A THEORY OF LENGTH FOR NOETHERIAN MODULES

Tor H. Gulliksen

Introduction.

In this paper we shall introduce a theory of length for Noetherian modules over an arbitrary ring (with identity), assigning to each Noetherian module M an ordinal number $I(M)$ which will briefly be called the length of M, see§ 2 for definition. $\quad(M)$ is finite if and only if M has a finite compo-sition-series, in which case $I(M)$ equals the length of the composition-series. Thus we are working with a generalization of the classical theory of length.
l(M) carries important information about M. Being an ordinal, $l(M)$ can be expressed as a polynomial in ω with integral coefficients and ordinal exponents, ω denoting the first non-finite ordinal. This polynomial - the Cantor normal form of $l(M)$ - has properties similar to the properties of the Hilbert-Samuel polynomials in local algebra. First of all, its degree coincides with the Krull dimension of M (2.3), the Krull dimension being interpreted as an ordinal as in Krause [5]. Moreover, if α is an ordinal, then the coefficient of the term cf degree α is additive on the category of Noetherian modules of Krull dimension not greater than α (2.7).

In § I we fix the notation concerning ordinal numbers and the Krull ordinal of a partially ordered Noetherian set.
§ 2 contains general results concerning the length function $M \not M(M) . \quad$ Although 1 is not additive in general, 2.1 gives the following satisfactory substitute for additivity: if

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

is an exact sequence of Noetherian modules, then we have

$$
I\left(M^{\prime \prime}\right)+I\left(M^{\prime}\right) \leq I(M) \leq I\left(M^{P}\right) \oplus I\left(M^{\prime \prime}\right)
$$

Moreover we have (2.11):

$$
I\left(M^{\prime} \quad \oplus M^{\prime \prime}\right)=I\left(M^{9}\right) \oplus I\left(M^{\prime \prime}\right) .
$$

Here \oplus is used ambiguowly to denote the Hessenberg natural sum of ordinals, cf. $\S 1$, and the direct sum of modules.

In general there does not exist a good notion of composition series in terms of which $l(M)$ can be defined. However, we show in 2.12 that if M has countable Krull dimension, then there exists a chain of non-zero submodules of M which is of ordinal type $1(\mathrm{M})$.

Unlike the case with factor modules of M (2.3), not every ordinal less than $1(\mathrm{M})$ is the length of a submodule of M . In fact if N is a submodule of M then each of the coeffieients in the polynomial $1(N)$ is less than or equal to the corresponding coefficient in the polynomial $1(M)$. In particular, $l(N)$ can only take a finite number of values (2.9).

In § 3 we obtain more precise results by assuming that all modules be finitely generated over a commutative Noetherian ring. In this case we can give an interpretation of the set of exponents in the polynomial $I(\mathbb{M})$, in terms of Ass M (3.2). We also give a complete description of the possible lengths of the submodules of M.

In Bass [l] $O(M)$ denotes the supremum of the ordinal types of descending chains of non-zero submodules of M. In 3.4 we show that also $O(M)$ can be expressed in terms of $l(M)$. We have the relation

$$
\circ(M)=\min \left(\omega_{1}, I(M)\right)
$$

ω_{1} being the first non-countable ordinal.

§ 1 Notation and basic definitions.

If W is a set of ordinal numbers, we let supW denote the least ordinal which is greater than or equal to every element in W. In particular we put sup $\varnothing=0$. If $\beta_{1}, \cdots, \beta_{k}$ are ordinals, we let $\sum_{i=1}^{k} \beta_{i}$ denote their sum in the following order $\beta_{1}+\cdots+\beta_{k}$

Letting ω denote the ordinal type of the natural numbers, any ordinal α can be written

$$
\alpha=\sum_{i=1}^{k} \omega^{\alpha_{i}} n_{i}
$$

where n_{1}, \cdots, n_{k} are non-negative integers and the exponents form a decreasing sequence of ordinals, i.e.

$$
j<i \Rightarrow \alpha_{i}<\alpha_{j} \text { for all } 1, j
$$

The representation (*) will be called the Cantor normal form of α. If $n_{1} \neq 0$ the corresponding exponent α_{1} will be called the degree of α and will be denoted by deg α. It is convenient to define deg $0=-1$. The Cantor normal form is unique in the following sense: Let α and β be ordinals with Cantor normal forms $\sum_{i=1}^{k} \omega^{\alpha_{i}} n_{i}$ and $\sum_{i=1}^{k} \omega^{\alpha_{i}} m_{i}$ respectively. Then we have $\alpha=\beta$ if and only if $n_{i}=m_{i}$ for all i. If $n_{i} \leq m_{i}$ for all i, then this fact will be expressed by writing $\alpha \ll \beta$. Finally we define the direct sum (Hessenberg natural sum) of α and β as follows

$$
\alpha \oplus \beta:=\sum_{i=1}^{k} \omega^{\alpha}{ }^{i}\left(n_{i}+m_{i}\right)
$$

A justification for this notation is contained in 2.11.
Let S be a non-empty partially ordered set which is Noetherian, i.e. every non-empty subset has a maximal element. Let ord denote the class of ordinal numbers. By the ordinal map on S we mean the map

$$
\lambda: S \rightarrow \underline{\text { Ord }}
$$

defined by

$$
\lambda(x)=\sup \{\lambda(y)+1: x<y\}
$$

The Krull ordinal of S will be denoted $x(S)$ as in [l]. $x(S)$ can be expressed in terms of the ordinal map as follows

$$
x(S)=\sup \{\lambda(x): x \in S\} .
$$

§ 2 The length of Noetherian modules.

Let M be a Noetherian (left)module over a ring (with identity) and let $S(M)$ be the set of all submodules of M ordered by inclusion. The Krull ordinal of $S(M)$ will be called the length of M and will be denoted by $l(M)$. The degree of the ordinal $l(M)$, cf. § 1 , will be called the dimension of M and will be denoted $d(M)$. By the Krull dimension of M we will mean the ordinal KdimM as defined in Krause [5] and equivalently in [2]. We shall see in theorem 2.3 below that $d(M)=K d i m M$.
2.1 Theorem. Let $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ be an exact sequence of Notherian modules. Then we have

$$
I\left(M^{\prime \prime}\right)+l\left(M^{\prime}\right) \leq I(M) \leq I\left(M^{\prime}\right) \oplus I\left(M^{\prime \prime}\right)
$$

In particular we have

$$
d(M)=\max \left(d\left(M^{r}\right), d\left(M^{\prime \prime}\right)\right) .
$$

Proof: The last equality clearly follows from the two inequalities. We will start by proving the first inequality. Let P be the partially ordered set obtained from $S\left(M^{\prime}\right)$ and $S\left(M^{\prime \prime}\right)$ by identifying the unique maximal element in $S\left(M^{\prime}\right)$ with the unique minimal element in $S\left(M^{\prime \prime}\right)$. Let λ^{+}and λ^{\prime} be the ordinal maps on P and $S\left(M^{\prime}\right)$ respectively. It is easily shown by induction that

$$
\lambda^{+}(N)=\mu\left(S\left(M^{\prime \prime}\right)\right)+\lambda^{\prime}(N) \quad \text { for all } N \in S\left(M^{\prime}\right)
$$

Hence

$$
x(P)=x\left(S\left(M^{\prime \prime}\right)\right)+x\left(S\left(M^{\prime}\right)\right)=I\left(M^{\prime \prime}\right)+I\left(M^{\prime}\right) .
$$

Since we have an order preserving injection $P \rightarrow S(M)$, it is easily shown that $x(P) \leq x(S(M))$. Hence

$$
I\left(M^{\prime \prime}\right)+I\left(M^{\prime}\right) \leq I(M) .
$$

We shall now prove the second inequality in 2.1. Let $\lambda^{\prime \prime}$, λ and λ^{\prime} denote the ordinal maps on $S\left(M^{\prime \prime}\right), S(M)$ and $S\left(M^{\prime}\right)$ respectively. We will define a map

$$
\lambda^{*}: S(M) \rightarrow \underline{\text { Ord }}
$$

as follows. Let $N \in S(M)$. Put

$$
\lambda^{*}(N)=\lambda^{\prime}\left(N \cap M^{\prime}\right) \oplus \lambda^{\prime \prime}\left(N+M^{\prime} / M^{\prime}\right)
$$

I claim that λ^{*} is strictly order reversing. Indeed, let $N_{1} \subseteq N_{2}$ be submodules of M. Clearly we have

$$
\lambda^{*}\left(N_{1}\right) \geq \lambda^{*}\left(N_{2}\right)
$$

Assume that we have equality. We are going to show that $N_{1}=N_{2}$. For $1=1,2$ put

$$
\alpha_{i}=\lambda^{\prime}\left(N_{i} \cap M^{r}\right) \quad \text { and } \quad \beta_{i}=\lambda^{\prime \prime}\left(N_{i}+M^{\prime} / M^{r}\right)
$$

We have

$$
\alpha_{1} \geq \alpha_{2}, \beta_{1} \geq \beta_{2} \text { and } \alpha_{1} \oplus \beta_{1}=\alpha_{2} \oplus \beta_{2}
$$

These three relations are easily seen to imply

$$
\alpha_{1}=\alpha_{2} \quad \text { and } \quad \beta_{1}=\beta_{2} .
$$

Since λ^{\prime} and $\lambda^{\prime \prime}$ are strictly order reversing we have

$$
N_{1} \cap M^{\prime}=N_{2} \cap^{\prime} \quad \text { and } \quad N_{1}+M^{\prime} / M^{\prime}=N_{2}+M^{\prime} / M^{\prime}
$$

It follows that $N_{1}=N_{2}$. Since λ^{*} is strictiy orderreversing, it is easily shown by induction that

$$
\lambda(N) \leq \lambda^{*}(N) \quad \text { for all } N \in S(M) .
$$

Hence

$$
I(M)=x(S(M))=\lambda((0)) \leq \lambda^{*}((0))=I\left(M^{\prime}\right) \oplus I\left(M^{\prime \prime}\right)
$$

2.2 Remark. It is possible to generalize the notion of length to non-Noetherian modules M, by letting $1(M)$ be the supremum of all ordinals $\mu(S)$ where S runs through the set of all Noetherian subsets of $S(M)$. With this generalized notion the previous theorem would still be valid, except for the first of the two inequalities which has to be replaced by the following weaker inequality

$$
\max \left(I\left(M^{\prime \prime}\right), I\left(M^{\prime}\right)\right) \leq I(M) .
$$

2.3 Theorem. Let M be a non-zero Noetherian module. Then we have
(i) Every ordinal less than $1(M)$ is the length of a proper factor module of M. Conversely, if N is a non-zero submodule of M then $I(M / N)<I(M)$.
$d(M)=K d i m M$.

Proof: (1) Let β be an ordinal less than $l(M)$, and let λ be the ordinal map on $S(M)$. Letting 0_{M} denote the zerosubmodule in M we have $\lambda\left(0_{M}\right)=I(M)>\beta$. Hence we can find a submodule $N \subseteq M$ such that $\lambda(N)=\beta$, so $I(N / N)=\beta$. Conversely, if N is a non-zero submodule of M, then by 2.1 $I(M / N)<I(M)$.
(ii) We will first show that $K \operatorname{dim} M \leq d(M)$ using induction on $d(M)$. If $l(M) \leq 0$ then M has finite length, so clearly Kdim $M=d(M)$. Let α be a non-zero ordinal and assume that the inequality is valid whenever $d(M)<\alpha$. Now assume that $d(M)=\alpha$. Assume that $K d i m M>\alpha$. Then there exists a descending chain

$$
M=M_{0} \supset M_{1} \supset \ldots
$$

such that $K \operatorname{KimMM} M_{i} / M_{i+1} \geq \alpha$ for $1 \geq 0$. By the induction hypothesis we have $d\left(M_{i} / M_{i+1}\right) \geq \alpha$. Hence $I\left(M_{i} / M_{i+1}\right) \geq \omega^{\alpha}$. By 2.1 we have $I(M) \geq \omega^{\alpha} \omega=\omega^{\alpha+1}$. So $d(M) \geq \alpha+1$ which is a contradiction. We conclude that $K d i m M \leq \alpha$.

We will now show that $d(M) \leq K d i m M$ using induction on Kdim M. If KdimM ≤ 0 then M has finite length, hence $d(M)=\operatorname{Kdim} M$. Put $\operatorname{Kdim} M=\alpha>0$. Assume that $d(M) \geq \alpha+1$. Then $I(M) \geq \omega^{\alpha+1}$.
By (i) we can find a submodule $M_{1} \subset M$ such that $I\left(M / M_{1}\right)=\omega^{\alpha}$. By 2.1 it follows that

$$
\omega^{\alpha+1} \leq I(M) \leq I\left(M_{1}\right) \oplus \omega^{\alpha}
$$

Hence $I\left(M_{1}\right) \geq \omega^{\alpha+1}$. Now we can find a submodule $M_{2} \subset M_{1}$ such that $I\left(M_{1} / M_{2}\right)=\omega^{\alpha}$. Repeating the argument we can find a descending sequence $M=M_{0}>M_{1}>M_{2} \supset \cdots$ such that $d\left(M_{i} / M_{i+1}\right)=\omega^{\alpha}$ for $i \geq 0$. Hence $d\left(M_{i} / M_{i+1}\right)=\alpha$. We may assume by induction that
$\operatorname{Kdim}\left(\mathbb{M}_{i} / \mathbb{M}_{i+1}\right) \geq \alpha$. Hence $K \operatorname{Kim} \mathbb{M} \geq \alpha+1$, which is a contradiction. We conclude that $d(\mathbb{M}) \leq \alpha$.
2.4 Corollary. To each ordinal α there exists a Noetherian, commutative ring R such that $I(R)=\alpha$.

Proof There exists a commutative, Noetherian ring R_{α} such that Kdim $R_{\alpha} \geq \alpha$, cf. [2] or [3]. Hence $I\left(R_{\alpha}\right) \geq \omega^{\alpha} \geq \alpha$. By 2.3(i) there exists an ideal O in R_{α} such that $I\left(R_{\alpha} / O\right)=\alpha$.

In [2] a module M is called α-critical if M has Krulldimension equal to α and every proper factor-module has Krulldimension less that α. The following corollary is an immediate consequence of 2.3:
2.5 Corollary. Let M be a Noetherian module. Then the following statements are equivalent:
(i) M is a-critical.

$$
\begin{equation*}
I(\mathbb{M})=\omega^{\alpha} \tag{ii}
\end{equation*}
$$

2.6 Definition Let M be a Noetherian module and let α be any ordinal. The coefficient of the term of degree α in the Cantor normal form of $I(\mathbb{M})$ is a non-negative integer which will be denoted by $\mu_{\alpha}(\mathbb{M})$.
2.7 Lemma Let $0 \rightarrow \mathbb{M}^{r} \rightarrow \mathbb{M} \rightarrow \mathbb{M}^{\prime \prime} \rightarrow 0$ be an exact sequence of Noetherian modules. Put $\alpha=$ Kdim M. Then we have

$$
\mu_{\alpha}(\mathbb{M})=\mu_{\alpha}\left(\mathbb{M}^{\prime}\right)+\mu_{\alpha}\left(\mathbb{M}^{\prime \prime}\right)
$$

Proof By 2.3 a equals the degree of $I(\mathbb{M})$, hence the equality follows from 2.1.
2.8 Lemma and definition. Let M be a Noetherian module of dimension $\alpha \neq 0$. Then there exists a unique maximal submodule of M of dimension less that α, which will be denoted by M_{*}. Put

$$
I(\mathbb{M})=\omega^{\alpha} n+\beta
$$

where $n \neq 0$ and $\beta<\omega^{\alpha}$ then we have $I\left(\mathbb{M}_{*}\right)=\beta$ and $I\left(\mathbb{M} / \mathbb{M}_{*}\right)$ $=\omega^{\alpha} n$.

Proof Since M is Noetherian, the existence of \mathbb{M}_{*} is clear in view of 2.1. By 2.3 we can choose a submodule N in M such that $I(\mathbb{M} / \mathbb{N})=\omega^{\alpha} n$. Using 2.6 we obtain $\mu_{\alpha}(\mathbb{N})=0$, hence $\operatorname{Kdim} \mathbb{N}<\alpha$, so $N \subseteq M_{*}$. Moreover it follows from 2.1 that

$$
\omega^{\alpha} n+I(\mathbb{N}) \leq I(\mathbb{M}) \leq \omega^{\alpha} n \oplus I(\mathbb{N})=\omega^{\alpha} n+I(\mathbb{N})
$$

Hence

$$
\omega^{\alpha} n+I(N)=I(\mathbb{M})=\omega^{\alpha} n+\beta
$$

so $I(\mathbb{N})=3$. It suffices to show that $\mathbb{N}=M_{*}$. Since

$$
\mu_{\alpha}\left(\mathbb{M} / \mathbb{M}_{*}\right)=\mu_{\alpha}(\mathbb{M})
$$

we have

$$
I\left(\mathbb{M} / M_{*}\right)=\omega^{\alpha} n+\gamma
$$

for some γ. Using 2.1 on the exact sequence

$$
0 \rightarrow \mathbb{M}_{*} / \mathbb{N} \rightarrow \mathbb{M} / \mathbb{N} \rightarrow \mathbb{M} / \mathbb{M}_{*} \rightarrow 0
$$

we obtain

$$
\omega^{\alpha}{ }_{n}+\gamma+I\left(M_{*} / \mathbb{N}\right) \leq I(\mathbb{M} / \mathbb{N})=\omega^{\alpha} n .
$$

Hence we have $I\left(\mathbb{M}_{*} / \mathbb{N}\right)=0$ so $\mathbb{M}_{*}=\mathbb{N}$.
2.9 Theorem. Let M be a Noetherian module and consider the following sets of ordinals:

$$
\begin{aligned}
& A(\mathbb{M}):=\{\beta: I(\mathbb{M})=\gamma+\beta \text { for some ordinal } \gamma\} \\
& I S(\mathbb{M}):=\{I(\mathbb{N}): N \subseteq \mathbb{M}\} \\
& C(\mathbb{M}):=\{\beta: \beta \ll I(\mathbb{M})\}
\end{aligned}
$$

Then we have

$$
A(\mathbb{M}) \subseteq I S(\mathbb{M}) \subseteq C(\mathbb{M})
$$

Proof We will first prove that $A(\mathbb{M}) \subseteq I S(\mathbb{M})$. Let γ and β be ordinals such that $I(M)=\gamma+\beta$. We are going to show the existence of a submodule $N \subseteq M$ such that $I(N)=\beta$. Let α be the degree of β. We may write

$$
I(\mathbb{M})=\gamma^{p}+\omega^{\alpha}{ }_{m}+\beta^{\prime}
$$

where $\operatorname{deg} \beta^{\prime}<\alpha$ and where each term in the Cantor normal form of γ^{\prime} has degree greater than α. Clearly there exists an integer $n \leq m$ such that

$$
\beta=\omega^{\alpha} n+\beta^{1}
$$

By repeated application of the operation $*$ in 2.8 we obtain a submodule $N_{1} \subseteq \mathbb{M}$ such that

$$
I\left(N_{1}\right)=\omega^{\alpha} m+\beta^{\prime}
$$

By 2.3 we can find a submodule $\mathbb{N} \subseteq \mathbb{N}_{1}$ such that

$$
I\left(N_{1} / \mathbb{N}\right)=\omega^{\alpha}(m-n)
$$

Using 2.1 on the exact sequence

$$
0 \rightarrow N \rightarrow N_{1} \rightarrow N_{1} / N \rightarrow 0
$$

we obtain

$$
\omega^{\alpha}(m-n)+I(N) \leq I\left(N_{1}\right) \leq \omega^{\alpha}(m-n) \oplus I(N)=\omega^{\alpha}(m-n)+I(N)
$$

Hence

$$
\omega^{\alpha}(m-n)+I(\mathbb{N})=I\left(N_{1}\right)=\omega^{\alpha} m+\beta^{\prime}
$$

So

$$
I(\mathbb{N})=\omega^{\alpha} n+\beta^{\prime}=\beta .
$$

To prove the relation $1 S(\mathbb{M}) \subseteq C(M)$, let N be any submodule of \mathbb{M}. We are going to show that $I(\mathbb{N}) \ll I(\mathbb{M})$, i.e. $\mu_{\alpha}(\mathbb{N}) \leq \mu_{\alpha}(M)$ for all α. We will use induction on the dimension of M. If K dim $M=0$, then N and M have finite length, and the inequalities are satisfied in this case.

We will now assume that $K d i m M>0$. By the obvious induction hypotesis it follows that

$$
\begin{equation*}
\mu_{\alpha}\left(\mathbb{N} \cap M_{*}\right) \leq \mu_{\alpha}\left(M_{*}\right) \quad \text { for all } \quad \alpha \tag{1}
\end{equation*}
$$

Moreover, it follows from 2.7 that

$$
\begin{array}{ll}
\mu_{\alpha}\left(\mathbb{M}_{*}\right)=\mu_{\alpha}(\mathbb{M}) & \text { for all } \alpha \neq \operatorname{Kdim} \mathbb{M} \\
\mu_{\alpha}\left(\mathbb{M}_{*}\right)=0 & \text { for } \alpha=\text { Kdim } \mathbb{M}
\end{array}
$$

There are two cases:
(i) $\operatorname{Kdim} \mathbb{N}<\operatorname{Kdim} \mathbb{M}$. In this case we have $\mathbb{N}=\mathbb{N} \cap M_{*}$.

Hence by (1), (2) and (3) we have

$$
\mu_{\alpha}(\mathbb{N}) \leq \mu_{\alpha}(\mathbb{M}) \quad \text { for all } \alpha
$$

(ii) $\operatorname{Kdim} N=K \operatorname{Kim} \mathbb{M}^{(}$. In this case we have $\mathbb{N}_{*}=\mathbb{N} \cap \mathbb{M}_{*}$. For $\alpha \neq \operatorname{Kdim} M$ we have

$$
\mu_{\alpha}(\mathbb{N})=\mu_{\alpha}\left(\mathbb{N}_{*}\right) \leq \mu_{\alpha}\left(\mathbb{M}_{*}\right)=\mu_{\alpha}(\mathbb{N})
$$

For $\alpha=$ Kdim M it follows from 2.7 that

$$
\mu_{\alpha}(\mathbb{N})=\mu_{\alpha}(\mathbb{M})-\mu_{\alpha}(\mathbb{M} / \mathbb{N}) \leq \mu_{\alpha}(\mathbb{M})
$$

2.10 Remark Jategaonkar shows in [4] that, given any ordinal α, there is a principal right ideal domain R whose proper right ideals are linearly ordered of order type ω^{α}. Considering R as a right module it is easily seen that we have $A(R)=1 S(R)$. In 3.2 below we shall see that if \mathbb{M} is a Noetherian module over a commutative ring, then we have $I S(\mathbb{M})=C(\mathbb{M})$. This, combined with 2.4, shows that $A(\mathbb{M})$ is not equal to $1 S(\mathbb{M})$ in general. The inclusion $1 S(\mathbb{M}) \subseteq C(\mathbb{M})$ expresses that if N is a submodule of M, then each of the coefficients in the Cantor normal form of $I(\mathbb{N})$ is less that or equal to the corresponding coefficient in the Cantor normal form of \quad (\mathbb{M}) . This will be referred to as the principle of coefficientwise comparison.
2.11 Proposition Let M be a Noetherian module, and let \mathbb{M}_{1} and M_{2} be submodules such that $M=M_{1}+M_{2}$. Then the sum is direct if and only if

$$
I(\mathbb{M})=I\left(\mathbb{M}_{1}\right) \oplus I\left(\mathbb{M}_{2}\right)
$$

Proof We will first show that

$$
I\left(\mathbb{M}^{\prime}\right) \oplus I\left(\mathbb{M}^{\prime \prime}\right)=I\left(\mathbb{M}^{\prime} \oplus \mathbb{M}^{\prime \prime}\right)
$$

The inequality \geq follows immediately from 2.1. We are going to show the opposite inequality by induction on $I\left(\mathbb{M}^{\prime \prime}\right)$. For $I\left(\mathbb{M}^{\prime \prime}\right)$ $=0$ there is nothing to prove. Now let $I\left(\mathbb{M}^{\prime \prime}\right)>0$, and let $I\left(\mathbb{M}^{\prime}\right), I\left(\mathbb{M}^{\prime \prime}\right)$ and $I\left(\mathbb{M}^{\prime} \oplus \mathbb{M}^{\prime \prime}\right)$ be denoted by $\alpha^{\prime}, \alpha^{\prime \prime}$ and α respectively. Letting β be a variable running over the ordinals less that $\alpha^{\prime \prime}$ we have $\alpha^{\prime \prime}=\sup (\beta+1)$. For each value of β we can find (2.3) a proper factor module $\overline{\mathrm{M}}^{\prime \prime}$ of $\mathrm{M}^{\prime \prime}$ such that $I\left(\bar{M}^{\prime \prime}\right)=\beta$. Since $M^{\prime} \oplus \overline{\mathbb{M}}^{\prime \prime}$ is a proper factor-module of $\mathbb{M}^{\prime} \oplus \mathbb{M}^{\prime \prime}$, it follows
by the obvious induction hypotesis that

$$
I\left(\mathbb{M}^{\prime}\right) \oplus I\left(\overline{\mathbb{M}}^{\prime \prime}\right) \leq I\left(\mathbb{M}^{\prime} \oplus \overline{\mathbb{M}}^{\prime \prime}\right)<I\left(\mathbb{M}^{\prime} \oplus \mathbb{M}^{\prime \prime}\right)=\alpha
$$

Hence

$$
\left(\alpha^{\prime} \oplus \beta\right)+1 \leq \alpha
$$

This gives

$$
\alpha^{\prime} \oplus \alpha^{\prime \prime}=\alpha^{\prime} \oplus(\sup (\beta+1))=\sup \left(\left(\alpha^{\prime} \oplus \beta\right)+1\right) \leq \alpha
$$

which was to be shown.
Let us now assume that

$$
I(\mathbb{M})=I\left(\mathbb{M}_{1}\right) \oplus I\left(\mathbb{M}_{2}\right)
$$

It remains to show that $M_{1} \cap M_{2}=0$. We have an exact sequence

$$
0 \rightarrow \mathbb{M}^{\prime} \cap \mathbb{M}^{\prime \prime} \rightarrow \mathbb{M}^{\prime} \oplus \mathbb{M}^{\prime \prime} \rightarrow \mathbb{M} \rightarrow 0
$$

Using 2.1 we obtain

$$
I\left(\mathbb{M}^{\prime}\right)+I\left(\mathbb{M}^{\prime} \cap \mathbb{M}^{\prime \prime}\right) \leq I\left(\mathbb{M}^{\prime} \oplus \mathbb{M}^{\prime \prime}\right)=I\left(\mathbb{M}^{\prime}\right) \oplus I\left(\mathbb{M}^{\prime \prime}\right)=I(\mathbb{M})
$$

Hence $I\left(\mathbb{M}^{\prime} \cap \mathbb{M}^{\prime \prime}\right)=0$ so $M^{\prime} \cap M^{\prime \prime}=0$.
2.12 Proposition Let M be a Noetherian module. Assume that Kdim M is countable. Then there exists a well ordered chain of non-zero submodules of M of ordinal type equal to $I(\mathbb{M})$.

Proof We will use induction on $I(\mathbb{M})$. Put $\alpha:=K d i m M$. If I(M) is finite, then the proposition is obvious. Hence we may assume that $\alpha \geq 1$. We will first treat the case where $I(\mathbb{M})=\omega^{\alpha}$. Since α is countable, we can find a non-decreasing sequence of ordinal numbers less than α

$$
\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{n} \leq \cdots
$$

such that

$$
\omega^{\alpha}=w^{\beta_{1}}+w^{\beta_{2}}+\ldots+w^{\beta_{n}}+\ldots
$$

We are going to construct a filtration of non-zero submodules

$$
\mathbb{M}=\mathbb{M}_{0} \supset \mathbb{M}_{1} \supset \mathbb{M}_{2} \supset \ldots
$$

such that

$$
I\left(\mathbb{N}_{i-1} / \mathbb{M}_{i}\right)=\omega^{\beta_{i}} \quad \text { for } \quad i \geq 1 .
$$

We put $M_{0}:=M$. Now let $i \geq 1$ and assume that M_{0}, \ldots, M_{i-1} has been constructed. By the principle of coefficientwise comparison (2.10) any non-zero submodule of M has length equal to ω^{α}, hence

$$
I\left(\mathbb{M}_{i-1}\right)>\omega^{\beta} i
$$

Thus by 2.3 we can find a non-zero submodule $\mathbb{M}_{i} \subset \mathbb{M}_{i-1}$ such that

$$
I\left(M_{i-1} / M_{i}\right)=\omega^{3},
$$

and the construction is complete.
By the induction hypotesis $\mathbb{M}_{i-1} / \mathbb{M}_{i}$ contains a chain consisting of non-zero submodules and having ordinal type equal to ω^{β} i. Clearly these chains induce a chain in M of ordinal type ω^{α}.

In the general case we can write

$$
I(\mathbb{M})=\omega^{\alpha} n+\beta
$$

where $n \neq 0$ and $B<\omega^{\alpha}$. By the first part of the proof we may assume that $I(\mathbb{M})>\omega^{\infty}$. By 2.3 we can find a non-zero submodule $\mathbb{N} \subset \mathbb{M}$ such that $I(M / \mathbb{N})=\omega^{\alpha}$. Using 2.1 on the exact sequence

$$
0 \rightarrow \mathbb{N} \rightarrow \mathbb{M} \rightarrow \mathbb{M} / \mathbb{N} \rightarrow 0
$$

we obtain

$$
\omega^{\alpha}+I(\mathbb{N}) \leq I(\mathbb{N}) \leq \omega^{\alpha} \oplus I(\mathbb{N})=\omega^{\alpha}+I(\mathbb{N})
$$

Hence

$$
I(\mathbb{N})=\omega^{\alpha}+I(\mathbb{N}) .
$$

By the induction hypotesis, M / \mathbb{N} and \mathbb{N} contain chains of ordinal type ω^{α} and $l(N)$ respectivily. Two such chains clearly induce a chain in M of ordinal type $I(\mathbb{M})$.
§ 3 Noetherian modules over commutative rings.

In this section all modules are assumed to be finitely generated over a commutative Noetherian ring R. The results depend heavily on the assumption that R be commutative.
3.1 Lemma Let M be a module with length

$$
I(\mathbb{M})=\omega^{\alpha} n+\gamma
$$

where $n \neq 0$ is a natural nimber and $\gamma<\omega^{\alpha}$. Let k be an integer such that $0 \leq k \leq n$. Then \mathbb{N} contains a submodule \mathbb{N} such that $I(N)=\omega_{k}$.

Proof By ascending induction on k we are going to construct submodules

$$
0=N_{0} \subset \ldots \subset N_{k} \subset \ldots \subset N_{n}
$$

such that $I\left(N_{k}\right)=\omega^{\alpha} k$. Assume that $1 \leq k \leq n$ and that $\mathbb{N}_{0}, \ldots, \mathbb{N}_{k-1}$ has been constucted. By 2.7 we have

$$
\mu_{\alpha}\left(\mathbb{M} / N_{k-1}\right)=(n-k+1) \neq 0
$$

Hence $K \operatorname{Kdm} \mathbb{M} N_{k-1}=\alpha$, so there exists a prime ideal p in Ass $\left(M / N_{k-1}\right)$ such that $K \operatorname{Kim} R / p=\alpha$. In view of 2.5 we have $I(R / p)=\omega^{\alpha}$. There exists an injection of $R /-p$ into M / N_{k-1}. The image of R / p in M / \mathbb{N}_{k-1} pulls back to a submodule in M which we will denote by N_{k}. Thus we have an exact sequence

$$
0 \rightarrow N_{k-1} \rightarrow N_{k} \rightarrow \mathrm{R} / \mathrm{p} \rightarrow 0
$$

By (2.1) we obtain $I\left(N_{k}\right)=I\left(\mathbb{N}_{k-1}\right)+I(R / \rho)=\omega^{\alpha_{k}}$.
3.2 Theorem Let \mathbb{M} be a Noetherian module over a commutative ring R, and let the length $I(\mathbb{M})$ have Cantor normal form

$$
I(\mathbb{M})=\omega^{\alpha_{k^{2}}}{n_{k}}+\ldots+\omega^{\alpha_{1}} n_{1}
$$

where $n_{1} \ldots n_{k} \neq 0$. Then
(i) M is an essential extension of a direct sum of submodules N_{i} such that $I\left(N_{i}\right)=\omega^{\alpha_{i}} n_{i} \quad(1 \leq i \leq k)$.
(ii) $\{I(\mathbb{N}): N \subseteq \mathbb{M}\}=\{\rho \ll I(\mathbb{M})\}$
(iii) $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}=\{\operatorname{Kdim} R / p: p \in \operatorname{Ass} \mathbb{M}\}$

Proof (i). Using 2.8 and the previous lemma we see that M contains submodules N_{i} such that $I\left(N_{i}\right)=\omega^{\alpha_{i_{n}}}$ for $1 \leq i \leq k$. Put $N:=\sum_{i=1}^{k} \mathbb{N}_{i}$. Using 2.11 in combination with the principle of coefficientwise comparison (2.10) one easily shows that this sum is direct and that $I(\mathbb{N})=I(\mathbb{M})$. The last relation shows that \mathbb{M} is an essential extension of N. (ii). With the notation introduced in 2.9 we are going to show $I S(\mathbb{M})=C(\mathbb{M})$. Since the inclusion \subseteq was established in 2.9 we need only take care of the opposite inclusion. Let β be an arbitrary ordinal such that $\beta \ll I(\mathbb{M})$. We can write

$$
\beta=\omega^{\alpha_{k}} b_{k}+\ldots+\omega^{\alpha_{1}} b_{1}
$$

where $b_{i} \leq n_{i}$ for $1 \leq i \leq k$. By 3.1 we can find submodules $I_{i} \subseteq N_{i}$ such that $I\left(I_{i}\right)=\omega^{\alpha} k_{k}$. Put $I:=\Sigma_{i=1}^{k} I_{i}$. Clearly this sum is direct, so by 2.11 we obtain $I(I)=\beta$. (iii). We shall first prove the inclusion \subseteq. Let a be one of the members in the set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$. By (possibly repeated) application of the *-operation in 2.8 to M, we obtain a submodule $\mathbb{N} \subseteq \mathbb{M}$ with Krull dimension α. Hence there is a prime ideal $p \in \operatorname{Ass} \mathbb{N} \subseteq$ Ass M such that $\operatorname{Kdim} R / p=\alpha$. Conversely,
let Y be a prime ideal in $A s s M$ such that K dim $R / p=\alpha$. Then M contains an isomorphic copy of R / Y having length equal to ω^{α}. By the principle of coefficientwise comparision (2.10), α is one of the exponents $\alpha_{1}, \ldots, \alpha_{k}$ in the Cantor normal form of $I(M)$.
3.3 Definition As in [1] we let $O(\mathbb{M})$ denote the supremum of the ordinal types of descending chains of non-zero submodules of M 。

We close this section by expressing $O(M)$ in terms of $I(\mathbb{M})$.
3.4 Theorem Let M be Noetherian module over a commutative ring. Then we have

$$
o(\mathbb{M})=\min \left(\omega_{1}, I(\mathbb{M})\right),
$$

where w_{1} denotes the first non-countable ordinal.
Proof Let us first treat the case where $I(\mathbb{M})<\omega_{1}$. In this case Kdim M is countable. It follows from 2.12 that $o(\mathbb{M}) \geq I(\mathbb{M})$. On the other hand it is easily seen that we (in general) have $O(\mathbb{M}) \leq I(\mathbb{M})$. Hence

$$
O(\mathbb{M})=I(\mathbb{M})
$$

which proves the theorem in this case.
Let us now treat the case where $I(\mathbb{M}) \geq \omega_{1}$. Let B be an arbitrary ordinal less than ω_{1}. By 2.3 there exists a submodule $\mathbb{N}_{\beta} \subset \mathbb{M}$ such that $I\left(M / \mathbb{N}_{\beta}\right)=\beta$. By $2.12 \mathbb{N} / \mathbb{N}_{B}$ has a descending chain of non-zero modules of ordinal type β, hence such a chain also exists in M. This gives $o(\mathbb{M}) \geq \beta$, so $o(\mathbb{M}) \geq w_{1}$. on the other hand, by 1.1 in [1] every chain in \mathbb{M} is countable, so
$o(M) \leq w_{1}$. This gives

$$
o(\mathbb{M})=w_{1}
$$

and the proof is now complete.

References.
[1] H. Bass, Descending chains and the Krull ordinal of commutative Noetherian rings. J. Pure and Appl. Algebra 1 (1971) 347-360.
[2] R. Gordon, J.C. Robson, Krull dimension, critical modules and monoform modules. To appear.
[3] T.H. Gulliksen, The Krull ordinal, coprof and Noetherian localizations of large polynomial rings. To appear in Amer.J.Math.
[4] A.V. Jategaonkar, A counter-example in ring theory and homological algebra. J.Algebra 12 (1969) 418-440.
[5] G. Krause, On the Krull-dimension of left Noetherian left Matlis-rings, Math.Z. 118(1970) 207-214.

