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1. Introduction.

1.17. We consider the following problem. If x is a cobordism

class of some sort, what is a necessary and sufficient condition,
in terms of characteristic numbers, that x contains a manifold
for which certain given characteristic classes vanish? Solutions

are well known in many special cases,

1.2, As an example we consider the case of unoriented cobordism.

If M is a differentiable manifold and u € Hk(BO;Zg) , we write
uM for the tangential characteristic class of M corresponding

to u . Suppose x €T7n is an unoriented cobordism class, and let

Ugsevasl, € H*(BO;ZQ) . A necessary condition for x to contain

T
a manifold M such that u1M =ase= urM =0 is clearly that all
Stiefel-Whitney numbers of x involving one of the classes
Uqseee U, @S a factor are zero. We consider therefore the problem

of the sufficiency of this condition.

1.3. For the single Stiefel-Whitney class wy, 1t is a result of
Wall [22] that the condition of 1.2 is sufficient, giving a descrip-
tion of the classes x that contain oriented manifolds.

For the collection Wy sWgseon of odd dimensional Stiefel-
Whitney classes the sufficiency follows from Milnor [12], where the
stronger result is proved that if all Stiefel-Whitney numbers of x
involving an odd dimensional Stiefel-Whitney class are zero, then
X contains a weakly complex manifold.

For the collection WqsWs the condition is sufficient accor-
ding to D.W. Anderson, E.H. Brown and F.P. Peterson [1], thus
characterizing the classes x that contain spin manifolds, A few

similar cases are known in low dimensions, see Stong [167.



The sufficiency of the condition for some high dimensional
cases is contained in R.L.W. Brown [3] and [4]. Here results are
proved of the form that if all Stiefel-Whitney numbers of x in-
volving certain classes are zero then Xx contains a manifold which
is a bundle over a sphere or which can be imbedded or immersed in

certain Bucledian spaces,

1.4. The following example due to Stong [15] shows that the condi-
tion of 1.2 is not always sufficient. ILet x = yzs where

y €T75 = Z2 is the generator. Then all Stiefel-Whitney numbers
of x dinvolving one of the classes W1,...,W25 are zero, but for

s > 4 there is no manifold M in x such that W1M==...==W28M==O.

1.5, The problem of 1.1 can be considered for different cobordism
theories. A general result for complex cobordism is given in
Lashof [7] as follows. TLet wu € HY(BU;Z) . Then a complex cobord-
ism class x € le contains a manifold M such that uM = 0 mod
torsion if and only if all Chern numbers of x involving wu are

Zero,

1.6, In the following we shall show that with a dimensional restric-
tion on the characteristic classes, the problem of 1.1 can be solved
under general circumstances. The assumption we have to make is

that the characteristic classes lie in the upper half of the dimen-
sions. The result is then the simplest one could expect, namely
that a collection of characteristic classes of the appropriate type
can be zero for a manifold in x if and only if none of the classes

show up in the characteristic numbers of x .



1.7. To state the results precisely we adopt the cobordism concept
of Lashof [7], where a structure on a manifold M is defined in
terms of a 1lifting STE M - BG of a classifying map Viré M - BO
for the stable normal bundle of M . If m is a ring and

u € H*(BG;m) , we define a corresponding normal characteristic class
*u € H*¥(M;m) . If the Thom spectrum MG is m-oriented, we

M
get a normal characteristic number <ﬁM,[M]ﬂ> € m, where

[M]n € Hn(M;n) is the fundamental class. We denote by Qi the
G-cobordism group. See section 2 for details. From 3.5 we get the

uM = v

following two theorems for coefficient rings Zm with m > 2 ,

and 72 respectively. The proofs make use of some general assump-
tions on the cobordism theory, stated in 2.8. For example the
theorems apply to the standard cases G = 0,50,5pin,U,SU and

G = 0<¢q>,U<qgq> . By a separate argument they are also valid for the
piecewise linear cases G = PL,SPL .

1.8, Theorem. Let x € Qﬁ and let uq,...,u, € H*(BG;Zm) be
classes in dimensions > (n+1)/2 . Assume MG oriented if m > 2 .

Then Xx contains a manifold M such that ﬁ1M S —_— ﬁrM = 0 if

1’...’r.

il

and only if <x7ﬁiM,[M]m> = 0 for all v € H¥(BG;Z ) , 1

1.9. Theorem. Let x € Qg and let uq;...,u, € H*¥(BG;Z) be classes
in dimensions > (n+1)/2 . Assume MG oriented. Then x contains

a manifold M such that

1) M =...= ﬁrM = 0 mod torsion if and only if <§ﬁiM,EM]> =0

for all v € H*(BG3;Z) , i =1,...,r .

2)  uqll =...= UM =0 if and only if <VﬁiM,[M]> = 0 for all
v € H*(BG;Z) and <ﬁﬁiM,[M]m> =0 for w € H*(BG;Zm) , Where m
runs through the values for which H*(BG;Z) has torsion of order m,

i=1’00.9r.
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1.10. The theorems above are formulated in terms of normal charac-
teristic classes since the structure on the manifolds is given by
liftings of the stable normal bundles. But we note that there is
a homotopy involution I: BO - BO such that IvM = Ty e In the
case G = 0O we can therefore give the result in terms of tangen-

tial classes, and similarly for other standard cases.

1.11. The theorem 1.9 does not apply to G =0 or G = PL since
the Thom spectra for these cases are not orientable. However for
G =0 we get the following from 3.6,

€ H*(BO3;Z) Dbe classes

Theorem. Let x €T7n and let UqseeesUy,

in dimensions > (n+1)/2 . Then X contains a manifold M such
that wM =...= urM = 0 if and only if <vuiM,[M]2> = 0 for all

VGH*(BO;Zz) 5 i= 190&.91‘ .

and the analogous result is true for G = PL .
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2. Some preliminaries on bordism theories.

2.1, We recall first some standard results about spectra and homo-
logy theories. All spaces considered will be assumed to have the
homotopy type of CW-complexes and the homology theories to be
defined on the categoryﬂof pairs having the homotopy type of CW-
pairs. A spectrum in the sense of G. Whitehead 23] is a sequence

E={E 1 where E_, is a space with base point and

€ ~
r* " rrcZ°’

€.t SEr - Er+1 is a base point preserving map. A spectrum E

defines a homology theory where the homology groups are given by

(X/A A E.)

H (X,4;E) = l%m Ty

If X dis a space with base point, we have reduced homology groups

(X»NET) , and there is a short exact

Hn(X;E) = Hn(X,*;E) = lim m ..
T

sequence 0 = Hn(*;E) - Hn(X;E) - Hn(X;E) -0 .

2.2, The homomorphisms in the direct system above are by definition

the compositions

ana er)*

(X/AAE_) S oo L1 (X/AnSE) —E > L1 (X/ANE

nn+r n+r 1Tn+r r+1)

where S 1s the suspension homomorphism, Assume that Er is
(r-1)-connected and that e,: SE, - B, 4 1is a 2r-equivalence for
all r . Let X/A %be (k-1)-connected. Then X/A AE, is
(k+r-1)-connected, and by the suspension theorem, Spanier [14],

S is an isomorphism for r > n-2k+2 Furthermore (1/\er)* is an

isomorphism for r > n-k+2 , Hence the direct system is stable

for r > n-k+2 .

2.3, Theorem (switching spectra). Let E and F be spectra

satisfying the connectivity condition of 2.2, Then there is an



isomorphism o: ﬁﬁ(Fk;E) - ﬁﬁ(Ek;F) for n < 2k-2 .

Proof, By 2.2 we have

:E) = m (F,_AE

n+r kA r)

= nn+r(Ek/\Fr)

for r > n-k+2 ., Taking k = r we get the isomorphism ¢ from

the canonical homeomorphism Fk A Ek - Ek A Fk .

2.4, If m 1is an abelian group, the Eilenberg-MacLane spectrum
K(m, ) = {K(m,k)} satisfies the connectivity condition of 2.2.
The corresponding homology theory coincides with the singular

homology theory with coefficients m on the category € .

2,5, We recall the general cobordism concept introduced by Lashof
[7]. Suppose given a sequence of fibrations p: BGk - BOk to-
gether with fiber maps i: BGk - BGk+1 over the natural maps

i: BO, - BO so that we have a commutative diagram

k k+1 °

3
e BGy BGy 1

D), |p

= e e

- e o0

Passing to the direct limit we get a space BG = 1lim BGk and a

fibration p: BG - BO . (We use the telescope construction.)

If M is a compact differentiable n-manifold, we define a G-
structure on M to be a vertical homotopy class of 1liftings in

the diagram

BG
_/2 LP
M Vin BO
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where VI is a classifying map for the stable normal bundle of
M . We call M +together with a G-structure a G-manifold.
There is a difficulty with this definition due to the fact that
Vin is determined only up to homotopy, and there is in general no
canonical bijection between the vertical homotopy classes of 1ift-
ings of two homotopic maps. To get around this we choose an im- |
mersion of M in ]Rn+k and use as a classifying map Vin the
composition M § Gk(I{n+k)‘La BO, 1 B0 , where g is the normal
Gauss map. Vi depends then only on the choice of immersion, and
is therefore unique up to a homotopy which is itself unique up to
a homotopy with stationary ends. The vertical homotopy classes of
liftings of such maps Vit correspond now bijectively in a unique
way. A G-structure on M is precisely a set of corresponding
classes of liftings. It follows that if M is a G-manifold,
there is a lifted map e M - BG wunique up to homotopy. A G-

structure on M induces one on JdM , once we make a choice between

inward or outward normal along the boundary.

G

*

2.6, Let Q denote the G-bordism theory defined on the category

% . The elements of Qi(X,A) are G-bordism classes [M,f] repre-

sented by a G-manifold M of dimension n and a map

f: (M,3M) - (X,A) .

Let Yy be the k-vector bundle over BGk classified by
p: BG

- BO, , and let MG, = Dyk/SYk be the Thom space of vy, .

k k
The natural bundle maps yk+1 > Yyaq OVer i: BGk - BGk+1 induce

maps SMG, - MG defining the Thom spectrum MG = {MG, !} . The
k k

k+1
Pontrjagin-Thom construction gives a natural equivalence
G

x =

Q Hy( ;MG) of homology theories,
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2.7. et m be a ring and v € H(BG;m) . If M is a G-manifold

with lifted map Virs M - BG , we define the normal characteristic
class VM = vyv € H*(M3m) . Assume the Thom spectrum NG is -
oriented, ILet f: M - X be a map of a closed G-manifold M of
dimension n and c¢ € H*(X;m) . Tet BUNC Hn(M;n) denote the

fundamental class. Then we get a normal characteristic number

<Vl f*o,[M]ﬂ> € m . By Pontrjagins theorem it depends only on the

G-bordism class [M,f] € oiX . Stong [16] .

2.8, For all applications we make the assumptions that BG, has
the homotopy type of a CW-complex, that i: BGk - BGk+1 is a
k-equivalence and that H_(BG;Z) is of finite type. These assump-
tions are for example satisfied for the standard cases G = 0,30,

Spin,U,SU and G = 0<g>,U<q> , mentioned in the introduction,

It follows that the Thom spectrum MG satisfies the connectivity

is (k-1)-connected as the Thom com-

condition of 2.2. MG, = My

k k
plex of a k-vector bundle., Furthermore we have

SMG - MG SMG

K T+ 1 (MG 15
I | |

M(yy+1) = My, o = (Myy 4,M(vy+1))

1)

The term (Myk+1,M(yk+1)) is the relative Thom complex of vy _ 4
over the k-connected pair (BGk+1’BGk) . Hence (MYk+1’M(Yk+1))
is (2k+1)-connected, which means ‘that SMGk - MGk+1 is a (2k+1)-

equivalence,

2.9, Let E Dbe a spectrum with the connectivity property of 2.2
and suppose the Thom spectrum MG is E-oriented, Stong [16]. TWe

define for n < 2k-2 an isomorphism

s 5G E - H

n B R Hy 1 (BGSE)
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by switching spectra and using the Thom isomorphism., In other

words ¢ dis the composition

*

I~ g o @ 7)) S o
Q, Hn(MGk,E) o Hn_k(BGk,u) 2 Hn—k(BG’E)

rla

By

where « 1is the Thom isomorphism, This isomorphism ¢ is very
useful. We describe it more explicitely in the cases where E is

K(m, ) or MO .

2,10, Let m ©be a ring as before and assume MG is nm-oriented.
We consider the isomorphism {: diK(n,k) 2 Hn_k(BG;n) in the
stable range n < 2k-2 . Elements of 5g1§(ﬂ,k) are of the form
[(M,c] , where M is a closed G-manifold of dimension n and

c € Hk(M;ﬂ) . Then we have

Theorem. <v,y[M,c]> = % <§Mo,[M]ﬂ> for all v € HY(BG;m) .

Proof: There is a commutative diagram with X, = K(m,k) and
p: E - M the projection

(co,vy)
E/3E —m™> Ky % Dv../ K, x Sy, Uxx Dy,
A I
- K, A MG
b (M,e] = kr
| !
S . r-k
¥ el Ky A ST TUNG
n+r .
S |

TR r-k

% MG, A STTEK,
oy cr &1 A €

s
MGk/\Kr

where E is a tubular neighborhood of M and q dis the collaps-
ing map. Let v € H'(BG;m) = HON(BG,;m) . If we pull back the
class ov A ' and evaluate on [Sn+r] , we get <gv,o[M,cl> =

<v,po[M,c]> = <v,y[M,c]> on one hand, and on the other hand
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<§Mc,[M]n> up to sign.

2.117, Since we assume H*(BG;Z ) is of finite type the natural

homomorphism
° -—) i °
Hi(BG,an) Hom(H (BG:%Z_),Z_)

is an isomorphism ( m not necessarily prime!). Therefore, apply-

ing 2.10 with w = Zm , we get, assuming MG oriented if m > 2 |

Corollary. [M,c] € 5gK(ZnH]{) is zero if and only if
<VMc,[M] > = 0 for all v € H*(BG;Zm) , n < 2k-2 .,

2,12, We consider next the case m =7%Z . There is a short exact

sequence

0 - Bxt(H* ¥ (B¢;2),8) ~ B, (B6;Z) - Hom(H F(BG;Z),Z) - 0

using again that H,_(BG;Z) is of finite type, Spanier [14]. The
Ext term is equal to the torsion subgroup of Hn'k+1(BG;Z) .

Hence we get, assuming MG oriented,

Corollary. [M,c] € ASK(Z,k) is 2 torsion element if and only if
<Vllc,[M]> = 0 for all v € H*(BG;Z) , n < 2k-2 .

2,13. There is a commutative diagram

Ri=

3G .
0K (% ,k) H, ., (BG;Z)

! o

NG : i
0.K(Z k) H, . (B&Z, )

=l

where the vertical maps are reduction mod m . Therefore we have

also, again assuming MG oriented
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Corollary. [M,c] € (K(Z,k) is a miltiple of m if and only if
<¥Mc,[M] > = 0 for all v € H*(BG;%m) , n < 2k-2 ,

2,14, From 2,12 and 2,13, with the assumption MG oriented, we

get

Corollary. [M,c] € ﬁgKCZ,k) is zero if and only if <¥Mc,[M]>=0
for all v € H'(BG;Z) and <wc,[M] > = 0 for all w € H¥(BG;Z ),
where m runs through the values for which H¥(BG;Z) has torsion

of order m , =n < Zk-2 .

2.15, The previous results for detecting bordism classes by charac-
teristic numbers came from the method of switching spectra. For
the case G = 0 one can use a different argument which is valid

vithout any dimensional restriction. We have

Theorem. [M,c] E}inKﬁzz,k) is zero if and only if <VMC,[M]2>::O
for all v € H'(BO3Z,) .

Proof. From the assumption <ch,[M]2> = 0 for all v one proves
inductively that <vMSfb,[M]2> =0 for &ll v . In fact, if we

have the last equation for 1 < j , we get

<VM&£C,[M]2> = <S¢kVMc),[M]2> = <vijc,[M]2> =0

where v ¢ B (BO3Z,) is the j-te Wu class. Since the Sa¥'s
generate the Steenrod algebra OIZ we get <vMac,[M]2> = 0 for
all o € 012 . Hence the Stiefel-Whitney numbers of [M,c] ,
except those of M itself, are zero. Therefore [M,c] = 0 in

f%}i%z,k) by Conner and Floyd [5].
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2.16. Corollary. (M,c] € 1} K(Z,k) is zero if and only if
<vilc,[M],> = 0 for all v € H*(Bo;%g)

Proof., Mod 2 reduction féKKZ,k) - ﬁEK@ZZ,k) is a monomorphism,

2.17. We give a geometrice description of the isomorphism

Us ﬁgmok = H,_ 1 BG defined for n < 2k-2 . An element of ﬁhMOk
is of the form [M,u] , where M is a closed G-manifold of dimen-
sion n and u: M - MOk a map. We may take u to be transversal
to the zero section BO, so that N = u-1BOk is a submanifold

of M . The lifted map vy : M~ BG induces vM/N: N - BG . Then
PIM,ul = [N,vM/N] . This can be proved by comparing Stiefel-
Whitney numbers of both sides. We do not need the result in the
following. For our application in section 4 we can just use the

geometric description above as a definitionn., We get then a well

defined homomorphism ¢ by the relative transversality theorem.
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3. Killing cohomology classes,

5.7, In this section we introduce the concept of killing a cohomo-
logy class, not necessarily a characteristic class, by a cobordism,

and prove the theorems of the introduction in a more general form.

Let M be a closed manifold of dimension n and c € Hk(M;n) .

If V is a cobordism from M to M' , we get a diagram

X Ly %
() & 55(vym) B ERue )

induced by inclusion maps, and we have a corresponding additive
relation oy = i'*i*71 , Where actually Py depends on the pair
(v,M) . 1If py¢ = O with zero indeterminacy, we say that c is

killed by the cobordism V .,

If Hk(V,M;n) = Hk+1(V,M;n) = 0 , then by exactness of the cohomo-
logy sequence of the pair (V,M) , we have a homomorphism

oy EE(Mzm) - HE(U,m) .

In general, if V is a cobordism from M to M' and V' a co-

bordism from M' to M" , we get a composite cobordism VV' from

M to M' and the equation Pyyr = PyiPy between additive relations,

3.2, Suppose M is a G-manifold, ¢ = UM a characteristic class
and V a G-cobordism from M +to M' . Then pv(ﬁM) = uM' .
Thus uUM' = 0 if uM dis killed by V .

3,3, It is clear that if ¢ € Hk(M;n) can be killed by a G-cobor-
dism, then [M,c] = 0 in ﬁﬁK(n,k) . We prove the converse with

a dimensional restriction.

Theorem. Let M be a closed G-manifold of dimension n and

¢ € B(M;m) , where k > (n+1)/2 . Then ¢ can be killed by a
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G-cobordism if and only if ([M,c] = 0 in §gK(n,k)

Proof. Assume [M,c] = 0 in ﬁgK(n,k) . Geometrically this

means that there exists a G-cobordism V from M +to an M' and

a class d € Hk(V;n) such that d/Ml =c¢ and 4/M' = 0 . We con-
sider V as a handlebody on M and we can assume handles attached
in order of increasing dimension, Smale [13], Let V' Ybe the

part of the handlebody obtained by attaching the handles through

dimension n-k+1 , V" +the rest and M" = V'NnV" ,

"""
" < handles of
v dim > n-k+1
Mn, - -
e
handles of
'V'v
P < dim < n-k+1
S
M
We put 4a' = d4/v' and 4" = 4/V" . By duality V" is a handle-

body on M' with handles of dimensions < k . Therefore

HEE(V",M'3m) = 0 . Since a"/M' = 4/M' = 0 we get 4" = 0 and
hence 4'/M" = a"/M" = 0 . Because HP(V',M3m) = 0 for p >n-k+l
the additive relation py,: HP(M;7) is a homomorphism for p >n-k+1.
Thus c¢ is killed by V' for k > (n+1)/2 , and V' is a G-co-
bordism, |
3.4. Corollary. A collection of classes c;,...,c, € H*(M;m) in
dimensions > (n+1)/2 can be simultaneously killed by a G-cobor-

dism if and only if each class can be separately killed by a

G-cobordism,

Proof, We can kill one class at a time by a G-cobordism for which

the corresponding additive relation is a homomorphism, and then

take the composite G-cobordism,
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3.5, We obtain now the following main result as an immediate con-
sequence. The assumptions of 2.8 are understood, and except for

m =2 1in case 1) the Thom spectrum MG is supposed to be oriented.

Theorem., Let M be a closed G-manifold of dimension n and

suppose k > (n+1)/2 . Then

1) c € Hk(Mme) can be killed by a G-cobordism if and only if
<¥Mc,[M] > = 0 for all v ¢ H*(BG;%m) .

2) c € Hk(M;%) can be killed mod torsion by a G-cobordism if

and only if <¥Mc,[M]> = 0 for all v € H (BG;Z) .

3) ¢ € HY(M;Z) can be killed by & G-cobordism if and only if
<¥Mc,[M]> = 0 for all v € H*(BG;Z) and <@Mc,[M] > = 0 for all
w € H*(BG;%m) , wWhere m runs through the values for which

H*(BG;Z) has torsion of order m .

Proof, The result follows from 3.3 together with 2,11, 2.12 and
2,13,

3,6, If we want to kill an integral class by an unoriented cobor-
dism, the previous theorem does not apply since MO is not orien-

ted. However from 2.16 we get

Theorem. Let M be a closed n-manifold and c¢ € Hk(M;%) , Where
k > (n+1)/2 . Then ¢ can be killed by an unoriented cobordism

if and only if <vlMc,[M],> = 0 for all v € H*(BOZ,) .
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4, Twisted surgery.

4.1, In this section we shall describe a general surgery method
which gives an altermative way of killing cohomology classes., Let
m be a ring and M a closed differentiable n-manifold. If ™
has elements not of order 2 , we assume M oriented. We can then

consider the following condition on a cohomology class c € Hk(M;n).

C. There exist a dual submanifold N to ¢ din M and a compact
manifold W such that ¥3W = N and such that the normal bundle
vy ©eXtends to a bundle o over W , If © has elements not of
order 2 , the manifolds and bundles are assumed oriented.

Algebraically the condition means that the bordism class [N,VNM]

in Iy, B0, or Q _,BSO_ 1is zero.

4.2, If condition C is satisfied, we can perform a surgery on

M as follows., Let E ©be the disk bundle over W associated to

w , which we may take to be a differentiable bundle. By the tubular
neighborhood theorem there exists an imbedding a: E/N - M onto a
tubular neighborhood of N . In the oriented case we take a to

be orientation reversing. We define a new manifold

M' = (M - int o (E/N)) Uy 2E

where we straighten the angle to obtain a differentiable structure

on M' ., The construction is called a twisted surgery on M .

If the normal bundle VN is trivial, we can take the extension o
over W to be trivial., The surgery is then of the type used by
Lashof [7]. If N is a sphere with trivial normal bundle in M ,
we can take W to be a disk, and the surgery is the standard one

introduced in Milnor [10].
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4.3, The manifold M' is cobordant to M by the cobordism
V=DMXxTI U(a,1) E
where we again straighten the angle to get a differentiable struc-

ture on V . In the oriented case we note that the orientation on

M extends to V and we get an induced orientation on M' .

disk bundle
E attached

—

o

é---

\g "“/

4.4, Lemma. If k > (n+1)/2 , the class c € Hk(M;n) is killed

by the surgery (i.e. by the cobordism).

Proof, We get HP(V,M;m) = HP°(W,N;m) = O for p > n-k+1 . There-
fore the additive relation py: HP(M;m) - HP(M';m) is a homomor-
phism for p > n-k+1 , in particular for p = k if k > (n+1)/2 '
Iet je N-M, i: M-V and 1i': M!' 9 V Dbe the inclusion maps,

Then

| %=1

it(pyeniu']) = i;(i'%l cnlM]) = i

. %=1 . . .o
i c ﬂl*[M] = 1*(ch[M]) = 1%3*[N] =

cnitfur]

Since Hn-k+

ite B (Mvym) -~ H _,(V5m) is injective. Hence pycn[M'] = 0

J(V,5m) = BS(V,M5m) = 0 it follows that

and therefore pyc = 0 .
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4,5, If M has a G-structure, we call the surgery of 4.2 a G-

surgery if the G-structure on M extends to V .

Lemma. Let M be a closed G-manifold of dimension n and

c € Hk(M;n) , where k > (n+1)/2 . If m has elements not of
order 2 , assume MG oriented. Suppose ¢ has a dval submanifold
N in M such that [N,v/N] =0 in T _.BG , or in the oriented
case in Qn_kBG . Then c¢ can be killed by a twisted G-surgery

on M

Proof. We consider first the unoriented case, The assumption
[N,vM/N] =0 1in Y)n_kBG gives a compact manifold W such that
3W = N together with an extension 6: W - BG of vM/N: N - BG .
Let w = vW-peéfgo(W) , where p: BG - BO 1is the projection.
Then o/N = e N - BO . We have the diagram

F —> BO,

77
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N W > BO

A

where T = O/Ok is (k-1)-connected. The groups H1+1(W,N;ﬂiF)
are all zero. Hence there is no obstruction to a lifting
ws W - BO

L ]

extending SE N - BOk

k
Now we do the surgery as in 4.2 to kill ¢ . The cobordism
V=M£Xx IU(Q,1)E has a stable normal bundle classified by
Vi V - BO ., If we let Py MxI-M and p: E - W denote the
projections, we have vV/M xI = vyp, and vv/E = (vg-w)p = pép .
There exists a lifting Tk M - BG representing the G-structure
on M , and changing the lifting by a homotopy we may assume

e = vy on E/N . Then vv//M><I: MxI - BO 1lifts to
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vyPy: MxI - B& and vV/E: E - BO 1lifts to 6p: E - BG , where
the two liftings commute with the identification map (a,1):E/N-MxI.

: M - BG . This

Hence we get a lifting Yyt V - BG extending e

proves the lemma in the unoriented case.

In the oriented case we have a lifting p: BG - BSO of p: BG -BO.
The G-structure on M induces an orientation. The proof is then

as before, where we replace Y3 by 0 and O by SO everywhere.

4,6, The main result we obtain by the surgery method is the follow-
ing. Compared with 3.5 the theorem gives a more explicit descrip-
tion of the cobordism involved, namely as the trace of a twisted
surgery. On the other hand we do not get the analogs of case 1)
for m > 2 or case 3) in 3.5. The reason is that we can not in

general represent the cohomology class by a dual submanifold.

Theorem, Let M be a closed G-manifold of dimension n and

suppose k > (n+1)/2 . In case 2) assume MG oriented., Then

1) ¢ € H'(M;Z,) can be killed by & twisted G-surgery if and
only if <¥Mc,[M],> = 0 for all v € H*(BG;ZZ)

2) c € Hk(M;%) can be killed mod torsion by a twisted G-surgery
if and only if <¥Mc,[M]> = 0 for all v € H*(BG;Z) .

Proof. By Thom [17] there is a (2k-1)-equivalence f: Mo, - K,
where K = K(Zz,k) X oos is a product of Eilenberg-MacLane spaces

K(Z,, )'s . We have a diagram

' f
~G oG Tx oG
QnK(%z,k) 0K g QMO Yﬁn_kBG

where 1i: K(Z,,k) = K is the inclusion map of the first factoz.

There exists a lifting ¢ 1in the diagram
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. 7MOk
e

Moz K(Zj,,k) T K

From the geometric description 2.17 of | we get $f;1i*[M,c] =
y[M,u] = [N,VM/N] , where N is a dual submanifold to c¢ in M ,
If we assume <§Mc,[M]2> =0 for all v € H*(BG;Zz) , we get
[M,e] = 0 in (UK(Z,,k) by 2.11. Hence [N,vy/N] =0 in
I)n_kBG , and by 4.5 we can kill c¢ by a twisted G-surgery. This

proves 1),

The proof of 2) is similar. We use the result of Wall [22] that
there is a map f: MSO, - K , where K = KZ,k) Xuuo is a product
of Eilenberg-MacLane spaces K(Z, )'s and K(Z,, )'s , such that

f is a (2k-1)-equivalence mod odd torsion, together with 2.12,
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5. The PL case,

5.17. The methods of sections 2-4 can be carried over to the PL
category without difficulties. Ve let sz denote the PL bor-
dism theory defined geometrically on the category & . Furthermore

let BPL be the classifying space for PL microbundles of dimen-

k
sion k as defined by Milnor [11], and MPL = {MPLk} the corres-

ponding Thom spectrum., The Pontrjagin-Thom construction gives a
PL

natural equivalence Q

= H,( ;MPL) of homology theories on the
category 6 . This follows since we get an isomorphism on the co-
efficient groups by Williamson [247], and the two homology theories
commute with direct limits. The natural map i: BPLk - BPLk+1 is
a k-equivalence by Haefliger and Wall [6]. It follows therefore

from 2.8 that the spectrum MPL satisfies the connectivity condi-

tion of 2,2, With BPL = lim BPL

o 1t is well kmown that H, (BPL; % )
k ¢

is of finite type.

Similarly we have in the oriented case classifying spaces BSPLk
and an oriented Thom spectrum MSPL = {MSPLk} . There is a natural
equivalence QSEL = H,( ;MSPL) of homology theories, and the spec-
trum MSPL satisfies the conditions of 2.8, hence the connectivity
condition of 2,2,

If M dis a PL manifold, there exists by Milnor [11] a stable
normal microbundle classified by K M - BPL , or in the oriented
case by Vit M - BSPL , where Vin is unique up to homotopy. 2.10-
2,14 is then valid for G = PL,SPL . For the PL analog of 2.15
we use the fact that PL Dbordism classes are determined by charac-
teristic numbers from H*(BPL;ZZ) . The proof of this is similar
to that of the differentiable case given in Conner and Floyd [5].
One uses the result of Browder, Liulevicius and Peterson [2] that

PL

the elements of the coefficient group Q7 are determined by the
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characteristic numbers fromA H*(BPL;%z) , and the fact that the
Steenrod representation u: QPLX - H (X;%,) 1is surjective so that
the spectral sequence of Q X collapses and we have Q%}X =
H,(X5Z,) ® o°F .

If M 1is a closed PL manifold of dimension n , then

Sqd: H*J(38,) ~ HM(M;Z,) is multiplication with the Wu class
vj . Therefore we get the PL analog of 2.15 and hence 2,16,
5.2. In the proof of theorem 3.3 for G = PL,SPL we make the
following modification. With a triangulation of V we let V!
be a closed regular neighborhood of M U K , where K is the
(n-k+1)-skeleton of V minus an open collar of M' , and let

vVt = ¢1(V-V') , Then (V',M) and (V",M') have the homotopy
types of relative CW-complexes with cells of dimension < n-k+1
and < k respectively. The rest of the proof is then unchanged,

and we get the results of section 3 for the PL case.

5.3. The lemma 4.5 and theorem 4.6 can be proved similarly in the
PL case. The tubular neighborhood theorem we need to do the
twisted PL surgery is contained in Haefliger and Wall [6]. From
Browder, Liulevicius and Peterson [2] there is a (2k-1)—equivabape

f: MPL, - K , where K = K(Zz,k) X oo is a product of K(Z29 )'S.

k
Also there is a (2k-1)-equivalence mod odd torsion f: MSPLk - K,
where K = K(Z,k) X... is a product of K(Z, )'s and KKZEr,)'S.-
Pinally by the transversality theorem of Williamson [24] we can

define geometrically, as in 2.17, a homomorphism

NPLMPL - Q kBPL and similarly for the oriented case.
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6. Applications to secondary cohomology operations.

6.17. Let & be a k-vector bundle over a closed differentiable
n-manifold M . We consider the problem of computing a secondary
characteristic class «af in Hn(M;ZZ) . As usual af is assumed

to be given by a pull back in a universal example

E %> XK(Z,,n)

6.2. By means of the generating class theorem of E. Thomas [20]
the problem of computing af can be transformed‘under general cir-
cumstances to that of computing a corresponding secondary cohomology

operafion ¢ of degree n on the Thom class Ug € Hk(M§;Z2) .

6.3, For € = v the normal bundle of some imbedding of M in
SPE 44 follows from the Pontrjagin-Thom construction that the
group Hn+k(Mv;Z2) is generated by the spherical class [M]ZUV .
Therefore any cohomology operation with values in Hn+k(Mv;Z2) is
zero with zero indeterminacy. In perticular @Uv = 0 with zero
indeterminacy. This method was originally used by Mahowald and
Peterson [8] to compute secondary obstructions for cross-sections
of normal bundles. We shall generalize it by replacing the sphere

sME  yith a closed (n+k)-manifold.

6.4, Suppose & is a secondary cohomology operation assiciated ta
some relation Ta.B, = 0 in Cﬂ:z , where deg a, > 0 for all i .
ill 1

Assume j: M - D is an imbedding in a closed (n+k)-manifold D
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such that the following three properties are satisfied.
a) j: M - D has normal bundle & .

b) M is homologous to zero mod 2 in D .

¢)  Indet™¥(D;js) = 0 .

Then we get the following
Lemma éug = 0 with zero indeterminacy.

Proof. ILet p: D - ME be the Pontrjagin-Thom construction. By b)
we have p*Ug N [D]2 = j*[M]2 = 0 , hence p*Ug =0 . Also
p*([M]ZUg) = [D]; . By naturality of & we get p*@Ug c @p*Ug .
Hence <c¢) implies Indetn+k(M€;@) = 0 and then @Ug =0 .

6.5. To construct an imbedding j: M - D with the properties a) -
¢) of 6.4 we start with D equal to the double of the disk bundle
of € and j the zero-section into one of the halfs. Then a)

is satisfied, and the idea is to perform surgery on D away from

M to get also b) and c¢) . To get b) it is sufficient to kill
the dual class c¢ of j [M], ¢ Hn(DﬁZE) by a twisted surgery.

This requires a condition on the bundle & ., Then we will make sure
that c¢) is satisfied by making D sufficiently perallelizable,

The first step leads to a resultd some interest in its own, namely

6.6, Theorem. Let & Dbe a k-vector bundle over a closed n-mani-
fold M , where k > n+1 . For the existence of a closed (n+k)-
manifold D and an imbedding Jj: M - D which is homologous to zero
mod 2 and has normal bundle & it is necessary and sufficient that

<v(r+8),[M1,> = 0 for all v € H*(BO;Z,) .
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Proof. Suppose the imbedding j: M - D with the required proper-

ties exists. Then

<v(Ty+8), [M]y> = <vj*rp,[M], = <vD,j [M],> = 0

by the assumption j [M], = O .

On the other hand, suppose <v(7,+§),[M],> = 0 for all v € H'(BO3Z,) .
Let Jj: M - D be the imbedding in the double of the disk bundle
of & as before, and c € H°(D;B,) dual to M in D . Then

<vDe, [D],> = <vD,j,M],> = <v(m+E),M],> = O

for all v € H*(BO;Zz) . By 4.6 we can kill c¢ Dby a twisted sur-
gery on D , where we use the dimensional assumption k > n+1 .

The dual submanifold to c¢ used for this surgery can be isotoped
off M for dimensional reasons. Therefore we can do the surgery
away from M , and M will then be imbedded in the new manifold D'
with normal bundle €& as before. Finally M is homologous to

zero mod 2 in D' .

6.7. As usual we call a k-vector bundle & over a CW-complex X
(g=1)-perallelizable if €& dis trivial when restricted to the (g-1)-
skeleton of X . The property is equivalent to the existence of a

lifting in the diagram

BOk<q>
4
4 I
7 \%
X >  BO
E k
where BOk<q> is the (g-71)-connective covering of BOk . A differ-

entiable manifold is called (g-1)-parallelizable if its tangent

bundle is (q-1)-parallelizable.
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6.8, Lemma. Let & be a k-vector bundle over the n-manifold N ,
and let D be the double of the disk bundle of § . If TM+€ is

(a-1)-parallelizable, then D 1is (qg-1)-parallelizable, q < k .

Proof. We identify M with a submanifold of D Dby the imbedding
j so that TD//M = Tyt . Assume T +E  is (q-1)-parallelizable.

Then we have a diagram

F ¢ > _Eon+k<q>
Al , |
/ 4
/
C.--— — »
M >D'ﬁ; BOn+k

where P = On+k/’0n+k<q> . The obstructions to a lifting

D - BO,,,<a> extending m+% lie in the groups H.T!(D,M;m,F)=

Tp n+k<
ﬁ1+1(M§;ﬂiF) which are zero since ME is (k-1)-connected and

ﬂiF =0 for i >q-1, Hence D is (g-1)-parallelizable.

6.9. Lemma, Let M be a (g-1)-connected closed n-manifold and
c € Hk(MgZz) , where k > (n+1)/2 . Suppose <vMc,[M],> = 0 for
all v € H*(BO;%z) . Then c¢ can be killed by a twisted 0<g>-

surgery on M .

Proof. PFrom 4.6 it follows that c¢ can be killed by a twisted
surgery on M . Let N = oW be a dual submanifold to ¢ , We
consider W as a handlebody on N with handles attached in order
of increasing dimensions., Let W' ©be the part obtained by attaching
the handles in dimensions < q , W' +the rest and N' = W'NW" ,
Since M is (q-1)-connected there are no obstructions to an exten-
sion of j: N-M toamap h: W' - M . We assume q < n-k sincé
the lemma is otherwise trivial., Then we can assume that h: W' - M

is an imbedding, and identify N' with a submanifold of M . It
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follows that N' is another dual submanifold to ¢ . We have
N' = 3W" , where (W",N') is g-connected. Hence we get

(W',v,/N'] =0 in 17 __,BO<q> , and by 4.5 we can kill c by a

n-k
twisted O<g>-surgery.

6.10, The main result of this section is the following.

Theorem. Let & ©be a k-vector bundle over a closed n-manifold
M , where k > n+1 . Assume TM+€ is (g-1)-parallelizable, where
q < [2551 , and <v(7y+8),[Ml,> = O for all v € H*(BO;Z,) . Let
$ be a secondary cohomology operation of degree n associated to
a relation gaisi =0 in 6712 , where O < deg a; < q for all i .

Assume & is defined on the Thom class Ug € Hk(ME;Z2) . Then

éug = 0 with zero indeterminacy.

Proof. ILet j: M - D be the imbedding in the double of the disk
bundle of & as before. By 6.8 we know that D is (q-1)-para1-
lelizable., Now we do the surgeries on D away from M . TFirst we
can make D a (g-1)-connected manifold by standard surgeries on
imbedded spheres of dimensions < q ., If c € Hk(D;Zz) is the dual
class to M in D, we have <vDc,[Dl,> = <v(7y+8),[M]y,> = 0 fo?
all v € H'(BO;Z,) . Hence c can be killed by a twisted 0<g>-
surgery on D by 6.9. M is then homologous to zero mod 2 in D ,

and D is (g-1)-parallelizable.

We have

Tndet™¥(D;3) = EaiHn+k-ai(D;%2)

k-as
where a, = deg a; . By Wu's theorem a,: o 1(D;%z) - n+k(D;%2)

a.
D, where v, €H 1(BO3Z,) 1is the Wu

is multiplication by Vv
O i

class of oy (Vi = Vgqi is the ordinary Wu class). Since D is
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(q=1)-parallelizable with a; <q for all i , we have va'D =0

i
and the indeterminacy above is zero. Therefore we have an imbedding
je M - D satisfying a) - c) of 6.4. Hence @Ug = 0 with zero

indeterminacy.

6.11. We remark that the conclusion of the theorem may be obtained

even if the condition deg as < q is not satisfied for all i , What

we have used is only that the Wu classes Va'D vanish., This may be
1 .

true also in other cases. For example if D 1is orientable, we have

2i+1 _ Sq1Sq21.

V2i+1D = 0 as a consequence of the Adem relation Sq
If D is a spin manifold, then v4i+2D = 0 from the relation

Sq4i+2 - Sq28q4i-+Sq1Sq4iSq1 .

6.12. As an application of vhe theorem we may take § = M to be the
stable tangent bundle of an orientable M . Then TM+§ = 2TM is a
spin bundle, i.e. 3-parallelizable. Hence we can take q =4 . We
need also the condition <v(2TM),[M]2> = 0 for all v € H*(BO;%2) .

. 2
Since wzi(ZTM) = Wy

M and W2i+1(2TM) = 0 the condition is always
satisfied if n # 0 mod 4 , and if =n = 4i it is equivalent to

<v,,ull,[M],> = 0 for all wu € H'(BO3Z,) .

6.13., We consider the problem of deciding if the stable span of an

orientable M" is > 2 , Stable span M > 2 means that the tangent

bundle of M is stably equivalent to an n-vector bundle with 2
linearly independent cross-sections, and this is equivalent to the

existence of a lifting in the diagram

BSO, 5
e
/// v

M
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We assume n > 5 in the following and consider the two first stages

of a Postnikov resolution for the fibration BSOn_2 - B3SO .

n =1 mod 4) The primary obstruction is Wu_1M , and there is no

secondary obstruction.

n = 2 mod 4)

BSO
-2
A in
i %0 = 8¢° ’ o E 7
11d.n— q_ Ln_z // ,-7 ,] " > K( 29n)
////71 J/
M —> BSO ———> K(%,n-1) xK(Z,,n)
T W oW, 2

We have WnM = 0 from the Wu relations and Wn-1M = 0 by Massey
[9]. Thus we get a lifting 7, . From the generating class theorem
and the results of Mahowald, Peterson [8] we get

(wow, oM+ 7ya )U. € 8U_ , where U_ € H*(MT;Z) is the Thom class

of the stable tengent bundle 1 of M , and & 1is a secondary
operation associated to the relation Sq2(6Sqn'2) = 0 on integral
classes. ILet & be a secondary operation defined on mod 2 classes
by the relation Sq2Sqn_1+Sanq1 =0 in 012 . Then & is de-
fined on U, and can be chosen so that éUT c SUT . By theorem
6.10 and the remarks of 6.11 we get SUT = 0 with zero indetermi-

nacy. Hence T{*a = WZWn-ZM = 0 by a Wu relation. Hence there

n
is no secondary obstruction,

n =3 mod 4)

BSO
n-2
A
¥ 2 s
11an==Sq_1n_2 ;. 2By —> KGZz,n)
ATy

M —> BSO > K@,,n-1)
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By Massey [9]1 we have w4 =0 and get a lifting 1, . Let 2
be a secondary operation associated to the relation Sq_zﬁiqn'1 =0
on integral classes. The rest of the argument is as in the previous

case, and we find that there is no secondary obstruction.

n = 0 mod 4) The method does not work in this case, The assumption
<v21uM,[M]2> = 0 for all u € H*(BO;%Z) will exclude some manifolds

~

with stable span > 2 , and furthermore the secondary operation &

in this case is associated to the relation SqZSqn-14-Sq1Sqn +

Sanq1 = 0 , which is not covered by theorem 6,10 or the remarks

of 6,11,

6.74, Suppose €& and mn are stably equivalent, orientable n-
vector bundles over M® . Then for n even, £ and n are isomor-
phic if and only if x& = xn , and for n = 3 mod 4 , & and n
have simultaneously span > 2 . See E, Thomas [21] and [18]. There-
fore from 6,13 we have a new proof of the following result of

E. Thomas [19].

Corollary. ILet M be a closed orientable n-manifold. Then N
has a tangent 2-field if and only if %M = O in case n = 2 mod 4,

and always in case n = 3 mod 4.
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