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1. Introduction. 

Suppose that M is a real c1-manifold of dimension m , and 

that ~ is a family of complex-valued c1-functions on M . Then 

the exceptional set, E(~) , is the set [x EM; df1A .• ~Adf (x) = :;n 

0, Y (f1 , .•• ,fm) E ~m} • We fix a compact subset X of M , and 

we shall often write E instead of E(§) n X . 

Let A c C(X) denote the closed Banach-algebra generated by 

the restriction to X of the elements of ~ • Assume that A 

separates points in X and that MA = X , where MA is the maxi

mal ideal space of A . It is an open problem, see [1] page 348-

349, if A includes all continuous functions on X which vanish 

identically on E • Michael Freeman proved this ill [2] under the 

additional hypothesis that both M and the functions in ~ are 

real-analytic. In this work we will solve the problem if M and 

the functions in ~ are of class Cr , for some sufficiently 

large real r . 

Our result will be proved via the following corollary of 

theorem 3.1: If ~ is a Cr-manifold in ~n without complex 
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tangents (see [4]for the precise meaning of the last term) and 

K = cr (f15 .•. ~fn) is the spectrum of some members of A 5 then 

all continuous functions on K which vanish on K - ~ operate 

on K . 

The proof will follow by adaptation of a technique developed 

in the work of Hormander and Wermer [4]. 

2. Fundamental Constructions. 

Assume that r > 1 and that ~ is a closed, real r C -sub-

manifold 5 without complex tangents 5 of an open set 0 in ~n • 

and N2 be some open sets in 

The Euclidean distance between the point x and the set A 

will be denoted d(x,A) • 

LEMMA 2. 1 . Suppose that u E Cr ( 0 UN 1 ) is holomorphic in 

N1 . Then there exists a v E Cr(O UN2 ) with v = u on ~ U N2 

and such that: 

For every compact F c 0 U N2 and every ~ > 0 we can find 

a o > 0 with the property: 

If z E F and d(z,~) < o5 then f~v(z)l2 ~·d(z,~)r- 1 • 

Since the proof of this lemma is similar to that of lemma 4.3. 

in [4], we omit it here. 

The next result is similar to theorem 3.1. in [4]. However, 

since the proof is a bit different, we will carry it out in some 

detail. 

~ 5 0~ N1 and N2 will be as above with r = 1 • Suppose A 

is a commutative Banach-algebra with unit, and let f 1 , ••• ,fn be 

elements of A. Define K to be the jo~t spectrum cr(f1 , ... ,fn). 



LEMMA 2. 2. Assume K - N 2 c L: • Then there exists an 8 > 0, 
0 

a t E <0,1> ~ elements fn+ 1 ~ •• " 9 fm E A~ a compact set F c ~ ~ 

and for every e E <O,e 0 > a domain of holomorphy w8 c ®m such 

that 

( i) a ( f 1 , ••• ~ fm) c w 8 c o;n x { f ( zn+ 1 , ••• , zm) I < 1 / t} , 

(ii) if z E ®m and 

d((z 1 , ... ,zn, ezn+ 1 , ••• ,ezm), a(f1 , ... ,fn, efn+1 , ... ,efm)) < te, 

then z E w8 , 

(iii) if ( m-n) z E w8 - N1 x a; , then 

PROOF. As in lemma 2.1 in [4] we can find a function 

p E c2 (o) which is strictly plurisubharmonic in an open set W , 

with ~ c W c 0 , and which satisfies the inequality 

( 2. 1.) 

- -Choose an open set N3 , N2 c N3 c N3 c N1 • Define 

K1 = K n (N3 - N2 ) • K1 will evidently be a compact subset of 

We can now select with 

and so that ~ - in an open neighbourhood of ~ : 

By taking a sufficiently small 0 > 0 2 we can assume that p- 6 ~ 

is strictly plurisubharmonic in W 

Let V0 be an open set which contains K1 , and where ~ _ 1 

and p < ~o 2 . Define 

(2.2.) n -V = V0 U (a; - N3) U N1 

Since K c V , we can find a finite number of elements 

fn+ 1 , ••• ,fm E A and a relatively compact domain of holomorphy U 

in em such that 

(2.3.) ( ) V ~m-n a f 1 , ••• , fm c U c V " ~~.~ • 
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Furthermore, we de fine K2 = K - N 3 c 2: c W and find a 

~ E C~(W) with 0 < ~ ~ 1 and ~ ~ 1 in an open neighbourhood 

of K2 • Now we choose 81 > 0 with the property that 
2 2 p 8 = p- e: cp- o $ is strictly plurisubharmonic in W V 8 E <0, 8 1 ] • 

There exists a compact set F c 2: and an 8 2 E <o,e: 1J such 

that we have, for all e E <0,8 2> : 

(i) If z E a:n and d(z,K -N2 ) < e/2 , then 

(2.4.) z E W and p 8 (z) < 0 • 

( ii) When z E W - N 1 and p 8 ( z) < 0 9 then d ( z, F) < 2 e • 

In fact, (i) follows easily from (2.1.) and the choices of * 
and cp by remarking that K- N2 = K1 U K2 . 

As for (ii) we can find an e2 so small that 

[z E a:ln;d(z,supp cp) .::; 2e: 2 } c W • Defirl.e 

F = [z E ern; d ( z, supp cp ) ~ 2 e 2 } n 2: • Then F is a compact subset 

of 2: • Suppose that z E W- N1 and that pe(z) < 0 • It follows 

that w(z) p(z) 2 2 (2.1.) = 0 and so < e ~(z) < e By there 

exists an ~ E r so that d(z,~) < 2e • Consequently ~ E F and 

d(z,F) < 2e • 

In the rest of the proof we will use the convention that 

z E (!)m is written (z 1 ,z2 ) where z 1 E a:n and z2 E G.:!m-n. 

We are now able to construct the required domains of holomor-

phy. Define 

01 ((z1 ,z2) E m c. N3} = ([5 ; z1 '-

02 [(z1 ,z2) E m E (Cn- N2} = <D ; z 1 

03 = [(z1,z2) E ([Jm ; z1 E Wand p 8 (z1 ) < 0} 

Then 01 
m Suppose E o1 n o2 n u From (2.3.) u 02 = (C . z . we 

-get that z1 E v 9 and since z1 E N3 -N2 c N3 -N2 ' 
(2.2.) im-

plies that z1 E v 
0 

It follows from the definition of vo that 



~(z 1 ) = 1 and p(z 1) < to 2 • Therefore pe(z1 ) < 0 , which proves 

that 0 1 n 02 n U c o3 • As a trivial consequence there exist unique 

domains of holomorphy w e 

(2.5.) 
(i) w8 no1 =uno 1 

( ii) we n o2 = u n o2 n o3 

Since cr(f1 , ••• ,fm) c U by (2.3.), we can find t 1 > 0 so 

that [z E Cm;d(z,cr(f1 , ••• ,fm)) < t 1 } cU. In addition, 

KnN2 cN3 • This implies the existence of e0 E < O,min[t1 ,e2 }> 

with the property that 

Assume e E <O,e > • Then: 
0 

(i) If z E QJm and T] E cr(f1 , ••• ,fm) are such that 

(2.6.) ]z1-1l11 < ~e and I z2 - 1l21 < ~t1 ' 
then z E we • 

(ii) If z E w8 - (N1 X cr;m-n) 
' 

then d(z1 ,F) < 2e . 

it is obvious that z E U . Suppose that T]1 E N2 . By the defi-

nition of e o' z1 E N3 . It follows from (2.5.) that z E we . 
Next, consider the situation when T]1 E K -N2 . Then z1 E N3 or 

z1 E 
n -

c;; - N2 . If z1 E N3 ' 
then z E we as before. But if 

z1 E 
n -

QJ - N2 ,then Pe(z1) < 0 by (2.4.), and so (2.5.) shows that 

z E we • 

At last we remark that (ii) follows from (2.4.). 

The lemma is now an immediate consequence. 

Q.E.D. 

By applying a technique introduced by M. Freeman in [2], we 

shall now determine a class of mappings of a manifold into n 
<D • 



More precisely, let M be a k-dimensional real Or-manifold, 

r > 1 Suppose X is a compact subset of M Assume further 

that ~ c O~(M) and separates points in X . Let E denote the 

exceptional set E(~) n X . 

LEMMA 2.3. For every compact set X c X- E 
0 

we can find an 

open neighbourhood V of X0 , a finite number of functions, 

f 1 , .•• ,fn E ~ , and an open n c illn such that 

(i) (f1 , ••. ,fn)(V) is a closed Or-submanifold of n of 

dimension k and without complex tangents, and 

PROOF. Choose a finite number of functions f 1 , •.• ,fn E ~ 

and an open neighbourhood V of X0 with E( {f 1 , .•• , fn}) n V = .¢ • 

It follows from the inverse mapping theorem that the multiple 

function ( f 1 9 ••• 9 fn): M ... (Vn is locally 1 - 1 on V • Obviously, 

the set {(x,y) E (X0 xX0 )-6;fi(x) = fi(y) Vi= 1, .• qn} is a 

compact subset of X0 x X0 , where 6 denote(s the diagonal in 

X X X 
0 0 

Consequently, by adding some more functions if necessary, 

we may assume that {f1 , •.. ,fn} separate points in X0 • Shrinkmg 

V if necessary, we then get that (f1 , ••• ,fn) is 1 -1 on V 

and that V is compact. 

Since ~ separates points in X , we can also suppose, after 

further modifications, that (f1 , ••• ,fn) (X-V) and (f1 , ... ,fn) (V) 

are disjoint. 

The choice finishes the proof. 

Q.E.D. 
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3. Approximation Theorems. 

Let X be a compact Hausdorff space, and let C(X) denote 

the Banach space under the supremum norm of continuous complex

valued functions. The notation Ae<C(X) means that A is a 

closed linear subspace which is closed under pointwise multipli-

cation, separates points and contains the constant functions. 

If K is a compact subset of ~n , then A(K) is defined to 

be the class of continuous, complex-valued functions on K which 

can be uniformly approximated on K by functions holomorphic in 

a neighbourhood of K • 

THEOREM 3.1. Suppose AocC(X) , where X is compact Hausdactr 

space. Let ~ be a closed k-dimensional submanifold of an open 

set 0 c ~n, without complex tangents, and of class Or, r = ~ +1. 

Choose f 1 , ••• ,fn E A and define K = a(f1 , ••• ,fn) , K0 = K- 2: 

If u E C(K) with u!Ko E A(K0 ) , then u o (f1 , ••• ,fn) E A • 

REMARK. We can replace the condition with r = 
k max [2 , 1} , but the proof will then be more involved. More spe-

cific, we need a stronger version of lemma 2.2. 

PROOF OF THEOREM 3.1. Evidently, we may assume that 

u E Cr(O UN1) for some open neighbourhood N1 of K , and also 
0 

that u is holomorphic in N1 • We will further suppose that u 

has been modified as described in lemma 2.1. If N2 is chosen as 

an open set with K0 c N2 c cN1 , we can apply lemma 2.2. 

:0 f ( ) mm-n _, m ( ) ( ) e ine v: 0 UN 1 X IU \!1 : z 1 , .•• , zn _, u z 1 , ••• , zn . 

Condition (iii) in lemma 2.2. ensures that v is defined in w8 

for all small enough e > 0 . 



Since ~ is k-~dimensional 9 and. because of ( i) and (iii) in 

lemma 2.2., the volume of we- (N1 xQm-n) is O(e 2n--k) when 

e ~ 0. Combining lemma 2.1. and once again (iii) in lemma 2.2. 9 

we get 

II ::;- ll2 ( 2n-k 2r-2) 
uV 2 ( ) = o e • e 

L we 

and consequently 

e _. 0 . 

According to theorem 2.2.3. in [3] there exist functions 
2 - -

he E L (we) with ohe = ov in w 9 and e 

llhciiL2(we) = o(en) when e ~ 0 . 

Now we need lemma 4.4. in [4]: 

-and ou = f in 

the sense of distribution theory. If f is continuous 9 then u 

is continuous, and we have 

Here C ~s a constant which only depends on m , and not on e • 

X E X 

lh 8
1 (f1 (x), ••• ,fn(x), e:fn+1 (x), ••• , efm(x) I < 

C((te:)-m • o(em) + e: • o(er- 1)) • 
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Consequently 

Therefore, the functions v - h 8 are holomorphic in w8 and 

converge uniformly on cr(f1 , ••. ,fm) to v. It is well-known 

that holomorphic functions operate on spectra. This concludes 

the proof. 

Q.E.D. 

We are now able to prove a generalization of a result by 

Freeman [2]. 

THEOREM 3.2. Let M be a k-dimensional real manifold of 

class Cr k 1 
' r = 2+ . Suppose that separates points 

on a compA.ct subset X of M . Define E = E( ~) n X and A = the 

supnormalgebra in C(X) generated by \2 

A~ [g E C(X);giE:: 0} • 

PR00-:1'. Choose any compact subset 

If MA = X , then 

X c X- E 
0 

and use lemma 

2.3. It follows from theorem 3.1. that the family 

[g E An cJR (X); g IE = o and 

is nonempty and separates points in X0 • The theorem now is a 

consequence of Stone-Weierstrass. 

Q.E.D. 



- 10 -

REFERENCES 

1. F.T. Birtel, Function algebras~ Tulane University (1966) 

2. M. Freeman, Uniform approximation on a real-analytic manifold, 
Trans. Amer. Math. Soc. 143~ 545-553 (1969). 

3. L. Hormander, L2 estimates and existence theorems for the 

o operator, Acta Math. 113 (1965)~ 89-152. 

4. L. Hormander and J. Wermer, Uniform approximation on compact 
sets in ~n , Math. Scand. 23 (1968), 5-21. 


