
An elementary proof that elliptic curves 

are abelian varieties 

Loren D. Olson 

The basic purpose of this note is to give an elementary 

proof of the fact that an elliptic curve can be given the struc­

ture of an abelian variety. It is easy enough to give the ratio-

nal points on such a curve an abelian group structure~ but it is 

rather more diffucult to show that the group structure so obtairurl 

actually arises from a morphism of schemes. Using properties of 

the Picard scheme, etc., this result follows almost immediately. 

However, such an approach presumes a fairly advanced knowledge of 

the modern machinery of algebraic geometry, and we would like to 

present here a more elementary proof of this fact. All the neces­

sary material for the proof may be found in Fulton [1] and Mumford 

[3] together with the first chapter of Serre [4]. 

In addition to the proof mentioned above~ we include some 

well-known results which allow us to outline the essential equi-

valence of the following three concepts: 

(I) . 1 b. . JP2 non-s1ngu ar cu 1cs 1n 

(II) elliptic curves 9 i.e. non-singular complete irreduc-

ible curves of genus 1 ~ and 

(III) 1-dimensional abelian varieties. 



- 2 -

§ 1 ) Elliptic curves and plane cubics. 

-Let k be an arbitrary field with algebraic closure k • 

Throughout this paper~ we shall assume that all varieties have a 

k-point~ and that everything is defined over k • All curves are 

assumed to be non-singular 9 comPL~e 9 and irreducible. 

Let g = g(X) = dimk H1 (X 9 cYX) denote the genus of such a 

curve X • 

Theorem 1 Let D be a divisor on X • Then deg(D) ~ 2g + 1 => D 

is very ample, i.e. there is an embedding of X into F(L(D)) 

where L(D) = [f E k(X) l (f) + D z: 0} . 

A proof of Theorem 1 may be found on page 28 of Serre [4]. 

Recall that: 

( 1) deg K = 2g- 2 where K denotes the canonical divisor on X , 

( 2) the Riemann-Roch theorem~ i.e. -f,(D) = deg D + 1 - g + i(K-D) 

where i(D) = dim, L(D) ~ and 
K 

(3) if X is a non-singular plane curve of degree n 9 then 

g = (n-1)(n-2)/2 • 

Def. X is an elliptic curve if g = 1 • 

Notice that if D is a divisor of degree n on a curve X 9 

then n < 0 => L(D) = 0 => .l(D) = 0 • In particular 9 on an el­

liptic curve X ~ n > 0 => deg(K-D) = - n < 0 => .l(K-D) = 0 => 

~(D)= n from (1) and (2) above, 

Theorem 2 A non-singular complete curve C in F 2 of degree 3 

is an elliptic curve. 

Proof~ (3) => g = (3-1)(3-2)/2 = 1 • 
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Theorem 3 Every elliptic curve 

lar complete irreducible curve c 

X is isomorphic to a non-singu­

in F 2 of degree 3 • 

Proof: Let D be a divisor of degree 3 on X . 

Theorem 1 implies that D is very ample~ i.e. that we have an 

isomorphism from X to a non-singular complete irreducible curve 

c in F(L(D)) • Riemann-Roch 2 
=> l(D) = 3 => F(L(D)) = F 

Let n = g(C) • X an elliptic curve => 1 = g(X) = g(C) = 

(n-1)(n-2)/2 => n = 3 • 

Thus we have established the desired connection between (I) 

and (II). 

§ 2 ) Algebraic and geometric group laws on an elliptic curve. 

Let X be an elliptic curve over k ~ and let X(k) denote 

the set of k-points of X • We begin by defining a group law on 

X(k) in a rather algebraic fashion. Let Div0 (X) be the group 

of divisors of degree 0 on X . Let denote linear equiva-

lence, and let Div0 (X)/-- be the quotient group. If D E Div0(X)~ 

let Cl(D) be its image in Div0 (X)j ...... 

Recall that a divisor D = ~npP is called effective if 

np > 0 for all P • 

Lemma 4 Let D1 and D2 be effective divisors of degree 1 on 

X . Then 

Proof: (=>) Obvious. 

(<= ) D1 effective=> L(D1 ) contains all the constant func-
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tions. deg(D1) = 1 ==> l(D1) = 1 ==> L(D1) consists solely of 

the constant functions. Suppose now that D1 ~ D2 • Then there 

exists f E k(X) such that D1 +(f) = D2 

f E L(D1) ==> f constant ==> D1 = D2 • 

D2 effective ==> 

Fix a k-point e of X • Define a map ~ from X(k) to 

Div0 (X)/~ by P ~> Cl(P-e) • 

Proposition 5 The map § ~ X(k) --> Div0 (X)/~ is a bijection. 

<==> p1 = p2 • So 

Let D E Div0 (X)/"' 

Cl ( p 2-e ) <== > p 1 - e "' p 2 - e <== > p 1 ,... p 2 

is injective. Claim ~ is surjective. 

with such that Cl(D) = f5 • 

deg(D+e) = 1 ==> ~(D+e) = 1 ==> there exists f E L(D+e) 

such that (f) +D+e .:::_ 0 9 i.e. (f) +D+e = P for P E X(k) 

~(P) = Cl(P-e) = Cl((f)+D) = Cl(D) = D • Therefore ~ is surjec-

tive 9 and hence bijective. 

Thus X(k) receives an abelian group structure via ~ 

i.e. the sum of P1 and P2 is ~- 1 (i2(P1 ) + ~(P2 )) = ~-\cl(P1 -e) + 

Cl(P2-e)) = ~- 1 (Cl(P1 + P2 - 2e)) = that point Q on X such that 

Q ....., P1 + P2 - e • We therefore have a map Ivi : X(k) x X(k) -> X(k) 

which we shall call the "algebraic" group law. 

Now let us assume that C is a non-singular complete cubic 

in JP2 • We proceed to define a "geometric" group law on C(k) • 

If P19 P2 E C(k) 9 there exists a unique line L such that the 

intersection cycle L.C=P1 +P2 +P3 for some p3 E C(k) . If 

p1 1- p2 L is the unique line through p1 and p2 • If p1 = 

p2 L is the unique tangent to c at p1 • p3 is thus uni-

quely determined by p1 and p2 and we have defined a mapping 
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cp : C(k) xC(k) -> C(k) • Let e be a fixed k-point of C . 

By repeating the preceding procedure with the points cp(P 1 ~P2 ) 

and e we will obtain a new point p1 + p2 Let m . C (k) X C(k) ~ • . 
be the resulting map, i.e. m is the composition of (e,cp) and 

m is the "geometric 11 group law. 

By using certain geometric properties of IP2 ~ it is possible 

to prove that m gives C(k) an abelian group structure (cf. 

Fulton [1], p.125). We choose instead to prove the following pro-

position. 

Proposition 6 The "algebraic" group law on C coincides with 

the "geometric" group law on C 9 i.e. m = M 

Proof: Let P1 ,P2 E C(k) • Let P3 = 9(P1 ,P2 ) • Then there ex­

ists a line L1 such that L1.c = P1 + P2 + P3 • Let P4 = cp(e~P3 ) 

= cp(e,cp(P1 ,P2 )) = m(P1 ,P2 ) • Then there exists a line L2 such 

that L2 . C = e + P3 + P 4 • Let f = L1/L2 and regard f as an 

element of k(C) (f) = P1 + P2 - e- P4 => P4 "'P1 + P2 - e , i.e. 

P4 = M(P1 ,P2 ) • Therefore m = M. 

§ 3 ) Elliptic curves and abelian varieties. 

The purpose of this section is to prove the equivalence of 

notions (II) and (III) • Up to this point, we have a group law 

on the set of k-points of an elliptic curve, and we would like 

to know that this is induced by an abelian variety structure. We 

shall also prove that 1-dimensional abelian varieties are ellip-

tic curves. 

Definition Let k be a field. An abelian variety X is a com-
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plete non-singular variety defined over k together with k-mor­

phisms 

m X x X --> X 

i X --> X 

e Spec(k) --> X 

which satisfy the usual group axioms (cf. Mumford [2], :r:;.95). 

To show that an elliptic curve can be given the structure of 

an abelian variety, it suffices to check that the map ~ described 

in §2 is a morphism. Recall that ~ was defined on k-points as 

taking (P1 ,P2 ) E C(k) x C(k) to the unique third point P3 E C(k) 

such that P1 +P2 +P3 = L.C for some line L. It is quite easy 

to see that ~ is a morphism on a certain affine open subset of 

C x C • To be precise, we have the following lemma. 

Lemma 7 ~ defines a morphism from 

~= Spec(k[X1,Y1,x2 ,Y2]/(f(X1,Y1),f(X2 ,Y2 ))(X1-x2 )) 

to J = Spec(k[X3 ,Y3]/f(X3,Y3 )) where f is an affine equation 

for C • 

Proof: In any characteristic, C is isomorphic to a curve in ~2 

given by F(X,Y,Z) = Y2Z+a1XYZ+a2YZ 2 +X3 +a3x2Z+a4xz 2 +a5z3 

with a. E k • Assume C is in this form. Taking · Z = 0 as the 
l 

hyperplane at infinity, Z n C = (0,1,0) which we take as the point 

e . The affine equation then becomes f(X,Y) = Y2 + a 1XY+ a 2Y+X3 

+a3X2 +a4X+a5 • The k-pointsaf Jl' are points (P1 ,P2 ) such 

that P1 ,P2 E C(k)- [e} and such that if P1 = (x1 ,y1) and P2 = 

(x2 ~y2 ) , then x1 I x 2 The line L through P1 and P2 is 

given by L = Y- A.X- \) where A. = (y1-y2 )/(x1-x2 ) and v =Y1 -A.x1 

= y2 - A.x2 • Letting Y = A.X + v in f(X, Y) , we obtain a polyno-
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mial in X of degree 3 • P1 ,P2 E C(k) =;> x1 and x2 are roots 

of f(X,A.X+v) The third root x3 is thus an element of k , 

specifically x 3 = - x 1 - x 2 - A. 2 - a 1 A.- a 3 . Setting y3 = AX3 + v , 

we obtain the third point P3 = (x3 ,y3) in the intersection cycle 

L.C , i.e. P 3 = cp(P 1 ,P2 ) • [Note that we have just used an aff:ine 

version of Lemma 8 below.] Thus the morphism cp is defined by 

the ring-homomorphism taking x3 to - X1 - x2 -A 2 - a 1 A - a 3 and 

Y to 
3 

Thus ~ may be regarded as a rational map from C x C --> C • 

The whole point is to prove that ~ is defined on all of C x C . 

Let ~~ denote the morphism from a5f to C defined in Lemma 7. 

We proceed by taking the closure of the graph of ~' in C x C x C 

and using this closed set to give us a morphism from C x C --> C. 

Let denotes the projec-

tive space consisting of all lines in ~2 (we identify the line 

a 1X + a 2Y + a 3z with the point (a19 a2 ,a3)). We want to define 

a certain subscheme of ~ 9 namely the closed subscheme r whose 

k-points consist of all (P1 ,P29 P3 ,L) such that the intersection 

This should of course give us the graph 

of our sought-for ~ after projection onto the first three factors. 

Recall that the procedure for passing between a homogeneous 

polynomial F in two variables and an inhomogeneous polynomial G' 

in one variable implies that G can be written as a product of 

linear factors over k since G' can be written as a product of 

polynomials of degree 1 over k . The resulting factorization 

is of course unique up to constant factors. 

Lemma 8 

. IP2 
~n 

(cf. Fulton [1], p.82) Let F be a curve of degree n 

and let L be a line which is not a component of F • 
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Then there exists a homogeneous form G(M,N) in k[M,N] of de­

gree n such that the factors of G(M,N) correspond (with the 

same multiplicities) to the points in the intersection cycle L.F. 

To be precise: let U = (u1 ,u2 ,u3) and V = (v1 ,v2 ,v3) be two 

distinct k-points on the line L • We have an isomorphism 
1 ~ h: IP -> L given by (s,t) t--> (su1+tv1 ,su2+tv2 ,su3+tv3 ) • 

Let G(lVl,N) = F(Mu1+Nv1 ,Mu2+Nv2 ,Tviu3+Nv3 ) Moreover, let H(M,N) 
n 

=.II1 (t.M- s.N) be a homogeneous form of degree n with t 1.,s1. E k. 
1= 1 1 

Let P. = h(s.,t.) E L(k) • Then L.F~ = P1 + ••• +Pn <=> H(M 9 N) = 
~ l l 

-* A G ( M 9 N) for A E k • 

-Proof: G(M,N) factors over 1t 9 and we can write G(M,N) = 
n 
II (a.M+ S.N) 

. 1 l 'l 
l= 

with E k . Let P E L(k) and let (a,S) = 

h- 1 (P) . The intersection number I(P,F n L) = ord~(F) = the maxi­

such that (SM- a.liJ)d!G(M,N) • Bezout's theorem plus mal d E ~ 

unique factorization finishes the proof. 

Recall that we want to de£ine a closed subscheme r of j!J 

= L.C One way of defining a closed subscheme r is to give a 

set of homogeneous polynomials and take r as the closed subscheme 

defined by them. We then have to check the statement above concer­

ning the k-points. Take 'J£ = (XpY1,z1 ,x2 ,Y2 ,z2 ,x3 ,Y3,z3 ,ApA2,.A3 ) 

as a coordinate system for ~. The first thing we do is to write 

dovvn three equations requiring that P1,P2, and P3 all lie on the 

line L • The equations are 

(E1 ) A1X1 + A2Y1 + A3Z1 

(E2) A1X2 + A2Y2 + A3Z2 

(E3) A1X3 + A2Y3 + A3Z3 
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Lemma 8 will now help us find the remaining equations. From now 

on, assume (P1 ,P2 ,P3 ,L) satisfies E1' E2' and E3 . Let L = 

(a1,a2,a3) ' 
i.e. L is the line a 1x + a2Y + a 3z • At least one 

of a1,a2,a3 is non-zero, say a1 I o for the moment. Then 

u = ( a2+a3 '-a1'-a1 ) and v = (a2 ,-a1 ,o) are two distinct points 

on L . 
From the homogeneous polynomial G1 = A1F(M(A2+A3 )+NA2 ,-MA1 

-NA1 ,-MA1) where 

(a1,a2,a3) in G1 

for the two points 

Evaluating H1 at 

F is the equation for C . Substituting 

we obtain the polynomial described in LemmaS 
~ 

U and V • Let H1 = A1 .h ( ( Z. -Y. )M + Z. N) • 
1.=1 l l l 

n 
(P19 P2 ,P3 ,L) yields a1.n ((z.-y.)M+z.N) • 

1.=1 l l l 

Using the isomorphism h in Lemma 8~ we find that h(-z.,z.-y.) = l l l 
( -z. ( a2+a3 ) + ( z. -y. ) a2 , -z. ( -a1 ) + ( z. -y. ) ( -a1 ) , -z. ( -a1 ) + ( z. -y .)(0)) . l ll l ll l ll 

= (-zia3 - yia2 ,yia1 ,zia1 ) = (xi,yi,zi) = Pi since (P1 ,P2 ,P3,L) 

is assumed to satisfy E1 , E2 , and E3 • Thus, by Lemma 8, L.C = 

P1 + P2 + P3 <=> G1 (P1 ,P2 ,P3 ,L) = A.H(P1 ,P2 ,P3 ,L) for some A. E k·)<. 

But how can we write down this latter condition in terms of poly-

nomials? Write 
3 

G1 = !: g. . l l=O 

3 
H1 = L: h. 

i=o l 

Let D1ij det (gi = 
h. l 

for 0 < i, j ~ 3 

constant A E -* k is 

MiN3-i 

MiN3-i 

gj) 
h. 

J 

To say 

= 

and 

where g. ,h. E k[l:J 
l l 

g .h.- g .h. 
l J J J 

that G1 and H1 differ by 

precisely the same as requiring the 

to be 0 So the case a1 I o is taken care of. But 

can form the corresponding polynomials 

a non-zero 

D1 .. Is 
l.J 

clearly we 

D2 .. 's for lJ 
and for We take r to be the 
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closed sub scheme of :fJ defined by E1 ,E2 ,E3 the E 1 . . 's , the 
~J 

D2 .. Is 9 
~J 

and the n3 .. 's 
~J " The k-points of r are precisely 

those (P1 ,P2 ,P3 ,L) such that L.O = P1+P2+P3 . 
Let cfJ 2 2 2 -> IP xJP >~JP be projection on the first p123 

0 
0 

three factors. p123 

Therefore D = p123 (r) 

2y 
is a closed map since 1P is complete. 

is closed in IP2>< IP2x IP2 D c C x 0 )< C c 
_? 2 2 
J..E'X IP X II? and D is closed in C X 0 XC Consider r I c 

cp -

c >< c >< c ' where r cp I denotes the graph of cp' • Let E be its 

closure in C )( C x C • We claim that D = E D is closed and 

contains r cp, , hence D ~ E • Consider the projection p 12 : D 

--> 0 xC onto the first two factors. p12 is a bijection on 

closed points. p12 (rcp') = :;/ is open in C xO , so p12 (rrp') = 

C x C since C x C is irreducible. p12 (E) iS closed and p12 (E) 

:::l p12 (rcp,) • Therefore p12 (E) = C x C • p12 is a bijection, so 

D = E • We claim moreover that p12 is an isomorphism from D 

to C xC We know that 

phism from onto // 

p12 restricted to rep, 
(cf. Mumford [3], p.71) 

is an isomor-

Thus p12 is 

a birational map from D to C ><0 • By Zariski's Main Theorem 

(cf. Mumford [3], p.413) we conclude that p12 is an isomorphism 

from D onto c xC Let p3 0 D -> c be projection onto the . 0 

third factor. Let c )( c -> 0 be -1 is cp 0 p3 ° p12 cp a mor-0 

phi sm. Define m 0 xC -> c as the composition CxC (e,se)> 

c >( c ....se._> c • m is a morphism and on closed points it agrees 

with our old m . We have thus proved the following theorem. 

Theorem 9 Every elliptic curve can be given the structure of an 

abelian variety. 

We also want to sketch briefly how one goes about proving 

that a 1-dimensional abelian variety has genus 1 • 
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Theorem 10 (cf. Mumford [2]~ p.42) Let X be an abelian vari-

ety~ and let 0 
0 

be the dual space to the tangent space at e . 
Then there is a natural isomorphism 0o 0 k &x ~ 01 

X . 

Corollary 11 Let X be a 1-dimensional abelian variety. Then 

X has genus 1 ~ i.e. X is an elliptic curve. 

Proof: dim X = 1 ==> 00 ~ k ==> oi ~ crX by Theorem 10. 

Setting D = 0 

dim H0 (K) = dim 

plete => dim 

in the Riema~~-Roch theorem gives g = ~(K) = 

H0 (oi) = dim H0 (X 9 ~X) • X irreducible and com­

H0(X, C"'X) = 1 => g = 1 • 

Thus we have the desired connection between (II.) and (III.). 

§ 4.) Uniqueness of the group law. 

The various group laws which we have discussed, have all in-

valved the choice of a k-point e as the identity element. It 

is natural to ask if this is the only way in which they can differ, 

and this is indeed the case. 

Recall the following extremely useful lemma. 

Lemma 12 (Rigidity Lemma) Let X be a complete variety, Y and 

Z any varieties, and let f : X x Z --> Z be a morphism such 

that for some y 0 E Y(k), f(X x [y 0 }) is a single point 

Then there is a morphism g : Y --> Z such that if p2 

is projection onto the second factor, then f = gop2 

For a proof, see Mumford [2], p.43. 

We state some immediate corollaries. 

z 0 EZ(k). 

XYY~Y 
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Corollary 13 Given the situation in Lemma 12, assume also that 

for some x 0 E X(k), f([x 0 } x Y) is the point z0 • Then 

f(X x Y) = [z 0 } • 

Proof: By the rigidity lemma, there exists g Y -> Z such 

that f = gop2 

f(x 0 ,y) = z 0 

Corollary 14 If X and Y are abelian varieties and f :X-::> Y 

is any morphism, then there exists a homomorph1sm h : X -> Y 

and a k-point a E Y(k) 

translation by a • 

such that f = T oh where a Ta denotes 

Corollary 15 Let X and Y be abelian varieties. Then X and 

Y are isomorphic as abelian varieties <==> X and Y are iso-

morphic as schemes. 

Proof: (==>.) obvious 

( <==.) Let f X -> Y be an isomorphism of schemes. f can 

be written as f = with a E Y(k) and h a homomorphism. 

Ta is an isomorphism of schemes with T_a as its inverse. There­

fore h = T_aof is an isomorphism of schemes and hence of abelian 

varieties. 

Corollary 16 Let X be a variety and suppose that (X,m) and 

(X,m') are two abelian variety structures on X with identity 

elements e and e' respectively. Then m and m' differ only 

by translation. 
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Proof~ Let +, - and translation all denote operations with 

respect to m. Consider the morphism (m-m') :X x X--> X. 

We have (m-m')(X x (e'}) = e' = (m-m')((e'} x X) • By Corollary 

13, (m-m')(X x Y) = e' , i.e. m = m' +e' , 
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