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1. Introduction.

Suppose that M is a real 01—manifold of dimension m , and
that & is a family of complex-valued C1—functions on M . Then

the exceptional set, E(%) , is the set {x € M; df1A...Adfm(x) =

O,V’(f1,...,fm) € 3™} . We fix a compact subset X of M , and
we shall often write E dinstead of E(3) n X .

Let A < C(X) denote the closed Banach-algebra generated by
the restriction to X of the elements of & . Assume that A
separates points in X and that MA = X , where MA is the maxi-
mal ideal space of A . It is an open problem, see [1] page 348-
349, if A includes all continuous functions on X which vanish
identically on E . Michael Freeman proved this in [2] under the
additional hypothesis that both M and the functions in & are
real-analytic, In this work we will solve the problem if M and
the functions in & are of class CF , for some sufficiently
large real r .

Our result will be proved via the following corollary of

theorem 3.1: If £ is a C'-manifold in % without complex



tangents (see [4]for the precise meaning of the last term) and
K=o (f1”"’fn) is the spectrum of some members of A , then
all continuous functions on K which vanish on K - £ operate
on K .

The proof will follow by adaptation of a technique developed

in the work of Hormander and Wermer [4].

2. Fundamental Constructions.

Assume that r > 1 and that ¥ is a closed, real ¢’ -sub-
manifold, without complex tangents, of an open set Q in e .
Let N1 and N2 be some open sets in mn, ﬁZ c l\T1 .

The Euclidean distance between the point x and the set A

will be denoted d(x,A) .

LEMMA 2.1. Suppose that u € C'(QUN,) is holomorphic in
N, . Then there exists a v € Cr(QlJN2) with v=u on T UN,
and such that:

For every compact F c QU N2 and every n > 0 we can find
a & >0 with the property:

If z € P and d(z,I) < &, then |3v(z)|< n-d(z,2)""" .

Bince the proof of this lemma is similar to that of lemma 4.3.
in [4], we omit it here.

The next result is similar to theorem 3.1. in [4]. However,
since the proof is a bit different, we will carry it out in some
detail.

L, Q, Ny and N, will be as above with r = 1 , Suppose A
is a commutative Banach-algebra with unit, and let f1,...,f be

n
elements of A ., Define K to be the joint spectrum c(f1,...,fn).



LEMMA 2.2, Assume K--l\T2 C ¥ . Then there exists an €, > 0,

a t € <0,1> , elements £ fm € A, a compact set F C T ,

n+190ang
and for every ¢ € <O,eo> a domain of holomorphy w, < ¢™  such
that
. n
(1) o(fq,eea,ty) Sop € € x {[(z 4,000,27) ] < T/8),
(ii) if =z € ¢™ and
d((z1,...,zn, ezn+1,...,ezm), 0(f1,...,fn, efn+1,...,efm)) < te ,

then 2z € W

s . T~ €
(iii) 4if =z € w, - (l\T1 x ¢®1), then d((z1,...,zn),F) <z

PROOF, As in lemma 2.1 in [4] we can find a function
p € CZ(Q) which is strictly plurisubharmonic in an open set W ,

with T cWc Q , and which satisfies the inequality

(2.1) 14(z,5)° < p(z) < 2a(z,8)° , z €W.

Choose an open set N3, ﬁg < N3 c ﬁB c N1 . Define
Ky = Kri(ﬁ3-N2) . K, will evidently be a compact subset of

Ny NW . We can now select ¢ € Cﬁ%@n) with 0 < ¢ <1,

i

supp ¥ C N1r1W and so that ¢ 1 din an open neighbourhood of K .
By taking a sufficiently small 6 > O , we can assume that p-—62¢;
is strictly plurisubharmonic in W .

|
Let Vo be an open set which contains X, , and where { = 1
and p < %62 . Define

~ T
(2.2.) V=V u (¢ - N3) U w,

Since K <V , we can find a finite number of elements

n+1""’fm € A, and a relatively compact domain of holomorphy U

in of , such that

f

(2.3.) 0(f1,...,fm) cUcCV x



Furthermore, we define K2 = K--I\T3 crcW and find a
v € di%W) with 0 <9 <1 and ¢ =1 in an open neighbourhood
of K, . Now we choose €, >0 with the property that
b, = p-ezw-52¢ is strictly plurisubharmonic in WVe € <O,e1].
There exists a compact set F c ¥ and an €, € <O,e1] such

that we have, for all e ¢ <0,e5> :
(i) If z € ¢" and d(z,K-N,) <e/2 , then

(2.4.) z € W and pe(z) <0 .
(ii) When =z € W-N, and pe(z) <0, then d4a(z,F) < 2¢ .

In fact, (i) follows easily from (2.1.) and the choices of
and ¢ by remarking that K-N, = K, UK, .

As for (ii) we can find an €, so small that
{z € ¢™;d(z,supp ¢) < 262} CW . Define
F={z¢ t™a(z,suppo) <2} nzxT. Then F is a compact subset
of T . Suppose that z € W-N, and that pe(z) < 0. It follows
that ¢(z) = 0 , and so p(z) < ezm(z) < e2 . By (2.1,) there
exists an n € £ so that d(z,n) < 2¢ . Consequently mn € F and
d(z,F) < 2¢ .

In the rest of the proof we will use the convention that
z € ¢ is written (z1,22) where 2z, € ¢® and z, € ¢,

We are now able to construct the required domains of holomor-

phy. Define

0, = {(zy,2,) € @m;z1 € ;)
0y = {(z4,25) € ¢5zy € €7 =Ty}
03 = {(Z1922) € (Dm;z‘] € W and pe(z1) < O}

Then O1IJ02 = ¢, Suppose 2z € o1r102r1U . From (2.3.) we
get that =z, € V, and since 2z € NB-ﬁz c ﬁB-NZ , (2.2,) im-
plies that z, € VO . It follows from the definition of Vo that



1

4(zq) =1 and p(zy) < 18 . Therefore p,(z,) <0, which proves

that o1r102r1U c O3 . As & trivial consequence there exist unique

domains of holomorphy W Ve ¢ <O,e2> with

(2.5.) (i) w N0y = TNO, \
(ii) w, N Oy

UﬂOzﬂO3

Since o(fy,...,f ) €U by (2.3.), we can find t; > 0 so
that {z € Cm;d(z,c(f1,...,fm)) < t,} €U . In addition,
kNN, c N; . This implies the existence of e € < O,min{t;,e,}>

with the property that

n -
{Z €EC ;d(Z,K nNz) < %’eo} = N3 .

Assume e € <O,€O> . Then:

(1) If z e ¢® and n € o(f1,.,,,fm) are such that

(i1) If z € w - (W x €"7%) , then a(z,F) < 2¢ .

We prove (i) first. Since d(z,o(f1,...,fm)) < %e+-%t1<'t1 ,
it is obvious that 2z € U . Suppose that nq € N2 . By the defi-

nition of € , z; € Nz . It follows from (2.5.) that 2z € w_ .

o’ €
Next, consider the situation when ny € K-—N2 . Then zq € l\T3 or
z, € €8-N, . If 2z, ¢ Ny , then z € w, as before. But if
z, € 6" -N, ,then p_(z;) <0 by (2.4.), and so (2.5.) shows that
z € we .

At last we remark that (ii) follows from (2.4.).

The lemma is now an immediate consequence.

Q.E.:D.

By applying a technique introduced by M. Freeman in [2], we

shall now determine a class of mappings of a manifold into o .



More precisely, let M be a k-dimensional real Cr«manifold,
r >1 . Suppose X is a compact subset of M . Assume further
that & C cg(M) and separates points in X . ILet E denote the

exceptional set E(&) N X .

LEMMA 2.3. TFor every compact set X, ©X-E we can find an
open neighbourhood 7V of XO , & finite number of functions,

fise0.,f, €& , and an open QO C ¢™  such that

(1) (f1,...,fn)(V) is a closed CT-submanifold of QO of

dimension k and without complex tangents, and

(ii) (g,“.ﬁnﬂx-v)c@n-n.

PROOF. Choose a finite number of functions f,...,f €@
and an open neighbourhood V of X = with E({f1,...,fn}) nv=4g.
It follows from the inverse mapping theorem that the multiple
function (f,...,f): M = ¢® is locally 1-1 on V . Obviously,
the set {(x,y) € (XO xXO)— A;fi(x) = fi(y) Vi=1,...,n} is a

compact subset of XO x X where A denotes the diagonal in

o °
Xo X XO . Consequently, by adding some more functions if necessary,
we may assume that {f1,...,fn} separate points in X . Shrinking
V if necessary, we then get that (f1,...,fn) is 1-1 on V
and that V is compact.

Since @& separates points in X , we can also suppose, after
further modifications, that (f1,...,fn)(X-V) and (f1,...,fn)(V)
are disjoint.

The choice Q = @n-(f1,...,fn)(V-'V) finishes the proof.

Q.E.D.
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3. Approximation Theorems.

Let X Dbe a compact Hausdorff space, and let C(X) denote
the Banach space under the supremum norm of continuous complex-
valued functions., The notation Ac<C(X) means that A is a
closed linear subspace which is closed under pointwise multipli-
cation, separates points and contains the constant functions.

If K is a compact subset of @7 , then A(K) is defined to
be the class of continuous, complex-valued functions on K which
can be uniformly approximated on K by functions holomorphic in

a neighbourhood of K .

THEOREM 3.1. Suppose Ae<C(X) , where X is compact Hausdarff

space, Let ¥ be a closed k-dimensional submanifold of an open

set 0 c ¢“ , without complex tangents, and of class Cr9 r = %-+1.

Choose fy,...,f € A and define K = 0(f1"“’fn) , K, =K-%.

If u € C(K) with u!Ko € A(Ko) , then uo(f1,...,fn) € A,
REMARK. We can replace the condition r = %4—1 with r =
max {%, 1} , but the proof will then be more involved. More spe-

cific, we need a stronger version of lemma 2,2.

PROOF OF THEOREM 3.1. ZEvidently, we may assume that

u € ¢f(a UN1) for some open neighbourhood N; of K_ , and also
that wu is holomorphic in N, . We will further suppose that u
has been modified as described in lemma 2.1, If N2 is chosen as
an open set with KO jou N2 CCN1 , We can apply lemma 2.2,

Define v:(Q UN,) X ¢ - @ (Zqseeeszy) = W(Zq5000,2,) .
Condition (iii) in lemma 2.2. ensures that v 1is defined in W,

for all small enough ¢ > 0 .
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Since ¥ is k-dimensional, and because of (i) and (iii) in

lemma 2,2., the volume of w_ - (l\T1 x ¢y 4g O(€2n»k) when

e - 0., Combining lemma 2.1. and once again (iii) in lemma 2.2,
we get
21’1—1{ . ,\21'-2)

= 112
I5elz,, ) = ot

and consequently

o(e™) when € - 0 .

Iz, |

According to theorem 2.2.3. in [3] there exist functions

2 : = .
h, € L°(w,) with sh, = v in w_ , and

“hC”Lz(we) = o(e™) when e - 0 .

Now we need lemma 4.4. in [4]:

Let B, = {z ¢ ¢™; |z]| < e}; let u € L2(B€) and ou = f in
the sense of distribution theory. If f is continuous, then u

is continuous, and we have

lu(0)]| < c(e™™||u] + € guplfl)

|2
L (Be)
Here C <s a constant which only depends on m , and not on € .

. 1
Define w_ = {(24,...,2 ezn+1,...,€zm) 5 (Z95000,2,) € we},

1,1 1, 1
v 3w€ i @ :(Z1900092m) -’u(z19.0‘9Zn) anﬁ-hezwe-’cz (Z1,‘..,Zm)—’

n’

1 1
he(z1""’zn’ Ezn+1""’EZm) .

=, 1 _ 1 1' _ m -
Then 3h_ = v, and HheJLg(w ) = o(e”) whem € - 0 . By
€

the above lemma and (ii) in lemma 2.2., we get uniformly for all
x e€X
1 .
by (£ (x),0en, 2 (%), € q(x),00a,ef (x)] 2

Cl(4e)™™ . o(e®) + - o(cT 1)) .



Consequently

[F8| - 0 when e - 0O .

IR CICHNE D)

Therefore, the functions v - he are holomorphic in W, and
converge uniformly on o(f1,...,fm) to v . It is well-known
that holomorphic functions operate on spectra, This concludes

the proof.

Q.E.D.

We are now able to prove a generalization of a result by

Freeman [2].

THEQOREM %.2. Tet M be a k-dimensional real manifold of

class CF , r = kg, Suppose that & < CT(M) separates points

2
on a compact subset X of M , Define E = E(¢)nX and A = the

supnormalgebra in C(X) generated by & ., If M, = X, then

A> {g e Cc(X); &g = 0} .

PROO®., Choose any compact subset Xo c X-E and use lemma

2.3, It follows from theorem 3,1, that the family

{g ¢ Arch{(X); 8|g = 0 and O £ g(XO)}

is nonempty and separates points in Xo . The theorem now is a

consequence of Stone-Weierstrass,

Q.E.D.
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