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1. Introduction. If (M is an asymptotically abelian C*-algebra

and p 1is an extremal invariant state with cyclic representation
LA the structure of p and np(01)" is quite well understood
if np(01)" is a semi-finite von Neumann algebra [8,13,15,16].

It is the purpose of the present paper to study the general case
when np(Oi)" may also be of type III . This is best done if

we define the spectrum Spec(p) of a state p of a C¥-algebra
to be - roughly - the set of real numbers u such that there is
A eQl with p(A¥A) = 1 such that wup(BA) is approximately
equal to o(AB) for all B € QU (Definition 2.1). For exampel;
p is a trace if and only if Spec(p) = {1} , and if p is a pure
state and not a homomorphism then Spec(p) = {0,1} . If X, is
the cyclic vector such that p(A) = (np(A)xp,xp) for A € O,

we may cut down np(Oi)" by the support Ep of the state wxp ;
and define the modular operator of Tomita of xp relative to

this smaller von Neumann algebra, If we extend the modular oper-
ator to be O on the complement of Ep it turns out that its
spectrum equals Spec{p) (Theorem 2.3). Together with the resent

results of Connes [2, 3] this result gives us a useful tool for



studying the spectrum of p . Now assume (U is asymptotically
abelian and that p 1is a strongly clustering invariant state,
e.g. 1if p is an invariant factor state., Then our main result
(Theorem 3.1) states that the nonzero elements in Spec(p) form
a closed subgroup of the multiplicative group BT of positive
real numbers, Furthermore, if @ is a state of (1 quasi-equiva-
lent to p then Spec(p) < Spec(w) . This last statement shows
in particular that Spec(p) is a *-isomorphic invariant for
ﬂp(01)" . Since every proper closed subgroup of R is ecyclic
we have obtained an isomorphism class for each wu € [0,1] , where
1 correspond to the group {1} and 0 to BT . It seems that
Spec(p) most often equals RY . This is in particular the case
when O is asymptotically abelian with respect to a one parame-
ter group and p is an extremal KlNS-state (Corollary 4.5).

We shall follow the fheory of asymptotically abelian C*-al-
gebras as developed in [15]. Thus we shall say a C¥-algebra O
is asymptotically abelian with respect to a group G of *-auto-
morphisms if there is a sequence {gn}n=1,2,..., in G such that
l%m!!{gn(A),B]H =0 for all A,B € O{. This definition is suffi-
ciently general to take care of most cases of physical interest
and extends in particular the original one of Doplicher, Kastler,
and Robinson [5] and Ruelle [12], in which case G is the trans-
lation group R™ . We refer the reader to (6] for a general sur-
vay of the theory of asymptotically abelian C*-algebras, It is
unclear at the present whether our results can be generalized to
other definitions of asymptotically abelian systems.

As indicated above the main part of our analysis will be con-
cerned with the modular operator of Tomita. We refer the reader

to the notes of Takesaki [17] for the theory of Tomita and Takesski.



For the general theory of von Neumann algebras the reader is re-
ferred to the book of Dixmier [4]. We only remark that the strong
-*%* topology on a von Neumann algebra is generated by the semi-
norms A - [JAx|| + l|lA*x|| , and that the usual density theorems hold

for this topology.
The author is indebted to A, Connes for very helpful corres-

pondence,

2, The spectrum of a state. In this section we shall give two

equivalent definitions of the spectrum of a state and then obtain

some simple properties of the spectrum.

Definition 2.1. Let O be a C*-algebra and p a state of C7.

Then the spectrum of p , denoted by Spec(p) , is the set of real

numbers u such that given ¢ > 0O there is A € Cl for which

p(A*A) = 1 such that
L
| wo(BA) - p(AB)]| < €o(B*B)*®

for all B e OL.

e shall soon show that u must be non negative. A modifi-
cation of the same argument shows that in the definition we might
as well have assumed u to be a complex number, It is clear that
the definition can be generalized to other linear functionals.

Let p and { be as above, Let ™, be a representation
of o on a Hilbert space 3(p and Xp a unit vector in d{%
cyclic for np(Cﬂ) such that o(A) = (ﬁp(A)Xp,Xp) for A € (O.
Let 029 denote the von Neumann algebra ﬂp(Cﬂ)" . Let EE:
[eﬂéxp] . Then X, is a separating and cyclic vector for the

von Neumann algebra EpOQOEO acting on Eo&f%. Let By be the



modular operator of x, relative to E &%Ep , and consider it

as an operator on &fp by defining it to be O on (I-—Ep)a(0 .

Definition 2.2, With the above notation we call Ap the modular

operator of the state o .

Theorem 2.3, ILet Ol be a C¥-algebra and p a state of O with

modular operator Ay o Then Spec(p) = Spec(Ap) .

Proof: Suppose u £ 0 and u € Spec(p) . In the notation intro-

X = X

duced above drop the subscripts o , so R = OQO,E =B 00

p 9

A = Ap s M=m_ . We first show u Dbelongs to the spectrum of

w, considered as a state on ERE . Since w(0l) is dense in
X in the strong-* topology it is clear that u belongs to the
spectrum Spec(w,) of w, as a state of ®. .

Let &6 > 0 be given, Choose € , 0 <e <1, so small that

! max{e,e(u+e)l < 5 . We assert that if A € (R is such that

2lul”
“AX“ = 1 and
1) lu(ax,B¥*x) - (Bx,A*x)| < e!Bx!l
for a1l B ¢ R, then 'EATxI® > 1-5 .

For this 1let mn = max{e,c(u+e)l . Let B = A¥ , Then 1)
gives
2) lu-llaxx!

hence HA*XHZ < u+ella*x{l . If {a*x! > 1 we have since ¢ <1

Ha*xll < r+e <u+e .
i

Thes

Thus |!A*z|l < max{1,u+e} . Now apply 1) to B = EA¥ ., Then we

have
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3) lu-(Baxx?| < ellBa*x| < ella*x] < n

In particular, since mn is arbitrarily small we have that u >0.

Now apply 1) to B =EA¥E ., Then we have

4)  |u|BAEx|I® - |EA*Ex ] %] < ¢IEA*Ex| <7 .

Since u #Z 0 we then have by 3) and 4)
=1

(@)
A

< 1-'1BaEx % =u julBADx 17 - ul

w T ulEAEX I1? - IEA¥Ex!?| +u” '} IEA*E ! — u

< u—1'n+u"1n <8,

IA

The assertion follows., Note that if B € E@E then

| w(EAEX,B*x) - (Bx,EA*Ex)]| =
'u(Ax,B*x) - (Bx,A*x)| < ellBxil .

1}2

Since 1 > IEAEx!“>1-8 it follows that u € Spec(wXIE(RE) , as
we wanted to show.

Restricting attention to ERE we may thus assume x is
separating and cyclic for R (so E=I). Let J be the conjuga-
tion so that Ja%Bx = A"2IBx = B*x for 3B ¢ & [17,Thm.7.17.
Since the Tomita algebra (called modular algebra in [17]) is

strong-* dense in (R we may assume A belongs to the Tomita al-

wj

gebra, and thus Ax belongs to the domain of A (see e.g.

proof of [17,Thm.10.1]), Then 1) becomes
i i
lu(Ax, A"2IBx) - (Bx,Ja%Ax)| < elBx| ,
or
1 1
| (uAT2Ax,JBJIx) - (ARAX,JBJx) | < elld BIx!|
Since JRJI =®R' by [17,Thm.12.1], and x 1is cyclic for R we
have _
1 1
l(ua™2Ax - aRAx,y) ] < ellyll

for all y € 2. Thus we have



1 -1 i
[a72(uI - a)Ax" = [lua™?Ax - A%Ax|l<e .
-1 i i
Now A *(u®I+ A®) > I . Hence we have

i i . i, 1 i
I (uBI = a%)Axll < |A72(uRI + %) (U1 - A7) Ax]|

= a7 (ul - a)Ax]| <c .

Since Ax 1is a unit vector and e is arbitrary u% € Spec(A%),
hence u € Spec(a) .
Now suppose u = O € Spec(o) . If O £ Spec(a) E =1, so
X 1is separating and cyclic for (o . Furthermore since O £ Spec(s)
1

there exists k > 0 such that A% > kI , By 1) we can for each

integer n find A € (K such that HAHXH =1 and
| (Bx,A)x)| < 1/nliBx]]

for all B € (X . Since x 1is cyclic we have HA;xH <1/n for

each n . Thus
T/n > Ia¥x! = e x!l = 4% x)| > kla x|l = x
T H i noo: . n = i n e

This is a contradiction for n sufficiently large. Therefore
0 € Spec(a) , and we have shown Spec(p) < Spec(ar) .

Conversely assume u € Spec(A) . We assert that 0 €
Spec(A'%(uI-A)) . Indeed, if u =0 then 0 € Speo(A%) =
- Spec(A”%(OI-A)) , So the assertion holds for u =0 . If uZ0
choose a spectral projection ¥ for A such that FA and ZFA_%
are bounded and u € Spec(FA) . Let € > 0 and choose a unit

1 A
vector y € Faf such that !I(ul -a)yl < €/IlFa™2|| . Then we have

+ -
1a72(uI - a)y!l = 1aAT2F(ul - &)yl

a1
12 R | (ul - )y <€ .

IA

1
Thus O € Spec(A”2(ul -A)) as asserted., Now the Tomita algebra
a
is dense in the domain of A *(ul-A) , (see proof of [17,Thm10.,1])

Therefore if € > 0 dis given there exists A 1in the Tomita alge-.



bra such that [Ax!! = 1 and
-1 1
lhua™2Ax - A%Ax|| < e .
Therefore if B € 52 we have

lu(Ax,B¥*x) - (Bx,A*x)]| =
1 1
| (ua™2Ax,JBx) - (A%Ax,JBx)| < ¢||dBx|| = llB| .

Thus u € Spec(wx) . Since w(0Ol) is strong-* demse in OQL,

u € Spec(p) . The proof is complete,

Corollary 2.4. Let Ol be a (¥*-algebra and o a state of (X,

p(A) = (np(A)xp,xp) for A € Q0. Then

i) Spec(p) is a closed subset of the non negative real num-

bers such that 1 € Spec(p) .
ii) If u £ 0, u € Spec(p) them u~' ¢ Spec(o) .

{1} 4if and only if p dis a trace.

iii) Spec(p)

{0,1} if and only if w, 1is a trace on np(CﬂY
p

iv) Spec(p)

but o is not a trace on (1.

Proof: i) Since 1 € Spec(Ap) and Spec(Ap) is a closed subset

of the non negative reals, the same is true for p by Theorem 2.3.

ii) Since u#ZO0, u € Spec(Ap) implies u! € Spec(Ap) by
(17,Thm.7.1], ii) follows from Theorem 2,3.
iii) If p is a trace then p(AB) = o(BA) for all A,B € Ct.
Let u ¢ Spec(p) . Then
lup(BA) - 0(AB)] = |u-1]|]p(4B)]

for all A,B € (. If u# 1 let e = %lu-1] . Choose Ae(X
such that p(A*¥A) = 1 and such that
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2
lu=-1]1o(aB)| < &{u-1lp(B*B)=

L
for all B € Ol. Thus |o(AB)| < 3p(B*B)? for all B . In

particular if B = A* we get 1= p(A%A) =p(AA*)< %p(AA*)% =%,

a contradiction, Thus u =1 ,

Conversely, if Spec(p) = 1 +then by Theorem 2.3 SpaﬁAO)
= {1} , so w, 1s a trace on np(Cﬂ)", see e,g, proof of [17,Thm.
13.1], hence p 1is a trace on (Y.

iv) Assume Spec(p) {0,1} . Then the spectrum of AOEp act-

ing on Ep&fp is {1} , where B, = [np(Cn)'xp] . Thus, as above,
wxp is a trace on Eonp(Cﬂ)"Ep , hence a trace on np(O[)'. By

iii) p is not a trace. Conversely, if w is a trace on WJODZ

%o

but o is not a trace, then as above the spectrum of ApEO is {1},
hence Spec(AO) = {0,1} , so by Theorem 2.3 Spec(p) = {0,1} .

The proof is complete.

3., Asymptotically abelian C*-algebras, This section is devoted

to the main result on asymptotically abelian C¥*-algebras and its
proof. Following [15] if O( is & C*-algebra and G a group

of *~automorphisms of O(, we say Ol is asymptotically abelian

with respect to G if there is a sequence {gn}n>1 in G such

that whenever A,B ¢ O +then

lim |[g, (4),BI =0,
n-=0

where [, ] is the Lie commutator, A G-invariant state p of

Ol is said to be strongly clustering (or strongly mixing) if for

A,B ¢ O1 we have

lim o (g, (4)B) = o(4)0(B) .
n-—>>x,



-9 -

We shall need a concept which is slightly more general than that
of quasi-equivalence., If p and w are states of Ol we say wu

is quasi-contained in p 1if the cyclic representation L of w

is quasi-contained in that np of p 3 in other words L is
quasi-equivalent to a subrepresentation of np . It is easy to
see that @ 1is quasi-contained in o if and only if w = wem

where ® 1is a normal state of ﬂp(O1)" .

Theorem 3.1, Let OU be a C*~algebra which is asymptotically

abelian with respect to a group G of *-automorphisms. Suppose
p 1is a strongly clustering G-invariant state., Then the nonzero
elements in Spec(p) form a closed subgroup of the multiplicative
group of positive real numbers, Furthermore, if w is a state

of Ol quasi-contained in p then Spec(p) < Spec(w) .

We shall first prove a few lemmas, Let as in the proof of
Theorem 2.3 m be a *-representation of CH on a Hilbert space
Hd , x a unit vector in ¢ cyclic for mn(({) such that p(A)=
(m(A)x,x) for A € Ol. Tet R=n(0D" , let g - U, be a uni-
tary representation of G on d€ such that ng = x and m(g(4a))
- Ugn(A)Ué1 for g €@, sc Ol. Let I  be the orthogonal
projection on {y e ¥{: Ugy:y for all g€ G} . Then E, = [x]
is the one dimensional projection on the subspace spanned by x ,
since p is extremal G-invariant by [15,Thm.4.4] and therefore
E, = [(x] by [15,Thm.3.3]. Let {gn} be a sequence in G such
that 1Iilm{![gn(A),B]!! =0 and 1nimp (gn(A)B) = p(A)p(B) . Then
by [15,Thm.4.4] U_ - [x] weakly, and if A € &{ then

-1 ®n .
U m(A)UD' - p(A)I weakly. Iet E = [Rx] be the support of w
gy g x
on R . Let A be the modular operator of the state p (Defin-

ition 2.2) and J the conjugation of the Hilbert space E¥f de-
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fined by x , so JEREJ = E®R' by [17,Thm.12.1]. Extend J
to all of Jf by defining it to be 0 on (I -E)o€. Thus J =
JE =EJd . Since ®w, 1s invariant under the automorphisms T -
U nUTl its support E is invariant. Therefore ZEUg = UgE for

g £
all g € G .

Lemma 3.2, Let A € w(Ol) . Tet y e of . Then

T -1
lim ng AT

g vl = laxtllyl
n-aco n n

Proof, For B,C € 01 we have

1iml[g=1(c),B]" = 1im|[B,&7 (0)]! = 1lim|lg (B),c1! = O
n R n n n n

. -1 . -1 .
and limp (g, (C)B) = limp (Bg, (C)) = limp (g, (B)C) = p(B)p(C),
so that the sedquence {g£1} have the same properties as the se-
quence f{g_} . Thus for B € 01l we have weak lim U'1n(B)U =
n n n gn
p(B)I . Thus we have for A € m(C)

1 -1

=1 2 . -
1imljUT 'A U = 1im(U” AU UT'ATU
- 1im(UTA*A T y,y)
&n ©n

It

’&)X(A—)\:A) (yay)

I

lax!|?ly ) ®

The proof is complete.,

Temma 3.3%3. Let e > 0 Dbe given. Let A € m((1) be chosen so
that = lAxll <EAxll+e. Let y € EaC.
Then we have

Lin | 1B, AUz 3l - Iyl | < ells]
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Proof. We first consider the case when y = B'x with B' € 62&

Since Ué1EIJ =E for g € G and weak limU% = [x] we have

g n n

) -1 2 i -1 N
1inlEU_ AUT B'xl|© = 1im(U_ A*UT'EU_ A ' '

. : -1
=1 A*T A
1m(Ugn Ugn

= 1im(U_ A*EAU"
gn gn

B'x,B'x)
x, B'"*B'x)
= :Lim(Ug A¥EAx,B'*B'x)

n

= ([x]A*E Ax,B'*B'x)

= lEax)®Bx|? .
Now if w,y,z € €  then
1) | fwll =yl | < Qw=zll+ | lz] -yl | .
Indeed, if |lwll > lyll then 0 < Wl -lly] < llw=-2] +lz] - llyll <
lw=zll + | lzll- iyl |, and it fw] < lly|| then Iyl - llwl < llyll - ||=!
illwezl < lw-zl+ ! lal-lyll.

If y € E¥ let & >0 be given. Since E = [R'x] we
can choose B' € R' such that [|B'x]| = |ly!| anda [|B'x-yl <
8/2||All . From the case y = B'x we can choose mn; so large

that if n > n, then

LIET. AU Brxl - IE axll|B'x!l | < 8/2 .
€n  &n | ‘
Thus by 1), since [IB'xl| = llyll, we have for n > n,

[ 1BEU, AU, yi-lylt]<
n n

-1 -1
< lEU_ A -B'x)ll + |[IEU_ A rxil - Uyl
— i gn Ugn(y X)! + ln gn UgnB X'i llyl '
< ally-B'x] + [ [Bax] - 1] 7] +8/2

<8/2 + eyl +8/2 = & + elyll .
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Since & is arbitrary the lemma follows,

Lemma 3.4, Let u € Spec(AE), where AE is considered as an
operator on EJf . Let € > 0 ., Then there is A in m(OU)

with the following properties:

i) laxll = 1,
ii) |EAx|l > 1-¢ .
iii) Hu%Ax—JA*JXH <e .,
iv) If y is a unit vector in M +then there is n, such that

if n >n, then

1 -1 -1 i
BE(u® A - A¥U | < (2 .
B(u Ugn Ugny JUgn glqu) Il < (2u®+3)e

Proof. Since wu € Spec(AE) there is by [2] B in EQE such
that ||Bxll = 1 and !!u%Bx-JB*JXH < €/2 , gSince n((Ql) is
strong-* dense in ® and E €® we can find A € n(Q{) such
that ||[(A-B)x|l < min{e,e/tlu%}, l(A* - B*)xl| < €/4, and ||laxl| = 1.
Then 1 = |IBx|| <||lEAx ||+ [|[E Ax - Bx|| < ||[EAx || + ||Ax - Bxl| <||EAx]|| + ¢,
so i) and ii) hold.

iii) follows since we have

1
luax - J A* Jxl] <

1 1
!!u%Ax - u®Bx!l + lu®Bx - 3 B* Jx!| + || B*Jx - J A* Jx||
1
< u®||(A-B)x!l + €/2 + || (B*~A*)x]|
1 1
<u? €/4uR+ €/2+€/4 = ¢ ,

if u £ 0, and trivially if u = 0 .

IA

In order to show iv) we first assume y = Cx with C= I(00).
1
Let 2z = uPAx-JA*¥Jx , Then by iii) llzll < e . By Iemma 3,2
and definition of (O being asymptotically abelian we can choose

an integer n, so that if n > n, then
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-1
NMfu_ AU ¢l <
-1
U_CU
| €n &n
Let An = UgnAUéll . Since J = JE = EJ we have JAnJ =

JEU_ AUT ' EJ € JEREJ = ER' . In particular, JA JECE =
€n &n n

ECEJAnJ . As remarked before ILemma 3,2 EUg = UgE for all

g € G . Thus, since Ug:x =x for g , it follows from [16,Lem.2]

2l <llexllz] + & = fl2fl + ¢ <2 .

than JUg = UgJ for all g . We therefore have

s
IB(uA Cx-JgAaXJox |} <

A

1 1
u? ‘!E[An, clx|| + lIE(C u?A X - JA*JE CEx) ||

1 1
u®e + "EC(u® A x - JAX Ix)||

A

A

1 1 ,
u2e + %!U"C U_. (uPAx - JA* Jx) |
&y €n '

< u%e+2€ = (u%+2)e .
if n>mn, . Now let y be an arbitrary unit vector in ¥ .
Since x is cyclic for mn((®{) we can choose C in m(0() such
that ljcxll = 1 and lcx-y|l < ¢/lAll . Tet n; be as above.

Then for n > n, we have
L
IE(u®a,y -3 &53y) || <

% 3,
IEu® A (y-0x) | + [|B(uZA 0x -J A% TCx) || +

IA

+ |JEgAxT(Cx-y)l

1
2|

1
< uRllA Iy - cxll + (uP+2)e + T ax gl [ ox-y|

!
1 1 a
< ufe + (uB+2)e+¢ = (2u®”+3)e .

The proof is complete,

Lemma 3.3, Let u,v € Spec(AL) . Let e > O . Then there exist

A,B € w(0Ol) and an integer no such that if n > n, then

1) laxd = UBx! = 1 .
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. -1
ii) |WEBU_ AUD x| -1] < 2¢
gl’l gn

+ -1 -1 i 1
iii) NE((uv)®BU, AU] x-J(BU_, AU. )*Ix)ll < (2(uv)®+ 2v® +1)e.
=% €n &  &n '

Proof: TLet A be chosen so that i), ii), iii) in Lemma 3.4
hold. Apply Lemma 3.4 once more to find B € mw(Ol) such that
IBxll = 1 and if w = vPBx - JB*Jx  then lwll < e/llall . Now from
Lemma 3.4 and its proof there is an integer n, such that if

1

n>n and A =U_ AU then
=M n 8, &n

1 1
HE(uZAnBX-JA;;JBx)H < (u® +2)e .
Also from the proof we have [[[A ,B]l <e for n >n; . Thus
for n >mn, we have
. .
IE((uv)®*B A x-J(BA )*dx)| <

i L
|E(uv)®(B,A, Ix|| + [|[E(uv)®A Bx - JA¥B*Jx I

A

1 1 1

< (uv)®e + vZIE(uA Bx - JAX I Bx) || +
A

+ |EJ A;;J(szx—JB*Jx) I

1 1,1
< (uv)®e +v(u+2)e + HAnHHwH

1 1

< (2(uv)® +2ve+ 1)e ,

and iii) is proved.
To show ii) we choose by Lemma 3.3 n, > nq such that if
n >n, then

A, Bxl - 1] = [JE4, Bxl - [Bx]| < ¢ .

Thus we have

HEBA xll - 1] < IE[B,A Ix|| + [EA Bxl -1] < e+e = 2¢ .

Thus ii) follows, and the proof is complete.
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Proof of Theorem 3.1. We first show that Spec(p)\{0} is a mul-

tiplicative group of positive real numbers., By Corollary 2.4

1 € Spec(p)N{0}, and if u € Spec(p)~{0} then so is w! . There-
fore it remains to show Spec(p) is closed under multiplication.
Let wu,v € Spec(p) , uZ0 #Zv . By Theorem 2.3 u,v € Spec(AE).
By Lemma 3,5 if ¢ > O there is S € ERE (e.g. S =EBA E)
such that !!ISxll-1] < 2¢ and

”(uv)%Sx-JS*Jx[]< (2(uv)%ﬁ+2v%4.1)e .

Since ¢ is arbitrary it follows from [2] that wuv € Spec(a),
hence uv € Spec(p) by Theorem 2,3, and Spec(p)~{0} is a multi-
plicative group. By Corollary 2.4 Spec(p) is a closed subset
of the non negative real numbers. Thus Spec(p)~{0} is a closed
subgroup of the positive real numbers.

We next show that if o is a state of O{ quasi-contained
in p then Spec(p) < Spec(w) . Then w = w°m with ® a nor-
mal state of (X, . We first assume » has support E . Since x
is separating and cyclic for ERKE , @ = Wy with y a unit vec-
tor which is separating for EXE [4,Thm.4,p.233]. ILet u # 0 ,
u € Spec(p) . Then as above u € Spec(AE). By Lemma 3.4 there

is A € m(Ol) such that l|Axl| =1, IEAx||> 1-¢ , and if A =
1

U, AU,  then there is n, such that if n > n, then
- 1 z 1y

+ i
2) [u*EA y-JAxgyl < (2u¥+3)e .

By Lemma 3.3 there is n, > ny such that if n > n, then
3) Ayl -1] <e,

Choose B € m((7) such that !Bx-yll < min{e,¢/||AN} . Since OT
is asymptotically abelian there is Nz 2 N such that if n 2Nz

then H[Aﬁ,B]H < ¢ . Thus we have
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1
- T - B -
HEA;;By u® JA Jy Il =
1
- | : 2z !
= [BA¥y -u*J4Jy

1
B A% (y- ! -u®
< BAX(y-Bx)Il + ,_EA;;BX u JAnJBXH +Uu

W=

34,3 (y-Bx)|

1 L
< e + HEA;;Bx-uZEBE JA JTx I+ uRe

1 2
< (WP 1)e+ I[AX,BIx| + IEBAXx-u"EBEJA JTx|

N

1 , 1
(u® +2)e+ I!EBUgn (A*x =uR JAT %) |

1A

N S .
(UP +2)e+ !!BUg (A*x - u®gagx)l .
n

By Lemma 3.2 +this converges to
1 1
(u +2)e + IBx|| lA*x - u? T L Tx]]
1 . kS
= (u®+2)e + IBx!l {|TA¥Ix - u® A x|
1
< (U +2)e+ ellBx!l |
Since ||Bxl| < 'yl +e = 1+¢ , we have that there exists n, > ns
such that if n > n, then
, 1 1 1
4) &!EA;AIEy-uzJAnJyH < (uP+2)e+e(1+e)+e = (UP+4+¢)e.
By 2) we have
a L
5) [uEA Ey - JA% Iyl < (2u®+3)e .
et P =[EREy] . Then P ¢ ER' , and y is separating and
cyclic for EREP . By 5) we have
1 1
HuszAnEy-PJAgJPH < (2u”+¢)e .
By 4) we have
1 1
- *-§ -)ev‘t-p RNl ) 112
!{(PDAnE) y-u*(PJAIR)y!| < |BAYEPy -u JAnJPyH

1 2
= HEA;ilEy -u?-JAnJy!t, <(ufP+4+¢e)e .

Pinally [PEAEy! = 1B EPy| = |BATy | = B4y, so by 3)
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HIPEAnE vl =yl < e . Therefore by [2] u Dbelongs to the
spectrum of A , hence by Theorem 2.3 u € Spec(wy) = Spec(w) .
Since Spec(w) = Spec(w) , u € Spec(w) . |

In particular we have shown that Spec(AE) = n Spec(AQp) ;
where the intersection is taken over all faithful gormal states
» of ERE . By definition n Spec(Acp) equals the invariant
S(E(RE) defined by Connes [2]. If ERE is semi-finite then
S(EQRE) is either {11, or (0,1} . Thus either o is a trace
or wx!R' is a trace by Corollary 2.4, If R is finite 1let &
denote its center, Let & be the centervalued trace on (R L4,
Thm.3,p.267]. By uniqueness of & [4,Thm.3,p.267],

g
wx(Ugé(T)U;) = u,(8(1)) , so that (w [E)°¢& is a G-invariant

P -1 -1
U (U ' T = € . ) =
2 ( = Ug)Ug 3(T) for all T e R Thus ULX(Q(UgTU ))

normal state. By uniqueness of w, [15,Thm.3.3] w = (wxlé) ° 3§,

so w, is a trace, hence so is p , and Spec(p) = 1 by Corol-
lary 2.4. Thus if & is finite Spec(o) = {1} = s(R) , and if
0? is not finite then SR = {0,1} = Spec(p) . Therefore in
either case Spec(p) = S(R) in case S(R) is defined, and
Spec(p) © Spec(w) for any state of O quasi-contained in p .
We now consider the case when EQE is not semi-finite.
Then (R is not semi-finite, hence is of type III since the auto-
morphisms T = UgT Ug1 act ergodically on the center B of i
(15,Thm.3,3]. Then as remarked in [3], O € Spec(w) for all w,
hence we may assume u ¢ Spec(p) , u # O . Furthermore, since
(Fl is of type III, every normal state of 1}? is a vector state
[4,Cor.9,p.322]. Let Wy be a vector state of R. ILet F be
its support, F = f@'y] . Since [Ry]l <I = [Rx] we have
rRy] £ [Rx] , hence by [4,Thm.2,p.231] [RYy] <X [R’X] , or

FXE . Therefore there is a partial isometry V in OQ such
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that V*Y = E1 <E, V¥ = F , Since EIRL has a separating vec-
tor E 1is countably decomposable [4,Prop.6,p.6]. Now the central
carrier CF of F equals that of Ey . Thus ECF ~E1 ~F by
(4,Cor,5,p.320]. Therefore FRF =~ E.lﬂ E, = E(RECF . Suppose we
have shown Spec(p) < S(E(RECF) . Then Spec(p) c S(FRF) ,hence
Spec(p) < Spec(wy) , and Spec(p) < Spec(w) for any state w of
Ol quasi-contained in p . It therefore remains to consider the
case when y € EQ where Q 1is a central projection in R and
the support F of Wy equals EQ .,

Let 2z be a vector in E(I-~-Q)of which is separating for
ERE(I-Q) , e.g. let z = (I-Q)x ., Then y+z is separating
for ERE and y+z ¢ Ea€. By 4) and 5) there exist a con-

stant k and an integer n, such that if n 2 n, then
|EAXE(y+2) —u%JA.nJ(y+z)H < ke
!!u%EAnE(y+z) -JAI*IJ(y+z){| <ke .
By 3) we further have
HEA B(y+2) |l - lly + 2ll] < elly+z2] .
Thus we have
HQEA;‘IEy-u%QJAnJyH
= IREAX(y+2) -u%QJAnJ(yH’.)H <ke
and similarly

!!u%EAnEQy-JA;;JQy!! <ke .

Finally, by Lemma 3,3 !IEAnEQ.VH = |EA ¥y | converges to vl .
As in the case when support w, was E we let P = [EREQy] .
Then P € EQR'. If we let S =PQEAE and T = PQJAXJP then

S € PQERE and T € (PQERE)' and for sufficiently large n>n,

we have
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E
lis*y - u?T*yll < ke ,
1
!!URSY-T.VH < ke 9
and [I5y] - Iy} < .

Thus by [2] u € Spec(a, ) , so by Theorem 2.3 u € Spec(wy) .
y
This completes the proof of the theorem.

4, Applications. We note some consequences of Theorem 3,1.

Throughout this section we use our previous notation, so if O
is a C*-algebra and p a state of O, then np is a represen-
tation of O on a Hilbert space 9{; , and x, @ unit vector in
}ep cyclic for np(oz) such that p(4) = wxp(np(A)) for all

A € (Ol, Suppose O is asymptotically abelian with respect to

a group G . Then if p 1is a G-invariant factor state, i.e.
np(O{)" is a factor, then p 1is strongly clustering by [15,Cor.

4,5]. Hence we have the following corollary of Theorem 3.1.

Corollary 4.1. Let O be a C¥*-algebra which is asymptotically

abelian with respect to a group G . Suppose p 1is a G-invariant
factor state. Then Spec(p)\{O}Clggeg/éubgroup of the multipli-
cative group of positive real numbers, and if ® is a state of
™ which is quasi-equivalent to p then Spec(p) < Spec(w) .

If (R is a von Neumann algebra we extend the notion S(R)
defined by Connes [2] slightly and let S'(&RR) denote f1Spec(Aw),
where ¢ runs through the set of all normal states of 62 (In the
definition of S({R) only faithful normal states are considered.)

S'(R) is, just as S(®R) , a *-isomorphic invariant for 0.

If Ol is a C*-algebra and p and ¢ two states of O
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they are called algebraically equivalent if np(Cﬂ)" is *-iso-

morphic to nm(OI)" , see [10].

Corollary 4.2. Let (M be a C¥-algebra which is asymptotically

abelian with respect to a group G . Suppose p and ¢ are
strongly clustering G-invariant states., Then S'(np(cﬂ)") =
Spec(p) , and if Spec(w) # Spec(p) then p and o are not al-

gebraically equivalent.

Proof. The first statment is immediate from Theorem %.1. If
Spec(p) # Spec(p) we therefore have that S'(np(O()");ZS'GH#CﬂYW,

hence np(CK)" and nw(Cﬂ)" are not “*-isomorphic.

If O is G-abelian with respect to a group G of *-auto-
morphisms, see [9], and if p 1is an extremal G-invariant state
then by [16,Cor.4] np(Cﬂ)" is semi~finite if and only if wxp
is a trace on np(CK)' . For G-invariant factor states sharper
results of this kind can be found in [15]. The next corollary
should be viewed as an extension of these results to the case when
np(Cﬂ)" is of type III. Recall from [2] that if a countably de-
composable von Neumann algebra @ is semi-finite then S(R) c

{0,1} . Thus in general the same is true for S'(R) .

Corollary 4.3. ILet O be a C*-algebra which is asymptotically

abelian with respect to a group G . Suppose p 1is a strongly
clustering state, Then Spec(p) , which equals S'(np(O{)") , is

one of the following sets:

I

{13 in which case ¢ 1is a trace.

J 9

i) Spec(p)

{0,171} , in which case wy is a trace on ﬂp(O()',
e

ii) Spec(p)
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but p i1is not a trace.

iii) Spec(p) is the closure of the cyclic group {u"} gener-

ated by a number u € (0,1) .

iv) Spec(p) is the non negative real numbers,

Proof. i) and ii) follow from Corollary 2.4. By Theorem 3.1
Spec(p)N{0} is a closed subgroup of the positive real numbers,

Hence the only possibilities left are iii) and iv).

At this state it should be pointed out that not all factors
can be obtained as np(C%)" for p a G-invariant factor state
of an asymptotically abelian C#*-algebra., This can even be done
for ITPFI-factors, i.e. infinite tensor products of finite type

I factors.

Corollary 4.4, There exist ITPFI-~factors which are not of the

form (O()" , Wwhere p is a G-invariant factor state of an
0

asymptotically abelian C*-algebra OT.

Proof, By [1,Thm.10.10] there exist non denumerably many mutually
non-isomorphic ITPFI-factors 62 with asymptotic ratio set equal
to {0,1} . By [3] the asymptotic ratio set of R equals S(R).
Thus S(R) = {0,1) . Since K is of type III it cannot be of the
form np(C%)" , where p is a G-invariant factor state of an
asympttically abelian C*-algebra O, by an application of [15,

Cor.4.5] and Corollary 4.3.

Let O be a C*¥-algebra and {ot: t €IR} be a one parameter

automorphism group of Q. ILet p be an invariant state. Then
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p 1s said to be a KUMS -state if there is a constant 8 > 0 such

that for each pair A,B € O( there is a function P holomorphic

in the strip O < Imz < B and with continuous boundary values

F(t) = p(ot(A)B) and PF(t+iB) = wCBot(A)) .

(it is not necessary to assume p invariant, since this follows
automatically). In quantum statistical mechanics it is sometimes
of interest to study KMS -states of one parameter groups with
respect to which the C¥*-algebra is asymptotically abelian. The
next result is an extension of [18,IV.4,Lem.1' and 2], which are
incorrectly stated, as the possibility that homomorphisms may

occur is left out.

Corollary 4.5. Let (M be a C*-algebra which is asymptotically

abelian with respect to a one parameter group of automorphisms
{ot} . Suppose p is an extremal KMS-state of (CU. Then either
p is a homomorphism onto the complex numbers or Spec(p) is the

non negative real numbers.

Proof. By [17,Thm.13.3] X, is separating and cyclic for K =

np(dl)" . Since p is an extremal KMS-state @ is a factor by
£17,Thm.15.47. Since H is asymptotically abelian with respect
to {ct} , p 1is strongly clustering by [15,Cor.4.5]. Suppose

o is not a homomorphism., Suppose Spec(p) is not the non nega-
tive real numbers. Since xp is separating for R Spec(p) #
{0,1} by Corollary 2.4. Thus by Corollary 4.3 Spec(p)N{0} 1is
the cyclic group generated by a number u € (0,11 . Let F be

the spectral projection of the modular operator Ap of p onto
the subspace {y € }ep: Apy‘=11y} . P#£0 since u is an iso-
lated point in Spec(Ap) , which by Theorem 2,% equals Spec(p) .
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Let c¢¢ denote the abelian von Neumann algebra generated by the
spectral projections of Ap . Then F 1is a minimal projection

in A, so FA4 =P )(p)F , where fo)(a{p) denotes the bound-
ed operators on &{; . Since djﬂl)é > 2 by assumption there is
therefore a nonzero projection P 6.94' orthogonal to [xp] and
minimal in ¢A¢‘. Since {Gt} is an abelian group and TH#Ot(A))=
Aitnp(A)A;it , Agtxp = X, for all t , we have obtained a contra-
diction, since by [15,Cor.4.6] [Xp] is the unique nonzero mini-
mal projection in céPC Thus Spec(p) equals the non negative

real numbers, The proof is complete,

Remarks., The factors studied by Powers [10,11] having what he
called property L, (0<A<%) in [11], correspond to case 1iii)
in Corollary 4.3 with u = A/1-\ . His factors where constructed
from product states of the CAR-algebra, for which all factors
were equal, These states are strongly clustering with respect to
the group of finite permutations of the factors [14], It should
be remarked that Connes' proof [2] that the factors of Powers are
non isomorphic, is much easier and direct than an application of
the theory developed in this paper.

The case iv) in Corollary 4.3 seems to be most common. For

o)
example consider the infinite tensor product (= .®1M , Where

1=i
each Mi equals the 3 x3 matrices over the complex numbers,
and consider the group of finite permuations of the factors of ot.
The extremal invariant states are all of the form p = ®pi with

05 all the same state of Mi , and they are all strongly cluster-

ing [14,Thm.2.7]. Supose pi(A) = Tr(HA) for all A € M; , where

Tr dis the usual trace on the 3 x3 matrices, and H 1is a posi-

tive matrix with Tr(H) = 1 . If H has the eigenvalues
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M 2)y2Ag # O such that the quotients *i/A; are not all con-
tained in the same cyclic subgroup of the positive real numbers,
then Spec(p)N{0} 4is not a cyclic group. Hence by Corollary 4.3
Spec(p) is the non negative real numbers, and we have case 1iV)
in the corollary.

An example in which the situation in Corollary 4.5 holds, has

been exhibited by Herman and Takesaki [7,§3,Theorem 17.
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