and the set $\,A\,$ will be denoted $\,d(x,A)\,$.

LEMMA 2.1. Suppose that $u\in C^{\mathbf{r}}(\Omega\cup N_1)$ is holomorphic in N_1 . Then there exists a $v\in C^{\mathbf{r}}(\Omega\cup N_2)$ with v=u on $\Sigma\cup N_2$ and such that:

For every compact $F \subset \Omega \cup \mathbb{N}_2$ and every $\eta > 0$ we can find a $\delta > 0$ with the property:

If $z \in F$ and $d(z,\Sigma) < \delta$, then $|\overline{\delta}v(z)| \le \eta \cdot d(z,\Sigma)^{r-1}$.

Since the proof of this lemma is similar to that of lemma 4.3. in [4], we omit it here.

The next result is similar to theorem 3.1. in [4]. However, since the proof is a bit different, we will carry it out in some detail.

 Σ , Ω , N_1 and N_2 will be as above with r=1. Suppose A is a commutative Banach-algebra with unit, and let f_1,\ldots,f_n be elements of A . Define K to be the joint spectrum $\sigma(f_1,\ldots,f_n)$.

 $\underline{\text{LEMMA 2.2.}} \quad \text{Assume} \quad K-N_2 \subset \Sigma \; . \quad \text{Then there exists an} \quad \varepsilon_0 > 0, \\ \text{a } \quad t \in <0,1> \; , \; \text{elements} \quad f_{n+1},\ldots,f_m \in A \; , \; \text{a compact set} \quad F \subset \Sigma \; , \\ \text{and for every} \quad \varepsilon \in <0,\varepsilon_0> \; \text{a domain of holomorphy} \quad \omega_\varepsilon \subset \mathbb{C}^m \quad \text{such} \\ \text{that}$

(i)
$$\sigma(f_1,...,f_m) \subset \omega_{\varepsilon} \subset \mathbb{C}^n \times \{|(z_{n+1},...,z_m)| < 1/t\}$$
,

(ii) if $z \in \mathbb{C}^m$ and $d((z_1,\ldots,z_n,\ \varepsilon z_{n+1},\ldots,\varepsilon z_m),\ \sigma(f_1,\ldots,f_n,\ \varepsilon f_{n+1},\ldots,\varepsilon f_m)) < t\varepsilon\ ,$ then $z \in \omega_\varepsilon$,

(iii) if
$$z \in \omega_{\varepsilon} - (N_1 \times \mathbb{C}^{m-n})$$
, then $d((z_1, \dots, z_n), F) < \frac{\varepsilon}{t}$.

<u>PROOF.</u> As in lemma 2.1 in [4] we can find a function $\rho \in C^2(\Omega) \quad \text{which is strictly plurisubharmonic in an open set } \mathbb{W} \ ,$ with $\Sigma \subset \mathbb{W} \subset \Omega$, and which satisfies the inequality

$$(2.1.) \qquad \frac{1}{2}d(z,\Sigma)^2 \leq \rho(z) \leq 2d(z,\Sigma)^2 , \quad z \in \mathbb{W} .$$

Choose an open set N_3 , $\overline{N}_2 \subseteq N_3 \subseteq \overline{N}_3 \subseteq N_1$. Define $K_1 = K \cap (\overline{N}_3 - N_2)$. K_1 will evidently be a compact subset of $N_1 \cap W$. We can now select $\psi \in C_0^\infty(\mathbb{C}^n)$ with $0 \le \psi \le 1$, supp $\psi \subseteq N_1 \cap W$ and so that $\psi \equiv 1$ in an open neighbourhood of K_1 . By taking a sufficiently small $\delta > 0$, we can assume that $\rho - \delta^2 \psi$ is strictly plurisubharmonic in W.

Let $\,V_{_{\scriptstyle O}}\,\,$ be an open set which contains $\,K_{_{\scriptstyle 1}}\,\,$, and where $\,\psi\,\equiv\,1\,$ and $\,\rho\,<\frac{1}{2}\delta^{\,2}\,$. Define

$$(2.2.) V = V_0 \cup (\mathfrak{C}^n - \overline{N}_3) \cup N_1$$

Since $K \subseteq V$, we can find a finite number of elements $f_{m+1}, \dots, f_m \in A \text{ , and a relatively compact domain of holomorphy } U$ in C^m , such that

(2.3.)
$$\sigma(f_1,...,f_m) \subset U \subset V \times \mathbb{C}^{m-n}$$
.

Furthermore, we define $K_2=K-N_3\subset\Sigma\subset\mathbb{W}$ and find a $\phi\in C_0^\infty(\mathbb{W})$ with $0\leq\phi\leq 1$ and $\phi\equiv 1$ in an open neighbourhood of K_2 . Now we choose $\varepsilon_1>0$ with the property that $p_\varepsilon=\rho-\varepsilon^2\phi-\delta^2\psi \quad \text{is strictly plurisubharmonic in } \mathbb{W}\ \mathbb{V}\ \varepsilon\in <0, \varepsilon_1\].$

There exists a compact set $\ \mathbb{F} \subset \Sigma$ and an $\ \varepsilon_2 \in <0, \varepsilon_1]$ such that we have, for all $\ \varepsilon \in <0, \varepsilon_2>$:

- (i) If $z \in \mathbb{C}^n$ and $d(z, K N_2) < \varepsilon/2$, then (2.4.) $z \in \mathbb{W}$ and $p_{\varepsilon}(z) < 0$.
 - (ii) When $z \in W N_1$ and $p_{\varepsilon}(z) < 0$, then $d(z,F) < 2\varepsilon$.

In fact, (i) follows easily from (2.1.) and the choices of ψ and ϕ by remarking that $K-N_2=K_1\cup K_2$.

As for (ii) we can find an ϵ_2 so small that $\{z\in \mathbb{C}^n; d(z,\sup \phi)\leq 2\epsilon_2\}\subset \mathbb{W}$. Define

In the rest of the proof we will use the convention that $z\in\mathbb{C}^m$ is written (z_1,z_2) where $z_1\in\mathbb{C}^n$ and $z_2\in\mathbb{C}^{m-n}$.

We are now able to construct the required domains of holomorphy. Define

$$0_{1} = \{(z_{1}, z_{2}) \in \mathbb{C}^{m}; z_{1} \in \mathbb{N}_{3}\}
0_{2} = \{(z_{1}, z_{2}) \in \mathbb{C}^{m}; z_{1} \in \mathbb{C}^{n} - \overline{\mathbb{N}}_{2}\}
0_{3} = \{(z_{1}, z_{2}) \in \mathbb{C}^{m}; z_{1} \in \mathbb{W} \text{ and } p_{\varepsilon}(z_{1}) < 0\}$$

Then $0_1 \cup 0_2 = \mathbb{C}^m$. Suppose $z \in 0_1 \cap 0_2 \cap U$. From (2.3.) we get that $z_1 \in V$, and since $z_1 \in \mathbb{N}_3 - \overline{\mathbb{N}}_2 \subset \overline{\mathbb{N}}_3 - \mathbb{N}_2$, (2.2.) implies that $z_1 \in V_0$. It follows from the definition of V_0 that

 $\psi(z_1) = 1 \quad \text{and} \quad \rho(z_1) < \tfrac{1}{2} \delta^2 \quad \text{Therefore} \quad p_\varepsilon(z_1) < 0 \quad \text{, which proves}$ that $0_1 \cap 0_2 \cap U \subset 0_3 \quad \text{As a trivial consequence there exist unique}$ domains of holomorphy $\omega_\varepsilon \quad \forall \varepsilon \in <0, \varepsilon_2> \quad \text{with}$

Since $\sigma(f_1,\ldots,f_m)\subset U$ by (2.3.), we can find $t_1>0$ so that $\{z\in C^m; d(z,\sigma(f_1,\ldots,f_m))< t_1\}\subset U$. In addition, $K\cap \bar{N}_2\subset N_3$. This implies the existence of $\varepsilon_0\in <0$, min $\{t_1,\varepsilon_2\}>$ with the property that

$$\{z \in \mathbb{C}^n; d(z, \mathbb{K} \cap \overline{\mathbb{N}}_2) < \frac{1}{2}\epsilon_0\} \subset \mathbb{N}_3$$
.

Assume $\varepsilon \in <0, \varepsilon_{0}>$. Then:

 $(i) \quad \text{If} \quad z \in \mathbb{C}^m \quad \text{and} \quad \eta \in \sigma(f_1, \dots, f_m) \quad \text{are such that}$ $(2.6.) \quad \left| |z_1 - \eta_1| \right| < \frac{1}{2}\varepsilon \quad \text{and} \quad \left| |z_2 - \eta_2| \right| < \frac{1}{2}t_1 \quad , \quad \text{then} \quad z \in \omega_\varepsilon \, .$ $(ii) \quad \text{If} \quad z \in \omega_\varepsilon - (\mathbb{N}_1 \times \mathbb{C}^{m-n}) \quad , \quad \text{then} \quad d(z_1, \mathbb{F}) < 2\varepsilon \ .$

We prove (i) first. Since $d(z,\sigma(f_1,\ldots,f_m)) \leq \frac{1}{2}\varepsilon + \frac{1}{2}t_1 < t_1$, it is obvious that $z \in U$. Suppose that $\eta_1 \in \mathbb{N}_2$. By the definition of ε_0 , $z_1 \in \mathbb{N}_3$. It follows from (2.5.) that $z \in \omega_\varepsilon$. Next, consider the situation when $\eta_1 \in K - \mathbb{N}_2$. Then $z_1 \in \mathbb{N}_3$ or $z_1 \in \mathbb{C}^n - \overline{\mathbb{N}}_2$. If $z_1 \in \mathbb{N}_3$, then $z \in \omega_\varepsilon$ as before. But if $z_1 \in \mathbb{C}^n - \overline{\mathbb{N}}_2$, then $p_\varepsilon(z_1) < 0$ by (2.4.), and so (2.5.) shows that $z \in \omega_\varepsilon$.

At last we remark that (ii) follows from (2.4.).

The lemma is now an immediate consequence.

Q.E.D.

By applying a technique introduced by M. Freeman in [2], we shall now determine a class of mappings of a manifold into \mathbb{C}^n .

More precisely, let M be a k-dimensional real C*-manifold, $r\geq 1$. Suppose X is a compact subset of M . Assume further that $\Phi\subset C^r_{\mathbb{C}}(\mathbb{M})$ and separates points in X . Let E denote the exceptional set $E(\Phi)\cap X$.

- LEMMA 2.3. For every compact set $X_0 \subset X$ E we can find an open neighbourhood V of X_0 , a finite number of functions, $f_1,\ldots,f_n\in \Phi$, and an open $\Omega\subset \mathfrak{C}^n$ such that
- (i) $(f_1, \dots, f_n)(V)$ is a closed C^r -submanifold of Ω of dimension k and without complex tangents, and

(ii)
$$(f_1, \ldots, f_n)(X - V) \subset \mathbb{C}^n - \Omega$$
.

<u>PROOF.</u> Choose a finite number of functions $f_1,\ldots,f_n\in\Phi$ and an open neighbourhood V of X_o with $E(\{f_1,\ldots,f_n\})\cap V=\emptyset$. It follows from the inverse mapping theorem that the multiple function $(f_1,\ldots,f_n)\colon \mathbb{M}\to\mathbb{C}^n$ is locally 1-1 on V. Obviously, the set $\{(x,y)\in (X_o\times X_o)-\Delta;f_i(x)=f_i(y)\ \forall i=1,\ldots,n\}$ is a compact subset of $X_o\times X_o$, where Δ denotes the diagonal in $X_o\times X_o$. Consequently, by adding some more functions if necessary, we may assume that $\{f_1,\ldots,f_n\}$ separate points in X_o . Shrinking V if necessary, we then get that (f_1,\ldots,f_n) is 1-1 on \overline{V} and that \overline{V} is compact.

Since Φ separates points in X , we can also suppose, after further modifications, that $(f_1,\ldots,f_n)(X-V)$ and $(f_1,\ldots,f_n)(V)$ are disjoint.

The choice $\Omega = \mathbb{C}^n - (f_1, \dots, f_n)(\overline{V} - V)$ finishes the proof.

3. Approximation Theorems.

Let X be a compact Hausdorff space, and let C(X) denote the Banach space under the supremum norm of continuous complex-valued functions. The notation $A \bowtie C(X)$ means that A is a closed linear subspace which is closed under pointwise multiplication, separates points and contains the constant functions.

If K is a compact subset of \mathfrak{C}^n , then A(K) is defined to be the class of continuous, complex-valued functions on K which can be uniformly approximated on K by functions holomorphic in a neighbourhood of K.

THEOREM 3.1. Suppose A \ll C(X), where X is compact Hausdorff space. Let Σ be a closed k-dimensional submanifold of an open set $\Omega \subset \mathbb{C}^n$, without complex tangents, and of class \mathbb{C}^r , $r = \frac{k}{2} + 1$. Choose $f_1, \ldots, f_n \in A$ and define $K = \sigma(f_1, \ldots, f_n)$, $K_0 = \overline{K - \Sigma}$. If $u \in C(K)$ with $u \mid_{K_0} \in A(K_0)$, then $u \circ (f_1, \ldots, f_n) \in A$.

REMARK. We can replace the condition $r=\frac{k}{2}+1$ with $r=\max\{\frac{k}{2},1\}$, but the proof will then be more involved. More specific, we need a stronger version of lemma 2.2.

PROOF OF THEOREM 3.1. Evidently, we may assume that $u \in C^r(\Omega \cup N_1)$ for some open neighbourhood N_1 of K_0 , and also that u is holomorphic in N_1 . We will further suppose that u has been modified as described in lemma 2.1. If N_2 is chosen as an open set with $K_0 \subseteq N_2 \subseteq \subseteq N_1$, we can apply lemma 2.2.

Define $v:(\Omega \cup N_1) \times \mathbb{C}^{m-n} \to \mathbb{C}:(z_1,\ldots,z_n) \to u(z_1,\ldots,z_n)$. Condition (iii) in lemma 2.2. ensures that v is defined in w_ε for all small enough $\varepsilon>0$.

Since Σ is k-dimensional, and because of (i) and (iii) in lemma 2.2., the volume of ω_ε - $(N_1 \times \mathbb{C}^{m-n})$ is $O(\varepsilon^{2n-k})$ when $\varepsilon \to 0$. Combining lemma 2.1. and once again (iii) in lemma 2.2., we get

$$\|\bar{\partial}v\|_{L^2(\omega_{\epsilon})}^2 = o(\epsilon^{2n-k} \cdot \epsilon^{2r-2})$$

and consequently

$$\|\overline{\delta}v\|_{L^2(\omega_{\varepsilon})} = o(\varepsilon^n) \text{ when } \varepsilon \to 0$$
.

According to theorem 2.2.3. in [3] there exist functions $h_\varepsilon\in L^2(\omega_\varepsilon) \ \ \text{with} \ \ \overline{\delta}h_\varepsilon=\overline{\delta}v \ \ \text{in} \ \ \omega_\varepsilon \ , \ \text{and}$

$$\|\mathbf{h}_{\varepsilon}\|_{\mathbf{L}^{2}(\omega_{\varepsilon})} = o(\varepsilon^{n}) \text{ when } \varepsilon \to 0.$$

Now we need lemma 4.4. in [4]:

Let $B_{\varepsilon}=\{z\in \mathbb{C}^m;\ |z|<\varepsilon\};\ \text{let}\ u\in L^2(B_{\varepsilon})\ \text{and}\ \overline{\delta}u=f$ in the sense of distribution theory. If f is continuous, then u is continuous, and we have

$$|u(0)| \le C(\varepsilon^{-m}||u||_{L^{2}(B_{\varepsilon})} + \varepsilon \sup_{B_{\varepsilon}} |f|)$$

Here C is a constant which only depends on m , and not on ε .

Define $\omega_{\varepsilon}^{1} = \{(z_{1}, \dots, z_{n}, \varepsilon z_{n+1}, \dots, \varepsilon z_{m}) ; (z_{1}, \dots, z_{m}) \in \omega_{\varepsilon}\},$ $v_{\varepsilon}^{1} : \omega_{\varepsilon}^{1} \to \mathbb{C} : (z_{1}, \dots, z_{m}) \to u(z_{1}, \dots, z_{n}) \text{ and } h_{\varepsilon}^{1} : \omega_{\varepsilon}^{1} \to \mathbb{C} : (z_{1}, \dots, z_{m}) \to h_{\varepsilon}(z_{1}, \dots, z_{n}, \frac{1}{\varepsilon}z_{n+1}, \dots, \frac{1}{\varepsilon}z_{m}).$

Then $\overline{\delta}h_{\varepsilon}^1 = v_{\varepsilon}^1$ and $\|h_{\varepsilon}^1\|_{L^2(\omega_{\varepsilon})} = o(\varepsilon^m)$ when $\varepsilon \to 0$. By the above lemma and (ii) in lemma 2.2., we get uniformly for all $x \in X$

$$|h_{\varepsilon}^{1}(f_{1}(x),...,f_{n}(x), \varepsilon f_{n+1}(x),...,\varepsilon f_{m}(x))| \leq C((t\varepsilon)^{-m} \cdot o(\varepsilon^{m}) + \varepsilon \cdot o(\varepsilon^{r-1})).$$

Consequently

$$\|h_{\varepsilon}\|_{L^{\infty}(\sigma(f_{1},...,f_{m}))} \rightarrow 0 \text{ when } \varepsilon \rightarrow 0.$$

Therefore, the functions $v-h_{\varepsilon}$ are holomorphic in ω_{ε} and converge uniformly on $\sigma(f_1,\ldots,f_m)$ to v. It is well-known that holomorphic functions operate on spectra. This concludes the proof.

Q.E.D.

We are now able to prove a generalization of a result by Freeman [2].

THEOREM 3.2. Let M be a k-dimensional real manifold of class $C^{\mathbf{r}}$, $\mathbf{r}=\frac{k}{2}+1$. Suppose that $\mathfrak{T}\subset C^{\mathbf{r}}(\mathbb{M})$ separates points on a compact subset X of M . Define $E=E(\Phi)\cap X$ and A = the supnormalgebra in C(X) generated by Φ . If $\mathbb{M}_A=X$, then

$$A \supset \{g \in C(X); g \mid_{\mathbf{E}} \equiv 0\}$$
.

<u>PROOF</u>. Choose any compact subset $X_0 \subset X - E$ and use lemma 2.3. It follows from theorem 3.1. that the family

$$\{g \in A \cap C_{\mathbb{IR}}(X); g|_{E} \equiv 0 \text{ and } 0 \not\in g(X_{O})\}$$

is nonempty and separates points in \mathbf{X}_{O} . The theorem now is a consequence of Stone-Weierstrass.

REFERENCES

- 1. F.T. Birtel, Function algebras, Tulane University (1966)
- 2. M. Freeman, Uniform approximation on a real-analytic manifold, Trans. Amer. Math. Soc. 143, 545-553 (1969).
- 3. L. Hörmander, L^2 estimates and existence theorems for the \bar{a} operator, Acta Math. 113 (1965), 89-152.
- 4. L. Hörmander and J. Wermer, Uniform approximation on compact sets in \mathbb{C}^n , Math. Scand. 23 (1968), 5-21.