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I.1.

I. INTRODUCTION.

In [10] Stermer proves, that if ¢ is a faithful, normal
state on a semifinite von Neumann algebra invariant w.r.t. a
group of *-automorphisms of the algebra acting ergodically on
the center, then there exists an invariant, faithful, normal,
semifinite trace, and ¢ is a Radon-Nikodym derived of this
trace., Hence if the group acts ergodically on the algebra, o
itself becomes a trace (and the algebra finite). The purpose of
this paper is to examine the situation, where ¢ no longer is
assumed to be a state but a semifinite weight. I refer to [1]
and [7] for the general theory of weights (also contained in
127) and to [2] and [12] for the theory of weights on von
Neumann algebras and the connection between weights and Hilbert-
algebras., For the general theory of Hilbertalgebras I refer to
[11] and [12], as well as to [5] for general von Neumann alge-
bra theory.

Basically the result is negative., The paper closes with
an example of a II_ factor on a separable Hilbertspace and an
ergodically acting group of *-automorphisms leaving a faithful,
normal, semifinite weight invariant, but not the trace.

Before this it is proved that if a normal weight, invariant
w.,r.t. an ergodic group on a semifinite factor satisfies a con-
dition, called L1—continuity, then it is the trace and is the
unique invariant, normal semifinite weight. The question whethsr
the uniqueness always holds (without the assumption of L1-contin-
uity) is laft open.

I use the notation from [5] and [12]. TFor a Hilbertalgebra
A is always the modular operator, J the isometric (unitary) in-
volution, # +the involution of the Hilbertalgebra etc. For a
weight o , 7% denotes the linear span of the definition order-
ideal 77l$ C My = {x]p(x¥*x) < 400}, etc. I take normal weights
in the sense of ([12]) (o is normal if it is the pointwise supre-
um of the normal, linear, positive functionals it majorizes).

I want to thank Erling Stermer both for his hospitality at
the University of Oslo, and for guiding my work., Apart from
general, helpful suggestions he formulated and proved Theorem ITL3.
Also I thank Alfons von Daele for helpful corrections and both him
and Alan Hopenwasser for stimulating discussions as well as Francois
Combes for fruitful conversations during his visit to the Univer-
sity of Oslo in December 71,
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IT. AUTOMORPHISMS AND HILBERTALGEBRAS

LEMMA II.1. ZIet O be a Hilbert-algebra, the Hilbert space
its completion, and M = 3ﬁ(CH) the left von-Neumann algebra,
Let u be a unitary operator on o , 5o that for all

g € O u1‘r(§)u'1 = m(ug) (esp. u maps Of onto J{), then

i) u is a #-automorphism of (O
ii) u dis an isometry of the Hilbert space cﬁa# ,
iii) u maps OU' onto OU

iv) u is a b -anti-automorphism of OU' and w'(un) =

1

ur'(n)u”' for all n € OC

b
v) u is an isometry of the Hilbert space ) P

vi) uAu._1 = A, uJu'1 =J .

vii) If £ €dl is left-(right-) bounded, then so is wug ,

and -1
urm(&)u” = m(ug) (resp.

urr'(%)u"1 = mn'(ug)).

PROOF: i) ﬂ(u(€1-€2)) = 111'r(§1-€2)u"1 = un(€.1),u'1urr(§2)u'1 =
m((ugy)+(ugy)) for all §,,8, € OL.
(ugq)e(usgy)

(ug)®  for all & e O1.

1l

m(ugqy)m(ug,)

so u(&y+8,)

=

Similarly ug

11) For £ e o [uslf = fug)®+ ()1® = F2)® 4 Jue)® -
1elZ + g2 = el .

Since O is dense in the Hilvert space <§9ﬁ3 u'Ot has
a unique isometric extension to é@ " , but as this will
be isometric in the norm from Je, this extension must

coincide with u itself.
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Let n €4 be right bounded.

For all & ¢ O : m(&)un = uu"1n(§)un = un(u"1€)n =
un'(n)u'1§ , so that wun dis right bounded and

m' (un) = uTr'('r})u-1 .

Let £ €df be left bounded.

For all n € OU : w'(n)ut = uu'1ﬂ'(n)u§ = un'(u'1)§ =
un(%)u’1n , @ 1 1is right bounded, so that vii) is
proved.,

Let & € Ol, then we have from i):

1

ga¥e = e - wlue)t - wliatue -

(= Taw) (w1 aFu) e

1
As O isdense in the Hilbert space c@# , JA® = the closure

1
of (u'1Ju)(u'1A‘°“u)|o.C . As u is isometric in @# y
i
the norm defined by (u—1Ju)(u'1A2u) is the same as
2 - -1 1
I H# , So that Jnr% = (u 1Ju)(u 1A‘eu) .

From the uniqueness of the Polar decomposition this gives

1.4 1

- < - 5y -
Jd =u 1Ju and A® = u A*u , so A =1u Au .

Especially it follows, that for all functions measurable
w.r.t. the spectral measures of 4 , u.f(A)u'1 = £(a) , so
uA-% = A'%ﬁ in particular, So u maps éZb into é@b
(so onto), from vii) and the fact, that

n € O' <=> n right bounded and n € ng then

iii) follows; from vii) iv) follows as in the proof of

i), and similarly v) as ii).
d.e.d.

The lemma and the proof are basically the same as LEMMA 2

in (107,
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Let now M be a von Neumann algebra, o a faithful, normal,
semi-finite weight on ut o, n¢ denotes the cyclic representation
associated with o , since ¢ is faithful it is an isometry of
M on nm(M) . From [2] and [12] I have the following:

0(cp = ’hycp , with the prehilbert structure of ¢ is a Hilbert
algebra, so that

O'(cp" = %cpﬂ 7'](9* and oﬁ(OTcp) = TTCP(M) , where aﬁ(%) is
the left von Neumann algebra of Cﬂ@ . cﬁﬂ$ is the completion of

Cﬁ; . Let ¢ be the canonical weight on «JZ(C%%) (f21, [12]),

from [2] or [12] it is then easy to see, that w°nm = .

Assume G is a group of *-automorphisms of M , and that
© is invariant w.r.t. G . As in ([2] and [4])we use the obvi-
ous generalization of the Gelfand-Naimark-Segal construction,
namely representing G on &f% in the following way; ii,is the
group of *-automorphisms of (JZ(CZ;) , {nw°g°n;1 | g € g} . Each
ag € ig is implemented by the unitary operator

ug§ = g(€) , where E ¢ Cﬂé = 7n¢

-1
and = T _°g°T
Og = Ty 8Ty

Since for x € ﬂm(QWw) = ﬂ(qnm) = ﬂ(Cﬁg) , x = m(¢)

w xuz' € = ugm(C)e” (8) = g(¢)+8 = me(0))E = ay(m (O))E =

ag(x)é , 88 T =7 on 7”@ = Cﬂé , so that

ugzcué1 = ag(X) s, X € n(Cﬁ%) ’

since
n(Cﬂé) is strongly dense in L (Czw> it follows, that

u implements .
g TP %g
From the above calculation it also follows that

u ﬂ(é)u-1 = m(g(¢)) = m(u_§) . So the following proposition
o

g g
is merely a summation of known facts:
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PROPOSITION II.2. Let M Dbe a von Neumann algebra, ¢ a faith-
ful, normal, semifinite weight on Mt , invariant w.r.t. a group
G of *-automorphisms of M . Then G has a faithful unitary
representation on cffm the completion of the Hilbert-algebra

at , 8 €G = u, , so that

®

ugn(i)u;1 = n(ugg) for all g € G and € € CE¥ .

Furthermore nw(M) = Jf(ng) and o = w°nm .

where rrcp is the representation of M on o%% induced by o ,

and § 1is the canonical weight on Jf((ﬁé) .
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ITI. INVARIANT WEIGHTS AND TRACES

DEFINITION III.T. Let M be a semifinite von Neumann algebra,
T a faithful, normal, semifinite trace., ILet ¢ be a normal

weight on Mt . We say ¢ 1is L1—continuous if for any sequence

of elements A belonging to the wnitball My , flafl; =0 im-

plies m(An) - 0, (Stormer)

LEMMA TII.Z2. In the above situation ¢ is semifinite; in fact

M > Mt

PROOF: Tet A € Mj be in /MY , then 4 = %A is a sequence
with [ZAll, = 0, so () =0, so @A) <+, i.e. AE m .
q.e.d.

REMARK: 1) In ([3], REMARQUES 4,11 (c¢)) Combes gives an example
showing that there exist normal, semifinite weights, not strictly
semifinite., The weights mentioned are all L1—continuous, as

they are derivatives of the trace on 05 fo) . SO L1-continuity
does not imply strictly semifiniteness. The other implication is

not true either, which the example in the next section will show.

2) As the trace on (3(df) majorizes the norm, every state on
G3(H) is 1. -continuous. So L1-continuity does not imply nor-

mality.

THEOREM III.3. Let M Dbe a semifinite von Neumann algebra with
center %? s, G a group of *-automorphisms of M , leaving ?g
elementwise fixed., ILet T Dbe a faithful, nbrmal, semifinite

trace on M¥ , and o a faithful, L1—continuous and G-invari-
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ant weight on MT . Let ¥ be a centervalued trace on M’ ,

faithful, normal and semifinite, Then V¥ is G-invariant.

PROOF: As in ([5), Chap.III.§4) we identify ﬁ? with ﬁg%z,v)
where 7 1is locally compact Hausdorff and v a positive measure
on Z., Let %?. be the positive measurable functions on 2Z (fi-
nite or not).

For all g € G Yeg dis again a faithful, normal and semi-~
finite centervalued trace on M' , SO thaz by ([5], Chap.III.$4,
Théortme 2) there exists a unique Q_ € %24. , 0 < Qg(g) <+4+co

o

l.a.e, on Z , so that

¥(g(A)) = Q - y(a) , for all A € M' .

By the uniqueness we get Qg'Qh = Qg-h l.a.e. for g,h € G .

Assume that Y dis not invariant, so that for some g € G ,
Qg #Z 1 . Then there exists a & > 0 , a measureble set Y (not
of measure O ) and possibly a new g so that Qg(g) <1-8 for
€Y. Let F be the projection corresponding to 1Y , I € %?.

We can choose a non-zero projection E €M , E <F S0
that 0 # 7(E) <+,

For all ¢ >0 we can find n € W , so that
0 < Qu(O)P(C) <& . ¢ ez,

that is Qg-F<e.F.

By ([5], Chap.III.§4, Proposition 4) there exists a normal trace

~

§{ on fé+,sothat T o= feov .,
T(g(E)) = w(¥(g™(E))) = t'f(Qg‘f(E)) = 1!;(QrglF‘l’(E)) <

<(eF¥(E)) = 4(e¥(E)) = ¢ 7(E) .
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so 1(g™(E)) - 0 ; that implies that o(g™(E)) = o(E) -~ 0 . As
¢ 1is faithful this implies E = 0 , a contradiction.

(Stermer) q.e.d.

Note that the proof is very similar to the proof of LEMMA 2.1, in
(091).

COROLLARY III.A4. In the situation in THEOREM III.3., every normal,

faithful, semifinite trace on M" is G-invariant,

REMARKS: 1) If o is majorized by a trace it is L1-continuous.
2) If ¢ is a normal state then o is L1-continuous.

See ([8], LEMMA 2,1),

Note in the following theorem that when G acts ergodically,

then ¢ dinvariant implies that o is faithful.

THEOREM III.5. Let M be a semifinite von Neumann algebra,

G an ergodically acting group of *-automorphisms of M . ILet

T be a normal, semifinite, G-invariant trace on Mt ., Tet P
be a normal, semifinite G-invariant weight on M* . Then @ 1is

a trace,

PROOF: Consider the standardrepresentation on dg@ . Let as in
({127,§13) N ve the set of all leftbounded elements, & , in o%;
such that m(§) € n_ , the definition ideal of 1 . From ([12],
§13, 13.33) we have the Polar decomposition of the closure m of
qul s m = A°K'" , K' positive selfadjoint on a%@ , and A a
unitary operator from d%; onto c%; , the Hilbert space corre-

sponding to T . As 1 1is invariant, the operator Vg defined
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1

on n_ by Vg(X) = u_xu_ (by PROPOSITION II.2 we identify

T g g
M and 56((7%)) extends to a unitary operator on JET , for all
g €G, For all g € G Vg°A°ué1 is then unitary from 0%%

T is positive selfadjoint on Jf

onto 0%; . Further ugK'ug ©

and for & ¢ N y 8 € G

1y -1
g 5%
-1 o (. R
g ) o (ugKruy
that u, maps N onto N (TLEMMA IT.1 and since T is invari-

m(g) = m(u ul'E) = ugﬂ(u = Vg(ﬂ(ué1€)) =

g &

"%°A(K'ué1§) = (Vg°A°u 1)% , Where we have used

ant).,
Since ug maps 71 onto 7L and is unitary, it is easy to see,

that ugK'u"1 and K' have the same domain (as KXK' is the clo-

sure of K'|q1) and that ugK'ué’1 is the closure of ugK'ué1lWL'

So we get:
-1
z )

— o (-] -1 o ;
m = (Vg A Ug ) (ugK u

But from the uniqueness of the Polar decomposition it then follows

that

-1
K! =K' .
ug U

As the ug's act ergodically on of’(Cl;)’ as well, K' = 1,
From ([12], §13, 13.35 and 13.40) it follows that A = 1 , so

that ¢ 1is a trace.

g.e.d.

Combining THEOREM III,3. and III.5. we get:

THEOREM III.6. Let M be a semifinite factor., ILet G be an
ergodically acting group of *-automorphisms of M . Suppose o

is a normal L1-continuous G-invariant weight on M* . Then 0}

is the trace and furthermore ¢ is the unique normal, semifinite

G-invariant weight on M.
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IV. AN EXAMPLE

THEOREM IV.1. There exists a II - factor, 3 , on a separable

Hilbert space, a faithful, normal, strictly semifinite weight,

on + , an ergodic acting group of *-automorphisms of .93 leav-
ing ¢ dinvariant, but which does not leave the trace on 58 in-
variant,

PROOF: Throughout the proof we will use the notation from (5),
CHAPITRE I, §9. The factor (B is chosen to be the factor of
type II., constructed in Théordme 1 ((5), I, §9). As the group
G wused in the construction, we specify G = @ , the rational
numbers,

The trace o on 03+ is defined by : For A € 03+ , A

has a matrix of the form

. s
R =Ty 4 Q[S_t , with T _, € O( (here = LG(Egv)

s,t
with v the Lebesgue-measure).
s,t € Q.

T, .
T corresponds to a I -function on IR hil and
(6] P [}

o(h) = ng(\z)dv(c) .

o) 9

(This is well-defined, since f > 0.)

Let now a be a positive, non zero rational number A1,

Define Q_ on LéGR,v) by

Qf(c) = a¥f(ac) , for C €T .

Then the following is immediate:

Q, is unitary, and for s € Q
’

=1 -
oy U0, = 7(2 , and Q7 = 21
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and, for g € I%? Tg being the corresponding operator in OC,
-1 -1
Oa qua = Tga , Where ga(g) = g(a” ()
Now we define 5a on d%' by the matrix:
Qa s = at
Ry ¢ = {
’ 0 else,

It is clear, that 53 is unitary and maps O%t on d%;t for
t €@ . (Note, that 0, obviously is not in (B )

Claim 1: ﬁa implements a *-automorphism of 03] .

Since 6@ is the weak clusure of CBO it is enough to show, that
for S ¢ d% 5 S(7 is again in 680
. o co

Let S=@(Tg)l£y,g€L®,y€Q.

The matrix of S is then:

R _ITguy S—t:y

s,t L 0 else,

. ~ T .
The matrix of O/ @(Tg)?ﬂyﬂa is defined by:

Il

The matrix element with indices s,t = J*Q —1§(T )Q!(Z

1
Ie Q JasJasé(Tg)zgyJatJatQaJt = Q(T )2( Jat ‘a T
{ Q, Tg'qua if a(s-t) =y v
0] else
f Qa TgQaQa %Q if a(s-t) = 5y } )
0 else
{ Tgaqgg a(s-t) = y } _
0 else
T Y s-t = z
{ 8g 2 1 (where =z = %) .

0 else
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But this is the matrix of

Q(Tga) 'ZZZ , SO

~.1 ~ ~~
0, ¢(T,) UND, = §(Tga) Z(fx
a

as 030 consists of sums of operators of this type, OQJ is

left invariant, so that the claim follows.,

Claim 2: ¢ dis not invariant under this automorphism of CB .

Let S Dbe as in proof of claim 1, with y = 0 . RO o = Tg 5
3

with some g € ﬂ$). 57158 - $(T_ ) , that is the (0,0) matrix-
a a g,

element is T S0

g, ?
o(8) = _ERg(C)d\)(C) and
(87" 83,) = J;Rg<a‘1g>av<c> . aj;Rg(c)dv(g) :

As a £ 1, claim 2 follows by chosing a g € ﬁib, integrable

w.r.t., Lebesgue-measure and not a zero-function,

+
Now we define the weight ¢ on aS .
+
As on page IV.1, for A € (3 , define

va) = [ 200 por av(e) , wmere £ € T

is derived as on page IV, .

Consider the intervals [n,n+1[, where n € 2 and n >1 or

<=2 , and EK%T , %[ -%,-—E%T[ , n € N ; they form a partition

of }-o0,0[UJO,o[ . Calling them I, (giving them some

ordering) consider the pos. lin. normal functional on 05 defined

by ¥, (4) = JI £(0)+ppy av(e)
n

Consider the projection @(TXI ) € 03 , where xp  is the charac-
n n
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teristic function for I_ . Since 1-8&(T ) = &(1-T ) =
n *I, XTI,

@(T1_X1n) , and wn(é(T1_XIn)) =0, Suppy, @(TXIn) ; So the

¥,'s have orthogonal support, and E ¥, = ¥ , so by ([3] Prop.4.2
and 4.5) ¢ 1is strictly semifinite. Also it follows, that

is normal,

¢ is faithful, since if for some S € 03  4(S) = 0 , then

vn(S) = 0, so that, as wn(A) = @(A-Q(Tg)) where g(¢) =

T%T' xIn(g), f.g = 0, so that f is zero a.e. on I, and so

on IR ., From the proof of ([5], Prop.1, Chap.I,§9) the proof

that this for a positive S dimplies S = 0 carries over,

Yy 1is invariant with respect to the constructed *-automor-
phism of (B . To prove this, let S ¢ 3 . S has matrix:
Ry t = Toot Us_y » Tg_y € OC. TLet T correspond to the ILg-
function f .

Then ¢(8) = Lﬁf(C)T%T dv(¢)

0, SQ, has as its (0,0)-matrix element J ﬂ J J’ SJ’JOQaJO =

Q 1T Q, which from the beginning of the proof corresponds to

the Lm-function fa .
so ¢(87'sf) - gﬂfaml—;}- av(¢) = j;Rf(a”m-l-;—l av(¢) =

J;Rﬂc)a—fﬂ-aav(c) - j;RﬂoT;—, av(¢) = ¥(8)

lavd ~t
Consider now a unitary operator v from &(00) = OC ., 1Its ma-

trix has the form
u s =1
= { where Tu is a unitary from O(.
else
Set S be in B, with matrix Ry o The (O 0)-element in the

matrix of 'L% 1:32}' is then: *?7" SQTJ oTu = RO o
9
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since R, ¢ Ol , which is abelian., From this it follows, that
9 ~J

the *-automorphism of M , that v implements leaves { invari-

ant,

Consider now the group of *-automorphisms of M spanned by the

~

*~automorphisms implemented by Q. »

from OU, It is clear that this group leaves { u@nvariant, but

a € Q+ and all the unitaries

not ¢ . So to prove the theorem it is enough to prove that it
acts ergodicly on M .

Assume that S € (B is invariant under the group. Then S com-
mutes with Cai , 8o that by the proof of Théortme 1 and by
Lemme 2 in ([5], Chap.I,$9) S itself belongs to OL. so if

S has the matrix: Rs,t s

T
Rs,t = { Of

But from P.IV.4, 5;18 5a has as its (0,0)-element in its ma-

s = %
with f € I%D V) .
else

trix Tf . So for all a € @+ , I = fa almost everywhere, so
a
f is constant a.e. and so S 1is a constant, so that the group

acts ergodically.

q.e.d.
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