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1. Introduction. 

In the two previous notes in this series we made applications 

to lattice theory of results on ideal syste~s which had their origin 

in ring theory. In the present note the procedure is more or less 

reversed. On the basis of results which were first proved in a 

lattice-theoretic setting we have obtained generalizations of these 

results to ideal systems in such a way that they also have some 

bearing on rings which are not Boolean. 

There is little doubt that the most important idea which ever 

originated within a basically lattice-theoretic context was Stone's 

idea of topologizing a family of prime ideals. Innumerable varia­

tions on this theme have appeared over the last few decades and a 

bewildering profusion of both functional and sectional representation 

theorems have been proved (see [4j). The present note adds a couple 

of new representation theorems to the already existing collection. 

It will be shown that the notion of an ideal system provides a con­

venient common ground for some of the developments in this area, with 

particular relevance to distributive lattices and (von Neumann) 

regular rings. 

2. An algebraic representation theorem. 

\fuen statements about morphisms of (generalized) ideal systems 

are applied to rings one cannot be sure that one gets a statement 

about ring homomorphisms as a result. However, in the case of 

lattices this is so. We restate the relevant result in the following 

form (see [3], Theorem ) • 
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Theorem 1. If a map between two lattices gives rise to a 

morphism between the corres2onding generalized ideal systems, then 

this map is also a lattice morphism. 

In symbols this is just the implication <P(anb) = <t>Ca)n¢(b) & 

<I> (A1 ) c (¢(A) )1 => <1> (au b) = ¢(a) u cp (b). For the terminology concerning 

ideal systems the reader is referred to [1] and [2] • 

By applying Theorem 1 we shall see that the following theorem 

represents an immediate generalization of Stone's representation 

theorem for complete Boolean algebras. 

Theorem 2. Let (D,x) denote an ideal system with zero 0 

for which the sum of x-ideals is compl..£..tel:l distributive with respect 

to the intersection of x-ideals within the ideal lattice of (D,x). 

If /0' denotes the nilpoint radical of 0 then we have a canonical 

injective morphism 

~= (D/ /0', X ) -+ 
0 TT 

i £I 
(D/P(i) x ) 

X ' i 

where x 0 denotes the canonical ideal system in D/ IIJ•, xi denotes 

the canonical ideal system in D/P(i) 
X 

and the product sign indicates 

product in the category of ideal systems, here taken over all prime 

x-ideals P~i) in (D,x). 

Proof: First of all we have canonical morphisms 

2.1 (DI~, X ) -+ (D/P(i) X ) 
0 X ' i 

because It is a routine matter to verify that the category 

of ideal systems with zero has products. This fact together with 2.1 

gives rise to the morphism ~ in the theorem. Injectivity of ~ 

means that a - b(P(i)) 
X 

for all i implies a= b(/0). But 

a = b(P(i) 
X 

for all i implies that 
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2.2 n (p(i) + {a} ) = n (P(i) + {b} ) 
i'!ii X X iEI X X 

which by the distributivity assumption in the theorem gives 

( n p(i)) +{a} 
i€I X X 

By the Krull-Stone theorem for x-ideals ([1] p.l7) we obtain 

IU" + {a} x = 10"' + {b} x which means that a = b ( 10). 

By imposing the rather strong distributivity assumption in the 

above theorem we have sacrificed some generality in order to get a 

simple proof in return. It is clear, however, that we can infer 

2.3 from 2.2 in case of the 1-system in a complete Boolean algebra B 

(which itself then automatically verifies the required infinite 

For 2.2 means in this case that to every i there distributive law). 

exists a p € P(i) 
i 1 such that 

butivity in B this implies 

av pi = b Vpi. By infinite distri­

av(Api) = bV(Api) which gives 2.3. 

In a Boolean algebra we also have liT'= o, furthermore every prime 

1-ideal is maximal and hence each B/P(i) 
1 is isomorphic to the two-

element Boolean algebra. (Note that in an ideal system (D,x) it is 

a general fact that Ax is maximal in D if and only if D/Ax 

consists of exactly two elements.) Now, it remains only to use 

Theorem 1 in order to get the familar representation theorem for a 

complete Boolean algebra: 

Corollary. Any complete Boolean algebra is isomorphic to a 

Boolean algebra of characteristic functions on some set. 

3, Topological representation theorems. 

We shall here generalize the classical topological representa­

tion of distributive lattices to a certain class of principal ideal 

systems which we shall call radical Bezout systems, and which appear 
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as a direct generalization of the notion of a von Neumann regular 

ring. More precisely we shall show that a morphism from such a 

'von Neumann regular ideal system' into a 'Boolean ideal system' 

may be uniquely represented by a certain type of continuous map 

(going in the reverse direction) between the corresponding prime 

spectra - and vice versa. Again it is Theorem 1 which helps us 

to recover the classical representation theorems for Boolean rings 

and distributive lattices as special cases of this result. 

TheJanguage of ideal systems offers a common basis for the 

various theories of structure spaces which have been developed in 

connection with rings, distributive lattices, lattice ordered 

groups, lattice ordered vector spaces, lattice ordered rings etc. 

In partucular, the prime x-ideals of an ideal system (D,x) form a 

topological space Spec(D,x) (or simply Spec D) with respect to the 

spectral topology (Zariski topology). The fact that we really get 

a topology in this general setting relies heavily on the continuity 

axiom. (See ll], p.35 and for a fuller account [5]). A basis for 

this topology is given by the sets D (a) = {P xI a <f. P x}; more 

generally a subset of Spec D is open if and only if it is of the 

form D(Ax) = · {P xl Px :pAx} for some x-ideal Ax. The equations 

3.2 

and 

D( ~ 
iEI 

D(a) = D( {a} ) 
X 

show that the sets D(Ax) form the smallest family which contains 

the D(a)'s and which is closed under arbitrary unions and finite 

intersections. We also note that 
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3.4 D(A ) = D(B ) if and only if lA'=~. 
X X X X 

(This is a consequence of the general Krull-Stone theorem for ideal 

systems proved in [1] p. 17). 

To get further we must impose rather restrictive conditions 

on our ideal system (D,x). First of all we must suppose it to be 

principal, i.e. {a}x = Da for every a~D. Secondly we shall 

assume that it is a radical ideal system in the sense that 

n:::; = Ax for any ideal Ax in (D., x) • Thirdly we shall assume 

that (D,x) is a Bezout system in the sense that any finitely 

generated ideal in (D,x) is principal. All these conditions do not 

enter at the same point in the proof of Theorem 3 and we shall try 

to emphasize which conditions are needed at each stage of the proof. 

Lemma 1. If (D;x) is a Bezout system, then a subset of 

Spec(D) is open and quasi-compact if and only if it is of the form 

D (a) for s orne a (i: D • 

D(a) c: U D(A(i)) = D( L A(i)) 
i ~I X iti X 

Proof: Assume first that 

J (i)' which means that a€ L A • By the finite character axiom 
ici x 

((2.5) in [2]) there exists a finite subset 

a~ J I A ( i )' and hence D (a) c D ( L A ( i )) = 
i € J X i €.J X 

D(a) is quasi-compact. 

J of I such that 

l __ ) D(A (i)). Thus 
i€ J X 

Assume conversely that the open set D(Ax) 

Since D(Ax)C U D(a) we can pick a finite set 
a€Ax 

is quasi-compact. 

BC A such that 
X 

D(Ax)cD(Bx) and hense also D(Ax) = D(Bx). Since (D,x) is a 

Bezout system and B is finite there exists an element b€.B 
X 

such that D(Ax) = D(b). 
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Lemme: 2. !&1. <P: (Dl,xl)-+ (D2,x2) be a mor:ghism of ideal 

systems and put Spec<P(P ) -1 Then Spec <P = <P (Px2). is a x2 -
continuous maE of Spec (D2) into Spec (D 1) with the EroEerty 

that the inverse image of an open quasi-comEact set is quasi-comEact. 

Proof: If U = D(a), a E: D1 then 

= {P I<P(a) ~ P }= D(cp(a)) 
X2 X2 

and the assertions in the lemma follow from this by using one half 

of Lemma 1. 

We note that Lemma 2 is valid for general ideal systems. It is 

for the following converse that we need extra conditions. But first 

some definitions. By the Boolean part of an ideal system (D,x) we 

shall understand the ideal system which is induced by x on the 

submonoid B(D) consisting of all the 1dempotents of D. We shall 

denote this ideal system by (B(D),x) and recall that an x-ideal 

in B(D) is nothing but a set Axn B(D) where Ax is an x-ideal 

in D. We shall call (D,x) a Boolean ideal sxstem if it is 

identical with its Boolean part. When we consider the prime spectra 

of sornsclass of ideal systems as a category, a morphism will always 

be a continuous map with the extra property that inverse images of 

quasi-compact open sets are quasi-compact. Accordingly we shall 

use the notation Hom (Spec(D 2 ),Soec(D 1)). comp ~ -

We also give the following lemma for ready reference 
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Lemma 3. The following conditions are equivalent for a 

principal ideal system (D,x) 

1. (D,x) is a radical ideal system 

2. Every princi£al ideal in (D,x) is an intersection of 

prime x-ideals. 

3. Every principal ideal in (D,x) has a unique idempotent 

generator. 

4. D is a regular monoid in the sense of von Neumann, 

i.e. a 2 is always a divisor of a. 

The simple proof of this lemma is the same as in the case of 

rings and may be left to the reader. (Actually, condition 4 shows 

that the closure operation x does not really play any part in 

this lemma • Several other properties are also equivalent to the 

von Neumann regularity of D. For instance that ideal multiplica­

tion coincides with intersection and that every irreducible ideal 

is prime. However, some of the other characterizations of von 

Neumann regular rings will, in the case of ideal systems lead to 

a stronger regularity condition than the one occurring in the above 

lemma. This is for instance the case with the property that every 

primary ideal is maximal.) 

Theorem 3. The contravariant functor Spec from the category 

of principal and radical Bezout systems into the category of prime 

spectra of such systems is full. More precisely, the canonical map 

is a bijection. 
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Proof: In order to show that Spec is full, let 

w € Homcomp(Spec{Dz), Spec(Dl) and let U = D{a) with a£ D1 • 

Then w-1 (U) is open and quasi-compact and hence of the form 

D(b) for som b € D2 according to Lemma 1. By 3.3, 3.4 and 

Lemma 3 (using both the properties 2. and 3. of that lemma), 

there exists a unique element c ~ B(D 2 ), independent of the 

choice of b, such that {b} = {c} • We then put ¢(a) = c 
X X 

such that ¢ defines a map of D1 into B(D 2 ). We proceed to 

show that <t> £ Hom( (D ~,x 1), (B (D 2 ) ,x2.)) and that 

definition of <t> gives 

-lc c -1< = w D ad)n w DCa2)) = 

w = Spec ¢ , The 

By the unicity of the idempotent generator (Lemma 3) we obtain 

¢(a 1 a 2) = <t>(a 1 )¢(az). Furthermore a£ ¢-1 (Px) <:>¢(a)£ Px 2 

<=> Px 2f- D(¢(a)) <=> Px 2*' W-l(D(a)) <=> $(Px 2) Ef: D(a) <=>a£ $(Px 2 ). 

Hence ¢-1 (Px 2) = l/J(Px 2). This shows that w = Spec¢ and also 

that <t>- 1 (P ) is an x 1 -ideal since $(P ) by definition is an 
X2 X2 

x1-ideal. Since (D2,x2) is a radical ideal system any x 2-ideal 

in D2 is an intersection of prime x2-ideals and it follows that 

the inverse image by ¢ of any xz-ideal is an x 1 -ideal proving 

that ¢ is a morphism of ideal systems. 

Assume finally that ¢p¢ 2 EHom((Dpx 1 ), (B(D 2 ),x 2)) and 

¢1 ~ ¢ 2 , i.e. ¢ 1 (a) ~ ¢2(a) for a suitable a E D1 • By Lemma 3,3. 

we can infer that f¢ 1 (a)Jx ~ [¢ 2(a)Jx , Using Lemma 3,2,there 
2 2 
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exists a prime ideal Px 2 which contains exactly one of the two 

elements ¢ 1 (a) and ¢2 (a). This implies that Spec ¢ 1 ~Spec ¢2 

and this concludes the proof of the theorem. 

The usual ideal system in a distributive lattice L is a prin­

cipal and radical Bezout system such that B(L) = L. Invoking 

Theorem 1 this gives the 

Corollary. Two distributive lattices (or Boolean rings) are isomor­

phic if and only if their prime spectra are homeomorphic. 

Proof. Assume that wE HomComp(Spec 1 2 , Spec L1) is a homeo­

morphism. By Theorem 3 there is a unique morphism of ideal systems 

¢ E Hom((L 1 ,£ 1 ),(L 2 ,~ 2 )) which by Theorem 1 is a lattic homeomorphism. 

The injectivity of ¢ follows from a 1 ~ a 2 => D(a1) ~ D(a 2 ) ~ 

w- 1 (D(a 1 )) f ¢- 1 (D(a 2 )) ~ D(¢(a 1 )) ~ D(¢(a 2 )) ~ ¢(a 1 ) ~ ¢(a 2 ) 

(The first and last implication uses Lemma 3,2.) The surjectivity 

is equally clear: If b E 1 2 then w(D(b)) is open and quasi­

compact. Hence w(D(b)) = D(a) for some a E 1 1 and 9(a) = b. 

The above corollary cannot be derived from Theorem 3 by a purely 

functorial or 'general nonsense' argument. In fact, there are situa-

tions where we have the bijection of Theorem 3 but where a homeomor­

phism comes from an algebraic morphism which is not an injection. 

This is for instance the case if R1 is a non-Boolean and regular 

ring and R2 = B(R 1 ) is its Boolean part. Then the canonical homeo­

morphism between Spec R1 and Spec R2 comes from a non-injective 

morphism of ideal systems ¢ : (R 1 ,d 1 ) ~ (R 2 ,d 2 ). 
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