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1. Introduction. If ()t is an asymptotically abelian C*-algebra 

and p is an extremal invariant state with cyclic representation 

rrp , the structure of p and rr (Cit ) " p 
is quite well understood 

if rr (0{) 11 is a semi-finite von Neumann algebra [8,13,15,16]. p 

It is the purpose of the present paper to study the general case 

when rr (O't) 11 may also be of type III • This is best done if 
p 

we define the spectrum Spec(p) of a state p of a C*-algebra 

to be - roughly - the set of real numbers u such that there is 

A E 01 with p(A*A) = 1 such that up(BA) is approximately 

equal to o (AB) for all B E <n. (Definition 2. 1). For exampel; 

p is a trace if and only if Spec(p) = [ 1 } 
' 

and if p is a pure 

state and not a homomorphism then Spec(p) = {0' 1 } • If xp is 

the cyclic vector such that P (A) = (rr (A)x ,x) for A E Ot, p p p 
we may cut down rr ((}()" p by the support E p of the state wx , 

p 
x relative to 

p 
and define the modular operatDr of Tomita of 

this smaller von Neumann algebra. I£ we extend the modular oper-

ator to be 0 on the complement of E 
p 

it turns out that its 

spectrum equals Spec(o) (Theorem 2.3). Together with the resent 

results of Connes [2, 3] this result gives us a useful tool for 
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studying the spectrum of p • Now assume ~ is asymptotically 

abelian and that p is a strongly clustering invariant state, 

e.g. if p is an invariant factor state. Then our main result 

(Theorem 3.1) states that the nonzero elements in Spec(p) form 

a closed subgroup of the multiplicative group lli+ of positive 

real numbers. Furthermore, if w is a state of 01 quasi-equiva-

lent to p then Spec(p) c Spec(w) • This last statement shows 

in particular that Spec ( p) is a ,'(·-isomorphic invariant for 

rr P ( ot)" • Since every proper closed subgroup of IR+ is cyclic 

we have obtained an isomorphism class for each u E [0,1] , where 

1 correspond to the group [ 1 } and 0 + to JR • It seems that 

Spec(p) most often equals :m+ • This is in particular the case 

when 6t is asymptotically abelian with respect to a one parame­

ter group and p is an extremal Kl\18-state (Corollary 4. 5). 

We shall follow the theory of asymptotically abelian 0*-al­

gebras as developed in [15]. Thus we shall say a 0*-algebra Of 
is asymptotically abelian with respect to a group G of *-auto-

morphisms if there is a sequence [g } 2 in G such that 
n n= 1 , , ••• , 

liml![gn(A),B]!I = 0 for all A,B E (}(. This definition is suffi-
n 

ciently general to take care of most cases of physical interest 

and extends in particular the original one of Doplicher, Kastler, 

and Robinson [5] and Ruelle [12], in which case G is the trans­

lation group IRn • We refer the reader to [6] for a general sur-

vay of the theory of asymptotically abelian 0*-algebras. It is 

unclear at the present whether our results can be generalized to 

other definitions of asymptotically abelian systems. 

As indicated above the main part of our analysis will be con­

cerned with the modular operator of Tomita. We refer the reader 

to the notes of Takesaki [17] for the theory of Tomita and Takesaki. 
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For the general theory of von Neumann algebras the reader is re­

ferred to the book of Dixmier [4]. We only remark that the strong 

-* topology on a von Neumann algebra is generated by the semi­

norms A - !lAx I! + I!A*xll 9 and that the usual density theorems hold 

for this topology. 

The author is indebted to A. Connes for very helpful corres-

pondence. 

2, The spectrum of a state. In this section we shall give two 

equivalent definitions of the spectrum of a state and then obtain 

some simple properties of the spactrQrn. 

Definition s..:!.· Let 0(_ be a c~(--algebra and p a state of 01_. 

Then the sEectrum of p 9 denoted by Spec(p) 9 is the set of real 

numbers u such that given s > 0 there is A E ~ for which 

p(A*A) = 1 such that 

~ 

1 u p ( BA) - p cAB) 1 < € p c B -;<-:s ;-2-

for all B E Dt . 
VIe shall soon show that u must be non negative. A modifi-

cation of the same argw~ent shows that in the definition we might 

as well have assumed u to be a complex nun1ber. It is clear that 

the definition can be generalized to other linear functionals. 

Let p and 0( be as ar)ove. 

of p on a Hilbert space d{ and p 

cyclic for TI (()1) such that P (A) 
p 

Let n be a representation 
p 

X a unit vector in d{p p 

= (n (A)x ,x ) for A E m. p p p 

Let d{p denote the von Neumann algebra n con" • Let E = p p 

r ~'x] Then x is a se~arating and cyclic vector for the '- 11\.p p • p l:' 

von Neumann algebra E fR. E 
p p p acting on E(r( 

p p• Let be the 
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relative to E 0{ E and consider it p p (J 9 

as an operator on d{p by defining it to be 0 on (I-E )d( • 
p p 

Definition 2.2. With the above notation we call the modular 

operator of the state p • 

Theorem 2. 3. Let ot be a C-J<--algebra and p a state of a{ with 

modular operator 60 • Then Spec(p) = Spec(6 ) . p 

Proof: Suppose u I 0 and u E Spec(p) • In the notation intro-

duced above drop the subscripts p 9 so 6<.= ~P,E = E 
' 

X 
p 

6 = 6p ' 
n = TT • We first p 

wx considered as a state on 

CR in the strong-* topology 

spectrum Spec(wx) of w 
X 

shovv u belongs to the spectrum 

Ed<E Since n(Ol ) is dense 

it is clear that u belongs to 

as a state of cRv. 

= X p' 

of 

in 

the 

Let 6 > 0 be given. Choose e: , 0 < e: < 1 , so small that 

2!u!- 1 max{e,e:(u+e)1 < o. We assert that if A E 6< is such that 

\IAxl! = 1 and 

1 ) < eiiBxl! 
;, .l 

for all B E tR_, then I!E A Ex I! 2 > 1 - o • ' ,. 

For this let ~ = max[e,e:(u+e)} • Let B =A* • Then 1) 

gives 

2) 11 u - !!, A *xI!, 2 11 < e ! ! A *x !' . , I ' 

hence !JA-ll-xl! 2 < u + e: I!A*xll If II A v 11 1 ! J.Li. 7~x ~ : > we have since € < 1 

IIA* I' < u < ,. X ! 'I 'I + € u + 8 • 
·' • 1 .A*X1 ,, 11 

Thus !!A*x!! ,::: max{1,u+e:} • Now apply 1) to B = EA* • Then we 

have 
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3 ) I u - I IE A* x 'I 2 I < e: ! IE A* x I\ _:: 8 ! I A *x \1 < '1'"1 

In particular, since ~ is arbitrarily small we have that u > 0. 

Now apply 1) to B = E A*E • Then we have 

Since u I 0 we then have by 3) and 4) 

0 < 1 - liE A E X ! 12 = u - 1 ! u ljE A I~ X !! 2 - u I 

_:: u- 1 !u!!EAEx 1! 2 - \!EA*Exll 2 ! + u- 1 l '!EA-)(-Exl1 2 - u I 
-1 -1 <u n+u 'Yl~ o. 

The assertion follows. Note that if B E E6?E then 

I u(EAEx~B*x) - (Bx,EA-l(-Ex)! = 

! u ( Ax , B *x) - ( Bx , A *x ) I < e: lj Bx!! • 

Since 1 > IIEAEx 1!2 > 1-6 it follows that u E Spec(wxiElRE) , as 

we wanted to show. 

Restricting attention to EtRE we may thus assume x is 

separating and cyclic for (f( (so E =I). Let J be the con juga-
~ l t:) 

tion so that J62 Bx = 6- 2JBx = B~fx for BE crv [17,Thm.7.1]. 

Since the Tomita algebra (called modular algebra in [17]) is 

strong-* dense in 6{ we may assume A belongs to the Tomita al-

gebra, and thus Ax belongs to the domain of 

proof of [17,Thm.10.1]). Then 1) becomes 

~ ~ 

!u(Ax~ 6-2 JBx) - (Bx,Jt-.-2 Ax) I < 81!Bx\l , 

or 
~ ~ I (u6- 2 Ax,JBJx)- (62-Ax~JBJx) I< e:!JJB,Jxll • 

_l 
6 2 (see e.g. 

Since Ji<J =cR.' by [17,Thm.12.1] 9 and x is cyclic for R. 1 we 

have 
~ ~ 

! (u6 - 2 Ax- 62 Ax,y) I < 8 !\y!\ 

for all y E 6<.. Thus we have 
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~ ~ ~ 

l!6-2 (ui- L\)Ax!! = l!u6-2Ax- 62 Axl! < e 

~ .l ~ 

Now 6-2 (u2 I+ 62 ) ~I • Hence we have 

~ ~ J_ 1. 1 1 1 

I!Cu2 I- 62 )Ax!! < ll6-2 (u2 I + 62 )(u2 I- 6-2 )Axll 
1. 

= !!6--2 (ui- L\)Ax!! < e 

~ ~ 

Since Ax is a unit vector and e is arbitrary u2 E Spec(L\2 ) 

hence u E Spec(L\) . 

Now suppose u = 0 E Spec(p) • If 0 I Spec(L\) E = I ~ so 

X is separating and cyclic for R._. Furthermore since 0 I Spec(L\) 
1 

there exists k > 0 such that L\2 > ki • By 1 ) we can for each -
integer n find A n E tR_ such that !lA x!l "n ·' = 1 and 

I (Bx~A~x) I < 1/n!\BxJ! 

for all B E 6Z. Since x is cyclic we have I!A~xl! < 1 /n for 

each n . Thus 

1/n > i!A *x'! , n , 

This is a contradiction for n sufficiently large. Therefore 

0 E Spec(L\) , and we have shown Spec(p) c Spec(L\) . 

Conversely assume u E Spec(L\) . We assert that 0 E 
1 ~ 

Spec ( L\ - 2 ( u I - L\ ) ) • Indeed~ if u = 0 then 0 E Spec(L\2 ) = 
~ 

- Spec(6-2 (0I- L\)) 
' 

so the assertion holds for u = 0 . If u/0 

choose a spectral projection F for L\ such that FL\ and F L\ -~ 
are bounded and u E Spec(F6) . Let e > 0 and choose a unit 

1 

vector y E Fa-{ such that !!(ui-L\)y!J < E:/I!F6-2 II. Then we have 

1 ~ 

ll6-2 (ui- 6)y'! = I!6-2 F(ui- L\)ylj 
~ 

< \!6-2 FII!I(ui- 6)Y!I < e • 

~ 

Thus 0 E Spec(6-2 (ui-6)) as asserted. Now the Tomita algebra 
l 

is dense in the domain of 6- 2 (ui- 6.) , (see proof of [17 ,Thm.10.1]. 

Therefore if E: > 0 is given there exists A in the Tomita alge-:. 
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bra such that II Ax!! = 1 and 

1 1 

!!uli-2 Ax- L:I2 Axll < € . 
Therefore if B Eo;( we have 

!u(Ax,B*x) - (Bx,A*x) I = 
1 1. 

I (ull-2 Ax,JBx)- (ll2 Ax,JBx) I< e\\JBx!l = ~:;!]BI! • 

Thus u E Spec(wx) Since n((n) is strong-* dense in ~' 

u E Spec(p) • The proof is complete. 

Corollary 2.4. Let 0( be a c~<-algebra and p a state of Of, 

p(A) = (np(A)xp,xp) for A E 01.. Then 

i) Spec(p) is a closed subset of the non negative real num­

bers such that 1 E Spec(p) • 

ii) 

iii) 

iv) 

Proof: 

If ul 0 u E Spec(p) then -1 E Spec(p) u • 

Spec(p) = [ 1 } if and only if p is a trace. 

Spec(p) = [ 0' 1} if and only if wx is a trace on TT ((}l)' 
p p 

but p is not a trace on 01.~ 

i) Since 1 E Spec(ll ) 
p 

and Spec(6 ) p is a closed subset 

of the non negative reals, the same is true for p by Theorem 2.3. 

ii) Since u I 0 , u E Spec(6 ) implies u- 1 E Spec(6 ) by 
p p 

[17,Thm.7.1], ii) follows from Theorem 2.3. 

iii) If p is a trace then p(AB) = p(BA) for all A,B E (}{. 

Let u E Spec(p) • Then 

I up (BA) - p ( AB) I = I u - 1 II p ( AB) l 

for all A,B E C)(. If u I 1 let e: = -fr!u- 1! • Choose A E <n 
such that p(A*A) = 1 and such that 
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1 

!u- 11 I p(AB) I < tiu- 1! p(B7(·B) 2 

:t 

for all B E 0( • Thus I p (AB) l < tP (B·X-B f 2- for all B • In 

particular if B = A* we get 1 = p (A«-A) = p(AA*)< ip(AA*)~ = t , 

a contradiction. Thus u = 1 

Conversely~ if Spec(o) = 1 then by Theorem 2.3 Spec(6 ) 
p 

= (1] ~ so wx 

13.1], hence p 

is a trace on n ( r"¥1)", r P VL see e.g. proof of ~17,Thm. 

is a trace on (}(_. 

iv) Assume Spec(p) = [0,1} Then the spectrum 

ing on Epd{p is 

W is a trace on 
X p 

[ 1 } where E 
p 

""R E TT (0t) .0 ~ 
p p p 

= [TT (01) 'x ] 
p p 

hence a trace 

iii) p is not a trace. Conversely, if w xp 

on 

is 

of 6PEP 

Thus, as 

TTP(O{)'. 

a trace on 

but p is not a trace, then as above the spectrum of 6PEP 

Spec(Ll ) = [ 0' 1 } ' 
so by Theorem 2.3 Spec(p) = [ 0 9 1] 

0 
hence 

The proof is complete. 

act-

above, 

By 

n0(0l) 1, 

is £1L 

• 

3. Asymptotically a bell§!.! C -x-_ algebras. This section is devoted 

to the main result on asymptotically abelian C*-algebras and its 

proof. Following [ 15] if ()'( is a c-)~-algebra and G a group 

of -;~-automorphisms of ()(, we say crt is asymptotically abelian 

with respect to G if there is a sequence 

that whenever A,B E 01. then 

lim II [ g ( A) , B ] I\ = 0 , 
n-+:::o n 

[g } in G such n n>1 

where [ , ] is the Lie commutator. A G-invariant state p of 

~ is said to be ~ronglX clustering (or strongly mixing) if for 

A9 B E 01 we have 

lim p ( g (A) B ) = p ( A) p ( B ) • 
n-+x n 
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We shall need a concept which is slightly more general than that 

of quasi-equivalence. If p and w are states of a( we say w 

is quasi-contained in p 

is quasi-contained in that 

if the cyclic representation 

TT 
p 

of p ; in other words 

TT 
w 

TT w 

of w 

is 

quasi-equivalent to a subrepresentation of iT p It is easy to 

see that w is quasi-contained in p if and only if W=W 0 TT, 
p 

where -w is a normal state of rrp((r() 11 • 

Theorem 3.:..J.. Let ot be a c~\-algebra which is asymptotically 

abelian with respect to a group G of *-automorphisms. Suppose 

p is a strongly clustering G-invariant state. Then the nonzero 

elements in Spec(p) form a closed subgroup of the multiplicative 

group of positive real numbers. Furthermore, if w is a state 

of ~ quasi-contained in p then Spec(p) c Spec(w) . 

We shall first prove a few lemmas. Let as in the proof of 

Theorem 2.3 rr be a *-representation of Oi on a Hilbert space 

a-e ' 
X a unit vector in d{ cyclic for rrCOO such that P (A)= 

(rr(A)x,x) for A E at. Let a<= TT ( 01.) 11 
9 let g .... u g be a uni-

tary representation of G on a-e such that U X = X g and rr(g(A)) 

= Ugrr(A)U~ 1 for g E G 
' 

A E 01.. Let E 
0 

be the orthogonal 

projection on [y E J{_ ~ Ug y = y for all g E G} • Then E 0 = [x] 

is the one dimensional projection on the subspace spanned by x , 

since p is extremal G-invariant by [15,Thm.4.4] and therefore 

E = [x] 
0 

Let [gn} be a sequence in 

that 1 im \1 [ gn (A) , B] I I = 0 and 
n 

by [15,Thm.4.4] Ugn .... [x] 

1 im p ( g ( A) B ) 
n n 

weakly, and if 
I 

= p(A)p(B) 

A E c}( then 

G such 

Then 

Ugnrr(A)u~: ~ p(A)I weakly. Let E = [6< x] be the support of wx 

on R. Let 6 be the modular operator of the state p (De fin-

ition 2.2) and J the conjugation of the Hilbert space E~ de-
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fined by x, so JE!1<EJ = E 6<. 1 by [17,Thm.12.1]. Extend J 

to all of a'( by defining it to be 0 on (I -E) &e.. Thus J = 

JE = EJ 

u T u-1 
g g 

Since wx is invariant under the automorphisms T -

its support E is invariant. Therefore E U = U E for g g 
all g E G • 

Lemma 3.2. Let A E n(6t) • Let y E ~. Then 

lim 'lu-1 Au y!l = !I Axil !!y!l1 n .... oo gn gn · ' ·' · · 

Proof. For B,C E 01 we have 

and 1 im p ( g~ 1 ( C ) B ) = 1 im p ( B g~ 1 ( C ) ) = 1 im p ( gn ( B ) C ) = p ( B ) p ( C ) , 

(gn-1 } so that the sequence have the same properties as the se-

quence (gn} . Thus for B E D1_ we have weak l~m U~:n(B)Ugn = 

p(B)I • Thus we have for A E n(~) 

r -1 -1 ) = lim, u g A u g y , u g Aug y 
n n n n 

= 1 im ( ug- 1 .A* A ua- y, y) 
n °ll 

The proof is complete. 

Lemma 3.3. Let e: > 0 be given. __ Let A E n(Ot) be chosen so 

that 1 = !1Axl! < !lEAxll + e • 
,: ,[ I 

Let y E E of. . 

Then we have 
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Proof. We first consider the case when y = B 1 x with B' E ~ 1 • 

Since 

Now if w,y~z E a( then 

and weak lim U = [x] 
n gn 

= 1 im ( u A* E A u-1 B ' x B 1 x) 
gn gn ~ 

= 1 im ( u A* E A u-1 x B 1 *B 1 x) 
gn gn ~ 

= 1 im ( U t:t A* E A x 9 B ' 7(-B 1 x ) 
on 

= ([x]A*EAx~B'*B 1 x) 

1) I llwl!- l!yll I .:: !lw- z\1 +!liz II- I!YIII • 

we have 

Indeed, if l!wl\ 2: 1\y !I then 

!lw - z II + ! II z II- lly!! I 9 and if 

0 ~ !lwll - IIY!I .:: llw- z!l + l!zl! - !IYII < 

llwl! ~ !IYI! then IIY!I- llwll =:: !IYI!- llzll 

+l!w-zl! < l!w-zll+! !lz!I-IIY!!!. 

If y E E~ let 6 > 0 be given. Since E = [~ 1 x] we 

can choose B 1 E tR..' such that \!B 'xl\ = !IYIJ and l!B 'x - yl\ < 

o/2 !!All • From the case y = B 1 x we can choose n 1 so large 

that if n 2: n 1 then 

! !lEU AU- 1 B 1 xi!-!IEAxii\\B'x!l! < 6/2. g g ' ' ' ' 
n n 

Thus by 1) 9 since I!B 'x!j = l!YI\, we have for n ,;: n 1 

l :! E u A u-1 y 'l - II y 1! 1 < ;, g g ' . " -
n n 

< !'1 E u A u- 1 ( y-B 1 x) II + 111 E u A u- 1 B I x 1
1
1 - II y 11 ' g g " " g g I I 1 

n n n n 

< IIAI\ I!Y- B'x'l +!liE Ax !1- 1! !!Y \1 + o/2 

< 6/2 + e:'IY!I + 6/2 = 6 + e:l!yl! • 



- 12 -

Since o is arbitrary the lemma follows. 

Lemma 3. 4. Let u E Spec ( 6 E) 9 where 6 E is considered as an 

operator on E ~ • Let e > 0 • Then there is A in rr(ot) 

with the following properties: 

i) !lAx'! = 1 • 

ii) 1\EAx!! > 1 - t: • 

iii) 
.1,. 

!lu2 Ax-JA*Jx!! < E:. 

iv) If y is a unit vector in d{ then there is n 1 such that 

if n ~ n 1 then 

!!E(u~ ug A u-1 y- JU A*u- 1 Jy) II < (2ut + 3)€ • 
ngn ~ gn 

Proof. Since u E Spec(6E) there is by [2] B in E6(E such 
1 

that \!Bxl! = 1 and l!u 2 Bx- JB*Jxl! < E:/2 • Since rr( 00 is 

strong-* dense in ~ and E E 6/... we can find A E rr(O{) such 
1 

that l!(A-B)xll < min(E, 8/4u2 L !l(A*-B*)x!l < 8/4, and IIAx!l = 1. 

Then 1 = l!Bx!l ~liE Ax II + liE Ax - Bxl! _:: I!E Ax !I + !!Ax- Bx!l <!IE Ax !I + E: 9 

so i) and ii) hold. 

iii) follows since we have 

1 

!lu2 Ax-JA*Jx!! _:: 
J,_ 1 1 

< llu~Ax - u 2 Bx!l + llu 2 Bx- J B -* Jx!l + !IJ B~-'"Jx - J A* Jxll 
j[ ' ' 11 l1 lo 

1 

< u2 11 (A-B)xll + E:/2 +!! (B*-A-lE-)x!l 
1 1 

< u2- 8 /4u2 + €/2 + e:;4 = e: , 

if u I 0 , and trivially if u = 0 • 

In order to show i v) we first assume y = Cx with C = n(Ot) • 
.1,. 

Let z = u 2 Ax- J A* Jx • Then by iii) l!zil < E: • By Lemma 3.2 

and definition of ~ being asymptotically abelian we can choose 

an integer n 1 so that if n ~ n 1 then 
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!l(Ug A U~ 1 
9 C]l!< e 

n n 

11u;1cug zl\ < I!Cx\ll!zl! + e: = llzll + e <2e: • 
n n 

Let An = Ugn AU~~ • Since J = JE = EJ we have JAnJ = 

J EUgnA U~: EJ E JE(}(EJ = E CR.' • In particular 9 J AnJECE = 

E CEJ An J • As remarked before Lemma 3.2 EUg = UgE for all 

g E G • Thus, since U x = x for g 9 it follows from [16,Lem.2] g 

than JUg = U gJ for all g • We therefore have 

1 

)!E(u2AnCx- J A~J Cx !l ~ 
1 1 

_:: u 2 '!E[An, C Jx!l + !lE(C u 2 Anx- J A~~ J E CEx) !J 
1 1 

< u2 e: + !~EC(u2 A x-JA'r--Jx)!l 
n n 

< u ~ e: + !I U- 1 C U ( U §Ax - J A-;~- J X ) 11 - ., gn gn :, 
j,_ 1 

< u2e:+2e: = (u2+2)e: 9 

if n ~ n 1 • Now let y be an arbitrary unit vector in ~ • 

Since x is cyclic for rr(~) we can choose C in rr(~) such 

that l!Cxl! = 1 and !!Cx- Yll < 8 /1\AI! • Let n 1 be as above. 

Then for n ~ n 1 we have 

1 
!jE(u-2A y- J A*Jy) j! < · n n I 

1 1 

< !!Eu2 An(y-Cx)\1 + IIE(u2 AnCx-J A~JCx) 1\ + 

+ !IEJ A;;:J(Cx-y)\1 

1 1 

< u2 !1A 1\ljy- Cxll + (u2 +2)e + !'J A:'<-JII i! Cx-y\! 
,I n· •I • n II .1 

1 1 J_ 

< u2 e + ( u2 + 2 ) e: + e: = ( 2 u 2 - + 3 ) e: • 

The proof is complete. 

Lemma 3.3. Let u 9 v E Spec(6E) • Let e: > 0 . Then there exist 

A9 B E rr(cn) and an integer n 2 such that if n ~ n 2 then 

i) !!Ax!! = !\Bx'! = 1 . 
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1 I11E B U A u-1 x!l- 11 < 2e: I' g g I I 

n n 

I!E((uv)~BU Au- 1 x-J(BU AU- 1 )*Jx)H 
.. ~ gn ~ gn !I 

.1.. .1.. 
< ( 2 ( uv) 2 + 2v2 + 1) e: • 

Proof: Let A be chosen so that i)~ ii), iii) in Lemma 3.4 

hold. Apply Lemma 3.4 once more to find B E n(O{) such that 

l!Bxll = 1 
.1.. 

and if w = v 2 Bx - J B·* Jx then llw\! < e:f!!AII • Now from 

Lemma 3.4 and its proof there is an integer n 1 such that if 

n;:: n 1 and An = U Au- 1 then 
gn gn 

1 1 

!!E(u2 AnBx-JA~JBx)ll < (u-2 +2)e:. 

Also from the proof we have II [An, B] I! < e: for n ;:: n 1 • Thus 

for n ~ n 1 we have 

.1.. I!E( ( uv) 2 B Anx- J (BAn)* Jx) !\ < 

]. 

+ !IEJ A~ J(v2 Bx- JB*Jx) II 

.1.. .1.. 
< ( 2 ( uv) 2 + 2v 2 + 1) e: , 

and iii) is proved. 

To show ii) we choose by Lemma 3.3 n 2 ~ n 1 such that if 

n ~ n 2 then 

! !lEAn Bx!! - 1 I = ll!E An Bxll - I!Bx!l! < e: • 

Thus we have 

! liE BAnx!!- 1! _:: '!E[B,An]x!l +!liE An Bx!l -11 < e: + e: = 2e: • 

Thus ii) follows, and the proof is complete. 
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Proof of Theorem 3.1. We first show that Spec(p),[O} is a mul­

tiplicative group of positive real numbers. By Corollary 2.4 

1 E Spec(p),[O}, and if u E Spec(p)'[O} then so is u- 1 • There-

fore it remains to show 

Let u,v E Spec(p) 9 u I 
By Lemma 3.5 if e > 0 

such that ! !JSxl\-1 I < 2e 

Spec(p) 

o I v • 

there is 

and 

is closed under 

By Theorem 2.3 

s E Ef1<E (e.g. 

~ 1 1 

!!(uv)2 Sx-JS*Jx!l< (2(uv) 1f+2v2 +1)e. 

multiplication. 

u,v E Spec(.~E). 

S = EBAn E) 

Since e is arbitrary it follows from [2] that uv E Spec(6), 

hence uv E Spec(p) by Theorem 2.3, and Spec(p)'(O} is a multi­

plicative group. By Corollary 2.4 Spec(p) is a closed subset 

of the non negative real numbers. Thus Spec(p),[O} is a closed 

subgroup of the positive real numbers. 

We next show that if w is a state of Ol quasi-contained 

in p then Spec(p) c Spec(w) • 

mal state of ~ . We first assume 

is separating and cyclic for E 6'ZE 

tor which is separating for E ~E 

Then w = GJ o iT with -w a nor-

-w has support E • Since x 

-w = w with y y a unit vee-

[4,Thm.4 9 p.233]. Let u I 0 , 

u E Spec(p) . Then as above u E Spec(6E). By Lemma 3.4 there 

is A E rr(01) such that !JAx!J = 1 9 !lEAxJl > 1- e , and if An = 

U gn AUg: then there is n 1 such that if n z: n 1 then 
1 :1 

2) !lu2-EAny-JA~;_Jy!l < (2u-:I+3)e 

By Lemma 3.3 there is n2 > n 1 such that if n ~ n2 then 

3) 11 I!E A y 1\ - 1 ! < e • , n ,. I 

Choose B E n( Of) such that !\Bx - Y!l < min [ e, 8 /IJA!!} • Since O"t 

is asymptotically abelian there is n 3 ~ n2 such that if n ~n3 

then II [A~, B] l! < e • Thus we have 
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1. 

ljEA * E y - u 2 J A Jy II = 
I n n II 

1. 

= !!E A~ y - u 2 J An J y !\ 
1. 1. 

< \tEA-*(y-Bx) I!+ 1tEA*Bx- u-2J A JBxil + u-;~-IIJ A J (y-Bx) II 
·· n · " n n 1 •• n · 

1. 1. 

< e: + \IEA*Bx- u2 EBE J A Jx II + u1f e: 
.I n n " 

1. 1 

< (u2 + 1 )e: + II[A~,B]xll + I!EBA~x-u-2-EBEJAn Jx\\ 

1. 1. 

< ( u2 + 2 ) e: + l !E B U~ (A *x - u 2 J A J x) IJ 

1. 1 

< (u2 +2)e:+ !!BU (A*x-u 2 JAJx)!l. . gn ,, 

By Lemma 3.2 this converges to 

1. 1 

(u2 + 2) e: +liB x!li!A*x- u-2-J AJxl! 

1 1. 

= (u2 +2)e:+I!Bx!! \!JA-l<-Jx-u2 AxlJ 

1. 

< (u2 + 2)e: + e:!IBxl1 • ,, ' 

Since I!Bx\! < l:y 1! + e: = 1 + e: , we have that there exists n 4 > n 3 

such that if then 

4) 

By 2) we have 

Let P = [ERE y] • Then P E E ~ , and y is separating and 

cyclic for ERE P • By 5) vve have 

By 4) we have 

lj(PEA E)* - t(PJA*J.P)7(- P < !!EA·-;-EPy-u~JA JPy\1 ' n Y u n ' Y ,I '' n n -I 

1. 1 

= !\E A~ E y - u 2 JAn J y i! < ( u-2 + 4 + e:) e: • 
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liiPEAnE Y!l- IJy'!! < e: • Therefore by [2] u belongs to the 

spectrum of ~ , hence by Theorem 2.3 w u E Spec(wy) = Spec(w) . 

Since Spec(w) = Spec(w) , u E Spec(w) • 

In particular we have shovvn that Spec(~E) = n Spec(6 ) , 
cp cp 

where the intersection is taken over all faithful normal states 

Q of E~E • By definition n Spec(6cp) equals the invariant 

S(E~E) defined by Connes [2]. If EQ-<E is semi-finite then 

S(ER.E) is either (11 , or [0,1} Thus either o is a trace 

or wx I <R1 is a trace by Corollary 2. 4. If tR is finite let b 
denote its center. Let P be the centervalued trace on~ [4, 

Thm.3,p.267]. By uniqueness of ~ [4,Thm.3,p.267], 

Ugg?(U~ 1 TUg)U~ 1 = \P(T) for all T E 6( . Thus wx(~(UgTU~ 1 )) = 

wx(Ug\?(T)U~ 1 ) = wx(~(T)) , so that (wxlb) o ~ is a G-invariant 

normal state. By uniqueness of wx [15,Thm.3.3] wx= (wxl~) o ~, 

so w 
X 

is a trace, hence so is p , and Spec(p) = 1 by Carol-

lary 2.4. Thus if 

f( is not finite 

R is finite Spec(p) = (1} = S(UX) ' and if 

either case 

then Sf<. = [0, 1} = Spec( p) . Therefore in 

Spec(o) = S(oQ) in case s(6Z) is defined, and 

Spec(o) c Spec(w) for any state of Dt quasi-contained in p • 

We now consider the case when ERE is not semi-finite. 

Then R is not semi-finite 9 hence is of type III since the auto-

morphisms T .... u T u- 1 
g g act ergodically on the center iO of ~ 

[15,Thm.3.3]. Then as remarked in [3], 0 E Spec(w) for all w 9 

hence we may assume u E Spec(p) , u I 0 • Furthermore, since 

~ is of type III, every normal state of tR is a vector state 

Let w y 
be a vector state of a:( • Let 

its support, F = rfR'y] . Since [RyJ <I= [Rx] we have 

F 

C 6( y] ~ [ !Rx] , hence by [4, Thm. 2, p. 231] [cR'y] ~ [cR~] , or 

F:S'E Therefore there is a partial isometry V in 6(. such 

be 
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that V*V = E1 _::E , VV* = F • Since E ~E has a separating vec­

tor E is countably decomposable [4,Prop.6~p.6]. Now the centra~ 

carrier CF of F equals that of E1 • Thus E~ ~ E1 ~ F by 

[4,Cor.5,p.320]. Therefore Fa:{F ~ E11RE1 :: Ed<EcF. Suppose we 

have shown Spec(p) c S(Ed<ECF) • Then Spec(p) c S(FRF) ,hence 

Spec(p) c Spec(wy) 
' 

and Spec(p) c Spec(w) for any state UJ of 

OL quasi-contained in p • It therefore remains to consider the 

case when y E EQ 

the support F of 

where 

w y 

Q is a central projection in tR.. and 

equals EQ • 

Let z be a vector in E(I- Q)O'r which is separating for 

E~E(I- Q) , e.g. let z = (I- Q)x • Then y + z is separating 

for ERE and y + z E E a-( • By 4) and 5) there exist a con-

stant k and an integer n 4 such that if n ~ n 4 then 

1 

IIEA~E(y+z)- u2 J AhJ(y+z)ll < ke 

By 3) we further have 

Thus we have 
:t 

II Q E A~ E y - u 2 Q JAn J y l1 

1 

= IIQ E A* ( y+z) - u 2 Q J A J (y+z) II < k e 
·' n n 

and similarly 

1 

II u 2 E A E Q 1T - J A"* J Q y II < k 8 • " n <) n " 

Finally, by Lemma 3.3 !IEAnEQy!l = !IEAnYil converges to l!Y!I. 

As in the case when support w was E we let P = [ERE Qy] • 
y 

Then P E E Q fFl. 1 • If we let S = PQE AnE and T = P QJ A* JP then 
n 

S E PQEd(E and T E (PQE 6(E)' and for sufficiently large n > n 4 

we have 
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~ 

!\S*y- u2 T*y!J < k 8 9 

~ 

llu2 Sy-Ty!l < k€ ll II 

and ll!syrJ- !ly!Jl <€. 

Thus by [2] u E Spec(6w ) 9 so by Theorem 2.3 
y 

This completes the proof of the theorem. 

4. Applications. We note some consequences of Theorem 3.1. 

Throughout this section we use our previous notation, so if OC 

is a C*-algebra and p a state of 01. , then TI p is a represen-

tation of en on a Hilbert space d('p ' 
and X a p unit vector in 

d-ep cyclic for TI ((Jl_) such that p (A) = w (n (A)) for all p xp P 
A E 01. Suppose 01_ is asymptotically abelian with respect to 

a group G • Then if p is a G-invariant factor state, i.e. 

n (Oi)" is a factor, then p is strongly clustering by [15,Cor. 
p 

4.5]. Hence we have the following corollary of Theorem 3.1. 

Corollary 4. 1. Let Ot be a C-J:--algebra which is asymptotically 

abelian with respect to a group G • Suppose p is a G-invariant 
closed 1 

factor state. Then Spec(p)'[O} is a/subgroup of the multipli-

cative group of positive real numbers, and if w is a state of 

IJ( which is quasi-equivalent to p then Spec(p) c Spec(w) • 

If U( is a von Neumann algebra we extend the notion S(~) 

defined by Cannes [2] slightly and let S 1 (R) denote n Spec(6 ) , cp 

where cp runs through the set of all normal states of 6< (In the 

definition of S(d<.) only faithful normal states are considered.) 

S'(l'R.) is, just as S(~) a -l~-isomorphic invariant for <R. 
If Ot is a C·*-algebra and p and cp two states of 0{ 
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they are called algebraically equivalent if 

morphic to nc.p(al) 11 , see [10]. 

n ( (Jt) II 
p 

is *-iso-

Corollary 4. 2. Let 0{ be a Ci<·-algebra which is asymptotically 

abelian with respect to a group G . Suppose p and c.p are 

strongly clustering G-invariant states. Then S ' ( n ( 0'{) 11 ) = p 

Spec(p) 9 and if Spec(~) I Spec(p) then p and c.p are not al-

gebraically equivalent. 

Proof. The first statment is immediate from Theorem 3.1. If 

Spec(cp) I Spec(p) we therefore have that S'(np(Ot)") IS'(ncp(O()"), 

hence n ((}( )" and n (Oi.)" are not ·>~-isomorphic. 
p t'p 

If 01 is G-abelian with respect to a group G of *-auto­

morphisms, see [9], and if p is an extremal G-invariant state 

then by [16,Cor.4] n (()"{)" 
p is semi-finite if and only if Wx 

p 
is a trace on np(~)' . For G-invariant factor states sharper 

results of this kind can be found in [15]. The next corollary 

should be viewed as an extension of these results to the case when 

n (0{)" is of type III. Recall from [2] that if a countably de­
P 

composable von Neumann algebra R_ is semi-finite then S(t.R,) c 

[0,1} • Thus in general the same is true for S'(~) . 

Corollary 4.3. Let 0{ be a C*-algebra which is asymptotically 

abelian with respect to a group G • Suppose p is a strongly 

clustering state. Then Spec(p) , which equals S'(np(Ot)") , is 

one of the following sets~ 

i) Spec(p) = [1} , in which case p is a trace. 

ii) Spec(p) = [0,1} , in which case is a trace on np (O() 1 , 
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but p is not a trace. 

iii) Spec(p) is the closure of the cyclic group (un} gener­

ated by a number u E (0,1) • 

iv) Spec(p) is the non negative real numbers. 

Proof. i) and ii) follow from Corollary 2.4. By Theorem 3.1 

Spec(p),(O} is a closed subgroup of the positive real numbers. 

Hence the only possibilities left are iii) and iv). 

At this state it should be pointed out that not all factors 

can be obtained as TT (0'{)" for p a G-invariant factor state p 

of an asymptotically abelian C*-algebra. This can even be done 

for ITPFI-factors, i.e. infinite tensor products of finite type 

I factors. 

Corollary 4.4. There exist ITPFI-factors which are not of the 

form rrp(O'l)" , where p is a G-invariant factor state of an 

asymptotically abelian C*-algebra Crt. 

Proof. By [1,Thm.10.10] there exist non denumerably many mutually 

non-isomorphic IT PFI-factors rf<. with asymptotic ratio set equal 

to ( 0' 1 } . By [3] the asymptotic ratio set of R equals s(lR). 

Thus sUR,) = [ 0' 1} Since 6-<.. is of type III it cannot be of the 

form TT (01.)" ' 
where p is a G-in variant factor state of an p 

asymptotically abelian c·*-algebra (}(9 by an application of [15, 

Cor.4.5] and Corollary 4.3. 

Let 0(_ be a C*-algebra and [crt ~ t E IR} be a one parameter 

automorphism group of 0(_ • Let p be an invariant state. Then 
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p is said to be a KMS- state if there is a constant ~ > 0 such 

that for each pair A,B E 01 there is a function F holomorphic 

in the strip 0 < Im z < ~ and with continuous boundary values 

and 

(it is not necessary to assume p invariant, since this follows 

automatically). In quantum statistical mechanics it is sometimes 

of interest to study KMS -states of one parameter groups with 

respect to which the C*-algebra is asymptotically abelian. The 

next result is an extension of [18,IV.4,Lem.1 1 and 2], which are 

incorrectly stated~ as the possibility that homomorphisms may 

occur is left out. 

Corollary 4. 5. Let 01. be a 0"(--algebra which is asymptotically 

abelian with respect to a one parameter group of automorphisms 

{at} • Suppose p is an extremal KMS-state of 01... Then either 

p is a homomorphism onto the complex numbers or Spec(p) is the 

non negative real numbers. 

Proof. By [17,Thm.13.3] x is separating and cyclic for 6< = 
p 

n P ( 0'[) 11 • Since p is an extremal KMS -state d{ is a factor by 

[17,Thm.15.4]. Since ~is asymptotically abelian with respect 

to {at} , p is strongly clustering by [15,Cor.4.5]. Suppose 

p is not a homomorphism. Suppose Spec(p) is not the non nega­

tive real numbers. Since x is separating for ~ Spec(p) I 
p 

{0,1} by Corollary 2.4. Thus by Corollary 4.3 Spec(p)'[O} is 

the cyclic group generated by a number u E (0,1] . Let F be 

the spectral projection of the modular operator t;.p of p onto 

the subspace [y E a--e_ : t;. y = uy} • F I 0 since u is an iso-
P p 

lated point in Spec(t;.P) , which by Theorem 2.3 equals Spec(p). 
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Let ~ denote the abelian von Neumann algebra generated by the 

spectral projections of 6P • Then F is a minimal projection 

in cA- 9 so F.A-1 = F d3( X )F p 

ed operators on J(P . Since 

therefore a nonzero projection 

minimal in c.A-' . Since (at} 

9 where ~ ( O{P) denotes the bound­

dim a( > 2 by assumption there is 
p 

P E A' orthogonal to [x ] and 
p 

is an abelian group and np(crt(A)) = 

6itn (A)6-it 6itx = x for all 
p p p 9 p p p t , we have obtained a contra-

diction 1 since by [15 9 Cor.4.6] [x ] p is the unique nonzero mini-

. A-'. mal projection in ~ Thus Spec(p) equals the non negative 

real numbers. The proof is complete. 

Remarks. The factors studied by Powers [10,11] having what he 

called property LA ( 0 _:::A_::: t) in [ 11] 9 correspond to case iii) 

in Corollary 4.3 with u = A/1-A • His factors where constructed 

from product states of the CAR-algebra, for which all factors 

were equal. These states are strongly clustering with respect to 

the group of finite permutations of the factors [14]. It should 

be remarked that Connes' proof [2] that the factors of Powers are 

non isomorphic, is much easier and direct than an application of 

the theory developed in this paper. 

The case iv) in Corollary 4.3 seems to be most common. For 
co 

example consider the infinite tensor product ()( = ® M. 1 where 
i=1 1 

each M. equals the 3 x 3 matrices over the complex numbers, 
1 

and consider the group of finite permuations of the factors of 01. 
The extremal invariant states are all of the form p =®pi with 

p . 
1 

all the same state of 

Supose 

M. 9 and they are all strongly cluster-
1 

pi (A) = Tr(HA) for all A E M. 9 where 
1 

Tr is the usual trace on the 3 x 3 matrices, and H is a posi­

tive matrix with Tr(H) = 1 • If H has the eigenvalues 
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A. 1 .:;: A. 2 ,::: A. 3 I 0 such that the quotients are not all con-

tained in the same cyclic subgroup of the positive real numbers, 

then Spec(p)'{O} is not a cyclic group. Hence by Corollary 4.3 

Spec(p) is the non negative real numbers, and we have case iv) 

in the corollary. 

An example in which the sitl~ation in Corollary 4.5 holds, has 

been exhibited by Herman and Takesaki [7,§3,Theorem 1]. 
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