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Introduction

These are notes for a lecture geries given at the University
of Oslo in 1971 - 1972. Although the manifolds of the title were
constructed by Seifert [1] in 1933, considerable interest has
been devoted to them recently. The principal aim here is to sur-
vey the new results and to emphasize the variety of areas and
techniques involved.

The equivariant theory comprising the first four chapters
was initiated by Raymond [1], who discovered that two classes of
Seifert manifolds coincide with certain fixed point free 3-dimen-
sional S1-manifolds. Chapter 1 contains Raymond's classifica-
tion of S1-actions on 3-manifolds., Chapter 2 describes equivar-
jant plumbing of DP-bundles over 2-manifolds and identifies the
boundary 3-manifolds. This is used in chapter 3 to resolve sin-
gularities of complex algebraic surfaces with C*-action. The
technique is to compute the geifert invariants of a suitable
neighborhood boundary of the singular point and use these to con-
struct an equivariant resolution following Orlik-Wagreich 1,27,
The equivariant fixed point free cobordism classification of
Seifert manifolds due to Ossa [1] is given in chapter 4.

The remaining chapters contain topological results. The
homeomorphism classification by Orlik-Vogt-Zieschang [1] using
fundamental groups 1S obtained in chapter 5. The known free
actions of finite groups on 83 is given in chapter 6 following
Seifert-Threlfall [1]. In chapter 7 we determine which Seifert
manifolds fiber over S1 . The important results of Waldhausen

[1,2] are outlined in the last chapter together with a number of



ii.

other topics that we could not discuss in detail in the frame
of the lectures.

I would like to thank my friends Frank Raymond and Philip
Wagreich for teaching me directly or through collaboration much
of the contents of these notes; the mathematicians in Oslo in
general and Per Holm and Jon Reed in particular for their hospi-
tality; and Mrs. Randi Megller for careful typing of the manu-

script.

Oslo, April 1972.

Peter Orlik *

*) Supported by grants from the National Science Foundation,
the University of Oslo and the University of Wisconsin.
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1. Circle Actions on 3 -Manifolds

In this chapter we introduce the necessary preliminary
material concerning the action of a compact Lie group on a smooth
manifold. Some important standard results are stated without

proof.

We then proceed to the equivariant classification of circle
actions on closed, connected, sﬁooth 3-manifolds following Raymond
(7] and Orlik and Raymond [7]. This is done in terms of a weight-
ed 2-manifold (the orbit space together with information about the
orbit types). It may be summarized as follows: the closed, con-
nected, smooth 3-manifold M with smooth S1 action is deter-
mined up to equivariant diffeomorphism (preserving the orientation
of the orbit space if it is orientable) by the following set of

invariants

M= {b; (e,g,h,t); (@1981)90009(0«1.981.)} .

Here e = o if the orbit space 1s orientable, e = n if not;

g is its genus; f 1is the number of components of fixed points
in M 3 t is the number of components of orbits with isotropy
group Z2 and slice representation equivalent to reflection about
a diameter in D2 ; the relatively prime pair of positive integers
(a,8) determines the orbit type of an orbit with isotropy 8&roup
%a ; and b is an integer representing an obstruction class sub-
ject to the conditions that b =0 if f+t >0, b € & if

f+t = 0 and €= o0, b €%, if f+t =0 and e =n and b =0

if f+t =0 , ¢ =n and some ay = 2 .



Manifolds with f+t = 0O belong to the classes 0,0 and
N,nI of Seifert [1] and together with the other Seifert manifolds

(introduced in chapter §) will be the main topic of these notes.

1.1, Manifolds and Groups

A topological space X is a set with certain subsets Ui

distinguished by being called open. The collection of open sets

Yﬁf:is required to satisfy the following conditions:
(1) the empty set @ € 2L and X ¢ U,

(ii) if U,V € 27 then UNV € U,

U Uie Z? for an arbitrary

(ii1) if U, € W, i €I then
i€l

index set I .

If x € X +then an open neighborhood of x is an element of U

containing x . A basis for the topology of X is a subcollec-
tion of open sets, 08 so that each element of X is a union of

elements of 03 . X is a Hausdorff space if for arbitrary dis-

tinct points Xq,%X, € X there are open neighborhoods TU,, U2 S0

that U.]ﬁU2 = @ . An open cover of X is a collection {Ui}i€I

of open sets so that .gI = X . A Hausdorff space is compact if
i
for every open covering there exists a finite subcollection

{Ui1,...,Ui } which is an open covering of X . Amap f:X-Y
n

between topological spaces is continuous if the inverse image of

every open set is open. It is a homeomorphism if there exists a

continuous map g:Y - X so that geof = idy , feg = idY . A

space X is a topological manifold of dimension n if it is a

Hausdorff space with a countable basis and every point x € X

has an open neighborhood UX homeomorphic to an open subset of

Euclidean n-space R® . This homeomorphism o UX -RY is called
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a coordinate system at x . Two coordinate systems o and
are € related if mc:¢"1 and Yeq@  are ¢ functions
whencver defined, A set of coordinate systems % is a smooth

structure on the topological manifold X if

(1) X is covered by the domains of the coordinate systems
in ?g,

(ii) any two coordinate systems in %g are o related,

(iii) %? is maximal with respect to (i) and (ii).

X is a smooth manifold if it has a smooth structure. A map

£f:X » Y Dbetween smooth manifolds is called a smooth map if for

every two coordinate systems o on X and ¥ on Y the func-
tion e fe g | is of class O, A structure (topology, mani-
fold, smooth) on X and Y induces a corresponding structure on
the cartesian product X x Y . |

A group G is a topological group if G 1is a topological

space and the group operations

(81,85) — 88, and g~ g
are continuous maps. The topological group G 1is a Lie group
if ¢ is a smooth manifold and the above maps are smooth. Well
known examples are the general linear group GL(nylR) of n xn
real invertible matrices, the orthogonal group 0(n) of nxn
real orthonormal matrices and the special orthogonal group S0(n)
of n x n real orthonormal matrices with determinant +1 . DNote
that GL(n;R) is an open submanifold of 1&“2 while O0(n) and
S0(n) are compact manifolds. A subgroup of a topological group
is called closed if the corresponding subset is closed in the

space of the group, i.e. its complement is open.



1.2. G -Manifolds

Let G Dbe a compact Lie group and M a smooth manifold.

A smooth (left) action of G on M is a smooth map

GxM - N
(g,x) - gx
satisfying
(1) 81(82X) = (g1g2)x
(ii) ex =x , where e € G is the identity element.

M together with the G action is called a G-manifold. If M1

and M2 are G-manifolds then the map o M, - M2 is called

equivariant provided for all g € ¢ and x € M, we have go(x) =

‘@(gx) . Given x € M the subgroup of G defined by G, =
{g | gx=x} is called the isotropy or stability group at x . The

action is effective if only e leaves every point fixed, i.e,

if gx =x for all x € M then g = e . The subset of M de-
fined by Gx = {gx|g € G} is called the orbit of x . The col-
lection of isotropy subgroups along Gx , {ng Ig € G} is called

the orbit type. It is the conjugacy class of GX in G since

ng = g(}xg"‘l . Consider the equivalence classes of orbits,
X~y <=>Hg € G 2: y =gx ., Let x* denote the equivalence
class of x and M* +the collection of equivalence classes,

called the orbit space, M* = M/G . Let m: M - M* be the orbit

map. Topologize M* by the quotient topology: U is open in M¥
if and only if n'j(U) is open in M .,
Notice that M* is not a manifold in general, An action is

transitive if for any two points x,y € M Hg € G 2: y = gx ,

so all of M is one orbit and the orbit space is a single point.

A G-manifold with a transitive action is called a homogeneous
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space. A particularly important example of a homogeneous space 1S
obtained as follows. Let G be a compact Lie group and H a
closed subgroup. The coset space of I, G/H admits a natural
action of G by multiplication and the action is clearly transi-

tive.

1.3, G=7Vector Bundles

A fiber bundle & = (E,B,F,p) consist of a total space E ,

base Space B,map p: E~-B called bundle projection, a fiber

F , an open cover U and for each U € [ a homeomorphism

=1
oy: U X F-p (U)

so that the composffion P o ¥y is projection onto the first factor.

The structure group G of a fiber bundle is a group of homeomor-

phisms containing the homeomorphisms F - p"1(b) defined by

x » o (b,x) , and their inverses, for every b € B . It is assu-
med that G acts on the above homeomorphisms transitively on the
right. A fiber bundle is principal if the fiber is a topologcal
group G which 1is also the structure group of the bundle. A

vector bundle is a fiber bundle with fiber a vector space and

structure group the general linear group of that vector space.
Thus a real vector bundle has fiber :mp and group GL(n) .
Typical example of a vector bundle is the tengent bundle TM of
o smooth manifold M® . The fiber at x €I , T, = R® and the
total space of the bundle, ™ is a smooth manifold of dimension

2n . A G-vector bundle is a G-manifold M and a vector bundle

with total space E over M 8o that there is a G-action on E
compatible with the bundle structure, i.e. the map from E =I;RX

to ng is an isomorphism making the diagram below commutative.



G xE —> E
;iyid XD Lp

G XM —=——> M .

Typical example is the tangent bundle TM of a G-manifold M .
The map from TMX to Tng is given by the differential of the
map g: M - M evaluated at X .

Given x € M the map gGX - gx defines an equivariant em-
bedding G/GX - M with image Gx , the orbit of x . Thus we
may identify the G-manifolds G/GX and Gx . Next we shall see
that the normal bundle of Gx in M 1is naturally a G-vector
bundle.

Iet E - G/H be a G-vector bundle with base the homogeneous
space G/H . TLet V denote the fiber at eH . Since h € H
leaves eH invariant it leaves V setwise fixed so V is an
Hemodule. Consider the principal H bundle G - G/H and the
associated V bundle G xyz V over G/H obtained from G x V
by identifying [g,v] = [gh,h’1v] . Let G acton G xgV Dby
k€6 xlg,v] = [kg,v] . Since V cE given g € G, veEV we
have gv € E , thus we have a map lg,v] = gv consistent with

the identification, resulting in a map

G X VYV —> E

which is clearly a G-vector bundle isomorphism. Thus a G vector
bundle over G/H is determined by the H-module structure of the
fiber at eH .

Returning to the case when H = Gx the normal bundle at
x € Gx has fiber V= TMX/(TGX)X . For each g € G, the dif-

ferential of g: M - M induces a linear map VX - Vx providing

a representation GX - GL(VX) called the slice representation.
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Its importance is given by the following theorem.

1.4, Some Basic Results

Slice theorem. Some G-invariant open neighborhood of the

zero section of G xg_ V., is equivariantly diffeomorphic fo &
X

G-invariant tubular neighborhood of the orbit Gx in M Dby the

map [g,v] - gv so that the zero section G/G, maps onto the

orbit Gx .

A proof is given in J#nich [1].
This gives at x € M a slice SX with the following properties:

(i) S, 1is invariant under G, ,

(ii) if g €G , y,y' € 5, and gly) =y' , then g € G, ,
(iii) there exists a "cell neighborhood" C of G/GX so that
C x SX is homeomorphic to a neighborhood of X . If T:C -G
is a local cross section in G/G, then the map F: Cx 8, - M
defined by F(x,s) = T'(c)s is a homeomorphism of C x 8, onto

an open set containing SX in M . In the differentiable case

we may choose SX as a suitably small closed disk in VX .

Another useful theorem from the general theory of transfor-

mation groups is the following

Principal Orbit Type Theorem. Let M be a G-manifold and

assume that M/G is connected. Then there is an orbit type (H)

so that the orbits of this type, M(H) form a dense subset of M

and the smooth manifold M/, /G 1is connected. The type (H) is
(H) —

called principal orbit type, an orbit is called a principal orbit

and the bundle M(H) - M(H)/G is called the principal orbit

bundle,

A proof is given in J#nich [1].



We shall also use the following result.

Conjugate Subgroup Theorem. Tet G be a compact Lie group

acting on a manifold M . If x €M end UCG 1s an open set

containing Gx then for y sufficiently near to X , Gy cU.,

A proof is given in Montgomery—Zt'ppén £7;P-175_J-

1.5, The Circle Group

We are particularly interested in the circle group G = S1 .

Recall first that there are different ways of thinking of this

group:
(i) ¢ =U(1) = {zec¢ |zl =1}, complex numbers of modulus 1;
(ii) @ = S0(2) , 2 X 5> peal orthonormal matrices of determi-

nant +1 ;
(iii) G = T1 - R/yg , reals modulo the integers., (When convenient

we shall think of the equivalent form R/2n% , i.e. elements

of G will be angles @ where O = ® < 21 .)

Explicit isomorphisms are easily constructed and we shall use

these three forms of G interchangakly and without further warning.
The closed subgroups of S1 are (e) , the cyclic groups %a and
S1 and by the Conjugate Subgroup Theorem the principai orbit type
of an s action is (e) . The purpose of this chapter is to

give an equivariant classification of closed, connected 3-dimen-

sional S1-manifolds. Pirst consider some examples.

1) Let
2 - -
s> - {z4,25 €0 ! 2,24 + ZpZp = 1}

and define an action of (1) by t € u(1)



This action is effective when (u,v) = 1 . The orbit {z4 = 0,
2222 = 1} has isotropy group %u and the orbit {2z, =(),z121= 1}
has isotropy group Zv . All other orbits are principal. We
shall see later that fixed point free S1 actions on 83 are in

one—to-one correspondance with the pairs (L,v) o

2) Consider 83 as above with the action
The action has one circle of fixed points, {z, = O, 2121 = 1} and
511 other orbits are principal. We shall see that this is the

only action on 83 with fixed points.

3) Take any closed o_manifold B and let M = B X s' . Define

1

an action of S to be trivial in the first factor and the usual

one in the second. This gives a free S1 action with orbit space
B .

;) Let V = D% x ' pe a solid torus with s?  action trivial

in the first factor and standard in the second. The subgroup
Z, < S operates on the boundary with the principal (antipodal)
sction. If we collapse each of the orbits on the boundary of V
by this %2 action we obtain a closed manifold N with S1
action. There are only principal orbits (corresponding to the
interior of V) and orbits with isotropy group Z2 (correspon-
ding to the boundary of V ) that are doubly covered by nearby
principal orbits so that the local orientation is reversed, The
orbit space of the action is a disk with principal orbits in the
interior and orbits with isotropy 8&roup %2 on the boundary.
he mamifold N is the non-trivial S°  bundle over s! called
the non-orientable handle.

Before investigating the orbits with non-trivial isotropy



- 10 -

groups let us recall the orientation conventions of Raymond [1]
and Neumann [1]. Given an oriented manifold, M its boundary,
oM 1is given the orientation which followed by an inward normal
coincides with the orientation of M . If M is an oriented S
manifold and M* is an orientable manifold then we orient M*

so that M* followed by the natural orientation of the orbits

gives the orientation of M .

1.6, Pixed Points

Assume that GX = S1 so x 1is a fixed point., The slice

at x may be chosen as a sufficiently small closed 3-ball D3
and the action of GX is an orthogonal action of S1 on D3 .
This is equivalent to the rotation of D° about an axis through
X , The orbit space of this action on D3 is a closed 2—disk.
with X on the boundary. ©So fixed points lie on 1-dimensional
submanifolds and, by compactness, circles. A sufficiently small
tubular neighborhood of one component of fixed points is therefore
a solid torus with only fixed points and principal orbits. If we
parametrize such a solid torus V = D2 X 5! by (r,y,8) O0<r<1,

0 <v,8 <2m and let S1 act by addition of angles, 0 < § < 2m,

then the action is equivalent to

8(r,v,8) = (r,y+6,8) .

.
/,/\\ D L
/S \
/ ! F ’ ) L
| =~ -
\ ; —_ jr——— =
: | \
=
rd
\_h* v
T ————— e T T

Call the collection of fixed points P and the (finite)

number of components of fixed points £ .
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1.7. Exceptional Orbits

Let Gy = % . The orbit is 1-dimensional and the slice may

vl

be chosen as a 2-disk, D2 . The actions of %u on D2 are equi-
valent to rotation (u>2) and rotation or reflection (u=2) .
Congider the rotations in this section and the reflection in the

next. Tet E = 2m/u act on the unit disk as follows
g(r,y) = (r,y+vE)

where (u,v) =1 and 0 <v <u .

We call this the standard linear action of type [u,v]l . BSince

this is the action in each slice of such an exceptional orbit
(called E-orbit), a small tubular neighborhood is a solid torus
V with action egquivalent to

G(I‘,Y,é) = (I‘,Y+Ve, ‘5+!J-e) .

The E-orbit corresponds to r = 0 and has isotropy group of order

v . We call (u,v] the oriented orbit invariants. The corresSpon-

ding oriented Seifert invariants (a,p) are defined by

Q=W v = 1 mod a , 0O<pg<a.

Their geometric interpretation is the following.

Given an orientation on V orient the slice so that it followed
by the E-orbit gives the orientation of V . This orients the
boundary of the slice, m a curve that is null-homotopic in V .
Tet 1 be a curve on oV homologous in V to the E-orbit and

so that the ordered pair m,1 gives the orientation on 3V . Let
h be an oriented principal orbit on 3V . Since the action is
principal on all of 3V it admits a cross-section, Q and any

other section, q' is related to 4 by

' =t a+ sh

for some s . Orient q so that the ordered pair q,h gives
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the same orientation as m,1 . Then we have
m = ag+ Bh

and a suitable choice of s reduces B to the interval O0<B <a.
Similarly
l =-vg-ph

for some v and p so that

a B

thus 8v =1 mod a .

Solving for q@ and h in the m,1 system we have

g =-pm-81
= vm + al
Since 1 may be changed by 1' = 1+sm we can reduce v in the

range O < v < qa . In this case
p = (pv=1)/a .
In the action above the curve
a=f{r=1,v=opp 6=208p 0<opc<2n}cdV

oriented by decreasing «¢ will satisfy the above conditions.

Changing the orientation on the solid torus V keeping the

action fixed results in a changed orientation for the slice and
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hence the slice inveriants change to (7,9 = [p,u-v] . Similarly
the Seifert invariants change to (3,8) = (a,a-B) . Thus the op-

posite orientation satisfies the condition
Bv = -1 mod a .

The latter was used in OrLL,k“Wg..yr.ei.ch.E.,ﬂ. v
If there is no orientation specified on the solid torus V

then the orbit invariants are only defined as (u,v], 0 < v <p/2

1

and the Seifert invariants (a,B) , 0 < B = o/2 with VB

mod o » We shall call these the unoriented orbit and Seifert

invariants.

1.8, Special Exceptional Orbits

If Gy = 4 and the action in the slice is reflection about
an arc then the neighborhood of such a special exceptional (SE)
orbit is easily seen to be diffeomorphic to the cartesian product
of the Moebius band with an interval, the non-trivial D2 bundle
over S1 . All orbits intersecting the arc of reflection are
SB_orbits thus a component of SE-orbits is a torus. Let SE
stand for the collection of SE-orbits and t denote the (clearly

finite) number of components of 3E .

1.9, The Orbit Space

As we have noted in the last three sections, the orbit space
is a manifold near F', B and «g* , It is clearly a manifold

near principal orbits so we concludes:

Temma 1. The orbit space M* is a compact 2-manifold with

boundary consisting of F* U sz® .,

Tet us associate the symbol €=0 with an orientable and -



- 14 -

¢=n with a non-orientable orbit space and let g denote the
genus in either case., If e=o0 we assume that an orientation
of M* is given. Thus we may associate the 4-tuple (e,g,f,t)
with M* where e€=o or n, g>0, f >0 is the number of
boundary components in F* and ¢ > 0 1is the number of boundary

components in SE* .

Lemma 2, If F USE#F and E =@ then (e,g,f,t) is a

complete set of invariants for M up to equivariant diffeomor-

phism (preserving the orientation of M~ if e=o0).

Proof. We show that the action admits a cross-section.
Since I = @ we have a principal bundle over M*-F" U SE* and
since F* U SE* # # this bundle is trivial. Choose a cross-sec-
tion to this bundle. It is now sufficient to extend this section
in the neighborhood of each F-component and each SE-component,
By (1.6) the neighborhood of an P-component is a solid torus V
in M . The given cross-section restricted to 3V is a torus
knot of type (1,b) for some b and it is well-known that there
is an annulus in V spanned by this knot and the "center curve"
(F-component) that extends the section. A similar argument ap-
plies to SE-components.

Next let us consider the somewhat more interesting case when

FUSEUES=@ . Here all orbits are principal and we have a

bundle over the closed 2-manifold M* ., This bundle is classified

by & map M* - CP° and hence by an element of H2(M*;Z). This
element is called the chern class or euler class of the bundle.
If c¢= o then H(M";Z) =% and if e¢=n then H(M%Z) = Z,
so the obstruction to the bundle being trivial is an integer b

where b €%Z if e=0 and b € Z2 if e=n .
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We may interpret this integer b as follows., Remove the

interior of a solid torus 7V, from M . The remaining manifold,
Mo admits a cross-section ﬁg . Let qo be the cross-setion to

the action on the boundary oriented as the boundary of -ﬁg . The
equivariant sewing of the solid torus VO into Mo is determined
up to equivariant diffeomorphism by specifying the curve on the
boundary of MO

m = qo4-bh
that is to become nullhomotopic in VO . We have obtained the

following:

Temma 3. If EUPF USE =g then M is determined up to

equivariant diffeomorphism by € , & and b where b €% if

e=o and b €%, 1if e=n .

In case c=0 the total space M is orientable. A change
of orientation of M results in a change of sign for b .

We now have all the ingredients for the general case.

1,10, The Classification Theorem

Let S1 act effectively and smoothly on a closed, connected

smooth 3-manifold M . Then the following orbit invariants

M= {b;(e,g,f,t); (a1,61),...,(ar98r)}

subject to the conditions

(i) b=0 if f+t >0,
beZ if f+t =0 and e€=0 ,
b € Zz if £+t =20 and e=1n
b

0O if f+t =0, e=n and aj = 2 for some J ;
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(ii) o0 < Bj < o5 (aj,Bj) =1 if e=o0 ,

O<BJ§OLJ/2 ’ (aj9Bj)=1 if €E=1n ;

determine M wup to an egquivariant diffeomorphism (which preserves

the orientation of M* if e=o0).

Proof. Given tha above set of invariants a standard action
is constructed as follows. Remove from M¥ (r+1) disjoint open
disks D;,...,D: . If FUGSE =g +then the remaining manifold is

. r
a trivial principal bundle over M* - U DJ and admits a cross-

secfion. If F*U SE % # remove theh%osndary components of

M* - UDJ, construct a cross-section and extend it to F* U SE¥
as in (1.9.2). Let M, be the resulting manifold with (r+1)
boundary components and let ﬁi be the cross-section. Sew in
neighborhoods V., of E-orbits with Seifert-invariant (aj,ej)
J=1,...,0r as follows. ILet Q be a boﬁndary component of M;
and Q x S1 the corresponding boundary component of M, . Let
Q x {0} Dbe the cross-section., Now sew the solid torus V of
(1.7) equivariantly onto this boundary by mapping orbits onto
orbits and the cross-section q of V onto Q x {0} . Paramet-
rize Q X S1 by {v,5} , where increasing y orients Q as a

boundary component of ﬁ; .

Define the equivariant map
]
F: QxS =2V
by
F(y,8) = (py+ vd, 8Y+ ad)

Notice that
p v

==1

B ol

and therefore F 1is orientation reversing as required. The
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oriented cross-section ¢ of 3V maps onto the oriented curve
-Q . .

The equivariant sewing 1is therefore specified by the follow-
ing. Given the cross-section ﬁi in Mr let qo,q1,...,qr be
cross-sectional curves in aMr oriented opposite to the induced
orientation as components of Bﬁi . The equivariant sewing of
the solid torus V. j=1,...,r makes the curve mj = a.qj+-5§1

J J
on the j-th component of 3l null-homotopic in V. .

If e€=o0 then the pair (aj,Bj) is determin:d in the inter-
val O < Bj < 7 and if e=n only 0 < Bj < aj/z since the
local orientation may be reversed along a path in M* . We now
have a manifold MO with one torus boundary and a cross-section
q, to the action. We sew the last solid torus Vo fibered tri-
vially onto this boundary so that the surve m, = qo-+bh becomes
null-homotopic in VO . This gives a manifold M with the re-
guired action.

Conversely, given an action on M we shall recover its orbit
invariants as follows., Read off e,g,f,t from the orbit space,
M . The equivariant tubular neighborhoods of E-orbits are iso-
1ated. Fach one is equivariantly diffeomorphic to a solid torus
'V as described in (1.7) and the action is determined by the
seifert invariants (a,8) , 0 <B <a . If e=n we use an iso-~
topy of the tubular neighbcrhood along a path reversing the orien-
tation on VX to reverse the orientation on Vv . This reduces
8 to O <p <eaf2 . These pairs are invariants of V up to
equivariant (orientation preserving, resp. not) diffeomorphism,
specifying cross-sections Qq;...,4,, OB the boundaries. If

FUGSE#@ these cross-sections may be extended to a global

cross-section. If F U BE = @ and e=o0 we have an obstruction

in
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2 ¥ * *
BT (MY - int(V] U...U V), 3(VY U...U V2)5%).

Its class is identified with the integer b . If FUSE =g
and e=n the above group equals Zz and b may take on the
values O or 1 . A special argument shows that in the presence
of an E-orbit of type (2,1) the two actions are equivariantly
diffeomorphic, see | Selfert [1,Hifsatz ViI].

It is easy to check that if M is orientable (e=o0 and t=0)

then a change of orientation results in the new orbit invariants

-M = {b';(o,g,f,O);(Ct,.],a1-B1),...,(dr,dr—5r)}
where b' =0 if £ >0 and b' ==b-r if £ =10 .

In order to facilitate the notation we shall not insist that

the Seifert invariants always be normalized. Writing M with

these invariants should cause no confusion since the normalization
is a well defined process.,
Another notational convention will be the occasional use of

the orbit invariants [u,v] dinstead of the assiciated Seifert

invariants (a,B) . Again, the conversion is unique.

1.11, Remarks

1. The equivariant classification of (1.10) does not answer
the question of when two S1-manifolds are homeomorphic i.e.,
what are the possible different actions on a given manifold (c.f.
the examples in 1.,5). We shall call this the "topological classi-
fication problem".

(i) If F U SE = ¢ the manifolds involved coincide with
Seifert's classes 0,0 and N,nI . These (together with the
other Setfert manifolds introduced in chapter §) are the central

objects of our considerations and their mutual homeomorphism rela-
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tionship will be discussed in detail in chapters 5 and J . These
manifolds are irreducible with universal cover 83 or R3 .

(ii) If F #Z @ then the identification of the manifolds is
done using equivariant comnected sums. An arc S* in the orbit
space with end points on fixed point components and interior
points corresgﬂhing to principal orbits has as inverse image under
the orbit map a 2-sphere, S ., Using such arcs the manifold is
decomposed as the equivariant connected sum of 3-manifolds with
the following orbit spaces.

F*
Ad A L = {0£0,0,1,0);(a,B)}
(o, 8)

Clearly L dis the result of an equivariant sewing of a solid
torus neighborhood of F , V1 and a solid torus neighborhood of
the E-orbit, V2 . Let hi and 9 be the orbit and cross-sec-
tion in avi . Then we have the relations for the bounding curves
m, = h1, m, = aq2-+Bh2 . The equivariant sewing is h2 - h1 y

4, @ -4, and going through the computations of (1.7) shows that

we obtain the lens space L(a,B8) .

M = {0;(0,0,2,0]}

=
*

1]
S
(O

*

Obviously M = S°x8' with the standard S' action on the first

factor and trivial action on the second factor.

P = {0;(0,0,1,1)]}
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Similarly P = P2 x §' with the standard S' action on P° and

trivial action on the second factor,

*

////,f,*~ﬁ\) /) N = {O;(n919190)}

The manifold N is the non-orientable S° bundle over S' . The

action is visualized by taking S° x I with the usual S ' action
in the first factor and identifying S° x O and S% x 1 so that
the orbits are reflected about the equator of 82 .

We state the following result without proof, Reymond 3],

Theorem, Let

M = {b;(e,gsfst)§ (a1951)9"'a(ar98r)}

and assume that f >0 ., Then M is equivariantly diffeomorphic

to the equivariant connected sum:

1 . el 1 (02 Laly i 2 a1
() 87 v (5%x8")y fuu# (5% x5 )y, 0 q # (5 xS yb. L H(RTHS ),
# L(oq,89) #...# L(a,,8,.) if (e,g,f,t) = (0,8,f,8) , t 203

(b) (52x 8Ty, oot (52x8T) o g # (B2x 8Ty, Hues # (RO,

g+f-
# L(aq,8;) #...7 L(a,,8,) if (e,g,f,t) = (n,g,f,8) , t >0

(c) N # (2x8N), #ouut (5%x8") o p # L(ay,8,) #...4

g+f-

L(ar,Br) if (e,g,f,t) = (n,g,f,0) .

(iii) The case P =g , SE # § is handled using the classi-
fication of Seifert manifolds. The action 1lifts to the orientable

double cover and commutes with the covering transformation. For

details see Orlik-Ra ym ond [1].
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2., We assume that M is a smooth manifold and S1 acts
smoothly. It is known that all 3-manifolds are smoothable and
using somewhat more elaborate arguments all the results hold for
continuous S1 actions on topological 3-manifolds, Raymond [1].
It follows from the discussion above that for the class of 3%- ma-

nifolds with S1 action the Poincaré conjecture holds.

3, Raymond [1] also studies the case when M is not com-
pact, Allowing boundary makes the equivariant classification

more cumbersome but essentially the same,

4, The classification above provides us with examples of
manifolds that admit no S1 action at all, e.g. any connected
sum not on the list of the theorem. I know of no other such

examples. f
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2. Bquivariant Plumbing

Plumbing is introduced for building blocks that are D°
bundles over closed, orientable 2-manifolds, where it essentially
consists of removing a D2 X D2 from each of the objects and iden-
tifying the resulting boundaries after an interchange of factors.
Prescribing an action of S1 on the building blocks we may re-
quire that the plumbing respect this action. The resulting 4-
manifold with boundary is studied in terms of the graph of the
plumbing. The boundary is a closed, orientable 3-manifold with
s! action and may be identified in terms of (1.10).

These ideas were first introduced by Hirzebruch [7] and
von Randow [71]. The equivariant analogue was needed in Orlik and
Wagreich []] to resolve singularities of algebraic surfaces with
C* action, This application is presented in the next chapter.

The orientation convention adopted here is that of‘Qéy’h?pd
The opposcte wWas vsed (n Orlik~Wagreich [/,3], where the

[11.
alse
letter b isVvused differently.

~

2.1, Plumbing

The principal S0(2) bundles over a closed, orientable 2-
manifold M are classified by HE(M;%) =% ., Denote the associ-
ated D2 bundles indexed by m € & as n = (Ym,n,M) . The com-~
pact 4-manifold Ym has the homotopy type of M and if we let
the zero section wv: M = Ym represent the positive generator
g € H2(Ym;%) then its self-intersection number geg = m is the
Euler class of Y . It is customary to let the bundle with
Buler class m =-1 over 52 , M= (Y_1,n,82) , be the disk

pundle whose boundary, S , has the Hopf fibration.
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Given two such bundles mn4 = (Ym1,n1,M1) and mn, =
(Ym29"2’M2) we plumb them together as follows. Choose 2-disks
By <My and B, < M, and the bundles over them, &4 and &, .
Since they are trivial bundles there are natural identifications

Mot sz D2 - §1 s Mot D2x D2 - & Consider the reflection

t: p%x D% = D% x D° , t(x,y) = (y,x) and define the homeomorphism

f: B4 = &, by f = uthﬁ-1 . Pasting n, and mny together
along 51 and €2 by the map f is called plumbing. It yields
a topological 4-manifold with corners that may be smoothed. The
resulting smooth manifold is independent of the choices involved.
A graph T 1is a finite, 1-dimensional, connected simplicial
complex. Let Ao,...,An denote its vertices., A star is a con-
tractible graph where at most one vertex, say AO , is connected

with more that two other vertices. If there is such a vertex,

call it the center. A weighted graph is a graph where a non-nega-

tive integer g (the genus) and an integer my (the weight) is
associated with each vertex Ai .

Given a weighted graph T we define a compact 4-manifold
p(T) as follows. For each vertex (A,,g;,m;) take the D° bun-
dle ny = (Ymi,ni,Mi) where M, is a closed, orientable 2-mani-
fold of genus g. . If an edge connects A. and Aj in T then

i i
perform plumbing on m; and nj . If Ai is connected with more
then one other vertex, choose pairwise disjoint disks on Mi to
perform the plumbing. Pinally smooth the resulting manifold to

obtain P(T) .

2.2. Equivariant Plumbing

We shall now define S1 actions on the building blocks n

(Ym,ﬂ,M) . For g >0 1let 51 act trivially in the base and by
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0 we define actions on n =

rotation in each fiver, For g
2

(Ym,n,Sz) as follows. Let S B;UB, be the union of two

2-disks and Y_ = By xD; UByxD, . Parametrize D° x D° in
polar coordinates with radii r and s , 0 <r,s <1 and angles

Y, 8, o <y, 5§ <2m . The actions of S1 on D2 are equivalent

to linear actions and we shall think of them as addition of angles,

Let 6 ¢ 5 , 0 <8 <2m . Define for i = 1,2

6. ¢ 22 xD%2 = D° xD°

(r,y+uie,s,6+vie)

Gi(r,y,s,a)

Now Ym is obtained by an equivariant sewing
G: 3B, x Dy - 9B, x Dy
Since the action is linear, G 1is determined by
F: 3B, x 3D, - 0B, x Dy
which in turn is isotopic to a linear map of the torus. TLet F
be defined by
P(y) = xy+y6 , F(8) = zy+ 15 .
Then F is equivariant if
WX+ V¥ = Uy and u1z-+v1t = Vo .
In order that G be equivariant on 3B, X 0o = a32><o we need in
addition that u.x = u, , thus y = 0 .

Since the determinant of F is -1 and the sewing results in a
total space with euler class m we need x=-=1, t=1, 2 =-m,
Thus U, =-Uqy , Vp = -muq +Vq . The action is effective if and
only if (u1,v1) =1.

A plumbing is equivariant if the identifying and trivializing

maps are equivariant, Given a weighted graph T we say that
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P(T') is equivariant if each plumbing involved is equivariant.
In that case the boundary X(T) = 3P(T') is a 3-manifold with

S1 action. We shall identify this manifold for certain graphs.

For M = 82 we may think of the classifying element m as a
map S1 - S1 of degree -m , As above, aYm is obtained as the

equivariant union of two solid tori

2 1 2 1

where F has the matrix

This is the sewing of two solid tori that results in the lens
space L(-m,1) . Due to the well known diffeomorphisms IL(p,q) =

- L(-p,a) = - L(p,p-a) , we may write
or = L(-m,1) = L(m,m-1) .
Note also that the different actions on L(-m,1) are given by

the different pairs (u,,v4) . For example uy =0, vy =1

(u2 =0, v, = 1) gives the free action
L(‘m91) = {-m;(o,0,0,Q)% .

In case u, = 1, vy =0 we have a circle of fixed points and

the orbit invariants are

L(-m,1) = {03(0909190);(m9m-1)} .

Next consider the result of an equivariant plumbing accord-

ing to the linear graph T[by,...,b ]

RO

where each vertex has genus zero.
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Temma 1., The result of the equivariant linear plumbing

according to the graph r[b1,...,bS] above is the lens space

L(ps,pg) where

= [b190'09b ]

S

-
bS

Proof. Decompose each base space as S. = B. 1) B, with
P SO0T S i i,1 i,2
the corresponding trivializations of the bundles. As we have
seen the first equivariant sewing requires Uq o = =Uy 4 and
3 9

v192 = ’01111,1+v1’1 so it has matrix

210

b, 1 .

Since the plumbing is equivariant the actions of By o X P
9 9
and B2 4 X S2 4 are the same but the factors are reversed, 1.e.
b 9

u2’1 = v.]’2 and v2’1 = u1’2 . The matrix of this map is

0 1
1 0

and we have that

(U-2,1vV2,1) =

The equivariant sewing of B, 4 X 5o 4 and B, 5 X So o has
9 9 9 9

matrix
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and the action on B X S is therefore expressed by
2,2 2,2

u v = 9
2,277°2,2
’ ’ b2 1 1 0/1by 1 V11 .
Continuing the sewing results in the equation
-1 0 0 1 -1 0 0 1\ {=1 0} [uq 4
(U.S,2,Vs’2) = 1 1 s 00
bS 1 0 kb-1 1T 0/1by 1 Vi1
Note that all orbits are principal with the possible excep-
tion of the center curves of B1’1 X S1’1 and Bs,2 X Sé’z .
The orbit space of the complement of these two solid tori is an

annulus. Thus the total space is the result of the equivariant

sewing of two solid tori by the product matrix above., Let

1
=Dg_1 “Pgo1) [M1,1

Then the total space equals the lens space L(ps,pé) , where
ps/pé = [by,b5,.4.,0g]. The latter fact follows from elementary

von Rand .
properties of continued fractions, ° owll This completes the

proof.,
In particular if the action om By 4 X Sq 1 has an orbit of
H 9
fixed points, u.l’1 =1, v191 = 0 , then B892 X Ss’2 has an E-

orbit with oriented orbit invariants [ps,—ps_1] .

Next we shall show that equivariant plumbing imposes a strong
condition on the shape of the graph provided the weights are nega-
tive. This will be the case for the applications in the next

chapter.,

Temma 2. Let T be a weighted graph and assume that P(T)

is equivariant. If
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(a) T has a vertex (Ao,go,mo) where the action is trivial in

the base,

(b) for each vertex (Ai,gi,mi) we have m, < -1, and

(c) for each vertex (Ai,o,-1) connected with (Aj’gj’mj) we

have gj >0 or m, < -2 (or both) then

-

(1) g; = 0 for all vertices i >0 ,

(ii) T is a weighted star with center A

fo) 9
(iii) the action is non-trivial on the base for i > 0 .

Proof: Since we plumb around a fixed point, 0x0 < D2><D2,

a vertex connected with more than two vertices must have trivial
action in the base. Thus if A1 is pluﬁ%d into AO it has non-
trivial action in the base, hence g, =0 and u1’1 = 1 ,v1’1:=0.
From above we get u1’2 = =1, v1,2 = -my . Define inductively

p, =1, Pq =-04 » Pp = ~MyPq4=P, », P; = "m-Pj_1"Pj_2 s J = 2505

J J

Then the action has uj’2 = —pj_1 5 Vj,2 = pj . We define the
7

auxiliary parameters P, = o, p% =1, pé = -, , pé = —m3pé-p;,

0

ps = -mjp5_1-p3_2 s J = 35444, . Then induction shows

4 1 .
1) PsP3_1=Pj_qPj = -1 for 0<j<r,

§

1, (pg,pa_1) = 1 for 0<j<r,

2) (pypy) =1, (pysp5.4)
3) if -my 21 for 0 <j<r andif -my =1 then -my,q>1

.

implies that we have D, A0 and 0 < pé < p;

This proves the lemma.

Lemma 3, Consider the star S below with each bi > 2

5 J

and gi,j = 0 except for the center.




The result of the equivariant boundary plumbing K(S) has

Seifert invariants

K(S) = {b;(osgsoso)i(a1931)9'-09(@r95r)}

where

[o A

o = oy, eeeby g s T T
Jd J J

Proof: By Lemma 1 each linear branch gives rise to a sew-
ing of an E-orbit with orbit invariants [psj,-ps__1]. Since
J
P.. >0 0. = Pe. a8nd v = =Dy _1
S5 * 73 S5 S 5 1
Prom (1.7) and equation 1) cbove we have p = péj_1 and before

normalization 8 = -pé. . According to 3) the normalized B8 =
d
a+f = a-p, . This proves the assertion that
J
pS. a
d o - [y b ]
péj | aj-sj 391, ¢ J’Sj

The Seifert invariants of the manifold before normalization equal

K(8) = {b4'r;(09g’090);(ps19 'pé1),"'9(ps ’ 'Pé )}
r r
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and normalization gives the required Seifert invariants.

TLemma 4., Given relatively prime integers (a,B) with

0 < B <a the fraction a/a-B mnay be obtained as a unique

continued fraction

a =
2 = [byby,eensby]

where bi >2 , i=1,...,8.
Proof: Repeated application of the Euclidean algorithm.

Corollary 5. ZEvery Seifert manifold

K = {b;(o,g,O,O);(a1,B1),...,(ar,Br)}

is the result of an equivariant plumbing according to a star S(K)

as in ILemma 3,

2.3, Quadratic Forms

Given a connected, oriented 4k-dimensional manifold M a
quadratic form SM may be associated with it by homology inter-

sections., ILet V = HZK(MQZ)/ torsion and define
S:VxV-~-%

by intersection of representative cycles. This is a well defined
symmetric bilinear pairing, hence it induces a quadratic form on

V , called S As usual, the form may be diagonalized over the

M .
reals. Let b, denote the number of positive entries and p_

the number of negative entries. The integer

(M) = 1(8y) =P, -p
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is called the signature of the quadratic form (manifold). It is
called positive (negative) definite if D, (p_) equals the rank
of V.

In order to compute the quadratic form of the compact‘ 4~
manifold P(T') it is clear from the remarks of (2.1) that the
graph T contains all necessary information, We may choose a
basis for V consisting of one generator for each vertex (A,g,m)
of T with self-intersection number m and any two vertices
connected in T have intersection number 1.

In particular the star corresponding to the Seifert manifold

K = {b;(0,8,0,0);(aqs8q)5ee0,(0,,8,)}

S(K) provided in (2.2.,5) has quadratic form with matrix below

where each unfilled entry equals zero.

-b=-r 1 1 1

1 -b1,1 1

1 b q 1
- 1 1!
M- q%%
1 -br,11
1.
,
L 'hmsr
Since b, . > 2 for all i,] this matrix is easily seen to be

isJ -
negative definite if and only if
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3. Resolution of Singularities

This chapter describes some results from Orlik-Wagreich r1,27.
ilany of the ideas go back %o Hirzebruch [17.

Given a complex algebraic surface with singularities, V ad-
mitting a "good" action of €% , the multiplicative group of com-
plex members, we obtain a resolution of the singularities of V
by the following method. If V has an isolated singularity then
a small neighborhood boundary S€ invariant under the action of
U(1) © €* intersects it in K = VNS_ , a smooth, orientable,
closed 3-manifold with S1 action, Given the orbit invariants
of X (1.10) we prove that the corresponding star (2.2,5) is
the dual graph of a (canonical equivariant) resolution of the iso-
lated singularity of V . If the singularity is not isolated then
a normalization must preceed the above construction.

Itather than giving all the detalls as published, the emphasis

here is on a survey of the background material, motivation and

examples,

5.1, Algebraic and Analytic Sets

We shall define the necessary terminology as given in Fulton

17 and Gunning [11. ILet R bve a commutative ring with unit.

Let R{X1,...,Xn] denote the ring of polynomials in n variables

over R . A polynomial T € R[X1,...,Xn} is homogeneous of de-

gree d if each monomial of F has degree d . An element a €R

is irreducible if a = b.c implies that b or c¢ is a unit.

A ring R is a domain if a+.b = 0 implies a =0 or b= 0.
R is a UFD if every element has a unique factorization up to
units and order. If R is a UFD so is R[X] . In particular

kFX1,...,Xn] is a UFD for any field Xk . The quotient field
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of k[Xy,...,X ] is the field of rational functions, k(X1,...,Xn).
An ideal I ¢ R 1is proper if I # R , maximal if it is contained
in no larger proper ideal and prime if ab € I implies either

a €I or be€I . An ideal is principal if it is generated by
one élement. A principal ideal domain (PID) is a domain where
every ideal is principal., The residue classes of elements in R
modulo an ideal I form a ring R/I and the natural map w: R -
-~ R/I is a ring homomorphism. In particular k[X1,...,Xn]/I is
a vector space over k . Given an ideal I define its radical

by radl = {a€cR!a€I for some integer n > 0} .

Let ¢" be the affine complex n-space, If S is a set of
polynomials in C[Z1,...,Zn] let V(8) = {g,een! F(Z) =0 for all
FesS} . Clearly V(S) =:ng V(F) . A subset X € ¢% is algebra-
ic if X = V(8) for some S . Note the following properties:
(i) 4if I dis the ideal in C[Z1,...9Zn] generated by S then
V(S) = V(I) , so ever& algebraic set is equal to V(I) for some
ideal T g
(ii) 4if {Ia} is any collection of ideals, then V(gla)z:gv(la),
so the intersection of any collection of algebraic sets is an al-
gebraic sety
(i11) V(P - @) = V(P) U V(G) , so any finite union of algebraic sets
is an algebraic set;

(iv) if I defines an algebraic set then I = rad T .

A ring is Noetherian if every ideal is finitely generated.

In particular the Hilbert Basis Theorem shows that C[Z1,...,Zn]

is Noetherian.

Projective complex n-space CIP" is defined as all lines

through the origin 0 € ¢t Any point =z = (z z_ ) A0

defines a unique line {XZO,...gkznf ACe*} and two points 1z, Z'
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determine the same line if and only if there is a X € €* so that

zi = kz{ for all i . We let the equivalence class of these

points [zo:z1:...:zn] be the homeogeneous coordinates of a point

in CP". 4 projective algebraic set X 1is defined by homogen-

eous polynomials. It is irreducible if its ideal I(X) is prime.
In that case the residue ring Ry = @[XO,...,XH}/I(X) is a domain

called the homogeneous coordinate ring of X .,

The ring of germs of holomorphic functions in n variables

at a € €@ is denoted ) . It is identified with the ring of

convergent complex power series C{z1-a1,...,zn- an} . For a=0
call the ring simply (7 . Note that for any two points a, b the

rings C?a ang Cﬁb are canonically isomorphic, The ring (T is

a Noetherian TUFD . Its quotient field ?71 is the field of germs

S

of meromorphic functions at 0 ., The units of 7 are holomorphic

. - . . = S .
germs not zero at 0 ., The ideal I of non-units in (4 18 maxi-

mal and ( is called a local ring. Note that U /I = € .

The sheaf of germs of holomorphic functions in n variables

is also denoted 57.. For any open set U C ¢"  +there is a natural
identification of the sections F(U,C7) with the ring f?ﬁ of
holomorphic functions over U . For any point a € ¢®  the stalk
of  at =a is naturally the ring C?é defined above.

, | .
An analytic sheaf |5 over an open set U C ¢® is a sheaf

of modules over the restriction {f@U . It is finitely generated

over U if there are finitely many sections of ﬁi over U which

~ A .
generate the stalk Cﬁa as an &Ja module at each point a € U .

An analytic subvariety X of an open set U C ¢ is a sub-

set of U which in some open neighborhood of each point of U is
the set of common zeros of a finite number of functions defined

and holomorphic in that neighborhood. Two such pairs (X1,U1) ,



(X29U2) are equivalent if there is an open neighborhood W c
U1F)U2 3o that Wﬁ.X1 = WF!XQ . The equivalence class is called

a germ of an analytic subvariety. The ideal of the subvariety at

2 point is defined for the origin by I(X) = {f ¢ C%’i] analytic
subvariety X of U c ¢b representing the germ Xn and an analy-
tic function f ¢ f?h representing the grem f with f!X =0} .
A germ X is said to be reducible at a 1if X = X, UX, where

Xi are also germs of analytic subvarieties at a ; otherwise it

is irreducible at a .

An analytic variety is a Hausdorf? space V with a distin-

guished subsheaf Cﬁ% of the sheaf of germs of continuous complex
valued functions on V so that at each point a € V the germ of

V  together with the stalk (C?%)a is called the sheaf of germs

of holomorphic functions on V , A morphism between analytic va-

rieties V and V' is a continuous mapping o: V - V' so that
e

@*(C?;,) c U, . A point in an analytic variety V is regular

(simple) if the germ of V at that point is equivalent to the

germ of ©% for some n ., The set of all regular points is the

regular locus of V , It is an analytic manifold, not necessarily

connected or pure dimensional. Its complement in V is called

the singular locus and a point on it a cingular point., The variely

is called non-singular if the singular locus is empty. A singular

point x dis isolated if there is a germ at X with no other sin-
gular points,

Notice that if V is algebraic in €% +then I(V) is fini-
tely generated, say I(V) = (gq,...,gr) . The Jacobian matrix

CLEFPPPINN -9

a(z1,...,zm)

J(V) =

has maximal rank, rkJ(V)= m-n at regular points and at singular

points rkJ(V) <m-n .
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3.2, Intersections and Covers

Let V Dbe a non-singular complex analytic surface. The al-

gebraic intersection pairing
2
(

HO(V) ® HO(V) - Z

is defined using Poincaré duality

s EE(V) - Hy(V) .

For X,Y ¢ H2(V) define the pairing by

(X,Y) = (X.Y) = X(aY) .

Recall that in case V 1s not compact we use homology with closed

supports in the definition of 4 .

A map w©: V' - V is said to be proper if the inverse image
of a compact set is compact, If © 1is a proper surjective map
of analytic spaces of dimension n then there is a positive in-
teger d and an open subset U c V so that @'1(v) consists of
d points for all v € U, We call d the degree of o . If V
and V' are complex surfaces, ® 1is a map of degree d and D1
and D, are elements of H2(V) then (m*(D1)» m*(Dz)) = d(D1-D2).

Let X,X' be curves in a non-singular surface V and X ¢
InX' . Ve say that X meets X' normally at x if there is a
coordinate neighborhood U of x and local coordinates 2z, and
zZ, so that X nTU is the locus 2z, =0 and X' N U 1s the lo-
cus 2z, = 0 . It is well known that if X ZX' and (X«X')= 1
then X meets X' normally at precisely one point,

We say that o is a finite map if « is proper and m"1(v)
consists of a finite number of points for all v € V ., Suppose
moreover that o 1is surjective. The set B of points v € V

so that m"1(v) consists of fewer than d = degreeg points is
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called the branch locus of o . It is well known that if V 1is

non-singular them B is the union of a finite number of irredu-
cible subvarieties each of complex codimension 1 ("purity of the
branch locus"),

Suppose X is a curve on a surface V . If x € X we re-

call that X is locally irreducible at x if for every suffici-

ently small neighborhood U of =x in V there is a unique irre-
ducible component of X N U‘ containing x . If x € X then
there is a neighborhood U of x in V so that XNU = X, U.,
..IJXT , where each Xi is a curve which is locally irreducible

at x . The Xi are called the branches of Xi through x .

Definition 1. Suppose @: V' - V is a finite map of non-singular

surfaces or curves, B is the branch locus of ¢ and o(v') =
v €B . Let X, be a branch of ¢"1(B) passing through v' (in
the case of curves this is just v'). There is a neighborhood U
of v in 7V and a holomorphic function £ din U having a zero
of order 1 along B N U and no other zeros. Let e(Xi) equal
~ the order of the zero of fec¢o along Xi . This is called the

ramification index of ¢ along the branch Xi at v' . Now

r e(X.) = degree o
vie o (v) *
v°(EXi
where we let X, range over all branches of @-1(B) through V',
If there is a unique branch of m"1(B) through v' we denote

e(Xi) by e(v') . In this case we get T e(v') = degree .
vieo (V)
Note that v € B if and only if e(v') > 1 for some V' Em'1(v).

If X is an irreducible curve on a non-singular analytic sur-
face V +then there is an open dense subset Y < X with the pro-

perty that X is locally irreducible at all points of Y .
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Suppose @"1(X) = Xy U... UX, where the X, are irreducible.
Then there is an open dense subset Y' of X so that Y' Y 5
£n m-1(Yf) is locally irreducible and for any V575 E)%JﬂqfkT)
we have e(v1) = e(v2) . Call this integer e(Xi) , the ramifi-
cation index of Xi over X , It follows immediately from the
definition of o* that

T 2
* = Yo (
w*(X) = :.L-E"_'e:‘(ni)lxi € H°(Vvr) ,

We can use the ramification index to get a useful relation
between the genus of an analytic curve and the genus of a finite

cover of that curve.

Proposition 2, (Hurwitz formula) ILet o: X' - X be a finite

morphism of compact non-singular complex curves. Let

gy = dim H' (X, %) , gy, = dim H' (X', Z) . Then

2 =2 ' = d e 2 =2 - Z 1) -1 .
(2 -2gy,) = (degree ¢ )(2 - 2gy) X'EX'(e(X) )

Proof. Triangulate X so that the points of the branch
locus are vertices of triangles and no two is connectedby a 1-sim-
plex. The Euler number of the triangulation is 2 - ZgX . It can
be lifted to a triangulation of X' by means of o since outside
of B the map ¢ is a local homeomorphism. This multiplies the
number of faces and edges by degree o . If x € X 1is a vertex
and x £ B , then there are degree v vertices above x , But if

X € B , then there are degree w - ¥ (e(x')-1) wvertices
o(x')=x

above x , This proves the formula,
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3.3, Monoidal Transforms and ResSolution of Singularities

Definition 1. Suppose V is an analytic space, Uy 1is the

sheaf of holomorphic functions on V and I C Q?; is an ideal

sheaf., The monoidal transform with center I is a pair (m,V')

with m: V' - V and

(i) I&., is locally principal i.e. Vv € V' the stalk

(Iﬁﬁ',)v is generated by one function,

(ii) for every mo:V, =~V satisfying "Iif% is locally
o
principal" there is a unique 0 VO - V' with meog=m,.
The monoidal transform exists, Hironaka [1,p.129], and is

unique by (ii). If X is a subspace of V and Iy is the sheaf

of functions vanishing on X , then the monoidal transform with

center X 1is just the monoidal transform with center IX .

We can construct the monoidal transform as follows, Suppose
v € V. Then there is a neighborhood U of v and holomorphic
functions f ,...,T on U so that the restriction of I to U

@) T

is generated by fo,...,fr ., Let X ©be the set of common zeros

of the fi . These functions define a map
w:U -X - CIP’

by @(u) = [f (w):...:f.(u)] . Tet
rc(U-X%x) x cB”

be the graph of o , let Vﬁ be the closure of T in U x CIPT¥
and let

° ¥ -
nU. VU U

be the projection map. Then ("U’Vﬁ> is the monoidal transform
with center I|U . If we choose an open cover {Ui} of V where

the Ui are as above, then the universal property of monoidal
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transforms guarantees that the (ﬁUi,Vﬁi) piece together to give
(m,V*) . ©Note that if Y is the set of common zeros of the func-
tions in I , then V - Y is an open dense subset of V and

e ﬂ"1(V¥-Y) -V ~-Y is an isomorphism. The monoidal transfornm

with center {v} is also called the o-transform with center atv .

Definition 2. Suppose V is an analytic space and X c V

is the set of singular points of V . We say that m:V' = V is

& resolution of the singularities of V if

(1) m is proper,
(2) V' is non-singular,

(3) mw dinduces an isomorphism between V' - n_1(X) and V-X,

Remark. It is known, Hironaka [1], that if V dis an alge-
braic surface, then there is a resolution 1w which is a composite
of monoidal transforms. For an isolated singularity we shall con-

struct a "canonical" resolution but first we need a definition.

Definition 3. An analytic space V is said to be normal at

v € V if for every neighborhood U of v and meromorphic func-
tion f on U and holomorphic functions {ai} on U the equa-
tion

1

fna-an_1fn“ +esata, = 0

implies that f 1is holomorphic., V ie said to be normal if V

is normal at every v € V . A curve is normal if and only if it
is non-singular. On a normal variety V +the singular locus has
codimension > 2 . If v £V is a simple point, then v is a
normal point., For any analytic variety V there is a unidque pair

~

(H,V) so that m:V - V ,» V is normal and for any normal variety
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Vi and mws: V' - V there is a unique map o: V' -V with mec0o=

' ., The pair (m,V) is called the normalization of V . The

mep T 1s finite and it is an isomorphism over an open dense sub-

set of V .,

Suppose V is a complex algebriac surface with an isolated
singular point v . There is a finite sequence of maps
ms 2 Vi - Vi-1 , i =1,.0.,n s0 that v, = v, V, is non-singu-
lar, m is a normalization if 1 1is even and m is the monoi-

dal transform with center at the (isolated) singular points of

v . Thus V_ is a resolution of v ¢V but ﬂ—1(V) may be

i-1
rather complicated,

. -1
In order to improve m (v) we perform a further sequence

. , . . — _
of monoidal transformations ﬂn+j° Vn+j Xn+j—1 so that the com
posite m = Ty eoe Mo satisfies

(%) n—1(v) = Xy"... "X, , the X, are non-singular irreducitle

curves, (X.+*X.) =0 or 1 for i # j and X nX.nX_=4g
i J i J k

for distinct i, j, k .

Tet oi = ﬂ1°...0ﬂi . Then we can choose ﬂn+j so that it is the

monoidal transform with center x € Vn+j-1 shere either

(1) x is a singular point of some component of G;lj_1(v)

(2) x is a point of X; N Xj and X, and Xj do not meet
normally at x ,

(3) x is a point of Xi n Xj and Xi N Xj consists of more
than one point,

(4) x ¢ X n Xj N X, , where 1, j, k are distinct.

Definition 4. Given a resolution V of the isolated singu-

larity v € V., m: V-V satisfying the conditions of (*) we
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associate a graph T to m as follows. To each X; in ﬂ-1(V)
assign a vertex (Ai,gi,mi) where g, 1is the genus of X, and
my its self-intersection number. We join Ai to Aj by an edge
if Xi meets X. . Let Se be a small sphere around v and
K=VnS, . Clearly 1 (X) is homeomorphic to K and it is the
boundary of a tubular neighborhood of n"1(v) . Hence X is a
singular S1 fibration over ﬂ'1(v) . In fact it is obtained by

plumbing according to the graph T .

One can ask if there is a hest resolution.

Definition 5. A resolution T: T > 7V of an isolated singu-

larity v € V is called minimal if for any resolution m': V'—- V
there is a unique map o: V' = ¥ with m-0 = m' . Of course the
minimal resolution is unique. Brieskorn [ 1] proved that the mini-

mal resolution exists if V 1is a surface.

Remark 6. There is a simple criterion for a resolution of a
surface to be minimal. Suppose VO is a non-singular surface and
X c VO is a compact irreducible curve. Then there is a non-sin-
gular surface V, and a proper morphism T : Vv, = Vq so that
m(X) = v € V1 and 7w induces an isomorphism between Vo - X and

1

v, - (vl if and only if X is analytically isomorphic to CP

and (X« X) =-1 . This is known as Castelnuovo's criterion. A

curve X satisfying the above is called exceptionél of the first

kind. A resolution T3 V -V of an isolated singularity v €V
is minimal if and only if no component of ﬁ_1(V) is exceptional
of the first kind. Note that in general if m is the minimal
resolution, the components of n'1(v) may have singularities, may

have non-normal crossings, etc.
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Suppose Tm: V -V is a resolution of a normal singularity
v € V and n'1(v) = Xy ... !X, , where the X, are irreducible
curves. Then the matrix A = ((Xi- Xj)) is an important invari-
ant of ™ . One can see without difficulty, Mumford [1], that A
is negative definite, the diagonal entries are negative and the

off diagonals are > 0 . It is remarkable that the converse of

this theorem is true.

Theorem (Grauert). Suppose VO is a non-singular analytic

surface, X = X1lJ...LJXr s, Where Xi ‘are compact irreducible

curves and ((Xi' Xj)) is negative definite. ~Then there is an

analytic surface V, and a morphism m:V_ - V, so that m(X) =

v €V, and m induces an isomorphism between V_ - X and Vﬁ—{v].

It is interesting to note that if Vo is algebraic V1 need

not be algebraic.

3.4, Resolution and C*-action

In this section we show that if V is a surface with a €*-
action then there is an equivariant resolution m: V -V di.,e, we

can choose (m, V) so that the €% action on V extends to 7.

Definition 1., Suppose G dis a complex Lie group and V is

an analytic space., An action o of G on V is a morphism of
analytic spaces

g: GXxV -V

so that o(gg', v)=o(g,o(g,v)) and o(l,v) = v .
We shall denote o(g,v) by gv when there is no danger of con-

fusion. Recall that the action is said to be effective if gv=v
for 2ll v implies g = 1 .
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Proposition 2. Suppose o 1is an action of G on V ,

I c fjv

form with center I . If o(g)*(I) = I for all g € G then

is an ideal sheaf and w: V' = V is the monoidal trans-

there is a unique action of G on V' compatible with the action

on V . In particular if X c V 1is invariant under the action of

G and m is the monoidal transform with center X +then the

above conclusion holds.

Proof. If g € G then g defines an automorphism o(g)
of V . The universal property of monoidal transform (3.3) implies
that if I 4is invariant under g +there is a unique map 7(g):
V' - V' so that mort(g) = o(g) em . By the uniqueness we see
that T defines an action. To be more precise we must check that

the map 7: G x V' - V' is analytic., Consider the diagram

where T = idGX‘H » Let py: G x V-V be the projection of

GxV on V. Then o(g)(I) =1I for all g € V implies o*(I)=
pZ(I) . Now one can easily check that T, is the monoidal trans-
form with center p;(I) . Thus (o ono)%(I) is locally principal
and there is a unique map T: G x V' - V' making the diagram com-

mutative, This is the same as our T above.

Proposition 3, Suppose o is an action of G on V . [Then

there is a unique extension of ¢ +to the normalization V of V.

Proof. Just use the universal property of normalization.
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Proposition 4. Suppose G 1is a connected algebraic group

and o is an action of G on a surface V ., Then o leaves the

following invariant:

(1) an isolated singular point,

(2) an exceptional curve,

(3) a singular point of an exceptional curve,

(4) a point x € V where two or more components of the excep-

tional locus meet.

Proof. Every element +t € G acts as an automorphism of V .
Hence if v satisfies any of the above properties, then so does
tv . But if +tv £ v then the set of points satisfying that pro-
perty is positive dimensional and this is impossible, If X c V
is an exceptional curve and +t(X) Z X , then V is covered by
exceptional curves. But there are only a finite number of such

curves.,

3,5, Weighted Homogeneous Polynomials and Good C¥*-action.

Definition 1. Suppose W go0agqW are non-zero rational
p.. 09 9 n

numbers. A polynomial h(ZO,...,Zn) is weighted homogeneous of
type (WO,...,Wn) if it can be expressed as a linear combination

1o

i
of monomials ZO .o ZnO for which

This is equivalent to requiring that there exist non-zero integers
q
Agseoesy and a positive integer d so that h(t OZopuﬁ Zn) =

tdh(Zo,...,Zn) . In fact if h is weighted homogeneous of type
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(Wo,...,wn) then let <W,seee,W > denote the smallest positive

integer d so that for each i ‘there exists an integer a4y with
Q.w. = d . These are the q; and d above,

Let V ©be the variety defined by weighted homogeneous poly-

nomials h,,...,h  with exponents (qo,...,qn) .  Then there is

r
a natural €* agction
0 qn
o(t,(zo,...,zn)) = (t zo,...,t zn) .

We call this action good if it is effective and qi > 0 for all i,

Proposition 2. Suppose V < Cn+1 is an irreducible analytic

variety and o 1is a good C€¥ action leaving V invariant,

Then V is algebraic and the ideal of polynomials in C[ZO,”.,Zn]

vanishing on V is generated by weighted homogeneous polynomials.

Proof, TLet f Dbelong to @[ZQ,...,Zn} the ring of conver-

gent power series. We let fi denote the unique polynomials so

that
q q -
£(t %2 ,u0e,t 7)) = T tlf.(Zo,...,Z

Tiie power series on the right converges for sufficiently small +t.

Ncw suppose f vanishes on V near O . Then v €V implies

o
igotlfi(v) = 0 for all sufficiently small + . Hence fi(v)z 0

for all 1 and all v € V near 0. Let f(1) f(r) gen-~

9 0009

erate the ideal I(V) of all functions in ¢{z_ ,...,2,1 venish-

ing on V . Let J be the ideal generated by {(f(j))i} . Clearly
J < I(V) . Now if v £V is within the radius of convergence of
£(3) for a11 j then there i:s some f§3) so that f§3)(v);!o . Hence
the locus of zeros of J is V and hence the radical of Jis I(V). Let
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J' be the ideal generated by {(f(j))i} in @[ZO,...,Zn] and
let I' be the radical of J' . Then I'C{Z_,...,2, '=radd=I(7).
Therefore I(V) is generated by polynomials, |

Now let I*'(V) ©be the ideal of V in C[ZO,...,Zn] . If
f € I'(V) then £, € I'(V) . If f is a polynomial then there
are only a finite number of integers i with fi #Z 0 . Therefore
if f(1),...,f(r) generate I'(V) then the weighted homogeneous

polynomials {fij)} generate I'(V) .,

Proposition 3. If V c ¢™ is an algebraic variety and there

is a C€* action o on V defined by a morphism o:C¥xV = V

of algebraic varieties then

(i) there is an embedding j: V - ¢! for some n and a @*

. ~ 1 . c s . o~
action G on €' so that (V) is invariant and S induces

c on Vg

1 .
n+ we may write

(ii) by a suitable choice of coordinates in @
q q

~ 0 n
c(t,zo,...,zn) = (% Bseonst zn)

where q; €7 ,

(iii) if the action is fixed point free on V - {0} then we may

choose q; > O for all i .
Proof., (i) is a special case of Rosenlicht [1,Lemma 27, (ii)

is proved in Chevalley [1, exposé 4, séminaire 1] and (iii) fol-

lows from Prill (1],

3.6, The Cone Over a Weighted Homogeneous Variety

Henceforth we shall assume that V cC Cn+1 and o 1is a good

¢* action leaving V invariant.
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Definition 1. Let o : Cn+1 - @n+1 be defined by

q q
(2 50ees2,) = (zoo,...,znn) and let V' = ¢~ (V) . Then V!

has a natural C€* action defined by

T(t, (Bgseens2y)) = (B2,0.0,02))

and ¢ commutes with the €% action. We call (wo,V') the cone

over V . Note that V is the quotient of V' by %q x...qun
o)

. 1 . .
acting on et coordinatewise.,

Proposition 2. The cone is a generically non-singular vari-

ety, i.e. there is an open algebraic (hence dense) subset I%)C v

so that if

I:(fi(Zo,‘..,Zn)) i=1T,000,r

is the ideal of polynomials vanishing on V and

4 I
o} .
gi(ZO9“"Zn)=fi(ZO 9-~°9Zn) i=1;.00,r
then
' dg
rank{ g—i} = n=- s+
\ Zj;w

for all w ¢ U, where s = dimgV ,

Proof. We may assume that V is not contained in any coor-
dinate hyperplane {Zi= 0} . Now V is a variety, hence it is

generically non-singular i.e.

=n-s+1 for v €U,open dense in V.,

s

‘DT, \\
rank ( j

o/

Z .
JI v

Then
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dg. / ' 2
( gi) afi) \ 2(2,9)
dz = [SET ‘ 2z .
k (zo,..-,zn) J (Zqo an) k
o 9.." n

There exists a point (zo,...,zn) €V with 2z, #Z 0 for all i ,

so that the matrix on the right is invertible at this point. Hence

rank (agi

=n-s+1
-} )
\

k (ZOs-°'9Zn)

But this property holds on some open algebraic subset and the sub-

set is non-empty. This proves the assertion.

3.7. The Quotient of V - {0} by ¥

The cone V' above V is defined by homogeneous polynomials
B1seees8n o These polynomials define a projective variety X' cCP”,
In fact X' 1is precisely the algebraic quotient of V' - {0} by

€¢* , The analogue is true for V , Mumford [2, chapter 2].

Proposition 1., There is a projective variety X and an

algebraic morphism w:V - {0} - X so that

(1) the fibers of ™ are precisely the orbits of the action,

(2) the topology of X is the quotient topology,

(3) for any open algebraic subset U < X +the algebraic func-

tions on U are precisely the invariant functions on n'kUL

The map m': V' - {0} = X' has fibers ¢* ., We would like

to add a zero section to get a map with fiber € . Let

T, € (V' ={0}) x X

ﬂl
be the graph of mn' , let F' be the closure of T in V' x X!
and let T':P' - X' be the map induced by projection on the
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second factor., We have obtained P' from V! by blowing up the
origin y': F' - V' , Clearly u'(x') = (0,x') gives the zero
section of (7',F') , This pair is just the hyperplane bundle of
X' , DNow the action of @ = %qox...ngn on V' induces an ac-
tion on F' , Let F be the quotient of TF¢ by this action.
Note that F is just the closure of Pn in V x X . The actions

of €*¥ and G on V¢ commute, hence X is the quotient of X’

by G . We have the commutative diagram

Pt E‘\
g
T i'f) ”
a v
' —& o x

where the horisontal maps are quotients by the action of & s MF
is the zero section, wu 1is the map induced by u' and 7T is

the map induced by t' ., ILet y:P - V Dbe the map induced by y'.

3.8, The Canonical Equivariant Resolution of a Surface

Suppose dimCV =2 and V has an isolated singularity at 0.
Then by Proposition (3.6.2) there is an open dense subset UO .of
V' so that every point of V' is simple., Hence there is an open
dense subset U < X' with the same property. Now (7',F') is a
line bundle hence 7_1(U) is non-singular, Clearly G is a fi-
nite map ramified along a finite number of fibers of T' . Hence
there is an open subset U, € X so that 7'1(U1) is non-singular,
Now P - u(X) 4is non-singular, hence F has only a finite number
of singular points along u(X) s all with neighborhoods of the
form 0‘2/%OL for some a . Let Py ¥ - P be the minimal resolu-
tion of these singular points. Then the €* action extends to V

(since there is an equivariant resolution dominating V) . The




- 51 -

p
° s B SN V is a resolution of the singu-

composite map p: V

larity of V ., We shall say that o is the canonical equivariant

resolution of V . Since o is equivariant given a small TU(1)-

invariant disk D, at O the menifold p—1(D€) is a U(1)-inva-

2 pundles by

riant subset obtained by equivariant plumbing of D
the graph of p“1(g) . Its boundary, X is therefore a smooth,
orientable 3-manifold with S1 action and FUSE = g ,

The proper transform XO of X ¢TI is the unique irreducible

~

curve in V so that pO(XO) = X . Note that the €* action is
trivial both on X and XO . It is easily proved that the other
curves of the resolution have no isotropy groups. It also follows
directly from the fact that the singularity is isolated that X

and XO are isomorphic non-singular projective curves.

Theorem 1, Let p'1(9) =X, U...UX, , where X, is an irre-

ducible curve and Xo is the proper transform of X . Then

(1) X, 1is non-singular for all i , Z; meets Xj at no more

than one point, Xi crosses Xj normally at that point and

Xirwxjrwx = @ for distinct i,j,k ,

k

(2) the action is trivial on X,

(3) the action is non-trivial on £, ,1>0, and g, =0,1>0,

(4) T is a weighted star with center A ,

(5) m, <-2, for all i >0

Proof: By (3.4.4) we can perform a sequence of monoidal
transforms with centers at fixed points of the action so that the

composite pt: V' - V¥ satisfies
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(a) the action extends to V!

(b) V' and p=p' satisfy (1).

Let (pop')”'(0) = X! U...UX,, and let T' be the graph asso-
ciated to pop' . Now TI' satisfies (2.2.2.,a) and (Xi° Xi) <0
as noted in (3.3). Finally, if Ii and Xﬁ have genus zero, X!
meets X5 and (Xi- Xi) = (Xﬁ- Xﬁ) = ~1 +then the intersection
matrix ((Xif Xs)) cannot be negative definite. Applying (2.2.2)
we see that gi =0 for i>0 and T' 1is a weighted star with
center A! . Thus T satisfies (1) -~ (4)., Let s Ybe the num-
ber of m, = -1 ., We will prove by descending induction on s
that (1) - (4) are satisfied for any resolution between V' and
v . Suppose Xi is a rational curve with non-trivial action and
(Xi -Xi) =-1, Then by Castelnuovo's criterion (3.3.6) there is
a manifold V" and a map f: V' - V' so that f(Xi) is a point
and f is an isomorphism outside of Xi . Now Xi meets at most
two other curves say X% and Xé « It meets each at one point
and with normal crossings there, Let ij = f(XS) . Then

X+ X, = *(X,) - t*(X,) = (Xj+%1)» (Xp+XL) =1 . Thus X, meets
ig normally at one point. Thus V" satisfies (1) - (4). Pro-
ceeding inductively we see that 7 satisfies (1) - (4). But 7
is a minimal resolution of P hence (Xi- Xi) < -2 . This com-
pletes the proof,

Combining the above theorem with the results of (2.2) we ob-

tain the main resolution theorem.

Theorem 2. The weighted graph associated to the canonical

equivariant resolution of the isolated singularity of V at the

origin is the star of K , S(X) .

Thus in order to obtain this resolution it is sufficieht to

find the Seifert invariants of K from the algebraic descriptio of V.
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3.9, The Seifert Invariants

Assume now that V is an algebraic surface with an isolated
singularity given as the locus of zeros of some polynomials in
®n+1 and it is invariant under a good €* action. We shall de-
scribe how to find the Seifert invarisnts of K . More specific

results for hypersurfaces in @3 are given in the next section.

1. Pinding oy . If all coordinates of a point 2z = (zo,...,z )

n

are different from zero then 2z is on a principal orbit since
(a ""’qn)‘z 1 . The point 2z in the hyperplane H = {z. =...
o} - 14
co=Z; = 0} with all other coordinates non-zero has isotropy
k

group of order a = (qo""’qi1”'f’qi~""’qn) .  The number of
orbits with isotropy group %a lying in H equals the number of
those components of V N H that are not in any smaller coordinate

hyperplane.

2, Pinding Bj . Let S bé an orbit of K with isotropy group
Z,, a >1 . For an analytic slice D° in ¥ through x € S we
can find an analytic isomorphism ¢: 4 = {ue€ ! lul <1} = D so
that the induced %a action T on A 1s a standard linear
action. For o = exp(2mi/a) and for some O < v < a we have
T(p,u) = p”u . Then PBv = 1 moda and O < B <a . (Notice that

the orientation adopted in Orlik-Wagreich [1,2] is the opposite of

this. )

3., Finding b . Suppose V 1is invariant under the good €%
action
a. a4y
0(Bs2gsenes2y) = (5 02, 00n,t Vo)
and d is the degree of the cone over V as defined in (3.6).

Making adjustments for the present orientation convention we ob-
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tain the following formula

r
b = e = T
CRCPRRRL N

N e

1

Rather than repeating the proof as given in Orlik-Wagreich
1] we shall only outline the argument. If V is defined by
homogeneous polynomials of degree d then d,  =...= Q) = 1 and
there are no E-orbits. In this case V - {0} 1is a C*-bundle
over X induced by the €* bundle ®n+1-{0} - ¢P% . The latter

has chern class -1 . The fact that X has degree d means that
the map

He(cPY; @) -~ HO(X; %)

induced by inclusion is multiplication by d so the chern class
of the bundle over X is =-d and therefore b = d satisfying
the formula in this case. The general formula is obtained as
follows. ILet : V' = V be the covering of V by its cone,
vV=V/G, G-= zqo@..xﬁ%qh. and F,%X,P',X' as in (3.7). Since

Vi may have non-isolated singularities the curve X' may be sin-

gular. Let H: Y' - X' De its desingularization and FO = F'§;Yh

Since T' 1is a G-bundle over X' of degree -d the same holds

for F_ over Y' and (Yre¥')p =-d . Tet V Dbe the canonical
6]

equivariant resolution and X the center curve. We want to com-
pute (X 'X)V . Pirst one constructs non-singular varieties WO
hnt

and V1 and birational maps T: Wo - Iy and py: V1 -~ 7 and a

map mn: Wo - V1 so that the diagram below is commutative

. T -
R
g ™
Vv

<.

01,.:,’5‘

V1-4>V ——

=
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Here WO is the blowing up of the fixed points of the action of
G on Y'c FO . Then G acts freely on W, and mn is the
quotient map.

Let Y = Tﬁ(Y') , X = E#(X) , Xq o= pf(i) . The degree of the

map n is qoq1...qn and it is easily seen that
(qo...qn)(X1°X1)V1 = (ﬂ X1' M X1)WO = (YO.YO)WO .

The second part of the argument shows how the maps  py and T

change these intersection numbers. Specifically one proves that
(X1‘X1)V1 = (X'X)

and

r o.-B.
L] -—l—J - ‘0
(Yo To)y, + Toreely B =gt = (YT

giving the formula as asserted.

4. Finding g . This computation is purely algebraic, The non-
singular curve X has arithmetic (and topological) genus pa(X) =
dim H'(X, ) which is the constent term of the Hilbert polyno-
mial of the homogeneous coordinate ring, RX . Now X' dis de-
fined by homogeneous polynomials so its coordimate ring, RX' is
known., One proves that Ry = (Rgi)(m) where m = q,...9, and
( )G denotes the subring fixed by G . There are technical dif-
ficulties because the ring Rg, is not generated by forms of de-’
gree 1 and‘therefore the Hilbert polynomial is not defined, see

Orlik- Wagreich [2]. An altermate method is given in (3.11) for

hypersurfaces in @3 .

3,10, Surfaces in 03

Suppose that V dis a surface in ®3 having an isolated sin-

gularity and admitting a good C%* action. It follows from (3.5.2)
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that V 1is defined by a weighted homogeneous polynomial, .
h(ZO,Z1,Z2) . Using the €% action it is shown in Orlik-Wagreich

[1] that there is an equivariant analytic deformation of V into

a surface defined by one of the following six classes of polyno-

mials
8.0 a1 8,2
(1) L0+ 4y + Dy
(T1) Z:O + z?1 + 21222
%o 81 82
(I1I) ZO + By Dy + 1550y
(1V) z:O + 202?1 + z1zz2
(V) 20 v o ln 4+ 2.2
o 4q * By ly + 20y
aO
(VI) 2.0 + 5,5,

inducing an equivariant diffeomorphism of respective neighborhood
bounderies of the isolated singularity at the origin.
Thus it is sufficient to study these six classes of polyno-

a
mials, The polynomial ZOO + 2122 is analytically isomorphic to

° 4 Z? + Zg so it may be treated as a subclass of I .,

Z
Assuming that the weights equal LI i=0,1,2 and they
are reduced as a fraction to W= uj_/v:.L we introduce auxiliary

integers

c, = (u1,u2)/c ; Cq = (uo,ug)/c ; Co = (uo,u1)/c » Cqp =
uo/cc1c2 ;o0 = u1/ccoc2 » Co,1 = u2/ccoc1 . Note that c_,
CqsCp are pairwise relatively prime, 009190032 and 0192 are
pairwise relatively prime and (Ci’cj,k) =1 4if 1i,j and k are
distinct,

The integer d defined as the least common multiple of the uy

equals
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d = 0000102009100920192

and from this we compute q; = d/wi as Q= VC.Co 4Co o
49 = 71°1%,1%1,2 s 92 = V2920, 2% 2 -

1. Orbits with non-trivial isotropy groups are in the hyperplane
sections, The number of orbits in a given hyperplane section is

the number of irreducible components of the curve of intersection.

For example in class I the subset

(2 =0, 2.0+ 2.2201 n &
o = Vs Bq TEp S n
has isotropy group Zao = %(q19q2) = %0192 « It consists of

n, = (a1,a2) = ccg orbits, Similar arguments yield the following
table where ays Qq, Qp Bre the three possible isotropy groups in
the three hyperplane sections and n,, N4, N, are the number of

orbits in each.

%o %o 1 o *2 o
I 01’2 ce, 0092 cecy Co,1 CCy
[T Cq o (001-1)/v2 §V20192 1 .1 c
[T cq,2 (CCO—V1-V2)/Vﬂ@'V20192 1 V19 2 1
[V S, 1 (c=1)/v, V5 1 V1S, 1 1
v v, 1 ! V4 1 Vo 1

2, In order to compute 8 we note that a sufficiently close
slice in V maps diffeomorphically onto & slice in K so we may
consider the former. All orbits in the same hyperplane section
have the same orbit type since so does the whole hyperplane, Con-
sider for example an orbit with isotropy group %a in class I

o
as above., Let §& = eXp(2ni/ao) . The action of & 1in ¢ is
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9
%(zo,z1,z2) = (g Zo’ZT’ZZ) .

Considering the Z plane as a slice the action is the standard
action of type [ao,qO] and hence B is defined by the congru-
ence

4B, = 1 (mod ao) .

Notice that this is the orientation convention of (1.1.7) and the
opposite of that used in Orlik-Wagreich [1,2], For an orbit on

the intersection of two hyperplanes, e.g. in class II

2 3
{ZO=Z1=09 !Z2| =1;

a a
the slice at Zy = 1 dis the curve {zoo+z11+z1 = 0} . This

curve near (0,0,1) may be "approximated® by changing it by an

analytic automorphism

q:-(ZO,Z,]) = (ZO"'hO(Z Z1)9 z1+h1(zo,z1))

where h. ¢ @{zo,z1} have all terms of degree > 2 , The curve

a
{zoo-x-z1 = 0} is an approximation and if § = exp(2ni/a1) the

action in the slice is approximated by

a q 4,8, @ q a

(2,,-2,°,1) = (8 °z_,-8 ° %2 °,1) =(§ °z,-z,

°,1)

A

so we have vy = qo and hence

8,9, = 1 (mod a1) .

The table below gives the vj s J =0,1,2 .

Since ijj = 1(mod aj) and O < Bj < o this determines the

B .
J
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Vo Vq Vo
I q, a4 a5
I % % 42
I q, 4 %
v aq, a, o
Vooa 4, a4

3, As we have mentioned earlier b is given by the formula

r B.
b = 4 __ v 4,
W92 g=1 @

4, Tinally the construction of the previous section gives the

following expression for g , Orlik-Wagreich [1,(3.5.1);2,(5.4)]

oy - a2 a(a,,9q) i d(aq,;95) ) d(a,,49,)
q.419 e a9, CPC
(d,a,) (d,qq) (d,95)
+ + + - 1.
g P P

We shall give an alternate way of obtaining this formula
using the fibration theorem of Milnor [1] in the next section.
Pirst consider an example.

Let a variety V in @3 be defined by the weighted homo-
genecous polynomial of class IIT , h(Z) = 2254-z$224-zgz1 . It

has an isolated singularity at the origin., We find w_ = 15

W‘,=9/29W2=99d=459q— =39q1=109q2=590=39

o]

O
(z,=0, 23 +25=01 n 87 consists of 3 orbits with stability
group of order a = (q1,q2) = 5 . There is one orbit

c. =3, Cq o= 5 and the other c¢-s equal 1 . The locus
9

{z,=24=0"10 s? with @ = 4y =5 and one orbit {z_= 22=<3}085
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with 0y = qq = 10 . The corresponding Vg = Vg = Vp = qo S0

By = 2 By = 2 and 8o =T . The formula for b gives b = -1

and the formula for g gives g = 3 . Thus
K = {-1;(0,3,0,0)5(5,2);(5,2),(5,2),(5,2),(10,7) ]}
and the star of K

is the dual of the graph of the canonical equivariant resolution

of the singularity of V .

3.11., Milnor‘'s Fibration Theoremn

n+1 defined by

Let V ©be an algebraic hypersurface in (€
the zeros of a polynomial, V = {z | £f(z)=0} . ILet x be an
arbitrary point on V and Se a sufficiently small sphere cen-
tered at x . ILet K = VNS, . The following fibration theorem

is due to Milnor [1].

Theorem. The mapping

¢(z) = £(z)/|£(z)!

o]

from Se-K to B is the projection map of a smooth fiber
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bundle., Each fiber

— -1 ie t
P = 8" (e77) < S.-K

is a smooth parallelizable 2n-manifold.

For an isolated singularity there is additional information.

Theorem., If x is an isolated critical point of f then

each fiber T has the homotopy type of a bouquet Snv...vSn of

8
n-spheres, Their number, u is strictly positive., Each fiber

can be considered as the interior of a smooth compact manifold

with boundary

closure(Fe) = FetJK

where the common boundary K is an (n-2)-connected smooth (2n-1)-

manifold.

The complement of K 1in Se ; Se - K 1is therefore obtained
from T x [0,2m] by identifying F and F,_ by a homeomorphism
h: » - T

called the characteristic map. The Wang sequence associated %o

this fibration is according to Milmor [1,8.4]

h -I,
v Hj+1(S€- K) - HjF : > HjF - Hj(SE-K) I

where I 1is the identify map of ® . In case X 1is an isolated
singularity we can use the information on the connectivity of F
end K , Alexander duality and Poincaré duality to see that for
n > 2 the Wang sequence reduces %o the short exact sedquence

n -1,

X T .
> P - H 4K -0.

o - HnK - HnF

Let A(t) = det(tI*—h%) denote the characteristic polynomial of the

transformation h*: HnF - HnF .
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If f(z) 1is a weighted homogeneous polynomial of type
(WO,...,wn) then Milnor shows furthermore that F is diffeomor-

phic to the non-singular algebraic variety
Fr = {_Z_ ! f(_Z_)=1}

and the characteristic map h may be chosen

where £ = exp(27i/d) . 1In particular h is of finite order di-
visible by 4 . Thus the minimal polynomial of h, divides
(td- 1) and hence it is a square-free polynomial. This implies
in turn that the rank of the kernel and cokernel of (h*-I*)
equals the exponent % of (t-1) din A(t) . An expression for
¥ was obtained by Milnor-Orlik [1] in terms of the weights. Let
W, o= ui/vi , i =0,.s.,n Dbe in irreducible form and for integers
8 se+s58, denote their least common multiple by [ao,...,ak].
We have
Wi geaesVy

0 18

K (Wgseensuy) = ) (=1)77°

Tu, ]
1

9...9ui

o] S

. 1
where the sum is taken over the ot

subsets {io,...,is} of
{O,.o.,n} .
In the case of a surface in @3 we already know H1K in
terms of generators and relations, There are <2g free generators
from the partial cross seation together with the generators
qogq.']gologqr’h

satisfying the relations:
qo+q1+...+qr = O
qo4-bh =0

G,jqj-i-th:O j=130009r0
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The first comes from the partial cross section and the remaining

ones from the sewings of the solid torus neighborhoods of the b-

obstruction and the E-orbits. The determinant of the relation
ma'tI'iX equals p =bc,1 ) ar+B1a2 LY a.r+ 000 +CL1(12 ° 0 0 Br

r B.

P = Db+ T &

0,1 LI d.r j

On the other hand from the expression for b (3.10.3) we obtain

r 8. d
b+ & = = -

so we see that p > O and therefore the generators qo”"’qr’h

are torsion elements of H1K . Thus
n(WO,W1,W2) = rank H,K = 2g .

Substituting w; = d/qi , i=0,1,2 in n(wo,w1,w2) yields
(3.10.4).

Although this proof is correct it is somewhat unsatisfactory
in that the essential reason for p > 0 is hidden in the proof
of the formula for b . ZExamining that proof one observes that
p > 0 is equivalent to the negative definiteness of the quadratic
form of the resolution.

Pinally note that this approach is valid only for hypersur-
faces. TPFor higher embedding dimensions the algebraic method men-

tioned in (3.9) has no topological replacement at present.

3,12, Non-isolated Singularities

Rather than giving a detailed account of the resolution of
non-isolated singularities of surfaces with a good ¢€¥ action as
in Orlik-Wagreich [2] we shall point out the additional difficul-

ties compared with the isolated case.
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1., Tet 6:V - V be the normalization (3.3.3) of V , where
vV c Cn+1 is a surface invariant under a good €% action. We are
interested in the resolution of the isolated singularities of v
using the methods already developed., The fact that V is given
with a good €* action is of little help, however, because the
same may not be assumed of V . A canonical equivariant resolution
of the singularities of v may be constructed as follows., Let V'
be the cone over V in ¢®F! and Vi-0/¢" = X' cCP® . Let
n:Xt' - X' be the normalization (resolution) of the projective
curve X' . TLet F' denote the hyperplane (Hopf) bundle of cp™
restricted to X' . Since the degree of F' 1is negative Grauert's
Theorem (3.3) assures that there is a birational map Jj': F' - V'
collapsing the zero section. Let F' = q*(F') and Y' = Froo T
be the map collapsing the zero section. Now V' maps into the
normalization of V' and it is normal so it is the normalization.
F' is non-singular and the action of G = %qo@..ADan on F!
extends, Iet F =7/, V=7Vi/¢ and ¥ =7F -7 the induced
map. Pinally let 5:V - F be the minimal resolution of the
quotient singularities of P . Then p = ¥p: Vv - V is the cano-

nical equivariant resolution of V .

2, BSince the action extends V has an isolated singularity at
the origin whose resolution is determined by the Seifert invari-
ants of K . The topology of V at the‘origin is determined by
the mep O!p:K - K . In general K is not a manifold and 6
may identify orbits of K some by maps of different degrees. One
needs some notation for these objects and an equivariant classifi-

cation theoremn,

%3, The central object is obtaining the Seifert invariants of K

and understanding the map 8 from the algebraic description of V
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The isotropy groups of orbits in K are easy to read off. The
slice at 2z € K may consist of several disks meeting at 2z . The
number of orbits mapping onto the orbit of 2z dis determined by
the number of orbits of the action of Za in the slice, If k
disks of the slice are mapped into each other by Za then there
is one orbit with isotropy group %a/k in K mapping onto the
orbit of z by a map of degree k ., The action of %a/k in the
individual slice determines £ (as on invariant of K ). The
obstruction class b 1is obtained by the same formula as before.
The genus g(X) of the non-singular curve X = V-0/€* is ob-
teined from the arithmetic genus pa(X) of the (possibly singular)

curve X = V- 0/¢* using the formula

g(X) = p.(X)- = 5
a xeX X

where 6X is an invariant of the singular point x € X . The
computations are, of course, harder, They are carried out for

hypersurfaces of ¢ in Orlik-Wegreich [2].
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4, Equivariant Cobordism and the o -Invariant

This chapter is a brief extract from the thesis of Ossa [1].
Iirst some general notation is introduced then the basic facts
about S1-manifolds are given., Next the fixed point free cobor-
dism group of oriented, closed, smooth 3-dimensional fixed point
free S1-manifolds is discussed in detail. It is shown to be free
and generators are constructed. An algorithm for finding the co-
bordism class in terms of these generators from the Seifert inva-
riants is also obtained.

Using a fixed point theorem in Atiyah-Singer [1] an invariant
is defined for fixed point free circle actions. It is a rational
function in Q(t) . This invariant is computed for 3-dimensional

s'-manifolds.

4,1, Basic Results

All manifolds and bundles are assumed smooth and orientable.
Given the vector bundles My = Xy no ~ X2 define up » No by
the Whitney sum of the pullbacks of the projections pri:Xﬁ xX2 -
- Xi , 1 =1,2 ., as

ny®ny = prym ®pryn, .

Let G be a compact Lie group, H a closed subgroup and
(H) = {gHg-1 lge@l . A family of subgroups F is called admis-
sible if H € F implies (H) ¢ F . All families of subgroups

n

will be assumed admissible, Let M be a G-manifold and assume

that G is orientation preserving. M is called of type (F,F')

I

if »p M then Gp €F for all p éM and if p € oM then

G_ € T for all p € 3M . It is called (F,F')-bounding if there
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is an (F,F)-manifold Wn+1 so that M is an equivariant sub-
manifold of 3W and for every point p ¢ oW-M Gp € F' ., We
also call W an (F,P')-cobordism for M . Two G-manifolds My
and M, of type (F,P') are (F,F')-cobordant if the disjoint
union M, + (—M2) is (F,P')-bopnding. This is an equivalence
relation, Denote by Cﬁh(G;F,F') the equivalence classes of n-
dimensional G-manifolds of type (F¥,F') and (G3F,F') =
o C (6;7,F') .
n

Let P o F' > F'" Ybe families of subgroups of G . Then
there is an exact sequence

. . a
e = q(G’;F'sF") }' %(G—;F,F“) 'J' %(G;F,F') - 81;_1(G;F'9F") = e

where i1 and j are induced by inclusion and 3 1s restriction
to the boundary.

A G-vector bundle of dimension (k,n) is defined as a smooth
G-vector bundle with fiber dimension %k over a smooth, closed n-
manifold. Assume that the total space is orientable and the ac-
tion of G 1is orientation preserving. It will be called of type
(F,H) if

(i) each isotropy group of the zero section contains a subgroup
conjugate to H ,

(ii) each isotropy group of the associated sphere bundle is in
P~ (H) .

A G-vector bundle & of type (F,H) Dbounds if there is a
G-vector bundle mn with oriented total space over a manifold with
boundary so that & is equivariantly diffeomorphic to the restric-
tion of m to the boundary of its base. Two G-vector bundles
E and &' of type (F,H) are (F,H)-cobordant if the disjoint

union E + (-£') ©bounds. Again, (F,H)-bounding is an equivalence
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relation and the collection of equivalence classes wi(G;F,H)

forms an abelian group under disjoint union. Let w:(G;F,H) =
2k+1

. (GyF,H) = 0 follows from the

2, VS(G;F,H) . Note that ¢
orientation assumption, 2.q. (f G (5 abellan.

Given a G-manifold M" of type (F,F-(H)) the set of
points p € M so that Gp contains a conjugate of H 1is a clo-
sed G-invariant submanifold of M - 3M . Let & ©be its normal
bundle in M . Then £ is a G-vector bundle of type (F,H) .

It is easily seen that the map M - & induces an Q  module iso-

morphism

¢ 2k
Glesm, 7~ (1) —> @y fo (657,1)

The inverse map is given by taking the associated disk bundle

of & .

4,2, FPixed Point Free S1—Actions

Let Fm be the family of subgroups of S1 with order < m ,

1 .
P, = UF  and Py all subgroups of § . Note that Z; in F

and g1 in FS are maximal elements. Let wus use the simplified

notation
Tm) = T(shr,,0
G = G,
ST = CZ.(S%FS,SJ)

and similarly
k kool
v (m) = v (S 5F Z))

1 1 N
vEesh) = vistrg,sh)

Let M be an 81—manifold and H c S1 a closed subgroup.
Define I(H) = {peM|h(p)=p , YheH} . Clearly I(H) is an

invariant submanifold in M . ILet N(H) be its normal bundle,
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We call M an S1—manifold with complex normal bundles if for

every H +the bundle N(H) has the structure of a complex S1-
vectorbundle satisfying the condition that if H, < H, then the
bundle N(H1)!I(H2) is a complex s'_subbundle of N(Hz) . The
corresopnding cobordism groups are denoted by 5§L(m) , 63;@xﬂ

and 552(31) . Similarly we define complex vector bundles of type
(m) over oriented s'_manifolds where the operation of st is
compatible with the complex structure to obtain the groups $§(m)

of complex k-dimensional vector bundles of type (m) over n-

manifolds. This yields the exact sequence

see ” é;l(m-ﬂ - E?Z(m) - %@ﬁ_gk(m) - ':31;_1(m-1) ERR

Given a complex representation r of %m with no trivial summand
we can form the cobordism group En(m,r) of complex s!_vector
bundles of type (& ,r) over oriented s'_manifolds. Iet ﬁk(%m)
denote the set of equivalence classes of complex k-dimensional
representations of an with no trivial summand., Clearly

—k .
U (m) = -@ ) (mar)
n rERk(Zm) n

Lemma 1. Let r:Z%Z - U(kx) ©be a complex representation of

Z  with no trivial summand. TLet C(r) Dbe the centralizer of

r(%m) in U(k) . Then there is a canonical Q, module isomor-

phism with the singular bordism group of Conner-Floyd 1]

¥y(m,r) = 0, 4[B(8' 4z ) xB(E(x))T .

Proof. Let § € En(m,r) and let E denote the associated

principal U(k) bundle. Now S1’ operates on the left on & and
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U(k) on the right on Y. TLet

n=1{ect !ne=er(h), vheZ } .

Then S1 acts on n from the left. a(r) operates as a subgroup

~

of U(k) on the right on & and hence on 1 . Define a left
action of C(r) om mn by oe = ec™ !, This gives a left action

of 8 x C(r) on mn . Define
A={mﬂﬂﬂ)§hezm}

a normal subgroup of S1 X a(r) . It is easily seen that A 1is
exactly the isotropy group of every point of mn under the action
of 8 C(r) and n is a principal st « C(r)/a bundle with
base M/S1 defining an element of Qn_1[B(S1x c(r))/pl and it

is not hard to see that
g x C(r)/A = S1/%m><6(r) .

Conversely, given a principal 81/%m x C(r) bundle n over
/' we obtain the principal U(k) bundle S with S' action
over M by noting that there is a canonical map v :mn xU(k) - 3
given by (e,s) = eo equivariant with respect to the S1 action.

1 € a(r) and

It is surjective and v(e,,04) = v(ey,0,) iff 0105

e, = e1c1051 . Thus €& is the quotient of n x U(k) by the

action of C(r) given by a(e,s) = (eo'1,os) .

Let & = ¢cP" be the Hopf bundle. Then the 0, algebra

% Q (B1(k)) is a polynomial algebra generated by the classes

[%n] , n > 0 . According to Conner-Floyd r2,(18.1)1 one has to

‘show that if for a k-tuple w = (nq,..e,n) , 0y 205 2 0002020
A ~ n 1

we associate the bundle § = § @...@gn over P = CP 1x...xCPk

w ~ ng K w
with the classifying map fw then the classes fw*[Pw] €
H,(BU(k);Z) form a Z-basis for H,(BU(k);Z) . This is done by

the usual characteristic class argument.
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Recall that every complex representation r :%m - U(k) is

a sum of linear representations. Denote by Ty Z, - U(1) ,

j =1,...,m=-1 the representation that sends the generator
exp(2mi/m) of Z, to expj (2mi/m) . Let krj denote the k-
fold direct sum of rj . Then for some non-negative k1""’km—1
with k1+...+km_1 = k the representation r is equivalent to

kiri®...0k Thus C(r) is isomorphic to U(k1)x...

m-1Tm-1 °

~ ol

x‘U(km_1) and since 81/Zm £ 5 we have from Lemma 1:

Tn(m,r) = 0, 1(88" xBU(k,) x... xBU(k__,)) .

Since H_(BU(k);Z) has no odd torsion the Kunneth formula of

singular bordism theory applies, Conner-Floyd [2,(44.1)] and one

obtains the following explicit generators. ILet Siq'1 denote the
(2g9-1) sphere {(21,...,20) e ¢4 !Zzi§i= 1} with the ineffictive

g action t(z1,,..,zq) = (tmz1,...,tmzq) . Let §£3) denote
the Hopf bundle over cP?  with S1 acting by multiplication by

td  in each fiber.

Theorem 2, Ef(m) =@ @ﬁ(m) is freely generated as an 0Q_
iheorem o s

module by

i k.)
2q_1 ‘(31) ~ A ( J
S x (& D ... O E )
m n1 l’lk
where q;_1 ; m=1 2{]1 232 Ze ’->-Jk> L ?.'Eg; nszns+1 1L

Theorem 3. (a) The canonical 0 module homomorphism

N

i (1) - T (m)

is injective,

(b) J: if;(m) - @ EE(m) is surjective.,

(e) Ca;(m) is freely generated as an 0,
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module bj

where s >0, m>j

Jg = jo+1

Here S(n) denotes the sphere bundle of the bundle n .

Proof. If mn; and n, are of type (81) so that every
isotropy group in 8(ny) is Z Z and in S(n,) of order <m

then Sbm1é7@) is of type (m) and the normal bundle N(Zm) of
the fixed set I(Zm) is equivariantly equivalent to S(n1) X Mo

In the exact sequence

‘—,q/’n-1(m—1) — o0 e

lor

ces o é%h(m-1) s 65;(m) ] % Eﬁ(m)

? 5§(m) is free on the generators given in Theorem 2. The element

of 7. (m)

Gy o Gy

f(m) A 7~
S(sq_1 D §n1 Deo o™ énk )

maps onto the corresponding gemerator by the remark above so J

is surjective and by exactness i is injective., Part (c) follows

from induction on m .

In particular one obtains the following.

Corollary 4. (fa(zj is freely generated as en O, module

=

), G)a . (i)
N R

S( )

s
where s > 0 , jo > 1 230 Zeee2 jS > 1 and ng > 0.9 if

Jo = ot
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4,3, 3 =Manifolds

The cobordism group of 3-dimensional fixed point free 81-

manifolds is determined as follows,

Theorem 1. Cﬁ'(dj is free abelian with free generators

3
RERIRNEY

&)

0 °0 ’

Proof. Consider the relations:

(1) ts(ei™ s (1 < rselm ™ e g{m)1a rs(s{m 8 400y,
m,n >1

@) el — s B aelihyy, 5,

The first is obtained from the S1 action on CP2 given by

t™z,7 observing that the fixed point

t[zozz1222] = [zo:tmz1:
set consists of the three points [1:0:0] , [0:1:0] and T[0:0:1]
and the above are their normal sphere bundles. The second follows
by noting that S(Egj)) = s(ggj)é)géj)) and letting m=n = j
in (i), Thus it follows from (4.2.4) that the image of

v G0 - Tiie)

is generated by the above generators. In order to prove that o

is an isomorphism we first claim that ¢ dis onto. This means

that every 3-dimensional orientable fixed point free S1—manifold
has complex normal bundles. This is obvious since these are ori-
ented D2-bundles over 81 . To show that ¢ 1s injective it is
enough to show that the generators given in the theorem are linear-
ly independent in Ca%(xﬂ . Here is an outline of this argument.
Using (ii) it suffices to prove that if Y is an oriented 4-di-

mensional fixed point free S1—manifold with boundary
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RERINER

3Y = N a. ,. 9( D E ) + T Db. S(g
jo>23‘1 J0931 © 1 J>1 J L
3921

then the coefficients a. .
Jdosd

shown that Y 1is cobordant to Y' where Y' 1is a fixed point

and bj are zero. First it is

free S1 .manifold with cdmplex normal bundles and 0dY = 3Y' .
Using (4.2.3a) and a downward induction on the orders of the

isotropy groups one obtains the announced result,

Next we shall express the cobordism class of an arbitrary

oriented fixed point free S1-manifold
M = {b; (0,g,0,0); (a1951)9--09(ar93r)}

in terms of the generators given ahove. In order to avoid treat-
ing the class b separately we shall think of M in the equiva-

lent presentation

M = {O; (Osgaoso);(19b)9(@1961)9-°-9(ar96r)3 .

Remove the interior of an equivariant tube consisting of only prin-
cipal orbits from M and call the resulting manifold-with-boundary
M* . Let V Dbe a tubular neighborhood of an E-orbit with Seifert
invariants (a,8) as described in (1.7), o >0, (a,B) =1 Dut
B 1s not necessarily normalized,

As in (1.7) define v and o by

v3 =1moda , 0 <y <aqg
p = (Bv=-1)/c .
Choose a cross-section on the boundary torus of M' so that the

action written with complex coordinates is
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The action in V is described by

t(x,z) = (tYx,t%)

'x| <1, lz] =1, Define the equivariant map
p: SM' - 9V
by m(z1,z2) = (z;azg,z?zgp).

Its inverse is the map F given in (1.10). Since © has deter-
minant -1 it is orientation reversing and it can be used to ob-

tain an oriented manifold

M= M(a,8) = M' UV .
®

Let Y_=1HxI with if = fix {0} €Y . Consider the wnit ball

in ®2

vya = [(E25) €0® | (2,174 2,12 < 1)

with the U(1) action
t(z1,22) = (tvz1,tazz)

oD denote 83 with the above action.

V,Q,

and let S
v

The map
X Z )

PR—————

A 9 = — g
(x,2) (V1+xi {1+x%

defines an orientation preserving equivariant embedding A: V-*Sv
H

' |Z1!2+ !Zglzf_%}

1
- f -
Define Dv,a = {(21,22) eDv,a

and

T
Y =D - D= cD .
+ v,a . Tv,a V,Q

Using X\ sew Y, and Y_ together along V x {1} c Mx {1} to
obtain a 4-manifold with boundary Y = Y g Y+ with a fixed

point free S1 action.

The boundary of Y has three compnents, M(a,B) = ﬁ)({O}C:Y_

9
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3 () 3 ¢(v) ne
2 a,\) t
Sv,a = S(Eo £D§O ) and the result of sewing M x {1} and Sv,a
together by X . The latter is obtained by sewing the complement
of V in Sv o 1into M' = M(e,B8) =V . A careful analysis shows
9
that

Y = M(a,8) - M(v,p) -s(ég“)é €g\’)) :

In order to emphasize the symmetry of the situation we let v = @

and p = § and write the result as

Lemma 2, With the above notation the fixed point free S1—

manifold Y has boundary

oY = Ua,p) -u(5,7) - 5(g{¥6 ()

Noting that 0 < g < a the above lemma gives an algorithm
for representing the cobordism class of an arbitrary fixed point
free S1—manifold in terms of the generators of (Sg(dﬁ given in

Theorem 1,

4,4, The oq-~invariant

Consider the composition of inclusion maps

G 2> T 2 is"

Theorem 1, The sequence above is exact in the middle.

Corollary 2. If M is a fixed point free S1-manifold with

no isotropy group of even order them M bounds an S1-manifold.

Proof. By (4.2.4) dimeo Cckeri . On the other hand we have

the exact sequence of (4.1)
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X .
- Csh seuks) 2 T L Tih -

S0 it is sufficient for the converse that keri = imd c imoe ,
This follows because an S1-vector bundle of type (S1) with
fixed point set equal to the zero section has a natural complex
structure inducing the structure of an S1~manifold with complex
normal bundle on the associated sphere bundle.

The next result is stated without proof, Ossa [1, 2.2.17.

Theorem 3. cokero is a 2-torsion group.

Thus for every fixed point free S1~manifold M a suitable mul-
tiple 2™M  bounds an 81-manifold. This fact will be used to
define an invariant of the S1—aotion on M, a(M) below.

Given an S1—vectorbundle n over the compact, oriented
manifold X so that the fixed point set is equal to the zero-
section X © n there is a canonical splitting of m into a sum
of complex S1-vectorbund1es Myes k>1 so that t € S1 operates
by complex multiplication by tk in the fiber of My -

Let "
c(nk) = 0 (T+x.(k)) , =x.(k) of degree 2
j=1 J J

. * . :
be a formal factorization of the total chernclass c(nk)esH (X;:Q).
Let J(X) € H*(X;Q) be the total £ polynomial of X .
Hirzebruch [2], Define a rational function a(n) € Q(t) by
Kk 2x.(k)

"k 1

~ y e +

) = (Lo n 6 e
e -1

k>0 J:1 'tk

where [X] is the fundamental class of X , [X] € H, (X;Q) .

Given a closed, oriented S1—manifold M with fixed point
set X , its normal bundle n has a canonical complex structure

and therefore it induces an orientation on X from the orienta-
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tion of M . If T1(M) denotes the signature of M +then a fixed

point theorem in Atiyah-Singer [1,p.582] implies that

(M) = a(n) .

Now assume that M is an oriented fixed point free S1—mani—
fold, For some r we can find an oriented S1—manifold Y so
that Y = 2™M . et n denote the normal bundle of the fixed

point set of Y and define the rational function
a(M) = 27F(r(¥) - d(n)).

To see that (M) is independent of the choice of Y one takes

Yr , 8Y' = Zr'M and constructs
W= (2%'y) u(-2%yr)
3

to obtain a closed manifold for which the Atiyah-Singer theorem

applies, The additivity of the signature implies the assertion,

Remark. Ossa [1]. a(M) may be expressed as a polynomial
+¥ 41

- k > 0 with coefficients in %[3] .
-1

in ,

It turns out that a(M) is determined up to an additive con-
stant by the fixed point free cobordism class of M . In order
to compute a(M) for a fixed point free 3-dimensional S1-mani—

fold we first compute a(M) for the generators of Cj;(aj .

Lemma 4. Let n = %ém)é Ec()n) . Then

201 R4
a(n) = m+ n+
t2 -1 %o

Let D(n) and S(mn) be the associated disk and sphere bundles.

Then clearly T(D(n)) = O and we have:
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Lemma §.

tm-+1 . tn-+1

(8(n)) = -
o L B e

Next recall the fixed point free s'_manifold Y = Y(M,a,8) ob-

tained from M in (4.3) with

oY = u(a,8) - M(F,8) - S(f;é“) 2 5(()&)) .

In order to find the relation between the aq-invariants of M(a,B)
and M(&,8) it is necesaary to compute the signature of ¥ .
et M = {0;(0,8,0,0); (a1,B1),...,(an_1,Bn_1)} where the (aj,ej)

are not necessarily normalized. Direct computation gives:

Lemma > o
(YY) = sign(o4—%)(c-+g)
a
n-1 B.
where g = T El .
=1 %

Given the relatively prime pair (a,B) of positive integers

there is a unique continued fraction

a/B = [ao,a1,...,ak] = a_ -
., 1

with a; > 2, as noted in (2.4), The auxiliary variables of

the Euclidean algorithm are defined by p_q = 1 P, = 8, s

Piy1 = 8441P5 ~Pi_q i >0 . Define the rational function
Py Pi.
i £+ 1

k
1 1
r(a,8) = I (1-f=t= ity .
=0 gl iy

It has the following properties
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(1) r(a,-B) = -r(a,8)

(ii) r(1,0) = 0

(iii) if (a,B) and (%,8) are given so that 0 <& < a and
af -a4B = -1 as above then

£ 4+ 1 . £% 4 1
%=1 %o

r(a,B) = r(a9§)+‘1-

With this notation the a-invariant of a 3-dimensional closed,

oriented S1-manifold is computed as follows.

Theorem 7. Let K = {0;(0,8,0,0);(cy,8¢)see,(a 58,)} «

Then we have

n B.
= ,B.) - si =1y,
a(X) §1r(aJ,BJ) ign( = =)

J =1 7j

Proof, We use induction assuming the statement for all
M = {O;(o,g,O,O);(a%,B,’l),...,(aﬁl,BI;])} with
m<n or
m=n and o' <a or
n n
m=n and a' = and lp'] < | .
n - %n "m! !Bnl
We may assume that By > 0 for if By = O then the conclusion
follows trivially and if @8, < O then we consider -XK = {0,(0,8,0,0);
(0.1,—,81),...,(0.11,-811)} Let 1\1’1 = {O,(O,g,O,O);(d1,B1),...

..,(an_1,Bn_1)} , 0 = 151 E; and a,,8,,0,,8, as above. Now
using the definition of o on the fixed point free S1—manifold

Y we have

a(aY) = 7(Y)
~ £0 1 4 Py 8 8
alM(a,,8,)]-alli(a,,B,)]+— - = sign(c+a)(c+%) .

t o1 ¢ B
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Using (iii) above and the induction hypothesis the assertion
follows from the simple identity below:

MgM0+gMo+§)=1-¢ﬂgﬂo+g)+mgmg+%)

Example B. ILet us compute the oa~invariant of the 3-mani-
fold X = {-1;(0,3,0,0);(5,2),(5,2),(5,2),(5,2),(10,7} obtained as
the neighborhood boundary of the isolated singularity at QO of
the surface V = {z € 031 2154-q£§+22 1._O} in (3.10). First we
shall absorb b in the E-orbit (10,7) and write

K = {0;(0,3,0,0);(5,2),(5,2),(5,2),(5,2),(10,-3)} . Next

5 1 10 1
5=3-3 =z 4 e enc
3 5 3
7+ 1 t4+ 1 7+ 1 5741
I‘(5 2):1— +1 -
’ 2o 1 B 1 $2-.1 3.1
A
£(10.%) = 1 th 1 st el B $10 11 7 41
p2)= 0 s R 1
41 51 71 %=1 $10_1 47 _4
5 B
i_ 4.2, 3 lé s

a(k) = 4r(5,2) -r(10,3) -1 .



- 82 -

5. Fundamental Groups

We noted in chapter 1 that only some of the Seifert mani-
folds admit S1-actions but deferred the introduction of the re-
maining ones to this chapter., Using the terminology of Holmann
(1] given in (5.1) the other Seifert manifolds are described in
(5.2) and the classification theorem of Seifext [1] is proved.

In (5.3) we compute the fundamental groups and use the method of
Orlik-Vogt-Zieschang [1] to show that if the fundamental groups
’of two Seifert manifolds satisfy a condition (in which case they
will be called "large") then they are isomorphic only if the mani-
folds have the same Seifert invarianfs (up to orientation). This
gives a homeomorphism classification of large Seifert manifolds.
In (5.4) we investigate "small" Seifert manifolds (i.e. whose
fundamental groups are not large) and their homeomorphiSm classi-

fication.

5.1 Seifert Bundles

Recall that a bundle ¢ = (X,m,Y) consists of a total space
X , basis Y and continuous onto map m: X - Y ., A bundle homo-
morphism from &' = (X',m',Y') is a pair of continuous maps

h: X - X' , t: Y - Y' making the diagram commutative

X LIS Y

hJ/ J/t
1

X > Y!

It is an isomorphism if h and + are homeomorphisms,

Following Holmann [1] we define a Seifert product bundle with
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typical fiber F as a triple {FxU)/G ,p', U/G} where U is a
topological space, G a finite group operating on F and U (the
action on U 1is not assumed effective) and on FxU by g(f,u)

= (gf,gu) and there is a commutative diagram

FxU ———Ji——> U

X l
A

(FxU) /G D > U/G

where p is projection onto the second factor, X and T are
orbit maps of the G actions and p' is the induced map.

We call & = (X,m,Y) a Seifert bundle with typical fiber F

if it is locally isomorphic to a Seifert product bundle with typi-
cal fiber F , i.e. Y has an open cover ({V,, i€I} so that to
each i we have a Seifert product bundle {(F><Ui)/Gi’pi’Ui/Gi}
and a commutative diagram

P;
Fin > U

T-
X ‘1/
H. = \ll ' T. =

1 (FxU.)/G. -P-i-> U./G. *
hioxi Y, i i i’ 71 ti°Ti
z/hi t}\\ &
m >
n'1(Vi) > V.

where (hi,ti) give a bundle isomorphism in the lower square.

We call G a structure group of the Seifert bundle & if

(1) it contains the finite groups Gi above,

(ii) each non-empty subset of U, , Ui = T;1(Virﬁvj) has a fi-

nite (unbranched)cover (U..,0.

i lj) where U,. = Uji so that

ij

Tiogij = Tjooji 9
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(iii) for ViﬁVj # # there is a continuous map g;.: Uij - G
so that by defining fij: (f,u) = (gij(u)f,u)

the diagram below is commutative:

£, .
i
Finj —_—_— Finj
Sii | Si5=%;°(1px944)
\I - 4
Y n 1°h \

i i 7J -3
(FxUj)/Gj—-————-—-> (Fxbi) /Gi

If the fiber F equals the structure group G acting on
itself by left translations we call it a principal Seifert bundle,

The following two results of Holmann [1] will be useful later.

Theorem 1. Let € = (X,m,Y) be a principal Seifert bundle

with structure group and fiber G . Assume that X, Y and G are

locally compact. Then X is a G-space and the orbits of the

action are the fibers of the Seifert bundle.

Theorem 2. Let a locally compact topological group G act

on a locally compact space X so that each g: X - X 1s a proper

map and all isotropy groups are finite., Then & = (X,m,X/G) is

a principal Seifert bundle with fiber and structure group G .

Corresponding results hold in the differentable and complex

analytic cases.

Example (Holmann [1]:0 Let € = (SB,ﬂ,Sz) be the Seifert
bundle with total space 33 and base space 82 given by the or-

bits of the S1—action on s?  from (1.5.1)
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t(z4,2,) = (tnz1,tmzz)

where (m,n) = 1 and s = {(z1,22) € c? |z1224-z2§?:=1] . We
think of the base space 82 = CP1 with homogeneous coordinates

[X1:X2] . The orbit map is then given by

Consider the open sets in the base space Vi = {[x1:x2] GCP1§xi¥O},
i=1,2 . ZLet U, and U2 equal the complex numbers with coor-
dinates Y1 and Yo and Gn and Gm the corresponding cyclic

groups of order n and m . Let E& = exp(2mi/n) operate on U1

by &(yq) = €'my1 and n = exp(2mi/m) operate on U, by n(yz)
n'ny2 . Define the corresponding actions on s! x U, by
8(x,y7) = (8x,87"%,) and n(x,y,) = (nx,n "y,) .
Define T,:U;, -V, , H,:§ xU, =1 (V,) by

n-m

T,(yq) = [(1+y1i1)_?_: 1

[m.(1 _ m:n
Yo : (14+¥5¥,) < ]

TZ(YQ)

m
Xn X y1

)
- ’ -
V14713 Y1443,

H1(x,y1) = (

Xny 2 Xm

(

"

H2(X9YQ) : — -
T+y,5¥ 5 14y 55 5

giving the required Seifert diagrams.
In order to define the action of the structure group we let U12

= U21 equal the complex numbers without the origin and U? =

2

U, - {0}, U; = U2-{O} and define the covers o,,: Uy, = Uy by
1 - - - .

012(y) = y* and 0592 Upqy = Uy by 021(y) =y n!ygn | These

maps satisfy the condition T2°021 = T1°012 . IFinally let
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-1 -1 1 .
g,1(7) = vlyl™ . 8p(y) =¥ |y| be maps U,, = S giving rise

to automorphisms f12 and f21 of S1 X Uqo defined by

-1 -1 o
£o(x,y) = (v lylx,y) , fp(xy) = (ylyl™ x,y) satisfying
Hyo(1170p9) " fp1 = Hy*(159%970)

Remark. If we define ﬁ12 - 05, as all complex numbers and

extend the maps T4, and 054 to be branched m-fold and n-fold

covers and consider the locally trivial fiber bundle §& obtained

from S1 X 612 and S1 X ﬁ21 by identifying S1 x Uqo and

81 > Uny using f12 then we see that % is a branched mn-fold
cover of & ©branched along the two B-orbits of & . In fact
= (SB,n,Sz) is just the Hopf bundle and the equivariant branch-

ed ccver is described globally by

w % - g

n m
Z Z
1

@(51322) = (

2
)
\1221 %41 2512 AP 2B

5.2, Seifert Manifolds

Tn his classical paper Seifert [1] considered the class of
closed 3-manifolds satisfying the conditions

(i) the manifold decomposes into a collection of simple
closed curves called fibers so that each point lies on a unique
fiber,

(ii) each fiber has a tubular neighborhood V consisting
of fibers so that V is a "standard fibered solid torus". The
latter is the quotient of D2 x §' by the action of a finite cyo-

lic group as in (1.7).
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The problem is to classify all such manifolds up to fiber
preserving homeomorphism, In the notation of (5.1) we have
Seifert bundles §& = (M,m7,B) where M 1s a closed 3-manifold,
the fiber is 81 and the structure group is all homeomorphisms

1

of §' . Since this group retracts onto 0(2) we can restate our

problem as follows: classify all Seifert bundles g = (M,m,B)

with total space a closed 3.manifold, fiber S1 and structure

group 0(2) wunder bundle equivalence. The first result is a con-

sequence of (5.1.1).

Proposition 1. If the structure group reduces to so(2)

then € is a principal Seifert bundle with typical fiber S1 y

M admits _an S1-action and the classification is given by

Theorem (1.10).

Considering the general case We may use the argument of (1.9)
to conclude that B 1s a closed 2-manifold of genus & - Thus
there are only finitely many oOpen sets Vi in the cover of B
with Gy £ 1 . A refinement of the cover enables us to collect
211 these in an opeéen set at the base point of B . Outside of
this set §& is a genuine fiber bundle. The structure group 0(2)
contains reflection of the fiber, i.,e., along Some curve of B
(not homotopic to zero) the fiber may reverse its orientation.

This gives rise to a homomorphism
P2 ﬂ1(B) - Cp

where C, 1is the multiplicative group of order 2 , Cp = {1,-11}
identified with the automorphism group of n1(S1) =% . Here
w(x) = 1 if the fiber preserves 1its orientation along a curve

representing x and o(x) = -1 otherwise. Select a set of gene-
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rators for n1(B) . The next result is due %o Seifert [1]. We
give the proof of Orlik [1], see also Orlik-Raymond [2] for gene-

ralizations.

Theorem 2. Up_ to Seifert bundle eguivalence there are the

following six possibilities:

0q: B is orientable and all generators preserve orientation SO

M 1is orientable and & 1is a principal Seifert bundle;

. B is orientable with & = 1 and all generators reverse ori=-

%o

entation so M 18 non-orientable;

ng: B is non-orientable and all generators preserve orientation

so M is non-orientable and € is a principal Seifert bundle;

n,s B is non-orientable and all generators reverse orientation

so M 1is orientable;

Nyt B is non-orientable witn & = 5>  and one generator preserves
orientation while all others Treverse orientation so M 18
non~orientable;

n4: B is non-orientable with g > 3 and two generators preserve

orientation while all others reverse orientation so M 1S

non-orientable.

Proof., Clearly o: m(B) - Cp is determined by the values
on the generators. We shall show that for an arbitrary homomor-
phism we can choose new generators of n1(B) so that the induced
@ acts on the generators according to one of the maps in the
theorem,

If B is orientable and ¢ maps all generators into +1 or

all generators into -1 +then there is nothing to show, Now sup-
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pose w(ui) = -1 and m(uj) = 1 . By renumbering the generators

 we may assume m(u1) =1, Let Jj Dbe the smallest index SO that

tp(uj) =1, If

(i) j dis even: let Vi1 T U, qUs Vo= Uy g and vy = Uy

for k £ j=-1,3 .

(ii) 3 is odd (j>3) and cp(uj+1) =1 let vy_q o= Uy Uyq 3

_ =1 -1 -1 _ -1
vj = Uy uj_1uj_2uj_1ujuj+1 H vj+1 = uj+1ujuj+1 and
v, =, for k £ 3=-1,3,3+1 |

j is odd (j>3) and m(uj+1) = =1 : let vy o= U g

and v, = u for kK#3J .

Repeated application of this procedure defines new generators for
n1(B) so that o sends every generator into -1 .

A similar argument holds if B  is non-orientable. If all
‘generators are mapped into +1 we have a principal bundle, n4 .
If all generators are mapped into -1 we have an orientable total
space, N, . Now suppose that some generators preserve orientation
and some reverse it. Let @(u1) = -1 and ¢(u,) = m(uS) = w(u4)
= 1 . The following change of basis reduces the number of orien-

tation preserving generators by two:

-1 =1 =1 =1 -1 -2 =1

- -1 -
V1 = U..]U.2L13 ; V2 = 113 u2 'LL' 113 U.2 u3u4. u3 u2 u3 F
-1 2 -1..-1 2.2.2 .
Vg = Uz UpUzly s vy = Uy Uz UqUoUzly 3 vy o= Uy for i >4 .

Repeated application of this map gives Nz or n, -

To show that the six bundle equivalence classes are indeed
distinct is trivial in all cases except for Nz and n, . Here
we abelianize n1(B) and notice that the image of uqUj...Ug is
the unique element of order 2 in H1(B;%)~. This element com-
mutes in n1(M) with the homotopy class of a typical fiber for

odd g only for Ny and for even g only for Ny .
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Using the proof of the classification theorem (1.10) for
3-manifolds with S1-action and PUSE = g we obtain the follow-

ing classification theorem of Seifert [1].

Theorem 3., Let & = (M,m,B) be a Seifert bundle with typi-

cal fiber S1, structure group O0(2) and total space M a

closed 3-manifold. It is determined up to bundle equivalence

(preserving the orientation of M or B if they have any) by the

following Seifert invariants:

M = {b;(e,g);(dul,.81),-”9(@1.,31.)} .

Here € 1is one of 0150051y p, 3,1, denoting the weighted map

of the 2-manifold B of genus g described in Theorem 2; the

(aj,Bj) are pairs of relatively prime positive integers
0 < Bj < oy for € = o4,n,,
0 < Bj < aj/2 for € = 0,,N,N5,0,;

and b is an integer satisfying the conditions

b €% for € = 04,15 and
b € %2 for ¢ = OpsTq sz, Tty unless ay = 2 for some j in

which case b = 0 .

Note that M is orientable if € = 04505 and a change of

orientation gives the Seifert invariants

-M = {-b’r;(eyg);(a’19a1-g1)’l"s(o'«rsar'sr)} .

5.3. Fundamental Groups

The fundamental group G = m,(M) is generated by the "parti-

al cross-section" Aysevrsdp and a1,b1,...,ag,bg if B is ori-
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entable or Vq,.0:5Vg if B is non-orientable and the fiber h .
The relations are given by the commuting relations of h with

the other generators; the null homotopic curves in the E-orbits:

[0 B .
N

3 9
where M, = q1...qgé1,b1]...[ag,bg] if B is orientable and

the relation on the "partial cross-section" qon%,=1

Ty = q1...qrv§...v2 if B is non-orientable; and the relation

qohb _ 1 which we eliminate by substituting 4, = n~P . Thus

’
for orientable B we have

-
G = {a1,b1,...,ag,bg,q1,...,qr,hI aihai=

os B b
1590 J=1, q1...qr[a1,b1]u.tag,bg]=h 3

€5 1 &5 -1
h ,bfwizh ,%h% =h,

048 €4 1 for all 1 ,

0ot €5 = -1 for all 1 ;

and for non-orientable B we have

8

-1 €5 -1 *35. %3 _ 4
G— = {V19..’9vg,q1’...9qr,h iVihVi = h 9 qthj =h9 q.j h =

2 2 _nb
q,»]co.quJ‘.clvg—h }

ng: o€y =1 for all 1 ,

n,: €4 = -1 for all 1 ,
Ng: €4 = 1, €5 = -1 for 1i>1,
Nyt €4 = €y = 1, e, = -1 for 1i>2.

We call M small if it satisfies one of the conditions
belows
(i) 09 > g=0,Tr1T <2,

- 1 1 1
(i) oy , 8=0, T = 3, a;-+a54-d3 > 1

(iii) {-23(04,0)3 (2,1),(2,1),(2,1),(2,1)]}

|
Y

(iV) 01 sy 8 =

(v) 02,g=1,r=09



IA
—

(vi) ny , 8=1,T7T

IA
—

(vii) n2,g=1,r
(viii) n, , 8 =2 , T = o,

(ix) n, , & = 2 , r =0,

(x) n3,g=2,r=0,
otherwise we call M large.

We shall assume in the remainder of this section that M 1is

large and prove following orlik-Vogt-Zieschang [1] that the
Seifert invariants of M are determined (up to orientation) by

n1(M) . Small Seifert manifolds will be treated in the next

section.

Lemma 1. The subgroup generated by h 1is the unique maximal

cyclic normal subgroup of G and h has infinite order,

Proof. Consider the following groups:

3 . M O

c; = {ag,hlqsbay =h, 4370 =1}

D. = {a.,b h|aha’1—h€i p.up=! =h 1)
; = {ag,by,hlazha; =7, Byaby =

_ -1
B, = {vy,h | v;hvy =h 1.

The subgroup generated by h is infinite cyclic and normal in
each of these groups. We form the iterated amalgamated free pro-
duct along (h) to obtain G as follows:

(i) for orientable B and T > 3  we take

C * C
1 (h) 2
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and note that h and Q49 form a free abelian subgroup of rank
2, Taking

Sy BT R @ e

we find that h and (q3...qr11[ai,bi]h'b)-1 also form a free
abelian group of rank 2 go we can amalgamate along these subgroups.
A similar argument shows the assertion for all classes except for
%,g=mr=3,&+%+%§1,ovg=1,r=1am 05y 8 =
1, r = 1 , where there are not enough "parts"., For these cases

we note that the quotient group ¢/(n) is a planar discontinuous
group and has no cyclic normal subgroup,

(ii) for non-orientable B the above argument workse for all
large Seifert manifolds. This completes the proof.

We should remark here the following well known fact.

Proposition 2, Let K be 2 ciosed 3-mapifold. If K 1S

orientable, let K' =K if not, let K!' equal the orientable

double cover of K . Suppose that n1(K') is infinite, not cyc-

1ic and not a free product., Then K and K' are aspherical and

n1(K) has no element of finite order.

From this follows immediately:

Proposition 3. A large Seifert manifold M 1is_@a K(G,1)

space.
We shall see later that it follows from Waldhausen [1] that

they are also irreducible 3-manifolds,

Given the planar discontinuous group D defined by {34,

Q- - e . - _ -
.J=1, q_»]..oqr[a1,b1]...[ag,bg]= 1} or

"9§rsa1,b1go.o,aggb ‘ a;]

24
- - - - e AR - - =2 -2
{Q'],-ocsqrsv'],---svg‘qj3219 q1...qrv1....vg=1}
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We define free groups D with generators 51,...,Qr,ﬂ1,§1,~--

-

"’Kg’Bg or 61""’6r’ V1,...,vg and words in these groups

Sy = OpeenQ LRy, B0 (8,80 o7 e = I
..Vé . Define a homomorphism D - D by mapping capital letters
into lower case letters. Let w(x) = w(X) = 1 if we have an ori-
entable fundamental domain and w(x) = w(i) = +1 according to
whether the Vi (or Vi) occur an even or odd number of times in
% (or X) .
Define the group ¢ as either

-1 5
{Q1,con,Qr,A»],B»],-.-,Ag,Bg,H‘.A.iHAi —_—H

. €.
i -1 _ 41 -1_
,BiHIBi =H ,QjHQj =H} or

-1 €4 -1
{Q1,‘..,Qr,V1,...,Vg !V:.I_HV’:.L =H l,QjHQj =H} where the ¢; are

the same as in the definition of ¢ . ILet I, Dbe as above (with-
out bars) and define the homomorphism ¢ - ¢ by sending capital
letters tc lower case letters, The map w i8S defined as above
for G and G, i.e. w(x) = o(X) =1 for x €G and X € G

if B is orientable and w(x) = 21 (0(X) = +1) according to the

(Vi) occur in x (X).

parity of the number of times V.

The next result is due to zieschang [17].

Lemma 4. Every automorphism A of D is induced by an

~

automorphism A of § with the property that:

P o ..Cai -

A(Qi) =M, Q7 My
1

A(R,) = @ 7§ #i

100 T -
where is a permutation with a, = 0&j and w(M,)¢. =
\)1093\)1‘ i 1 —— 1 1
w(I)¢ = ¢ = £1 .

This allows us to prove the following.

Theorem 5, Let M and M' Dbe large Seifert manifolds and

I: @' - ¢ an isomorphism. Then we have




- 95 -

-1

Ay ¢4
' 1

1 o & @ r
where is a permutation and w(m.)C. = p = X1 . The
= \VqeeeVn i =

A

map I is induced by an isomorphism of the groups I: g' - @

Where X

C.
i iy~
H =M, Qvi M

t(Q)) 1

1

Ty = 8 mong o

and w(M)C = o . Moreover A = .
i

I L]

1ki+ 20 where o =0 for

€=O1O_I:n2a

Proof. Since (h) and (h') generate characteristic sub-

groups the isomorphism I induces a commutative diagram:

0 —> (h') =—> @' =—> D! ——> 1
~ |- lx ~ lIO
0 —> (ﬁ) —_— G —>D —> 1
Next define an inclusion map &: D - G Dby Qi - Q Ki - A
ﬁi - Bi ’ Vi - Vi and consider the diagram below where io is

defined to induce IO by lemma 4,

G > D
l\\'rl' //
I /
K\ U ke
; G’ > D'
I‘ ~lI =T, =|I,
¥ \/
: G - > D
-7 r
/ N\
{ ,/T] n \
2 Y VY
G > ]

o>



- 96 =

Considering the solid arrows only this diagram is commutative.

Wo want to 1ift the isomorphism I ‘o an isomorphism I of the
mat gpoups, Let n and 7' send capital letters to lower case
letters. We can construct generators for G' from generators of

¢ wusing the composition J = @ioﬁ'. Tn order to make the whole
diagrem commute (apart from @) we note that the difference between
In' and nJ lies in the kernel of ¢ , (n). Now suppose that X'

is a generator of G!' and

hx(X')rlj(X') = In'(X') .

>

Define I by
tx) = ;MEDF

T(H")

]
jus]

)

where I(h') =h” and 0o = +1 from I, above.

This makes the diagram

0 —> (H') —> G' —> Pt o—> 1

|3 i Li
vl v °
0 —> (f) —> G —>D —>1

commutative so I 4is an isomorphism. Tt follows from lemma 4

that s o=y = 5bge
1) =My QVi My
i (T, =10 s

Letting Ay = x(Q'i) , A= a(my) o, GiLy) = My , %(}1) = M we have

A

H? Mi Qg
\)l

f(ny) = Bhung ut .

-1
i

T(O! i
f(ay) !

It remains to prove the 1ast statement. TFor orientable B we
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have
gM(ny) = §(ny) =3(Q5)...3(@1'.)[3(A5),3(Bi)]...[S(Aé),j(Bé)] =
“hg A (A1), -A(B!)
B £(Q1)...E T1(Q)IH 1):[(AU,H i@,
~A(AL) MBL) .

- TTV N A (G- IO R
j B(an), £(35))
If A} and B! commute with H' then SO do i(Ai) and i(Bi)
n A r
and their commutator egquals [I(Ai),I(Bi)] , thus A =_E1xi . If
1=

Ai and Bi anticommute with H' then the corresponding commuta-—

tor equals

—2xn(An)-2x(B!) . R r
1 i'rf(an),I(81)] s0 A= % )\_.L+2cr.
1 1 i=1

H
For non-orientable B a similar argument works.
This leads us to the following homeomorphism classification

theorem for large Seifert manifolds.

Theorem 6. Let M and M' T©be large Seifert manifolds.

The following statements are equivalent:

(i) ™ and M' are equivalent geifert bundles (possibly after

reversing the orientation of one),

(ii) M and M' are homeomorphic,

(iii) M and M' have isomorphic fundamental groups.

proof. Clearly (i) => (ii) => (iii). Assume that we have
an isomorphism I: G' - ¢ ., Assume moreover that the permutation
of theorem 5 is the identity. By lemma 1 we have an induced iso-

morphism I : G'/(h') - G/(h) Dbetween non-euclidean crystallogra-

I

B,g =8,1r"' =T and
5

phic groups. This shows that B’
h

]

al = 0y - Also by lemma 1 I(h') with & = 1 . Applying
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0y B!
I +to the relation qi hr 1 =

1 according to theorem 5 gives

: A

o 836
1 = ( 1

lh = m.q

4
03C5 _1, M%i*0Ps
. ;

i i

T
miq; oy )

! 1

-B.C.
i 1m-1h _h

.h .
oy i

where for x € G we let e(x) = 1 according to whether Xx com-

mutes with h or anticommutes with h . gince h has infinite
order
1
—e(mi)CiBi+-xiai4-SBi =0 .
For o, and n, We have e(mi) = w(mi) so e(mi)gi==w(mi)gi= D
Thus
_ 1

By = 08B +PA 0
and if o5 = 1 then the condition O < Bi < oy implies that
A = 0 while if 06 = =1 we get oA, = -1 . Substituting these

] ] .

values we have Bi = Bi or Bi = a4 - Bi for all i . For the

other classes the condition 0 < 8; < @i/2 implies that B; =B

and xi =0 for all 1 .
Finally we need a similar computation for b :

Mnngm'1h—6b'

M
N

1= I(mp™?) =h
A PP o phre(m)Co-ov!

and since h has infinite order

A +e(m)Cb =8b =0 .

r
Tor o, and n, we have e(m) = w(m) , w(m)g = 0o and A=.Z_ A\

1 2 i=1"T
S0 T

T A.+0b=-08b" =0
i=1 1

if p&6 =1 then X5 = 0 and b =Db'y if p8 = -1 then 6k1='1
and b = =b'=-r as required.
For the other classes Ay = 0 and X =20 but b,b' € %, SO
b = b' . This completes the proof.
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5.4 Small Seifert Manifolds

This section is based on Orlik-Raymond [2].

(i) The manifolds o4, & = 0, r <2 (lens spaces).

Since these manifolds all admit 81-actions we can use the equi-
variant method of chapter 2 to identify them. The manifold

L(b,1) = {b;(o1,o)} was discussed there., The standard orienta-
tion gives §7 = L(-1,0) = L(1,1) end we note that 1(0,1) =
82><S1 .

The manifold {b;(o1,0);(a,5)} is identified similarly.

By lemma (2.2.3) it is the boundary of the linear plumbing accord-

ing to the graph

o S

-b—1 -..b1 "-'b2 s e -b

—
+—

where = [b1,...,bs] . According to lemma (2.2.1) the result

a
-8
of this linear plumbing is L(p,a) where

D_r _ o _a(b+1) -(a-B) _ ba+B
g = Lb+1’b1""fbs] =b+1 — = m - = =3

a=B
so we see that {b;(o1,0);(a,8)} = L(bo+B,0) .
For T = 2 we apply the same argument: {b;(o1,0);(a1,81),(a2982)}

is the boundary of the equivariant linear plumbing

01,5, P18, -by g =b-2 =Py g =P,

P 4 t

aq
(1»] - 81

where = [b191’...’b1ss1] and = £b2,1""’b2,32]'

ap = B2

It is L(p,a) with

G [b1,s19°-'9b1,19‘°+2’b2,19'--9b2,s2] .

Pirst we note that the result of a reverse plumbing

—b + ..“ + .:.EJI
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is determined from the product of matrices

-1 0} /0 1 o 1\ /-1 0 -Po_1 -Pg 1
. 9

— -

and by induction

Dy = Pg s Pg = Psq s Pg1 ™ PL s Pg_1 T Pgo1 9
Thus we have for the determination of I(p,q) wusing (2.2.3):
a, ap-8p] (1 0f{e+2 T\ O J\ag vy

* *
ba1a2-+a182+-a281 mc..z--nB2
where m = =bvy-vq=pq , 1= -Vq satisfy the condition

The manifold is IL(p,qa) with p = baqay + 0qBp + A8y and
q = maz-nsz .

The mutual homeomorphism classification of these manifolds
is given by the well-known classification of lens spaces: L(p,a)
and TL(p',q') are homeomorphic if and only if lpl = Ip'| and
gftq' = Omod p or a-4' = +1 (mod p) . The fact that they are
not homeomorphic to any other Seifert manifold will follow once
we have proved that they are the only ones with finite cyclic fun-

damental groups.

. . 1 1 1
(ii) The manifolds 04, & = 0O, r=73, ET.FEE.FEE > 1 .,
There are only four possible sets of ay satisfying these condi-

tions ocalled the "platonic triples": (2,2,a3), (2,3,3), (2,3,4)

and (2,3,5) . They have finite, non-abelian fundamental groups
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and will be discussed in detail in the next chapter where we
shallalso show that those with (2,2,a3) called "prism manifolds"
are homeomorphic to manifolds n,, & = 1, r <1, Note that (h)

is in the center of n1(M) and

) | 0(.1 CL2 0,3
TT1(I"'I)/(h) = {Q1,QQ,Q.3 { q1q2Q3 =q4 = A = Q.3 =1}

nas no center so (h) is the whole center and the o are in-
variants of n1(M) . The order of H1(M;%)
P = !ba1a2a3+ B1a20.3+041 82(13+0L10,253|

is sufficient to distinguish the manifolds with given (a1,a2,a3)
up to orientation. Since we shall see that the only other Seifert
manifolds with finite fundamental groups are the lens spaces and
the prism manifolds, their homeomorphism classification is com-

pleted.

(1ii) The manifold M = {-2;01,0); (2,1),(2,1),(2,1),(2,1)}

is homeomorphic to M' = {0; (n2,2)} ., This is seen by noting
that the orientable S‘I bundle over the Moebius band is homeomor-
phic to the manifold obtained by sewing two E-orbits of type
(2,1) into a fibered solid torus. Doubling the former by an ori-
entation reversing homeomorphism gives M' , doubling the latter
by an orientation reversing homeomorphism gives

{03 (01,O),(2,1),(2,1),(2,—1),(2,-1)} - M . We shall see in chap-
ter 7 that M fibers over S1 with fiber the torus and the self-
homeomorphism of the fiber is of order 2 . It turns out that WM
is a flat Riemannian manifold doubly covered by S1><S1><S1 and
the covering can be made}equivariant with respect to the S1 ac-
tion on M , see chapter 8.

The other small Seifert manifolds are easily seen not to be
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homeomorphic to each other or any of the large ones with the eX-
ceptions mentioned below, compare Orlik-Raymond [2]7. We shall
briefly mention their special properties and return to them in

chapter 7.

(iv) The manifolds {b; (01,1)} are torus bundles over S1 .

(v) The menifolds {b; (02,1)} are Klein bottle bundles

over S1 .

(vi) The manifolds n4, 8 = 1, r <1 give rise to the dif-

ferent 81 actions on P2><S1 and N , the non-orientable 82-

bundle over S1 .

(vii) The manifolds n,, & = 1, r<1, Here M= {O;(n2,1ﬂ
is seen as the result of taking Sz><I fibered by intervals pxI
and collapsing each boundary component by the antipodal map. The
sphere Sz)({%] decomposes M into a connected sum of two real
projective spaces, M =]RP3=#Z]RP3 . The other manifolds are homeo~-
morphic to the prism manifolds of (ii) and will be treated in de-

tail in the next chapter as orbit spaces of finite groups acting

freely on 83 .

(viii) The manifolds {b; (n1,2)} are the same two Klein

bottle bundles as under (v).

(ix) The manifolds {b; (n2,2)} are torus bundles over S1

distinct from (iv).

(x) The manifolds {b; (nz,2)} are the nother two" Klein
3

bottle bundles over S‘l not obtained in (v) and (viii).
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6. Free Actions of Finite Groups on 33

There has been no significant progress in the problem of
finding all 3-manifolds with finite fundamental group since the
results of H. Hopf [1] and Seifert and Threlfall [1] determining
orthogonal actions on 83 . These articles are somewhat difficult
to read and the object of this chapter is to present old knowledge
with new terminology. The basic theorem of section 1 is that if
G is a finite subgroup of S0(4) acting freely on 5> then
there is an action of S1 on 83 commuting with G so that the
orbit space 83/G is again an s'_manifold. Thus the orbit spaces
of orthogonal actions are S1-manifolds with finite fundamental
groups. These are discussed in section 2. In section 3 we list
following Milnor [2] the groups that satisfy the algebraic condi-
tions for an action but do not act orthogonally.

The intriguing fact remains that if one could find a 3-mani-
fold with finite fundamental group not homeomorphic to one listed '
above, then either it would be the orbit space of a non-orthogonal
action on S3 or its universal cover would provide a counterex—
ample to the 3-dimensional Poincaré conjecture.

6,1, Orthogonal Actions on 83

In order to understand the structure of finite subgroups of
S0(4) +that can act freely on s2 we shall decompose S0(4) .
It is useful to think of 8S0(4) both as a group of orthogonal
transformafions of R and as a matrix group of 4 x4 real or-
thonormal matrices. It is clear that the maximal torus of S0(4)

is T2 = 50(2) xS0(2) and the center is generated by the identity

map e and the antipodal map a = -e . ILet C = {e,a} denote
the center of S50(4) . ]
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Temma 1. The following seduence is exact:

i P
4 o ¢ 5 so(4) - 80(3) so(3) - 1.

proof. From Lie group theory we have that Spin(4)/center =
$0(4)/C = Ad Spin(4) = Ad(Spin(3) x Spin(3)) = Spin(3)/center X
Spin(3)/center = s0(3) x S0(3)

In order to gain geometric insight we shall now give a direct

proof. Consider the maximal torus T2 given by the matrices

{cos -sin @ 0 0 \

sin o cos o 0 0 \ 0 <gp<2m
0 0 cos -sin § 0 <y <2m.
0 0 sin ¥ cos

The subgroup generated by all 1-dimensional circles ¢ = ¥y 1is

called right rotations, R . The subgroup generated by o = -y

mod 2m is called left rotations, L . Note that RNL = C and

abstractly ReLl & g3 . Every element g € so(4) is decomposed
into a right and left rotation but this decomposition is only de-
fined modulo & . Moreover, every right rotation commutes with
every left rotation and vica versa. Specifically, if we choose
coordinates so that g is given by the matrix above, then for

some right rotation by Xy and left rotation by X1 we have

G
I

xr-kxl-+2kn

=
l

= Xp~ Xp ¥t 2k'm

Xp = Blorh) + (k+k')m

¥y = 3(@-1) + (k=kt)m
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are the possible choices of angles for right and left rotations.
Thus g can be decomposed into two pairs (xr,xl) and
(xr+ﬂ,x1+n) differing by the antipodal map. In order to elimi-
nate this indeterminacy we construct double covers

p.: R~ S0(3) and py: L~ S0(3) as follows,

Given a vectoer v in R ana a right rotation r by the angle
kr .there is a unidque plane through v rotated in itself by r .
There is also a unique left rotation 1 rotating the same plane
by X7 = =Xy 8O that the rotation rl 1leaves v fixed. It ro-
tates the R3 perpendicular to Vv by an angle xé = Xp =X = 2xr.
The same construction applies for left rotations,.

Thus if g € S0(4) is determined in a suitable coordinate
system by the angles (o,y) +then its image in S0(3) x SO(3) may
be identified by two 33 rotations (Xf’xi) fixing a given vector:
where

o= ! I = —
X2 = e+, %] % e-d (mod 2m) .

Lemma 2., If

m (mod 2m)

c = 4
X Xl

then both g and ag have fixed points on 83 . If

1 = 41 ({ 2
X, = txg (mod 2m)

then either g or ag has fixed points on 83 . If neither

congruence holds then both g and ag are free on 83 .

Proof. Recall that o = X, +%; (mod 2m) and ¢ Xp = X1
(mod 2m) so g has fixed points on s? if and only if at least

one of these angles is zero so y,fx; = O (mod 2m) . From the
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relations X =t2y,, ] =% 2y (mod 2m) we obtain the required

formuli. The converse is a similar computation.

Let G < S0(4) be a finite subgroup acting freely on s,
Let H = p(G) and Hy = prHcS0(3) , Hy = przHc:SO(3) .  Then
clearly H C H.]><H2 but H itself is not necessarily a direct
product of subgroups.

The finite subgroups of S0(3) were first found by F. Klein.

They are the

cyclic group C,  of order n , C, = x|z =11 ;

dihedral group D2n of order 2n , the group of space Ssymme-
tries of a regular plane n-gon generated by rotations and a re-
flection
C oy %2 =P = @)= 1Y

DZn

tetrahedral group T of order 12, the group of symmetries of

a regular tetrahedron,

T = {X,¥ !X2 = (Xy)3 = y3 =1} 3

octahedral grougvo of order 24, the group of symmetries of

a regular octahedron or , equivalently the cube

0={xylx*= (xy)? = y* =13 ;

icosahedral group I of order 60, the group of symmetries of

a regular icosahedron or , equivalently the dodecahedron

I = {x,y]x° = (xy) = 37 = 1} .

Lemma 3. Every finite subgroup of 80(3) is one of the

above,
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Proof. (Wolf [1]) If G is a finite subgroup of S0(3)

and g €G g #1 then g is a rotation by an angle eg about

a line Lg through the origin. Let Pg be the intersection of

Lg with the unit sphere 82 consisting of the two "poles" Pg =

{pg,pé} which are the only fixed points of g on 82 . We call
2.

two points x,y € S G-equivalent if gx =y for some g € G .
Let {01,...,Cq} be the equivalence classes of poles for all non-
trivial elements of G , If p 1is a pole 1let Gp be the sub-
group preserving p : Gp =1uf{geq-1]pe¢ Pg} . Let p belong
to the class C. and enumerate C, as {g,P,8-Ps... &, .p} with
1 1 1 2 I'i
gq = 1 and the g; a system of representatives of the cosets of
= g.G g71 exhaust all the con-

gip 1 p-i

jugates of G in G and the Gg.p all have the same order n; .
i

If N is the order of G +then N = rini .

Gp in G . In particular G

Note that G has N - 1 non-trivial elements and each one

has 2 poles, Since exactly n, - 1 non-trivial elements of G

preserve a pole p € Ci we have the identity

q
2(N=-1) = l=5:1ri(ni-1)

So

2(1-g) =

L FIS]

1
(1==m) .
i=1 P4

Since N >n; > 2 we see that ¢ 1is 2 or 3 and one of the fol-
lowing must hold:
(1) ¢=2,ny =n, = N>1

(ii) a=3, 2=mny <n, <3 n, < ng with the possibilities

60 .

o
]
—
I
N
[a
N
|
W
S8
W
1l
=
i
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Tt is now a simple geometric argument to show that these cases
indeed correspond to the already listed groups.

We can now combine lemmas 2 and 3 noting that D2n’ T, O
and I have elements of even order and go through the possible

subgroups of Hy X Hy to obtain:s

Temma 4. At least one of Hy 2and H, is cyclic.

This enables us to prove the main theorem of this section

due to Seifert and Threlfall [11.

Theorem 5. TLet G be a finite subgroup of S0(4) acting

freely on 83 . Then there is an S1-action on S3 so that the

action of G is equivariant and the orbit space S3/G is again

an S1—manifold.

Proof., We may assume that H, 1s cyclic. Since R =~ 5
its preimage G, = p;1(H1) is cyclic and we can embed it in 2a
circle subgroup . of R . Note that this is not true of every
cyclic subgroup of S0(4) . Since every element of' G decomposes
into a left and a right rotation and the left rotations commute

with ¥ while the right rotations are contained in % we sSee

that G is equivariant with respact to T .

It is easy to see by direct argument that the converse is
also true, i.e. every 81—manifold with finite fundamental group
is the orbit space of a free orthogonal action of a finite group
on 3 . We shall list the groups and the orbit spaces in the

next section.
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6.2 Groups and Orbit Spaces

We proved in (6.1) that if G is a finite subgroup of S0(4)
acting freely on s2  and Hy < 50(3) , Hy © S0(3) are the pro-
jections of G then either H, or H2 is cyclic. Assume that
H1 is cyclic of order m . Before we list the possible groups
note that if G has even order then a € G and G/C~H so G
is a C, central extension of H , Writing H = {e,h1,...,hk}
we have G = {te,ih1,...,ihk} . On the other hand if G has odd
order then G = H ,

The double cover 83 - 80(3) gives rise to finite subgroups
of §° doubly covering those of S0(3) . Corresponding to Dy,
we have DZn of order 4n

Dy, = (x,¥ | 2 = (xy)° = y™)
and corresponding to T, O, I we have the binary tetrahedral
group T% of order 24, the binary octahedral group O0* of order

48 and the binary icosahedral group I¥ of order 120 presented by

(x,y | x° = (xy)° = ¥°, x* =1} for =n = 3,4,5.

I+ can be shown that these are in fact the only finite sub-
groups of 83 . Thus if H; = e then G is one of these groups.
Also, if H, is a cyclic group of relatively prime order to one
of the above groups then the direct product will act freely.

I+ remains to investigate the non-trivial possibilities.
Pirst note that if H is a subgroup of H1 X H2 then the elements
of the form (h4,e) € H form a subgroup H! < H, and similarly

1

Hé c H2 so that H' = H;><Hé c H 1is an invariant subgroup. The

quotient groups

H/H' & Hy/H) ~ Hp/H) & F
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‘are isomorphic so H consists of elements (h1,h2) with the pro-
perty that the coset of h, in H1/Hi corresponds to the coset
of h, in H2/Hé under the isomorphism with F .

We again assume that H, = Cm is cyclic.,

If H2 = Cn is also cyclic then we assert that H is also
cyclic, This is clear if (n,m) = 1 . Otherwise suppose that F
is of order f so H; has order m' = m/f and Hé has order
n' = n/f . Clearly they are also cyclic., We shall prove that if
G acts freely on 83 then H must also be cyclic., If a gene-
rates H1 and b generates H2 then H% consists of all powers
of af and Hé of bf . Given an element of F the elements of

H1 corresponding to it in the coset decomposition mod H% are
those of the form akf+p for fixed p and all possible k . If
it corresponds to a generator of F then its order is f and
(f,0) =1 . Let k -equal the product of all primes in m not
in fe+p (or k =1 if no such prime exists). Then (kf+p,m) =1
and u = akf+p has order m and therefore generates H, . We
can find a similar generator v for H2 . 1t remains to show
that (u,v) generates H ., Since at least one of the preimages
of (u,v) in S0(4) is fixed point free it follows from (6.1.2)
that (m',n') =1 . PFind p,q so that pm'+qn' =1 . Then

f (mod n) and aqn = f (mod m) so ud = wf  ana

1]

clearly pm

vPB = vf From this we get for arbitrary k,l,p that

(ukf+p, vlf+0) - (usv)kqn+lpm+p

proving the assertion that H 1is cyclic.
Assuming that Hj, is one of the other groups D2m’ T,0,1

and using similar arguments it can be shown that only two more

types of groups occur.
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H1

f Hy = C2k-1 » Hy = Doonyry o H = Cgk—2 s B T Consi

and H1/H; ~ Hg/Hé ~ O, then we obtain a group H with double
cover in S0(4) equal to

2k_

-1, y2n+1=1 =1__ =14

D = {x,y | x , Xy =y ! k>2, n>1,

'
2k(2n+1)
_ *

If Hy =0 Hy =T, H =C

3%
H1/H% Ry HZ/Hé ~ 03 then we obtain a group H with double cover
in S0(4) equal to

2

T = {Xanz! x" = (xy

8. 3%

Note that T!' = T¥* |,
24 24

Thus we have the following conclusion, see H. Hopf [1],

Seifert-Threlfall [1] and Milnor [2].

Theorem 1. The following is a list of all finite subgroups of

S0(4) +that can act freely on s> .

C D* D T*, T 0%, I* and the direct product of
m’ 4m’ 2k(2n+1)’ ? 83 ’

any of these groups with a cyclic group of relatively prime order.

k!

Orbit spaces of finite groups acting freely and orthogonally
on a sphere are called spherical Clifford-Klein manifolds., The
3.dimensional ones correspond to Seifert manifolds with finite
fundamental group by (6.1.5) and are listed as follows, see

Seifert-Threlfall (1],

Theorem 2. The Seifert manifolds with finite fundamental

group are:
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(1) M = {b;(0190);(a1,51)9(02352)} , here we allow a = 1,

8 = 0, are lens spaces (see 5.4) with n1(M) = Cp where p =

|bajay +0q8, + Byas] ;

(i) M = {b;(04,0)5(2,1),(2,1),(a5,85)} are called prism

manifolds, Let m = (b+1)a3+§33; if (m,2a3) = 1 then (M)

= Cm><DZ0L3 , and if m = 2m' then neccessarily m' 1is even and

(m';a5) =1 and letting m' = 2Xnt  we have n1(M)==Cm"><Dék+2 ;

a3

(iii) M = {b; (01,o);(2,1),(3,B2),(3,33)} , let m = 6b+3+
2(82+B3) , if (m,12) = 1 then m, (M) = C,xT* , and

if m= 3%, (@,12) = 1 then m (M) = C_, xT'
——— 1. 8.3

(iv) M = {b;(040)3(2,1),(3,8,),(4,85)} , let m = 12b+6+
48, +383 , it follows that (m,24) = 1 and m (M) = C  x0* ;

(V) M= {b;(0190);(2,1)9(3982)9(5933)} ] _];9_17_ m = 30b+ 15+
1082-4-683 , it follows that (m,60) = 1 and n1(M) = C xI* ;

(vi) M = {b;(n,,1);(ay,84)} with n = |ba,+B8.] #0 are

homeomorphic to prism manifolds so that

if «q is odd themn m, (M) = Ca1x DZn and

. k !
if aq =2 al , (a%,Z) = 1 then n1(M) = C X D'yso -
1 2 n

Proof. ZExcept for (vi) the proof comnsists of verifying the
group isomorphisms., It remains to prove that every prism mani-
fold also admits a Seifert bundle structure of type n, over the
projective plane. If G is the group acting on S3 with cyclic
H, and H2 = D2n the dihedral group then we consider the maximal
cyclic subgroup Cn of D2n and the cyclic group an c G map-

ping onto Cn . Since C;n consists of left rotations so
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ox < I ~ §° it can be extended to a circle group TcL . If
5 is a left rotation of order 4 in the group Dzn whose image
is the reflection of Dy, then for every element y € T We have
6y6'1 = Y_1 . Thus & maps the orbite of the circle action in-

duced by T into each other reversing the orientation and 83/G

sdmits a Seifert fibration of class 1, . Since ﬂ1(M) is finite

the orbit space is P2 and r <1.

Remark. It can be shown directly that apart from the lens
spaces whose homeomorphism classification was given in (5.4) two
3_dimensional spherical ¢lifford-Klein manifolds are homeomorphic
if and only if their fundamental groups are isomorphic. Note al-
so that under (vi) n = |bay +B1l = 0 if and only if M =
(03(ny,1)] = RE> #TRE7 , see (5.4).

6.3. Non-orthogomal Actions

T4 is not known whether there exists a smooth free action
of any group G on 83 not conjugate to one of the orthogonal
actions above. Since every such action has as orbit space a
closed, orientable 3_manifold M with fundamental group G it
follows that G must have cohomology of period 4. We see from
(6.1.2) that G can have af most. one element of order 2, All
finite groups not appearing in (6.,2.1) satisfying these conditions
are listed by Milnor [2] as follows:

1 -1

en Kl 1, xzx"1=zr,yzy"=z

(i) Q(8n,k,1) = {X,y,ZlX2=(Xy)2=y 5

where 8n,k,1 are pairwise relatively prime integers SO that if

n is odd then n >k > 1 2 1 and if n is even then n 2 2 ,

k>1> 1 .
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(i1) o' L k2 1 is the extension 1 - C , -~ 0' " 0¥ - 1
48+3 3 483

with the property that its 3-Sylow subgroup iS cyclic and the
action of 0% on O X is given as follows. The commutator sub-

group T* C 0% acts trivially while the remaining elements of

0% carry each element of C Kk into its inverse.
3

(iii) the product of any of these groups with a cyclic group of

relatively prime order;

The smallest group on this 1ist is Q(16,3,1) of order 48 that

may or may not be the fundamental group of a 3-manifold.
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7. Fibering over S1

In this chapter we shall find the Seifert manifolds that
admit a locally trivial fibration with base S1 and fiber a 2-
manifold, This was originally done by Orlik-Vogt-Zieschang [1]
for almost all cases and completed by Orlik-Raymond [2]. These
results are recalled in section 2. In the meantime, however, a
beautiful theory of injective toral actions has been developed by
Conner-Raymond [1] and we shall discuss these general considera~-
tions first. Tollefson [1] and Jaco [1] noted independently that
the product bundles M = {O;(o1,g)} fiber over st in infinitely
many distinct ways, i.e. with infinitely many mutually non-homeo-

morphic fibers. An outline of this argument is given in Section 3.

7.1. Injective Toral Actions

This section consist of results of Conner-Raymond [1].

Let X be paracompact, pathconnected, locally pathconnected
and have the homotopy type of a CW complex. In the applications
we shall assume that X dis a manifold, An action of the torus
group Tk = S1>-’S1><...><S1 (k times) oh X 1is called injective

if the map

f; ; ﬂ1(Tk,1) - ﬂ1(X,X)

defined by fi(t) = tx is a monomorphism for all x .

In this case we have a central extension

o~zk~n1(x)-»F-»1

and only finite isotropy groups occur,.
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Theorem 1. Let (Tk,X) be an action and 'H1(X;Z) be fini-

tely generated. Then (Tk,X) fibers equivariantly over oK if

and only if the induced map

£ 5w (5,1) - H(X,x)

is a monomorphism.

Note that if fi is a monomorphism then so is fﬁ and the
action is injective. For the proof we start with an injective

action and consider subgroups of n1(X,x) containing im fi .

Let BH be the covering space associated with H and bo € BH
" be a base point corresponding to the constant path at x . The
action of TX may be lifted to By
k
T x BH ----- > BH
v \Z
1
™ x X > X

since in the corresponding diagram of fundamental groups imf; cH.

Theorem 2, li im f; cH and H is normal then the action

(TK,BH) is equivariantly homeomorphic to (Tk,Tk><Y) , where the
N . —_—

T action is just left translation on the first factor,

The most important case is when ¢ = 1d: n1(X,x) - n1(X,x)
and ® = in(f¥) . Note that in this case my(By) = H = z¥ so Y
is simply connected.

The proof of theorem 2 consists of first showing that there
is a natural splitting H ::Zk><kercp. This follows because
h e m (X,x) lies in H if and only if there is © € z¥ so that
@ofi(t) = p(h) € L and since fi is a wmomomorphism t is unique.

Define an epimdérphism p: H - z* by p(h) = t in the above for-
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mula, We have p(fi(t)) =t and ker ¢ = kerp . Define q:H =
- ker ¢ by a(h) = h-fﬁ(p(h"1)) . Clearly im f; c ker @ and
since it is a central subgroup it is the whole kernel, Note that
if h € ker © then q(h) =h and h = fip(h)'q(h) proving the
splitting of groups., Next we use induction on k . For k =1
let @ Dbe the generator of ﬂ1(S1,1) represented by exp(2mit) ,
0 <t<1. Then f;o(w) = exp(2mit)b  represents the generator
of the Z factor in n{BH) = H and by the naturality of the
splitting bo must have trivial isotropy group, i.e. if
exp(Znit/n)bo , 0t <1, is a closed loop then necessarily
n=1. A similar argument applies for arbitrary b € BH showing
that the S-action is free. TInduction on K proves that (T%By)

i

is free. The fact that the principal T_bundle over BH is tri-

vial is obtained using the Leray-Hirsch theorem and the splitting

k

HZzZ" x ker o .

From the group of covering transformations N = n1(X,x)/H
and the projection in the splitting onto Y we obtain an N-action
on Y which turns out to be properly discontinuous (all isotropy
groups are finite and the slice theorem holds).

The next step in the proof of theorem 1 is to classify ac-

k

tions of N on T x Y with the property that

(1) X acts on the first factor by left tramnslations,

k

(ii) the action of N commutes with this T action and is equi-

variant with a given properly discontinuous action (N,Y) Dby the
projection map.
Such actions are in one-to-one correspondence with elements of

H1(N;Maps(Y,Tk)) where the N-module structure on the abelian

group Maps(Y,Tk) is given by (af)y = f(ya) for £ € Maps(Y,Tk),

k k

o € N . Thus the action is given by amap m:T" x ¥ x N = T so
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k,, y €Y, a €N we have (t,y)a = (n(t,y,a),ya)

k

that for t € T

but m(t,y,a) = tm(1,y,a) by the left action of T so it is

K satisfying m(y,aB) =

sufficient to consider maps m: Y x N - T
n(y,a)n(ya,B8) . The corresponding action is (t,y)a = (tm(y,a),ya).
Consider these maps as Z1(N;Maps(Y,Tk)) , the 1-dimensional co-
cycles. Two such maps m1(y,a) and m2(y,a) are cohomologous

if they give rise to equivariant actions, Then there is a map

k

g:Y¥Y - T so that we have an equivariant homeomorphism

Fro(T%, 0%y, M), - (75,7xT,N),
defined by PF(t,y) = (tg(y),y) in which case

m,(y,a) = my(y,0)a(y)e(ya)”" .

If the cohomology class of m is of finite order, say n , then

k

there is amap g:Y = T for which

(*) 8(Y)8(Ya)-1 = n(y,a)? for all o € N .

In particular if N is a finite group of order n , then every

element of H1(N;Maps(Y,Tk)) has finite order dividing n .

The last step in the proof of theorem 1 is to show that

given the map g satisfying (*) the space X fibers over Tk

with structure group (%n)k, where we think of (Zn)k c ™ as the
product of n-th roots of unity. Iet C = {r,y)|ra(y) =1} c
Tk><Y . It admits an action of (Zn)k since if A € (Zn)k and
(r,y) € C them (AT,y) € C . Also, C is an invariant subset of
the action (T¥xY,N) because by (*) if (7,y) € C then
Tnm(y,a)ng(ya) - % (y) = 1 showing that (tm(y,a),ya) € C .

Thus there are actions ((%,)%,0,X) . Iet W = C/N whth the in-
duced (%n)k action, let [7,y] € W Dbe the equivalence class of
(t,y) under the action of N on C and m: ™Y - X the N
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kKeyw - X vy

orbit map. Define a new Tk-equivariant map G: T
e(t,[7,y]) = m(t7,y) = trn(1,y) . The fact that G is well de-
fined follows from mn(tmm(y,a),ya) = ttn(1,y) . If G(t,[7,y]) =
G(to,['ro,yol) then for sme x €N ya=y, and tro(y,a) = t, 7, - Now
7 = tnTnm(y,a)ng(ya) and tg = thgg(yo) = thgg(ya) so it
follows that % = tg and therefore there is a X\ € (Zn)k such
that At =t , Amm(y,a) = T, and (071, O,y = (8,07 5,1)
showing that if (zn)k acts on TF x W by A(t,[7,y]) =
(tx'1,[x¢,y]) then G induces a ¥ _equivariant homeomorphism
of (TFxW)/(B ) with X . The fibration over oK is given by
the map (t,[T,y1) -~ t% with fiber W and structure group (%h)k.
The proof is completed by noting that if fi: H1(Tk,1) -
- H,(X,x) is a monomorphism then provided H,(X,x) is finitely
generated we have a direct summand L of rank k with
imf%X < L and an epimorphism @ ﬂ1(X,X) - L. The group N =

L/mthnfi) is therefore finite.

Observe that the construction depends on the choice of the
map &g: Y - Tk . Different choices may even give fibers of dif-
ferent homotopy type as we shall show in section 3.

For X a closed 3-manifold and k = 1 we obtain the follow-

ing statement.

Corollary 3. A Seifert manifold M of class o4 0oL 1y

odmits an equivariant fibration over S' if and only if the order

of the principal orbit h in H1(M;%) is infinite.

Note that if there is a fibration then the characteristic
map of the fiber (3.11) is of finite order. We shall see in the

next section that large Seifert manifolds of the other classes do
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not admit a fibration over S1 , while some small Seifert mani-
folds admit non-equivariant fibrations over S1 so that h has
finite order in H1(M;%) and the characteristic map is of infi-

nite order.

7.2 Fiberig§'8eifert Manifolds over S1

A 3-manifolds is called irreducible if every tamely embedded

2-sphere bounds a 3-cell. The following result is due to

Waldhausen [1], see (8.1).

Theorem 1. ILarge Seifert manifolds are jrreducible.

The basic result on fibering 3-manifolds over S1 is due to

Stallings [1].

Theorem 2. Let M ©be an irreducible compact 3-manifold.

If m,(M) has a finitely generated normal subgroup N # {1},&; ,

with quotient n1(M)/N ~%Z then M fibers over S1 with fiber

a _compact 2-manifold T and n1(T) ~ N .

These manifolds were classified by Neuwirth [1], in particular

for closed manifolds we have:

Theorem 3. Let M2 be any closed irreducible 3-manifold

and M1 a closed manifold satisfying the conditions of theorem 2.,

Then M, is homeomorphic to M, if and only if n1(M) is iso-

morphic to n1(M2) .

The next result is from Orlik-Vogt-Zieschang [17.

Theorem 4. Let G be the fundamental group of a large

Seifert manifold and H +the maximal cyclic normal subgroup gene-
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rated by h . There is a finitely generated normal subgroup

NcG with G/Ns~Z if and only if [G,GINH = {11 .

Proof. If [G,G]NH = {1} then H injects into ¢/[G,G] =
H1(M;Z) and since it is an infinite cyclic subgroup of G 1its
image is contained in an infinite summand of ¢/[G,G] . We can
construct a homomorphism ¢: G - % so that kereonH = {1} .
Then we have the commutative diagram

0
!

\%
H
|i
\
1 > N > G s> T —> 0

oL

1 > N >G/H —>Z/pH—> 0

where N' 1is the kernel of the induced map G/H - Z/gH . Since

keropNH = {1} we see that ¢ is an isomorphism. But G/H is

finitely generated and Z/@H is finite so N' and hence N 1is
finitely generated. Note that this argument has elements of the

proof of (7.1.1).

Conversely, if N is a finitely generated normal subgroup
with G/N ~Z then it follows from the fact that M is large
and from the above theorem of Stallings that N is the fundamen-
tal group of a closed 2-manifold. If NNH #Z {11 then N con-
tains an infinite cyclic normal subgroup. This is only possible
for the torus and the Klein bottle. Let N' = N for the torus
and let N' ©be the free abelian subgroup of rank 2 in N for
the Klein bottle. Clearly, N'NH £ 1 and N'/N'NH must be a

cyclic group since in G/H (M large!) two elements commute if

and only if they are the powers of some other element. On the
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other hand N'/N'NnH would be a cyclic normal subgroup of G/H
and this is a contradiction. Thus NNH = {1} and clearly

[¢,6]1nH = {11} .

Corollary 5. Let M Dbe a large Seifert manifold., It fibers

over S' if and omly if the order of the fiber h in H,(M;Z)

is infinite.

Since for classes other than 04 and n, we have the homo-
logy relation 2h = O , this corollary gives the same condition
as (7.1.3).

Looking at the homology relations one can See immediately (3.11)
that

(i) for o4 the order of h is infinite in H1(M;%) if
and only if

p = bd.1...ar+810.2.-.(1r+...+0.1...d.r_»lsr = O
(ii) for mn, the order of h is always infinite in HﬁM;%L

For a manifold M let A(M) denote its homeotopy group, the
group of isotopy classes of self-homeomorphisms divided by the
subgroup of those isotopic to the identity. For a group G we
denote by Aut(G) the full group of automorphisms of G and by

In(G) the subgroup of inner automorphisms.

If M is a B-bundle over S then it is determined by the

2 P2

characteristic map &:B - B . If B # 87, then theorem 3

says that M is determined by its fundamental group. Now a well-

known theorem of Nielsen states that

N(B) = Aut(n1B)/In(ﬂ1B)

so the isotopy class of & 1is determined by the induced automor-
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phism 3 n1(B) - n1(B) up to inner automorphisms.

Given an automorphism of m,(B) we call the manifold obtained
as a fiber bundle over S1 with characteristic map some & whose
induced map agrees with ¢ up to an inner automorphism MCP . From
the previous discussion it follows that Mcp is well defined., We
let

ﬂ1 (B) = (X19-'~ ,anﬂ'*)
where m, = [X1’X2]"“’[Xn-1’xn] if B 1is orientable and m,
2 2

= Xy,...,%X, if B is non-orientable. A presentation of ﬂ1(M¢)

is then given by

-1 .
"1(Mcp) = (Xdl,ocu,xn,X’ﬁ*,XXiX =Cp(Xi), 1 = 1,...,11).

Now consider the small Seifert manifolds, see Orlik-Raymond
[2]. The two fibers we shall encounter are the torus T and the
Klein-bottle, K . Recall that A(T) is isomorphic to the multi-
plicative group of unimodular 2 x2 integer entry matrices. It

can be generated by

0 =1 0 -1 0 1
1 =<1 o)’ v2 =(1 1)’ 3 " (1 o)
and a presentation is given by
A(T) = (cp1,w2,cp3lmﬂ'=cpg=cp§=cpfcpg=(cp1cp3)2= (cpgcp3)2=1).
The orientation preserving automorphisms (matrices with determi-

nant +1) form a subgroup of index 2

2
A(T) = (o, ,mzlmﬁ' =q>g =cp1cpg =1)

isomorphic to the free product of 04 and 06 amalgamated along

the subgroups isomorphic to 02 . This shows that the only ele-
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ments of finite order in Af(T) are powers of o, and ®5 and
their conjugates.

It is known that A(K) = %2-+%2 and generators may be given
as the following automorphisms of m,(K) = (X1,X2|X?X§==1):

1 -1

\!’1(X1) = X5 ¢1(X2) = X4 3 ¢2(X1) = X; ’ ‘l’g(xz) = X5

Now let us consider the small Seifert manifolds.

(i) 0q5 g=0, r <2 are either lens spaces or 52><s1 s
the latter if and only if p = ba1a2+-81a24-a182 = 0 . From this
equation we conclude that a, = a4 and B, = -(ba1+61) so b=-1
and B, = aq =By o Thus the complete set of S1—actions on SZ:K81,
is given by the collection {-1;(01,0),(0,1,81),(&1,a1-.81)} .  The

order of h is infinite in H (s®xs8'sz) .

(ii) 04, 8=0, T = 3 —-+——~+éL > 1 have finite H1(M;Z)
and cannot fiber over S1 .

(iii) M = {—2;(01,O);(2,1),(2,1)9(2,1)&Lﬂ}saﬁﬁfies the con-
dition for an injective action and it is easily‘seen that h has
infinite order in H1(M;%) . In fact there is an equivariant fi-
bration of M over s with fiber T and o = @? e AY(T), see

(ix) below.

(iv) M = {b;(o4,1)} are T-bundles over st Specifically,
m, (1) = (a1,b1,h’,[a1,b1]h'b,[a1,h],[bT.,h]) and the map f(a;) =X,

f(b1) =x , f(h) = X, defines an isomorphism with Mcp for o =

3 \=b + o T =b . .
(m1¢2) € AT(T) whose matrix is o 1) Note in particular

that for b £ 0 o has infinite order in A'(T) and h has

finite order in H1(M;%) . Of course, for b = 0 we have M =
sTxslxs! .

(v) M = {b;(02,1)1 are two of the four K-bundles over S1.

J
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With the notation above we have

1

{0;(0,, 1)1 = My4 = KxS  and {13000, 1)} = My

1ve

1

by f(a1) =Xy, f(b1) = x; x , £(h) = x4%, .

(vi) ny,8=1, 12 1 give the possible s! actions on
P2><S1 and N and both fiber over S1 .
(vii) n,, g=1,r <1 are the prism manifolds with finite

3

fundamental groups and {O;(n2,1)} - RP° £ RP° so they do not

fiber over S1 .

(viii) M = {bj(n,,2)} are the same two K-bundles over g

as under (v),

]
{0;(n,2)} = My = Kx5 and {15(n,,2)} = M‘m,2 ,

the first is obvious, the second is given by f(v1) = Xq, f(vg):x,

£(n) = x;°x° .

(ix) M = {b;(n2,2)} are T-bundles over st . Specifically,

2.2, -b 1

- -1
m (M) = (vq,v5,h|vivoh™", v4hv] b, vphv, h) and the map £(v,) =x,

f(V2)2X1X"1, f(h) = x, defines an isomorphism with M, for o=

-1 =D
@%(w?m2)b ¢ AY(T) whose matrix is ( 0 1) . For b #£ 0 the

order of ¢ is infinite and n1(M) is centerless., For b =0
the manifold {O;(n2,2)} is homeomorphic to {—2;(01,0);(2,1),
(2,1),(2,1),(2,1)} as noted in (5.4). Thus the latter is also

a2 T-~bundle over S1 with characteristic map of order 2 and

=1
matrix ( O) .
0 -1

(x) M= {b;(n3,2)} are the other two K-bundles over s’ R

{O;(n3,2)} = sz and {1;(n3,2)} = M$1

the first is given by f(v1) = X1X—1 , f(vz) =x , £f(h) = x;1x51,
1

the second by f(v1) =X , f(v2) = X Xq 4 f(h) = x,%X; .
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7.3. Non-uniqueness of the Fiber

The choice of the map g: Y - TX in the proof of (7.1.1)
determines the fiber. The non-uniqueness is clearly seen by the
following example of Tollefson [1];

Let T(m) denote a closed orientable 2-manifold of genus
m = k(g-1) +1 where g > 1 and arrange T(m) in R°> with k
arms each of genus (g-1) about one hole at the origin, see pic-

ture below for k=3, g =3 .

Let ¢: T(m) - T(m) generate a free Z; action by rotating
through the engle 2mi/k and consider the 3-manifold M that

is a T(m)-bundle over 81 with characteristic map o . It ad-
mits an obvious free s'_action as follows, If [x,t] € T(m xIAx,0)
= (9(x),1) is the equivalence class of a point and s € S1 =R/Z

then define
[S]([X,t]) = [X9t+kS] .

The action is equivariant with respect to the Zk action and its

orbit space is T(g) . Thus I = {bj(o,,g)} and since it fibers
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over g’ it follows from (7.2.4) that b = 0 , hence M = T(g)xS1.
Thus for m = k(g-1)+1 we can embed T(m) in T(g)xS1 as
a non-separating surface with complement T(m) x I so that the
projection map p: T(g) ><S1 - 7(g) restricted to T(m) is a
covering. A much stronger statement about incompressible surfaces

in S'-bundles due to Waldhausen [1] may be found in (8.1.3).
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8. TFurther Topics

The important results of Waldhausen r1,2,3] occupy a central
position in the theory of 3_manifolds in general and Seifert mani-
folds in particular, It would carry us too far afield to give a
detailed account of his work so we have to restrict ourselves in
section 1 to a description of the most relevant results. In his
book Wolf [1] determines all closed 3-dimensional flat riemannian
manifolds. There are six orientable and four non-orientable such
menifolds and in section 2 we identify them as Seifert manifolds.,
Section 3 1lists Seifert manifolds with solvable fundamental groups
as determined by L. Moser [1]. We consider finite groups acting
on Seifert manifolds in section 4. Some remarks on foliations in

section 5 and on flows in section 6 conclude the notes.

8.1, Waldhausen's Results

Waldhausen [1,2,3] works in the piecewise linear category

so manifolds have combinatorial triangulations, submanifolds are
subcomplexes and maps are piecewise linear, Manifolds are always
orientable compact 3-manifolds and may have boundaries. Regular

neighborhoods of submanifolds are also compact and chosen suffici-

ently small with respect to the already given submanifolds of the
manifold in question. In general the embedding of a surface T
in a manifold M is proper, FN3M = 3F and F 1is orientable,

hence 2-sided. A system of surfaces has a finite number of dis-

joint components. Homeomorphisms are assumed to be surjective.

An isotopy of X 1is a level preserving map h: XxI = XxI so
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that at each level hlxx+t = hy: X » X is a homeomorphism. We

id and call an isotopic deformation sim-

shall assume that hO

ply a deformation. Two subspaces of X , Y4 and Y2 are isotopic

if there is an ambient isotopy of X so that h1(Y1) = Y2 . Two
surfaces P and G in M or 3M with FNG = dF = 3G are
called parallel if there is a surface H and embedding f: HxI=-
- M so that f(HxO) =F and f(Hx1 U 3HxI) =G . A surface
F in M is called ?d-parallel (boundary-parallel) if there is

a surface F in M parallel to F . For curves in sufaces we
define parallel and 3d-parallel similarly.

The following construction is often repeated. Given a system
of surfaces F in M a new (not necessarily connected) manifold "
i is obtained by cutting up M along F , i.e. let U(F) be a
regular neighborhocd of F in M and let M = M-U(F) . We can

~

thus view M as a submanifold of M . Note that the construction
is well defined up to an isotopy of F . Given another system of
surfaces G in M in general position w.r.t. F the new system
§ =06¢nl , however, depends on prior deformations of F .

A system of surfaces F din M or M is compfessible if

one of the following holds:

(1) there is a simple closed curve k in P that does not
bound a 2-cell in F and an embedding of a 2-cell D in WM
so that Dc M and DNF =k ;

(ii) there is an embedding of a 3-cell E in M so that
ENF = 3E .

The negation of compressible is denoted incompressible. Thus

M is irreducible if it contains no imcompressible 2-sphere.

Here are some of the main results of Waldhausen [1]:
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Theorem 1. Let F be an incompressible system of surfaces

in M and ff = W-0(F) . N is irreducible if and only if M

is dirreducible.

Iet B be a compact, not necessarily orientable 2-manifold
and p: M- B an S1-bund1e over B with orientable total space.
Thus if M is closed it is a Seifert manifold of class o4 or
n, . A subspace XcM is vertical if X = p-1(p(X)) and hori-
sontal if p|X is an embedding.

Lemma 2. Let p: M ~B be en S'-bundle, If B is mot S°

or P° them M is irreducible.

Note that the 81-bundles over 82 are lens spaces and known

to0 be irreducible or 32 % S1 while the 81-bund1es over P2 are
prism manifolds and irreducible or {O;(n2,1)} =ImP3-ﬁBP3 . If a
manifold has irreducible orientable double cover then it is itself

irreducible so the above lemma proves the irreducdbility of all S1-

bundles with the noted exceptions, P2 X S1 and N .

Theorem 3, Let p: M - B be an S1—bundle where B is not

S or P2 ., Let G be a system of incompressible surfaces in M

so that no bounded component of G is 3-parallel. Then there

is an ambient isotopy so that the result is either that

(1) G is vertical so each component of G 1is an annulus

or a torus; or

(ii) pl¢ is a covering map.

The basic result on the homeomorphisms of S1-bund1es is the

following.

Theorem 4. TLet p: M =B and p': M' = B' be S -bundles.




Assume that neither B mor B' is §°, P, D° or ' x I and

if B or B' is the torus or Klein bottle then the bundle has

no cross-section. ILet ¢: M - M' be a homeomorphism. There

exists a homeomorphism ¢: M - M' so that

(i) ¢ is isotopic to o ,

(ii) there is a map p(y): B - B' making (¢,p(¥)) a

bundle isomorphism.

Given a manifold M a system of tori T = T1U...UTn , n >0 1in
the interior of M with regular neighborhood U(T) is called a

eraph structure ("Graphenstruktur") on M if M -int U(T) is an

S1—bund1e. M is then called a graph manifold ("Graphenmannig-
faltigkeit"). 1In order to define a simple graph structure let T,
be a component of T and U(T1) its regular neighborhood homeo-
morphic to torus x interval with boundary components T' and
" . Let M, be the component of M -intU(T) meeting T' and

M, meeting T" . The natural isomorphisms

H1(T') <> H1(U(T1)) <> H1(T")

allow us to talk about intersections of homology classes of curves
on T' and T" . A graph structure is simple (and the graph mani-
fold is simple) if it is not one of the following:

(1) i, is not identical to M, and M, is the bundle
over the annulus,

(ii) the fiber of M, is homologous to the fiber of M, .

(iii) M1 is a solid torus and a meridian curve has inter-
section number 1 with a fiber of M, ,

(iv) M, is a solid torus and a meridian curve is homologous
to a fiber of M, .

(v) M, is the 81-bund1e over the Moebius band and we
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think of it embedded as a cross-section in M, so that its boun-
dary is homologous to the fiber in M2 5

(vi) both M1 and M2 are 81—bundles over the Moebius
band with embedded cross-sections whose boundaries are homologous,

(vii) M-—intU(T1) has two components, one called Q is
obtained by sewing two orbits of type (2,1) into D2><S1 and the
other is not a solid torus,

(viii) M, and M, are identical and isomorphic to torus x

interval and the composition of natural isomorphisms
H'](T') - H1(U(T1)) - H1(T") - H1(M1) - H1(T')

maps an element onto itself or its inverse,

(ix) M, and M, are solid tori,

(x) T=¢g and M is a bundle over s?2 or p° .
Waldhausen [1] gives a complete classification of graph manifolds
up to homeomorphism and shows that Seifert manifolds are special

cases of graph manifolds. Here are the main results.

Theorem 5. A simple graph manifold is irreducible.

Theorem 6. ILet M and N be simple graph manifolds with

graph structures T = Tyles UT and T!' = Tiu...UT;1 . Assume

that the pair (M,N) is not one of the exceptions below. Then

given a homeomorphism o: M - N there exists an isotopic homeo-~

morphism ¢: M - N so that ¢(T) = T' .

Exceptions:
(1) M = M -int U(T) is a bundle over the m-holed 2-sphere
and m solid tori with m < 3 ; or M is a bundle over the m-

holed projective plane and m solid tori with m < 1 . The same

for N = N-int U(T') .
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(i1) M = M-intU(T) is torus x dinterval and N =N - intU(T")
is a bundle over the n-holed 2-sphere and n solid tori with
n <3 - or vica versa.

(1ii) M is the manifold Q above and N is the S -bundle
over the Moebius band - or vica versa,

(iv) M = {~23(04,0)35(2,1),(2,1),(2,1),(2,1)} , N = {05(ny,2)}
- or vica versa,

We shall call an orientable Seifert manifold sufficiently large

if it is not on the list below.
(1) 04, 8 =0, r <2

3

1

[t}

(ii) 0, 8 =0, r
(iii) n,, g =1, r
(iv) s'xslxs!
(v) {05(n,,2)}
(vi)  {-25(04,0)5(2,1),(2,1),(2,1),(2,1)]
(vii) {-15(ny,1);(2,1),(2,1)]}

IA

A corollary of theorem 6 is the following result,

Theorem 7. Let M and N be sufficiently large orientable

Seifert manifolds., Given a homeomorphism ¢: M - N there exists

an isotopic homeomorphism ¢: M - N so that ¢ induces a Seifert

bundle isomorphism.

The proof consists of showing that if we take a somple closed
curve about each component of E* in M¥* (and N*) and consider
their inverse images then this collection of tori gives rise to
a simplegraphstructure on M (and N). In particular this proves
the irreducibility of these manifolds up to a few exceptions as
claimed in (7.2.1).

This is considerably stronger than (5.3.6) where we showed

only the existence of some Seifert bundle isomorphism. Much more
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is true, however. According to Waldhausen [2] two irreducible,
sufficiently large closed orientable 3-manifolds are homeomorphic
if their fundamental groups are isomorphic. The notion of "suffi-
cently large" means that M is not a ball and contains an incom-
pressible surface. Equivalently, an irreducible closed manifold
M is sufficiently large if and only if H1(M) is infinite or
n1(M) is a non-trivial free product with amalgamation. For ori-
entable Seifert manifolds the notion coincides with the definition
above., As a corollary to this result of Waldhausen [2] we may

state:

Theorem 8. Let M ©be a sufficiently large orientable

Seifert manifold and N an irreducible, closed, orientable 3-

manifold. If there exists an isomorphism ¢: mM = mN then

there exists a homeomorphism @&: M - N inducing o .

Waldhausen [2] also makes some comments about the homeotopy
group A(M) of M . The following Nielsen-type theorem holds for
sufficiently large manifolds but will be stated here only for

Seifert manifolds.

Theorem 9. Let M be a sufficiently large Seifert manifold.

Then there is a natural isomorphism

A(M) =~ Aut(n1M)/In(n1M) .

Letting T(M) denote the group of fiber preserving homeo-
morphisms of M modulo those that are isotopic to the identity
by fiber preserving isotopies Waldhausen [2] shows that the natu-
ral map

(M) - A(M)

is an isomorphism for sufficiently large Seifert manifolds,
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Surjectivity follows from theorem 7 and injectivity from the
methods developed in Waldhausen [2]. It requires deforming an
isotopy into a fiber preserving isotopy. Not much is kmown about
the structure of T(M) .

Recall that if the orientable Seifert manifold M admits an
81-action then h dis in the center of n1(M) . The following

remarkable conversion of this fact is obtained in Waldhausen £37.

Theorem 10. Let M be an irreducible, closed, orientable,

sufficiently large 3-manifold. it ﬂ1(M) has a non-trivial

center then M is homeomorphic to a Seifert manifold of class 04

and therefore admits an S1-action.

Several of these results may be extended to non-orientable
Seifert manifolds by lifting to the orientable double cover. ILet
M = {b;(e,g);(a1,81),...,(ar,gr)} be a non-orientable Seifert

manifold, According to Seifert [1] its orientable double cover is

ﬁ = {"r;(esé);(a‘lsg'])s-0',(arsgr)y(a']sa‘l"g'])so-"(arsar-sr)}

where
€ 0o n, n3 n4
g 2g-1 g-1 2g-2 | 2g-2 .,

8.2, Mlat Riemannian Manifolds

In this section we shall identity as Seifert manifolds the
closed flat riemannian 3-manifolds found by Wolf [1]. Let E(n)
denote the group of rigid motions of R" . Every rigid motion

consists of a translation, ta by a vector a followed by a ro-
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tation A . Write the motion (A,ta) . Clearly A 1is an element
of 0(n) and a is an arbitrary vector in R® . Thus the eucli-

dean group E(n) is the semi-direct product of 0(n) and RY

satisfying the following product rule:
(Ayta)(Byt ) = (AB’tAb+a) .

We write E(n) = 0(n)-R® . Obviously E(n) is a Lie group acting
on R% and R® = E(n)/0(n) as coset space.

A flat compact, connected riemennian manifold MT is the

orbit space of R® by the free properly discontinuous action of
a discrete subgroup T < E(n) , M% = R™/T'. It admits a covering
by the torus ™ ., The group I has an abelian normal subgroup
T*% of rank n and finite index, As a group T* = TARY . It

follows also that T has noAnon-triVial element of finite order.
The group of deck transformations Y in the covering ™ o is

called the holonomy group of M%* , v = T/T* ,

The following result is from Wolf [1,p.117].

Theorem 1. There are just 6 affine diffeomorphism classes

of compact connected orientable flat 3-dimensional riemannian

manifolds. They are represented by the manifolds R3/r where T

is one of the six groups é%i given below, Here A is the trans-

lation lattice, {a1,a2,a3} are its genmerators, t; = tai, and

Y = T/T* is the holonomy.

G?1. ¥ = {1} and T is generated by the translations

{t1,t2,t3} with {ai] linearly independent.
oe Y =17, and T is generated by {a,t1,t2,t3} where
2 =1 -1 -1 =1 .
a” = %y, atoba = %, and at3a = t3 ;@ 18 orthogonal to a,

and 8z while a = (A,ta1/2) with A(a1) = a; A(az) = -8, ,
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653. Yy = Z3 and T 1is generated by {a,t1,t2,t33 where
3 -1 -1 =1,

a’ = t1 s atza = t3 and atBa = t2 t3 ; aq 1is orthogonal
to a, and as , la,ll = Ha3H and {ay,az} 1is a hexagonal plane

lattice, and a = (A,ta1/3) with A(a1) = aq, A(az) = as, A(a3) =

GﬁA = and T is gemerated by f{a,t;,t,,t5! where
a =ty , at2a = t3 and at3a'1 = t§1 ; {ai}‘ are mutually
orthogonal with Ha2H = Ha3H while o = (A,ta1/4) with A(a,)=ay,
5. ¥ = Zo and T is generated by {a,t1,t2,t3} where
a6 =ty , atza_1 =tz , at3a"1 = t21 t3 5 2y is orthogonal to a,
and as , lasll = HaBH and {ag,aB} is_a hexagonal plane lattice,

and a = (A’ta1/6) with A(a1) = a; , A(az) = 8z , A(a3) = 8z-85.

636’ ¥ = ZQ><Z2 and T is generated by {a,e,y;t1,t2,t3}

where vYBa = t1t3 and

2 -1 -1 -1 -1
a =t , atra = t2 ; at3a = t3
-1 -1 2 -1 -1

-1 -1 -1 -1 2
Yt']Y = t'] sYth = t2 5 Yy = t3

The {ai} are mutually orthogonal and

a = (A,ta1/2) with A(ay) = a; , Alay) = -a, A(as) = -3
B = (B’t(a2+a3)/2) with B(a1)=-a1, B(az) =a, , B(a3) = -8z ;
y = (C,t o) with c(aq) =-a4, C(az)..-az, C(a3)._a3 .

(a1+a2+a3)/

Theorem 2. The six compact, connected orientable flat

riemannian 3-manifolds of theorem 1 are the Seifert manifolds:
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{O;(o1,2)} = S1><S1x 81 :

(-2;(0,,0)5(2,1),(2,1),(2,1),(2,1)} is the T° bundle

M1
My

1

over S with matrix of the characteristic map (‘1 O) of order 2;

0 -1
Mg = {-15(04,0)5(3,1),(53,1),(3,1)} is the 72 buntle over S

with matrix of the characteristic map ('O 1) of order 3 ;
-1 <1

M, = {-1;(00,0);(2,1),(4,1),(4,7)} 1is the 7% bundle over S

with matrix of the characteristic map ( 0 1) of order 4 ;
-1 0

Mg = {-15(04,0)3(2,1),(3,1),(6,1)} is the 7° bundle over S

[ €2]

with matrix of the characteristic map ( 0 1). of order 6 ;
-1 1

Mg = {-15(n,,1)5(2,1),(2,1)} is the manifold obtained from

taking the two Seifert fibrations of Q , one as a solid torus

with two orbits of type (2,1) and the other as the circle bundle

over the Moebius band with orientable total space, and sewing

them together by a fiber preserving homeomorphism. It is also

the orbit space of the orientation preserving free involution on

the Seifert bundle over 82 with total space M2 which idénti-

fies fibers over antipodal points of the base space by an orien-

tation reversing homeomorphism.

Proof. Let G, = n1(Mi) . It suffices to show that
Gﬁi = Gi for i=1,...,6 . It will be clear from the isomor-
phisms in the first five cases that there is an S1 action on
S1>~.’S1><S1 making the action of the holonomy group equivariant

and the fibration over S1 will also be equivariant. M6 admits

no S1-action.
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1 -1

Gy, =6, by mla) = ap, T(t) = a3lay s TlEg) = 485
G %65 By (e - a7’ (%) = a7'g

634 =G, by t(a) =qy, 1(ty) = q1q§1

6%5 @5 by t(a) =qy , 7(ty) = q}zq2

%6 2e, by T(a) = qq , T(v) = v

For these isomorphisms the groups are reduced by Tietze transfor-
mations to have only the given generators. The isomorphism for

G. was found by A. Strem. It is interesting to note that the G.

5 i

are all solvable groups, see (8.3).

The next result is again due to Wolf [1,p.120].

Theorem 3. There are just 4 affine diffeomorphism classes

of compact connected non-orientable flat 3-dimensional riemannian

manifolds. They are represented by the manifolds R3/F where T

is one of the 4 groups 631 given below, Here A is the trans-

lation lattice, {a,,a,,ax} &re its genmerators, t. = t_ , ¥y =T/T*
1 2 3 1 ai

is the holonomy, and T, = TNS0(3)-R° so_that R?/T, - B/T is

the 2-sheeted orientable riemannian covering.

031. Y =%, and T 1is generated by {e,t1,t2,t3} where

e” = 1y, et26'1 = 15, et3e'1 = tg1; a; and a, are orthogonal

t0 8 while € = (E,ta1/2) with E(a1) = a4, E(az) = a, and

B(az) = -ag . T, 1s generated by {t1,t2,t3} .

CB . Y = Z2 and T is generated by {e,t1,t2,t3} where

¢ = tq, et1e'1 = t2,6t3e'1 = t1t2tg1 s the orthogonal projection

of a; on the (aq,a,)-plane is (a1+a2)/2 s € = (E,ta1/2) with
E(a1) = aq, E(ag) = a5, E(aB) = 8 +8y-az . r, is generated by

{t1’t2,t3} 3
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533. Y = ZoXx %y and T is generated by {e,a,t1,t2,t3}
where a° = £y e? = T, cae” ! = LT atza"1 = t§1, atBa'1 = t§1,
et1e'1 = t, and et3e'1 = t§1 ; the a, are mutually orthogonal
and

a = (A,ta1/2) with A(a1) = ay, A(az) = ~a,, A(a3) = -az,

€ = (E,ta2/2) with E(a1) = aq, E(az) = a5 E(aB) = -8,

T, is generated by {a,t1,t2,t3} .

034. Y = ZoxZ, and T 1is generated by {e,a,t1,t2,t3}

2 2 -1 -1 -1 -1 -1

where a = t1, e” = t2, €eQ€ = t2t3a, atsa = t2 , at3a = t3 ,
et1e'1 = %y, et33'1 = t§1 ; the a, are mutually orthogonal and

a = (A,ta1/2) with A(a1) = ag, A(az) = -a,, A(aB) = -ax,

e = (E’t(a2+a3)/2) with E(a1) = aq, E(az) = a,, E(a3) = -2z,
r, is generated by {a,t1,t2,t3} .

Theorem 4.

The four compact connected non-orientable flat

3-dimensional riemannian manifolds are the four Klein-bottle

bundles

Ny

N

2 {1;(n192)}

istic _map w(x1) = x51
N3 = {O;(n312)}

tic map ¢(x1) = x;1,

N, = {1;(n3,2)}

1 2.2
over § ., Let m(K) = (X1,X2IX1X2) .  Then
{O;(n192)} = K><S1 5

1

is the K-bundle over S with character-
-1
9 ".J(Xz) = X'] 9
is the X-bundle over S1 with characteris-
-1
¢(X2) = X2 5
is the K-bundle over S1 with characteris-

tic map m(x1) = X,, w(xz) = Xq .

Proof. Again we
Note that N1

not.

and N2

R,

i
and N

let B; = ﬂ1(Ni) and show that

admit S -actions while X

3
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i
1}

3, B, by v(e)

% ¥ B, by 7(e)

vy, T(t,) = h, T(t3) = V4V, 3

I
I

Vi T(t3) ViV, 3

- =1
V219 T(ts) = h ’

1l

B3 =Bz by t(e) = vyv,, T(a)

&ﬁ =B, by rt(e) = vyv,, 7(a) = VUV,

The groups are again reduced by Tietze transformations to have
only the given generators. The isomorphisms for B3 and B4
were found by A, Strem. The orientable double cover is M, for

N, and N, and M2 for N3 and N4 + Clearly the Bi are

also solvable groups, (8.3).

8.3. Solvable Fundamental Groups

Let G be a group and G(1) = [G,6] be its commutator sub-
group. Define inductively G(m) = [G(m'1),G(m'1)] and call @

solvable if the series terminates, i.e.
G > G(1)D...3G(m) = 1

for some m ., Typical example is an abelian group, A well-known
example of a non-solvable group is the binary icosahedral group I*,
since (I*,I*] = I* ., The subgroups and factor groups of solvable
groups are sovable and the extension of a solvable group by a solv-
able group is solvable. An equivalent definition is that @& has

a finite series of normal subgroups

GDG’»]Doc-DG'n=1

each G, normal in G. so that Gi_1/Gi is abelian for all i,

i-1
If Gi-1/Gi is in the center of G/Gi for all i then G is

called nilgotent.

If G dis the fundamental group of a Seifert manifold then
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G d1is solvable if and only if the planar discontinuous group
G/(h) is solvable. These considerations give the following re-

sult essentially due to Moser [1].

Theorem 1. The Seifert manifolds with solvable fundamental

groups are:

(i) M = {b;(o1,1)}, 7°_bundles over § ; G is a nilpotent

extension of ZxZ by % ;

(ii) M = {b;(o',90);(291)’(291)9(291)9(291)} s ;_92 b = =2

M is a T2 bundle over S1 , otherwise M is the orbit space of

a free Zz-action on one of the manifolds of (i), G is an exten-

sion of a nilpotent group by %, ;

(iii) 045 g =0, r =73, -—1-+—1-+-1— > 1 except for
Gn] 0.2 0.3 -

(0,1,&2,&3) = (2,3,5) where I* is a direct summand of G ; for

(3,3,3), (2,4,4) and (2,3,6) M either fibers over S1 s See

(8.2.2) or it is the orbit space of one of the finite groups Z3,

ZZ4 or 7% acting freely on one of the manifolds of (i) so G is

a single or double cyclic extension of a nilpotent group; for

(2,2,n), (2,3,3) and (2,3,4) G is finite, see (6.2.2);

(iv) 0y, & =0, r <2 are lens spaces or S2><S1 so G is

finite or infinite cyclic;

(v) M = {b;(n,,2)} are T-bundles over s so G is an

extension of ZXZ by 7% ;

3 3

(vi) n,, g =1, r <1, here {O;(n2,1)} = RP” #RP® with

G =%, * 7% which is an extension of % by %2 while the other

2 2
manifolds have finite fundamental groups, see (6.2.2);

(vii) M = {b;(n2,1);(2,1),(2,1)} are orbit spaces of the

free orientation preserving %2 actions on manifolds of (ii) that
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induce the antipodal map in the orbit space of the S1-action; G

is the double extension of a nilpotent group by cyclic groups;

(viii) M = {b;(0,,1)} sre K-bundles over S' , so G is

an extension of a solvable group by Z, ;

(ix) M = [b;(n1,2)} same as (viii);
(x) M= {b;(n3,2)} are the other two K-bundles over S1;

(xi) ny, g =1, v <1 are the manifolds P°xs! and W

soGist%z_ozx;

(xii) M = {b;(n1,1);(2,1),(2,1)} are orbit spaces of the

free orientation reversing %, actions on manifolds of (ii) that

induce the antipodal map in the orbit space of the S1-action; G

is the double extension of a nilpotent group by cyclic groups.

8.4, Finite Group Actions

. 1 .
If M = {b;(e,g);(a1,31),...,(ar,8r)} admits an S -action,
so € =04 oOr mng , then every finite subgroup %kczs1 acts on
M with orbit space a Seifert manifold M' whose invariants were

computed by Seifert [1,p.218]:

M*

I

{b';(eag);(a%sﬁ%)s-t‘9((1:;.’8;:.)}
where

b?

1 = . . L . . k .
kb, al aJ/(aa,k) » B} kBJ/(aa, )

These Seifert invariants may need normalization. The action of
B is free on M if and only if (aj,k) =1 for j=l,.ee,T .
Note that the homeomorphisms of the action are isotgpic to the iden-

tity.

The example of M, in (8.2,2) shows that not every finite
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group acts as a subgroup of the circle, Tollefson [2] investi-
gates when a free Zk action on a 3-manifold M embeds in an
S1-action. It is clearly necessary that a homeomorphism genera-
ting the action be homotopic to the identity., Such an action is
called proper. Let M' ©be the orbit space and m: M - M' the

orbit map. The action is called Z-classified if there is a com-

mutative diagram

1

M > S

nj/ B
\

M! > g

where p: S1 - S1 is the usual k-sheeted covering of the circle.

In particular such maps exist if H1(M';Z) has no k-torsion.

Two Zk-actions Myve Zk><M - M are called weakly equivalent if
there is a group automorphism A: Zk ~»%k and a homeomorphism
H: M - M so that u(g) = H 'w(A(g))H for 211 g € &, . The

main result of Tollefson [2] is:

Theorem 1. Let M be a closed, orientable, irreducible

5-manifold. A Z%-glassified free Z -action on M (p > 2 prime)

is proper if and only if it is weakly equivalent to some Z%—action

embedded in an effective S1-action on M .,

In the course of the proof it is shown that M fibers over

S1 and the %p-action is equivariant with respect to the fibration.

Notice that in some cases a Seifert-manifold may cover itself,

e.g. it follows from the opening remarks of this section that
M= {-13(0q,8);(a,1),(a,a-1)1

is a proper k-sheeted covering of itself for every k = 1 moda.

For £ =0 M=5°xS' but for g >0 M is irreducible and a

(=]

non-trivial 2-manifold bundle over s . Tollefson [3] proves
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that if M is a closed, connected 3-manifold that is a non-tri-
vial connected sum and covers itself then M - RP® #RP> . It is
the k-fold cover of itself for every k but none of these free
Zk—actions are proper in the above sense, If the covering action
is proper then Tollefson [3] shows that the manifold M is irre-
ducible and if H1(M;%) has no element of order k +then M fibers

over 81 .

8.5, Foliations

Let M Dbe a smooth manifold with tangent bundle TM . A

k-plane field on M is a k-dimensional subbundle o of TIM .

If L is an injectively immersed, smooth submanifold of M so
that TLX = OXCZTMX for all x € I then I is called an integral
submanifold of o , A k-plane field o 1is called completely

integrable if the following three equivalent conditions are satis-

fied:

A, M is covered by open sets U with local coordinates
XqygesesX, SO that the submanifolds defined by Kyl = constant,
coesX = constant are integral submanifolds of o .

B, o0 is smooth and through every point x € M there is an
integral submanifold L of o .

C., o0 is smooth and if X and Y are vector fields on M

with X ,Y € o, for all x € M then the bracket [X,Y]X € oy .
An integrable k-plane field is called a foliation and the

maximal connected integral submanifolds are called leaves. The

leaves of a foliation partition the manifold. The following re-

sult is due independently to Lickorish, Novikov and Zieschang.
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Theorem 1., ZEvery closed, orientable 3-manifold admits a

codimension one foliation.

The proof goes roughly as follows. The Reeb foliation on ZD2><S‘i

is obtained by considering a function with graph below

and all its translates along the x-axis., Rotate to obtain a

foliation of D2><R and identify integral translates to obtain

the Reeb foliation on D° x& . It has one compact leaf, 3D° xS
and all other leaves are homeomorphic to R2 . The union of two
Reeb foliations foliates S3 . Every orientable closed 3-mani-

fold is obtained from 83 by a finite number of (1,1)-surgeries
according to Wallace. Remove the necessary number of solid tori

3

from 83 and alter the foliation of =& at the boundary tori by

the procedure of "dropping off leaves”

I i |
- ! }

to foliate the resulting manifold. Now sew in the required copies

of D2><S1 with Reeb foliations to obtain the manifold in question.
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Wood 1] showed that non-orientable closed 3-manifolds also
admit codimension one foliations, A celebrated theorem of Novikov
proves that every codimension one foliation of 83 has a compact
leaf,

The rank of a differentiable manifold M is the maximum
number of linearly independent 02 vector fields on M which
commute pairwise., If M is a closed manifold then the rank of
M is the largest integer k so that there exists a non-singular
action of Rk on M with all orbits of dimension k . This
action defines a foliation of M . The following was proved by

Rosenberg-Roussaire-Weil [1],

Theorem 2., Closed orientable 3-manifolds have the follow-

ing rank:

1

(1) s'xs'xs' nas rank 3 ;

(ii) M has rank 2 if and only if it is a non-trivial

torus bundle over S1;

(iii) all others have rank 1 .

The proof is outlined in the paper as follows, If & is a non-

singular action of R2 on the closed, orientable manifold V

then the orbits are R°, RxS or ©° . It is known that if all

T3 . If V has rank 2 then there

must be orbits homeomorphic to R><S1 or T2 . If all orbits are

orbits are R2 then V is

homeomorphic to R)<S1

then & is modified to a C°-close action @1 which has a com-
pact orbit., It is known that not every compact orbit of & can
separate V into two connected components. One can find k com-

pact orbits T1""’Tk which do not separate V but have the
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property that for every other compact orbit T +the union
T U T1 U...!JTk separates V , Let W ©be the manifold obtained

by cutting V along the T i=1,400,k ¢« Then 3W consists

i H
of 2k tori and every torus orbit in the interior separates W

into connected components., By a transfinite argument it is ob-

tained that & has no compact orbits in the interior of W . The
2

O

crucial step is to show that W ~ T x[{0,1] so V 4is obtained as

a T2 bundle over S1 .

An explicit action of R2 on a T2 bundle over S1 is de-

fined as follows. Let f: T° - T° be the orientation preserving
characteristic map of the bundle and V = T2><I/f . As noted

earlier f is isotopic to a linear map P € A+(T2) = 6¢LT(2,%)

and V is diffeomorphic to T2><I/F . Since the group GL+(2;R)

is connected there is an isotopy F, with F_=1id , Py = N
Choose it so that Ft = FO for t < e and Ft = F1 for 1-e<t<1
for some small e > 0 . Any two constant vector fields on F2
which are linearly independent define two linearly independent
commuting vector fields on T2 « For t € [0,1] 1let X(t)::F%0,0)

and Y(t) Ft(0,1) . Then X(t) and Y(t) are two linearly

independent vector fields on T2><t . Moreover, dF1(X(1)) = (0,1)
= X(0) and dF1(Y(1)) = (0,1) = Y(0) , hence X(t) and Y(t)
define two linearly independent vector fields on V ,

It is interesting to note that if V has no compact orbits

then F = (1 a)’ so V is the Seifert manifold {-a;(o1,1)} .
o 1

8.6. PFlows

A 0% flow on a CF manifold M is a CF action e M xR - M

of the additive reals on M . Such actions arise naturally from

the integration of a ¢¥ vector field on M . Conversely, differ-
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entiation of a Cr+1 flow gives rise to a ¢¥ vector field on M.
The following is an example of a flow on 83 = {(z1,22) €
@ !2121+2222= 1Y . Let (p,4) Dbe relatively prime integers and

define

Q2D 2miaty

U(Z1’Z29t) = (21 )

This is clearly the R action obtained from lifting the correspon-
ding S1 action to the universal cover of S1 . For p=gq-=1

this is called the Hopf flow on S3 . These flows have only closed
orbits., The following recent result of Epstein [1] proves that if
all orbits are closed on a 3-manifold then this is the most gene-

ral situation.

Theorem 1, Let u: MXR - M be a or action (1 <r §<X$ of

the additive group of real numbers on M , with every orbit a cir-

cle, Let M be a compact 3-manifold possibly with boundary.

Then there is a CF action w'e M>~:S1 - M with the same orbits

as W .

If non-compact orbits are present then the structure of flows
is still unknown. The following result is due to Seifert [2]. Let
C be the vector field of Clifford-parallel vectors whose integral
curves, the Clifford circles, give the Hopf flow and let C be a
continuous vector field on 85 which differs sufficiently little
from C , that is, the angle between a vector of C and that of

C is at every point of 83 smaller than a sufficiently small a.

Theorem 2. A continuous vector field on the 3-sphere which

differs sufficiently little from the field of Clifford-parallels

and which sends through every point exactly one integral curve

has at least one closed integral curve.
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The question posed by Seifert [2] whether this is true for
all flows on S3 is still open and is now referred to as the

Seifert Conjecture.




- 151 =~

References

M.F., Atiyah and I.M. Singer
The index of elliptic operators III, Ann. of Math, 87 (1968),

546-604,

I, Brieskorn
Uber die Aufldsung gewisser Singularititen von holomorphen

Abbildungen, Math. Ann, 166 (1966), 76-102.

C. Chevalley
Séminaire 1-2, Paris 1956/58.

P.E. Conner and E.E. Floyd
Maps of odd period, Ann. of Math. 84 (1966), 132-156,
Differentialbe periodic maps, Springer Verlag, 1964.

P.E. Conner and F. Raymond
Injective operations of the toral groups, Topology 10 (1971),

283-296.

D.B.A, Epstein
Periodic flows on three-manifolds, Ann. of Math. 95 (1972),

66-82,

W. Fulton
Algebraic curves, Benjamin, New York, 1969,

R.C, Gunning
Lectures on complex analytic varieties, Princeton University

Press,'1970.

H. Hironaka
Resolution of singularities of an algebraic variety over a
field of characteristic zero, Ann. of Math.79 (1964),109-326.

F. Hirzebruch

" Differentialbe manifolds and quadratic forms, revised by

W.D., Neumann, Marcel Dekker Inc,, New York, 1972.
Topological methods in Algebraic Geometry, Springer Verlag,1966,




- 152 =

H. Holmann
Seifertsche Faserriume, Math, Ann. 157 (1964), 13%8-166,

H. Hopf
Zum Clifford-Kleinschen Raumproblem, Math. Ann. 95 (1926),

313-319.

W, dJaco
Surfaces embedded in M2><S1, Can.J.Math., 22 (1970),553-568,

K. Jd&nich
Differenzierbare G-Mannigfaltigkeiten, Springer Verlag,
Lecture notes no.59, 1968,

J. Milnor

Singular points of complex hypersurfaces, Princeton University
Press, 1968,

Groups which act on S" without fixed points, Amer.J.Math.79

(1957), 623-630.

J. Milnor and P, Orlik
Isclated singularities defined by weighted homogeneous poly-

nomials, Topology 9 (1970), 385-393,

D. Montgomery and L. Zippin
Topological transformation groups, Interscience, New York, 1955.

L., Moser
Llementary surgery along torus knots and solvable fundamental
groups of closed 3-manifolds, Thesis, University of Wisconsin,

1970.

D, Mumford
The topology of normal singularities of an algebraic surface

and a criterion for simplicity, Publ. Math. No.9. IHES, Paris,
1961,
Geometric Invariant Theory, Academic Press, New York, 1965,

W.D., Neumann
S1—actionsand the q-invariant of their involutions, Bonner

Mathematische Schriften 44, 1970,




- 153 -

L. Neuwirth
A topological classification of certain 3-manifolds, Bull.

Amer. Math. Soc. 69 (1963), 372-375.

P. Orlik
On the extensions of the infinite cyclic group by a 2-mani-
fold group, Il1l.J.Math., 12 (1968), 479-482.

P. Orlik and F, Raymond

Actions of S0(2) on 3-manifolds, in Proceedings of the
Conference on Transformation Groups, Springer Verlag, 1968,
297-318.

On 3-manifolds with local S0(2) action, Quart.Jd.Math.
Oxford 20 (1969), 143-160,

P. Orlik, E. Vogt and H. Zieschang
Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten,

Topology 6 (1967), 49-64.

P. Orlik and P, Wagreich

Isolated singularities of algebraic surfaces with C¥* action.
Ann, of Math. 93 (1971), 205-228,

Singularities of algebraic surfaces with C* action, Math.
Ann, 193 (1971), 121-135.

E. Ossa
Cobordismustheorie von fixpunktfreien und semifreien S1—

Mannigfaltigkeiten, Thesis, Bonn 1969.

E. Prill
Uber lineare Faserrdume und schwach negative holomorphe

Geradenbiindel, Math. Zeitschwr,105 (1968), 313-326.

R. von Randow

Zur Topologie von dreidimensionalen Baummannigfaltigkeiten,
Bonner Mathematische Schriften 14, 1962,

F. Raymond
Classification of the actions of the circle on 3-manifolds,

Trans. Amer. Math., Soc. 131 (1968), 51-78,



- 154 -

H. Rosenberg, R. Roussaire and D, Weil
A classification of closed orientable 3-manifolds of rank two,
Ann, of Math., 91 (1970), 449-464,

M. Rosenlicht

On quotient varieties and the affine embedding of certain
homogeneous spaces, Trans. Amer, Math. Soc., 101 (1961),
211-231,

H, Seifert

Topologie dreidimensionaler gefaserter R8ume, Acta math. 60
(1933), 147-238.

Closed integral curves in 3-space and isotopic 2-dimensional
deformations, Proc. Amer. Math. Soc. 1 (1950), 287-302.

H. Seifert and W, Threlfall

Topologische Untersuchungen der Diskontinuititsbereiche end—
licher Bewegungsgruppen des dreidimensionalen sphérischen
Raumes I, Math, Ann. 104 (1931), 1-70; II, Math. Ann. 107
(1933), 543-596,

J, Stallings
On fibering certain 3~-manifolds, in Topology of 3-manifolds,
Prentice Hall, 1962, 95-103,

Jd. Tollefson

3-manifolds fibering over S1 with non-unique connected

fiber, Proc. Amer. Math, Soc. 21 (1969), 79-80.

Imbedding free cyclic group actions in circle group actions,
Proc, Amer. Math. Soc 26 (1970), 671-673.

On 3-manifolds that cover themselves, Mich. Math. J. 16 (1969),
103-109,

I, Waldhausen

Eine Klasse von 3-dimensionalen Mannigfaltigkeiten I, Invent.
math., 3(1967), 308-333; II, Invent. math, 4 (1967), 87-117.
On irreducible 3-manifolds which are sufficiently 1arge

Ann, of Math. 87 (1968), 56-88,

Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten,

Topology 6 (1967), 505-517,




Jd. Wolf
1. Spaces of constant curvature, McGraw-Hill, 1967.

Jd. Wood
1. Toliations on 3-manifolds, Amn. of Math. 89 (1969), 336-358.

H. Zieschang
1. TUber Automorphismen ebener diskontinuierlicher Gruppen,

Math. Ann. 166 (1966), 148-167.




	1972-12-1
	1972-12-2
	1972-12-3
	1972-12-4
	1972-12-5

