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Abstract

We construct for a boson field in two-dimensional
space-time with polynomial or exponential interactions
and without cut-offs, the positive temperature state or
the Gibbs state at temperature 1/B . Ve prove that at
positive temperatures i.e, 8 <20, there is now phase
transitions and the thermodynamic limit exists and is
unique for all interactions. It turns out that the
Schwinger functions for the Gibbs state at temperature
1/8 is after interchange of space and time equal to the
ochwinger functions for the vacuum or temperature zero
state for the field in a periodic box of length 8 , and
the lowest eigenvalue for the energy of the field in a
peroidic box is simply related to the pressure in the

Gibbs state at temperature 1/8 .



1. Introduction.

Although the study of the statistical mechanics for quantum
systems has made good progress the last ten years (1], the pro-
gress has been best for the descrete systems or the lattice sys-
tems., The main dificulty in connections with the continuous sys-
tems has been that the group of time automorphisms Ot for the
Schrddinger particles is non local. The consequence of this non
locallity is that the infinite system of interacting Schr®Bdinger
particles do not agree well with the generally accepted picture
of a quantum statistical mechanics described in terms of a local
C*-algebra or a C*-algebra of local operators, on which the time
acts as a group QA of C*-automorphisms, Hence we get a some-
what discouraging situation, that the only known realistic model
of a statistical quentum mechanics, namely the system of inter-
acting Schrddinger particles, does not conform to the highly de-
veloped abstract theory of quantum statistical mechanics,

For this very reason the question of studying relativistic
particles in stead of Schrddinger particles comes up quite natural,
since in any relativistic theory there should be an upper bound |
for the propagation speed and this would force the group of time
automorphisms o tobe local., And this is the motivation for
this paper.

Interacting relativistic particles or interacting quantum
fields is by now resonably well understood in the case of two
space time dimensions. In the case of weak polynomial interaction
and strong exponential interactions in two space time dimensions
one also has a very clear picture of what happens with the vacuum

in the infinite volume limit, or as we would like to say it here,



one has a very clear picture of the theromodynamic limit in the
case of temperature zero, TFor the weak polynomial interactions
this was done by Glimm and Spencer [2], and in the case of expo-
nential interactions by Albeverio and Hgegh-Krohn (31, Hence

good candidates for a quantum statistical mechanics of interacting
relativistic particles are the polynomial and exponential inter-
actions in two space-time dimensions.

In this paper I study the thermodynaimc limit of the positive
temperature Gibbs state for the polynomial and exponential inter-
actions in two space time dimensions.

The methode I use is strongly influenced by recent works by
Nelson [4], and may be denoted as Markoff field approach, The
llarkoff field approach was also a main ingredience in 73] and
played also a certain role in [2]. One of the advantages of the
Markoff field approach is to make available for quantum fields
the menthods of classicédl statistical mechanics, and this is the
way it is used in 73], lending havily on the work of Guerra,
Rosen and Simon "5] ; that introduces a framework which describes
the Markoff fields as Ising ferromagnetic systems.

The way the Markoff field approach is used here is somewhat
different. In this paper we use the Markoff field to transform
the problem about the thermodynamic limit for the Gibbs state at
temperature 1/8 for the relativistic quantum statistical system
into the problem of the uniqueness of the vaccum for the system
in a periodic box of length 8 .,

In fact it turns out that for any of the interactions we
consider, namely the polynomial and the exponential interaction,
the Markoff fields for the Gibbs state at temperature 1/5 is the

Markoff field on the cylinder S8 ¥ R, where S, is a circle



of length B , that correspond to the Markoff field for the va-
cuum in the plane R X R , and this last Markoff field is the

limit of the first one as the temperature 1/5 goes to zero,

Using this methods it is proved that the termodynamic limit
for the Gibbs state exists for all positive temperatures 1/p
and all interactions i.e. for strong exponential interactions
as well as strong polynomial interactions,

We see that this is in strong contrast to the vacuum or
temperature zero case for the polynomial interactions, where
Glimm and Spencer were only able to prove the existence of the
infinite volume limit for weak interactions, and from Dobrushin
and Minlos (6] we know by now that this is best possible, in fact
for any polynomial interaction in two space-time dimensions they
get that the thermodynamic limit is not unique in the temperature
zero case for strong enough interactions. The reason for this
difference is the above mentioned fact that while for the tempe-
rature zero case we have a Markoff field in plane R x R so that
the problem is two dimensional, we have for positive temperature
a Markoff field on the cylinder &S, ¥ R so that the problem is

&

essentially one dimensional, and therefore in a sence much simpler,

The Gibbs state at positive temperature 1/B is of course
not invariant under the Lorentz group since it is given in terms
of the energy operator. There is however, a Lorentz invariant
analogy of the Gibbs state at positive temperature 1/8 . But
this Lorentz invariant Gibbs state is only to be found in a closed
universe, the so called De Sitter universe, and it will lead too

far to give the construction of the positive temperature state
in the De Sitter universe in this paper. This will be delt with

separately in a forthcomming paper.



2. The Gibbs-state for the harmonic oscillator.

Consider the self adjoint operator

H = -36+4(x,4%x) - tra (2.1)
N N a2
on the " Hilbert space 34)= L2(R ) , where A = I — and
i=1 3x.
i

A is a real symmetric N % N matrix bounded below by a positive
constant, A >cI , ¢ >0 , X € M and (,) is the natural inner
product in RN .

Let x1,...,xN be the eigenvalues of A . It is well knowm

that HO has descrete spectrum consisting of the points of the

form
G (2.2)
DA 2.2
k=1 'k
-0H
and zero., Hence for a positive 3 , e © is of trace class
and we get
g
~2H B.Z,n.A.
tr e ° = ) e i=1"174 s
hence
-aHO N -Bxi -1
tr e = (1-e ) (2.3)

i=1

Let V(x) > -b be a real measurable function bounded below such

that
I{=HO+V@) (2.4)

is essentially self adjoint. Ve say that H is the Hamiltonian
for the anharmonic oscillator. Trom V > -b we get H > Ho-b s
which gives us that H has descrete spectrum and together with

(2.2) it gives a lower bound for the eigenvalues of H , which is

transformed into an upper bound for the eigenvalues of e"BH .



Hence e"gH is of trace class, Therefore we may form the normal

state w, on the von Neumann algebra B(&F) of all bounded ope-

O
rators on .jf , iven by

oy (8) = (vr e™)~1 tr(ae™) (2.5)

for A € B(&?) . w, 1is called the Gibbs-state for the anhar-

monic oscillator.

By the Feynmann-Kac formula we know that the kernel efmgbgy)

of the operator e~ g given by

B
-i U(x(r))dr
—QH(Xsy) = E(X y)l. o 15, (2.6)

with U(x) = %(X,Azx)ﬁ‘V(X) and

E?X ¥) is the conditional expectation with respect to the
9

Brovnian motion in Ry given that x(o) = x and x(8) =3y .
So that E? o) is the expectation with respect to the normal
9

distribution indexed by the real Hilbert space h of continuous

functions x(1) from [0,8] dinto RN, such that =x(0) = x(8) =0

and the norm square
3

a d
j o) ax(n)yg, (2.7)
0
is finite,

Consider the Hilbert space L2(50931ﬁN) of L,-integrable

functions from 70,8] dinto Rl , and let ki .(s,t) be the

2
kernel of the inverse operator of the self ad301nt operator -£L?
with boundary conditions x(0) = x(8) = on L2(FO 81 R ) .

Then

ky 5 (8,%) = k(s,8)2,

and



%s(s-t) s <t
k(s,t) = L1 . ) (2.8)
g(B—S,t s > 7T .

The normal distribution indexed by h is the same as the
Gaussian prosses with mean zero and covariance function kij(s,t).
It is well known that the Brownian motion hence also the

prosses above has support on the continuous functions from 0,38]

into RN .

In terms of the measures introdused above E?x ) is the
9
expectation with respect to the measure obtained from the normal

distribution endexed by h by a transformation on the continuous

functions from 70,7 into RN given by
x(r) = x+3(y-x) +x(r) (2.9)

From (2.6) we now get that the kernel e'BH(X,y) is a continuous

function of x and y . It is well known in that case that

tr e”B = je™P(x,x)ax , which together with (2.6) gives

.3
: -] u(x(n))ar
tr e_BH ='j E%X,X)Ce ° lax . (2.10)

By (2.9) E?x,x) is the expectation with respect to the measure

on the continuous periodic functions from [0,8] into gY

ob-
tained from the normal distribution indexed by h by the trans-
formation =x(1) - x(7) +x .

Since U(x) = %(X,AQX)-FV(X) we have that

8

r [ ux(r)ar

B e © x

ST x,x) e Jax

R (2.11)
X %

r 3T (x(1),4%x(1)) =] v(x(r))ar

\ 2 0 ¢

JIqE(X9X)[e . e lax .
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On the other hand we easily verify that for any real continuous

function F defined on the space of continuous periodic functions
from 70,3] dinto gY
8
- 2
n 2] (x(r),4%x(r)

‘ _,_‘_‘f'g 0 ™ = (O
J N.LJ(X,X)[G L]dX = CE
R

™

[ |
=
ja—

(2.12)

where E° is the expectation with respect to the normal distri-
bution indexed by the real Hilbert space g of continuous peri-
odic functions from [0,38] dinto gY , x(0) = x(8) , such that

the norm square

[Pregxln) | 8y | (x(r),422(r)) Jar (2.13)
(0]

is finite. C 1is some positive constant independent of F .
-8H

By setting V =0 in (2.11) we get that C = tr e © ,
We have thus proved the following formula
L
~3H - V(x(T))dr
tr 7% - tr e © Eg[e ° ] (2.14)

where E'B is the expectation with respect to the normal distri-

bution indexed by the real Hilbertspace g of periodic functions

from [0,871 dinto RY  with norm square given by (2.13). Now

tr e 9 is given by (2.3), and since 1l-e

-BA

are the eigen-

values of the real symmetric matrix 1-e we get from (2.3)

that
-3H .
tr e © = |1-e7 8811 (2.15)

where !1—e'?A! is the determinant of the matrix 1-e & ,

Hence (2,14) may be written

tr o™ 0 = |1-e” 17 gPre O 1. (2.16)



Let now Fi € B(%?) i=0,ie.,n be multiplication operators by
bounded continuous functions Fi(x) s 1 =0,...,n , and let

O=Sois1 nn._fsn_-‘lf_snzs °

Consider the operator
~s,H  =(s,-s4)H ~-(s JH
re | DTe 1 .. D "nTTn-1 G )

(85 ,9-8;)H

Trom (2.6) we have that the kernel of Pie is given
by 81175
-(s, .=-85,)H =S5 J U(x(n)d
P, (x)e 1 L y) = E(?y)l"F xO)e ° 1.
(2.18)

Since the Brownian motion is a homogeneous prosess, (1,18) may

be written in the form
S .

J i+1
- U(x(T))ar
oy ey ], . VD) .
Xsy) uFi(X(Si))e ] . 9)
[Sissi+1]
where E(y ) is the conditional expectation with respect
>9

to the Brownian motion given that x(si) = x and x(s1+1)

Utilizing now the Markovian properties of the Brownian motion we
—SolII ~(82_S1)H

get that the kernel of the operator Foe F1e is
given by
31 52
f0,8,] -] u(x(r))ar S5y ] JSu(xm)aT
JazTy, ) rF (X(O))e 1B, SyIR&s)e ]
(2.20)
2
ro s, ] -] U(x(r))dr
(X,y) LFO(X(O))F-I(X(S']))G © ]

By induction we get the kernel of the operator (2.17) is given by

B
-1 —j U(x(r))ar

E%XsY)E1H0P1<X(S ))e © ] (2.21)
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By computing the trace of this kernel in the same way as we com-
puted the trace (2.16) of the kernel (2.6), we prove the following

theoremnm,

Theorem 2,1:

Let P, € B(df) i =0,.00,n be multiplication operators
by bounded continuous functions Fi(x) , 1=0,.0.on , let 0 =
85,28 «+0 <8, =8 , and let H be the Hamiltonian for the an-
harmonic oscillator (2.4) then

-sH_ -(sp-sq)H ~(p-s, _;)H
tr(FOe ! Fie 2 T e n-1
" (2.22)
-8A(=1,8 o n-1
= [1-e7"F|TE"Te I F,(x(s;))]
i=o
where {1—e'9A] is the determinant of the matrix 1-e”°* and

% is the expectation with respect to the normal distrubution
indexed by the real Hilbert space g of continuous periodic func-
tions from £0,3] dinto Ry s x(0) = x(”) , with norm square

equal to

[Tre@xln) | ax(r)y L ((r), a%(n)) ar
(6]

By a direct calculation one easily verifies the following remark.
Remark: The expectation EB in the theorem above is the expec-—
tation with respect to the homogeneous Gaussian prosess on a

N

with values in R given by the covariance

circle of length

8

matrix Eg(xi(s)x (t)) equal to the matrix
2 2y=1 2n

—-? ﬂ-A ) cosjgm(s—t) . (2.23)

Summing up this series we get a more explicit expression for the
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covariance matrix
70, (0)x(8) = (24(e™41)) " re(8=H)A oA (2.24)

for 0 <t < 8.

Let a, be the C*-automorphism of B(&f) defined by

ey (B) = omitH g o itH (2.25)
then
tr(Bay (C)e™ ")
= tr(Be-itH(Je'(Q-it)H) (2.26)
- tr(ce~(8-1%)H g ~itH,

is analytic in t 1in the strip 28 < Imt < O , with boundary

-BH)

values at real t equal to tr(B@t(C)e and at t-1p3

equal to tr(Ca_t(B)e'gH) .

Consider now an operator of the form (2.,17).

-s,H -(82—S1>H —(B—sn_1)H

tr(FOe Fie cee B_ge ) (2.27)

is obviously analytic in the domain O~<Res1<Resz..,<Resn_1 <8
with boundary values at Resi =0, 1=0,...,n which are con-

tinuous and uniformly bounded and given by

tr(Foat1(F1)at2(F2) seeoay 1(Fn_1)e'BH) (2.28)
n

fOI‘ sk=itk9 k=1goc'9n_1 .

The continuity of (2.28) follows from the strong continuity of

GITH

Lemma 2,1: Let 'ti € R and Fi be bounded continuous functions
on RV , then B(} ) 4is the smallest strongly closed linear space

of operators that contains all operators of the form
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Q. (F)'G, (F)onc Q (F) °
Tt ts 2 tn n

Proof: Since the smallest strongly closed linear space contain-
ing the operators above is obviously a strongly closed C¥*-algelra
of operators, it is enough to prove that if B € B(Jf) commute
with at(F) for 2all + and all continuous functions I then

B = \I . Therefore assume fB,at(F)] =0 for all t+t and T .,
Then Cat(B),F] =0 for all PF and. t , hence at(B) is a mul-
tiplication operator by an L -function for all t . Hence for

any real L - function W

. —isT
elsWd,_t(B)e isV - d,.t(B) (2‘29)
so that
t .5 " }
1=W ~i=t p i -1 ¢
(e e )Y BlePe ) = at(B) (2.30)

By the Trotter-Kato product formula

i%H ‘igw n 1t (H=W)
strong lim (e ™ e YT = e (2.31)
n-ox°
and therefore by (2.30)
' 7)., it(HE-W
G._t(B) - e—lt(I‘I—\])Belt(I‘I (2.32)

By letting W(x) dincrease to U(x) , we get that ('I+H-W)"1 in-

crease to (1—%A)_1 so that (1+H-—"~.r‘")-1 converge strongly to

(1-%A)'1 and so by the semigroup theorem elt(h"w) converge

.t
strongly to e tz8 . Hence by (2.32) we get that
ifn  —ida
0, (B) = e ° Be

Since at(B) is a multiplication operator for all t we have

that B 1is a multiplication operator. But it is easy to see
igh  -ig
Be

that if B is not equal to AI , then e is not a
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multiplication operator. This proves the lemma,

is a normal state we get the following theorem

J

Using that g

Theorem 2,2 Let B and C be in B(df) , then

we(Bat(C)) = mB(a_t(B)-C)

is analytic in the strip -8 < Imt < 0 , and continuous and uni-

formly bounded in 8 < Imt < 0 . The boundary values satisfy
the KMS condition
wB(Bat-ie(C)> = wB(Ca_t(B))
for real t .
Moreover, any operator B in B(){) may be approximated strongly

by linear combinations of operators of the form a, (F,I)OLJC (F2)..
1 2
oo Oy (Fn) , Where F1”"’Fn are multiplication operators by
n

continuous functions F1(X),...,Fn(x) , hence wQ(B) will also

be approximated by the same linear combinations of
' 7 Tur !
uB(at1(F1)at2(F2) v atn(Fn)) . Purthermore wB(FOat1(F1) ces

ee Oy (Fn)) is apnalytic in 0 > Imty >...>Imt >-8 and its
n

w

value for tk =-is, k= Tyeee,n with O = 8,<815 .00 58, <

is given by

QB(FOa_iS1(F1) coo a_isn(Fn))
v (x(n))ar . -] (x(r))ar
- (3% © D7 P E ((sg))e © ]

1=0

where E° is the expectation given in theorem 2,1,



- 1% -

5. The Gibbs-state for the free scalar dquantum field.

Let A c R"™ ve a bounded domain in R® with a regular
boundary <A . Let Ai =-A4—m2 where A 1is the Laplace oper-
ator in A with some self adjoint boundary conditions on ©dA .
If the constant functions satisfies the boundary conditions we
shall assume that m > 0 if not only that m > 0 , so that in
any case, A2 is a self adjoint operator on the real Hilbert

A
space Lg(A) and

Ay >2ecI , ¢>0. . (3.1)

. A -BA;«
It is well known that AK hag descrete spectrum and that e a
is of trace class for all 8 > 0 , so that the Fredholm determi-

...BA_

nant |1-e T Al exists, and by (3.1) it is different from zero.

TLet h be the real Hilbert space D(Aﬁ) c LS(A) with norm

A
square edual to

2(x,4,x) (3.2)
for x ¢ D(AA) where ( , ) is the inner product in Lg(A) .
hA depends of course also on the boundary conditions on =2A .
Let now LZ(hA) be the complex Hilbert space of L, integrable
functions with respect to the normal distribution indexed by the
real Hilbert space hA .
The Hamiltonian HO(A) for the free scalar field in A with

mass m and the given boundary conditions is a self adjoint ope-

rator on LZ(hA) which is denoted by
2
H (M) = =%0, +3(x,0 %) - $tTA, (3.3)

where A, denotes the Laplace operator on LE(A) and ( , ) is

the inner product on LS(A) . (3.3) is not a definition of HO(A)
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but just a convenient notation, We shall now give the proper
definition of H (A)
Let {ek}§;1 be the complete orthonormal base in LZ(A) of

eigenfunctions for AA

A e (304)

2%k = Mk -

The probability space for the normal distribution dnh indexed
A

by the real Hilbert space hA is then in a natural way identi-
fied with infinite product of the probability spaces for the one

dimensional normal distributions

2

}\.1, A - ?\IP_XI,_
d.n}\ = (-:)4 e B &dX-,r 5 (305)
k I

so that

. (3.6)

Hence LZ(hA) may be identified with the infinite tensor product

0

Ly(h,) = égq LZ(dnhk) (3.7)

relative to the vectors f; ¢ LZ(dnkk) given by fk(xk) =1,

Now Lz(dn\ ) may be identified with L2(R) by the identifica-
“k
tion
2
V —5A,. X :
k 4 k'k
g(x) <«—> (&) g(x,) (3.8)

for g € L2(dnk ) . Therefore L2(hA) may be identified with

k
the infinite tensor product
20
L,(h,) = %;% L, (R) - (3.9)

relative to the vectors 8y € L2(R) given by

2
WXy - (3.10)

tu;l-"

g (1) = ( k>/“f
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Let now Hh be the Hamiltonian for a one dimensional harmonic
i
oscillator given by
2
2 A by
d k 2 k
H>\ = -%——7+T Xk-T (3'11)
k dxi

as a self adjoint operator on the k-th component in the tensor
itH

product (3.9). e K is then a strongly continuous unitary

group on the k-th component which leaves the vector 8y invari-

ant, It is then well known that the infinite tensor product

oo itH

A e k existe and forms a strongly continuous unitary group
k=1

on the infinite tensor product (3.9). Ve now define HO(A) as

the self adjoint infinitesimal generator of this unitary group

on LZ(hA) .
Definition:

itH (A) > itH

e 0 =Re F (3.12)

k=1
relative to the tensor decomposition (3.9).
-3H_(A)

Prom this definition we get immediately that e is of

trace class for 2 > 0 a&and that

—GHO(A> _ | -',AAA!_‘I

tr e | 1-e . (3.13)

We now define the Gibbs-state for the free scalar field of mass
m in A with the given boundary conditions by

—8H_(A —0H (A
wg(A)(B) = (tr e O( >)-1tr(Be ' O( :

) (3.14)
for any B in the C¥*-algebra B(Lz(hA)) .
Let P be a bounded continuous function on RS . From (3.9) we

get the following tensor decomposition

I.(m) =L, (&)®r @ 1,()] (3.15)
2YA 2 Je=10+1 2
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where the infinite tensor product here is also relative to the
vektors (3.10). P may then be identified with an element

' ® 1 of B(LZ(hA)) in accordance with the tensor decomposition
(3.15). We shall denote this element in B(L2(hA)) also by F .
By LthA) we shall understand the maximal abelian algebra in
B(Lz(h)) containing all bounded continuous functions F on RN
for all values of N , It is obvious that Lx;hA) is the space

of I -functions on the probability. space assosiated with the

normal distribution indexed by hA .

Let Hg(A) be the infinitesimal generator of the unitary group

on L2(RN) given by

itHg(A) N itH
e = ® e -, (3.16)

N

and let FO,...QF be bounded continuous functions on R and

n-1
O=s8,2...58,=138. It follows then immediately from the defi-

nition (3.12) of HO(A) that if we consider F_,...,F _; as ele-
ments in Lith) then
-s,H (M) -(s5=-5,)H _(7) -(8-s YH _(n)
. 1% 2 "1 0 - n-1 o
tr(FOe Fq e ceo B g0 )
(3.17)
R P ~s{H(A) ~(B-s,_1)EI(A)
= I (1-e ) t;ﬁFoe eeo B _qe )
k=17 +1
where try is the trace in LQ(RN) . By theorem 2,1
~sHN (1) ~(8-s__;)HL (1)
(3.18)
N -8 n-1
= 1 (-e 57N BEC 1 F(x(s,))]
k=1 i=o

where E8 is the expectation with respect to the normal distri-

N
bution indexed by the real Hilbert space 8y of continuous func-
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tions from the circle S of length 8 dinto RN with norm

Q
square egual to
NG oax, 5
b} JF ) -+kk( k('r)) ldrt . (3.19)

Let gq(A) be the real Hilbert space of functions from SB s A

into R such that the norm square

3
n
f J[(%%)2+- X ng) +m ‘2]dxdt (3.20)
OA :1 1

is finite
and such that for all t , 0 <t <3, E(x,t) scatisfies the

self adjouint boundary conditions given by A2 . If we consider

E(x,t) as a function n(t) from SB into LE(A) , then (3.20)

takes the form

3

JERL 8D 4 (n(n),45n(m)) Tar (3.21)

o
Trom (3,19) it then follows that gy 1s a closed subspace of
gB(A) generated by all functions n(t) such that n(t) dis in
the subspace of Lg(A) generated by the N first eigenvectors
1

se00sCy of A, for all t, 0 <t <8 . This together with

(3.17) and (3.18) gives then that

tr(Foe-s1Ho(A)F1e-(82-S1)HO(A>.‘. Fnu1e—<8-8n_1>HO<A>)
) 1 (3.22)
= ime AT BT R (n(sy )T
i=o

where Ei is the expectation with respect to the normal distri-
bution indexed by the real Hilbert space g&(A) .

3
Since the bounded continuous functions on RN are obviously

weakly dense in ‘Lx4hA) , we may extend (3.22) to arbitrary



Flyeed,B in Lx§hA) . Utilizing the remark following theorem

n-1

2.1 we may also compute the covariance for Eﬁ . We have thus

the following theoren,

be in Lco(h/\) ; and 0 = s_<s,<

Theorem 3.1: Tet Fo9""Fm-1 o}
cea X8, =B, then
-8, H (A)  =(s,-8,)H _(A) -(8-s__.)H_(A)
tr(Pe | © ‘me ©° 17O p e m-17702 "7
0 1 m-1
-8A m=-1
_ PTA -1 L8e 1
= 51—9 ! EAL it Fl(ﬂ(sl))d

i=o
where E° is the expectation with respect to the normal distri-
bution indexed by the real Hilbert space gB(A) , of functions
from the circle S of length 2 into D(AA) with norm square

B
equal to

(d“ &) + (n(r),A5n())lar ,

O'——wﬁ\D

where ( , ) is the inner product in LE(A) . B° may also be
characterized as the Gaussian distribution with mean zero and co-
variance which is invariant on S and given by

8

-BA -tA -(B=-1)A
57 (9,1(0)) (4,n())] = (v,(24(1-e )7 (e "+e(B : )

for 0<t <8,

where ¢ and ¥ are in I,(A) and ( ,) 1is the inner product
in LE(A)

If we consider the elements in gB(A)as functions &(x,t) from

SB ¥ A into R satisfying the proper boundary conditions on oA,
tﬁen Eﬁ may be characterized as the expectation with respect to
the generalized Gaussian prosess on SB > A with covariance func-

tion given by

BY(5(x,8)8(y,t)) = &, (x,7,8-t)



where Gﬁ(x,y,s-t) is the Greensfunction for the self adjoint
2

operator --17?- Aﬁ-m2 on S, ¥ A with the corresponding self
2t 8

adjoint boundary conditions on 2A .

We define now the C¥-automorphism m%(A) on B(LQ(hA)) by

-itHo(A) itHO(A)

a%(A)(B) = e Be . (3.23)

Then for B and C in B(LZ(hA)) we have that

wg(4)(B-aP(n)(C)) = wg(A)(al (M) (B)-C) . (3.24)

Moreover (3.24) is an analytic function of t in the strip
-3 <Imt <0 , which is continuous and uniformly bounded in

- <Imt <0 , and the boundary values satisfies the KWMS condition

g (M) (Brog_ ;4 (A)(0)) = wg(n)(Cal () (B)) . (3.25)

Futher more, if F _,...,I ~are in ijhA) then

,wg(A>(Foag1(A)(F1)... a@m(A)(Fm))

is analytic in O > Im‘t1:>...f>Im”cm > -2 and continuous and uni-
formly bounded in 0 > Im%; >...>TImt > -8 , and its value for

_t

k=1,,..,m with O =:ﬁ)§s1..._§sm = 3 1is given

X = -isk g
by

WA (F 08, (M)(F)ens 62py (M)(F,)) = B T 7y (r(s))]
e 1 n k=0 (3.26)

Let Cylc R" be a bounded open set in BY and let p € Ciicg)
and real., It is easily seen that the normal distribution indexed

by hA is quasi-invariant under the transformation m - n+o ,

if 69/ c A . Hence this transformation induces a unitary trans-

formation U(yp) on LZ(hA) . Let V(o) be the unitary trans-

formation of multiplication by the Lfghﬁ) function ei(@’ﬂ)
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where ( , ) dis the inner product in LQ(A) . Qﬁ%(C?j is then
the smallest norm closed algebra in B(Lz(hA)) containing U(w)
and V(o) forvall real o € Gi%é%j . Since L%QO(C?7 is a C*-
algebra which is fatefully represented in each B(LZ(hA)) for

all A 2 (%, QQb(@V) will not depend on the particular A as

soon as A D (9.

By (3.2) the normal distribution indexed by h, , may be charac-
terized as the generalized Gaussian prosess with mean zero and
covarians function GA(X,y) , Where GA(X,y) is the Greens fun-
ction for the selfadjoint operator AA . Let now (3 be contained
in the interior of A and A, . Since G, (x,y) - G, (x,¥v) is
1 2 A»] 1‘\2 ¢

a smooth function for x and y in (%, it follows that the
conditional expectations of the normal distributions indexed by

h

and h with respect to the o-algebra generated by func-

A A
ti;ns of thezform (0,m) with o € C§1(?) are equivalent mea-
sures, From this it immediately follows that LQL(C?) has
equivalent representations i? B(L2(hA1)) and B(L2(hA2)) , S0
that the strong closure Qﬁ(ék) of gé%(cy) in B(Lz(hA)) is
independent of A as soon as (" is contained in the interior

of A . We have obviously that {;A/'(QT) Eg..é} ((9’2') if (/9'1 C(S"z .
Let (A4 be the norm closure of v A@) | T« rR™y .

Let now B Gc}§ZGY . It is then well known that a%(A)(B) €
u%;(ﬁﬁQ , Where C%; is the open set of points with distance smal-
ler than t from (7, and that of(A)(2) is independent of A
as soon as 6*5 is contained in the interior of A . We shall
denote this indgE?ndent value_py a%(B) . q% is then a C*~iso=-
morphism from o‘?(é%)‘ into(f? (67%) for any [9/, hence it ex-

tends to a C¥*-automorphism of (4.
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Now let €$f2C%) be all functions in L (h,) of the form
f((ﬂ,¢1),(ﬂ,¢2),...,(n,mN)) , where f(X1,.,.,XN) is bounded
continuous function on RN and ©q5eeesPy is in dﬁ%(ﬁ}ll_ We
denote by C/;O the smallest norm closed C¥*-algebra in af; which
contains all operators of the form a%(F) , for P ¢ 8§EC}) for
sone (3'. L%QO is then obviously invariant under a% , and we

shall say that L/ﬂb is the local algebra for the free field.
C‘[.\/

Let F_,...,P be in () for some (7. We shall then show
that
mg(A)(Foa§1(F1)... a%m(Fm)) (3.27)

converge as A tends to R® in such a way that it finally con-
tains all bounded sets, independently of the boundary conditions

on 3A . To see this, choose any T > 0 . Then for |t | < T,

-

k=1,.0.,m 4, since A finally contains any bounded set, we have
that from a certain point on C?; is contained in the interior

of A, but then (3.27) is equal to

wg (1) (Bag (A)(Fq)ee. of () : (3.28)

Now (3,28) is analytic in 0 > Imt;>...>Int > -p and uniformly

bounded and continuous in 0 > Imt;>...>Imt > -8 . The value

of (3.28) at the imaginary points G = -is , k= T,00.,m and
0 =8 <84...<s =13 1is by (3,26) given Dby
0 0 0 . 8 & 5k ¢
29(0) (el (M) (B)ens ol (D7) = B30 1 FFT, (3.29)
1 m k=0
s
where Fk is the translated by an amount s around the circle
G '

S, of the functions P in < () . Since ¥_, k = 0,...,n

are continuous bounded functions of the stochastic variables
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(ﬂ,w1),...,(h,@n) , we get that (3.29) converge if the correspon-
ding correlation function converge since Ei is the expectation
with respect to a Gaussian distribution. We shall now assume

that the mass m > 0 ., 3By theorem 3.1 the correlation function
for EZ

A
as A tends to R"™ in such a way that it finally contains all

is given by Gi(x,y,s—t) . That Gi(x,y,s-t) converges

bounded sets follows from the fact that Gﬁ is the Greenfunction

for the self adjoint operator

22 B 42 2
-=m- T Smum (3.30)
3t i=1 axi

on S3 ¥ A, with some self dajoint boundary conditions on A .
So that as A ‘tends to R"™ in such a way as to finally contai-
ning any bounded set we get that Gi(x,y,s-t) converge weakly

to GB(X,y,s-t) which is the Greensfunction on Sj x R® for the
operator (3.30).
Since the local algebra for the free field (}QO is the smallest
norm closed C¥*-algebra containing a%(P) for all t and

o )
F e cf(é?) for some (97, we have that elements of the form
T o (F,) © (F.) is norm dense in '”9 Hence we have
«.Od..t'] d' e 00 a,.tm m w L/ o °

proved the following theorem,

Theorem 3.2 Let <&4% be the local algebra for the free field,

y . . £ .
then a% defines a group of C¥-automorphism of uég. There is a

) . .. . o .
state on g/#o which is invariant under ap 1.e.

AJO
s
o) ) _ ,0(.0 )

us(B-at(C)) = us(a_t(B) ¢) ,

such that mg(Ba%(C)) is analytic in the strip -8 <Imt <0 and
uniformly bounded and continuous in -3 <Imt <0 , and satisfies

the XMS conditions on the boundary
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wg(B'ai_iB(C)) = wg(Ceal (B))

for real t .

Moreover, if FO,...,F is in the subalgebra of @é% generated

m
¢)

o
B
lytic in 0 > Imt1> .,.>>Imtm > -R and continuous and uniformly

(0]

by the fields at time zero then (P ol (Fq)ev. ol (P )) is ana-
o-tq M ty Tm

bounded in O > Imt15z... > -B , and its value at the imaginary

points 'tk =—iSk s kK = 1,.00,m with 0 = 80581"'-<—Sm =8 is
given by
m S
4O (@] e} _ IBF k
wB(Foa_is1(F1)... o_sg (Fm)) =E°L IF ],

m k=0
where EP is the expectation with respect to the generaliized
Gaussian process with mean zero and covariance function G%X-yﬁ%t),
which is the Greensfunction on SB v B% for the self adjoint
operator

1
N

1
[T e
N
N

(8%
ct
=

Q)

o
8
[N
+
=

on L2(S8><Rn) .

Sk
k
on SB b R% of the function T

and F is the translated by the action of the circle group S,

Xk by the amount Sy .

Further more, if B € UQO is in 04'(CV) for some bounded C?’then

gojg(B) = lim UJS(A)(B)

as A tends to R"™ in the semse that A finally contains any

fixed bounded set,.

Remark: Utilizing the formula (2.24) we get that Ge(xgt) is

given by
AN -
GB(X,S) = 1 n § ¢"(p,s)e” P ap (3.37)
(2m)™ zn
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where for O < s < 8

8% (p,s) = (2u(1-e772))" T (&5~ (8-8)m) (3.32)
"
V\fl-th M = {Jﬂ)(p) - \/p2+m2 R

If we introduce the annihilation creation operators and the free

fields we have the relations

o(x,4) = L(zm) ?jf Lprrot) gu (p) 4 o~ (PrHutly(p)). 22
()% (3, 53)

where o(x,t) is the free field at time t .
The operator that counts the number of particles with momentum

p €N 1in a region 0O C R? of momentumspace 1is given by

N(Q) = ia*(p)a(p)dp . (3.34)

.
|
J
Q
Introducing now the function

2 B -

A(x,t) = GF(x,-1it) (3.35)
so that

Ks(p’t) = (2m(1_e-3w))-1(eitw+e-8me—1tw) (3.36)

we get the following formula for computing expectations of pro-

ducts of fields

e A 4 —t.

(7 070y Jon 0 T o)

wg(@(x19t1)...@(xn,tn)) = 4 for n even (3.37)
0 for n odd

where the summation runs over all partitions of (1,...,2k) with

2k = n into disjoint pairs (i1,i2)(13,i4)... (in-1’in)

If we define the pressure for the free field at temperature %

in the usual way by
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-sH_(A)
pd = 57! lim |A]7log(tr(e  © 1)), (3.38)
- A =RE
where (Al is the volume of A ,
we get by using the formla
-3H (A) -0A
tr(e © ) = }1—6 A§-1 (3.39)

together with well known asymptotic formulas for the eigenvalues
of the Laplaeien A in A as A increase to R™ , we get that

the 1limit (3.39) always exists and is given by

pg = -(2m 7! ] 10g(1-e7"(P)yap . (3.40)
, in

If we take Al = [-%,%]n with periodic boundary conditions we

have that AA has the eigenvalues
1
2mmn .
2 2\%
( 1(—]-_--1") +1 )“ (3.4-1)

i

[ =]

) € %Z" . 1In this case we have the annihilation

creation operators ai(p) and al(p) with p € %;-Zn', for

where (n1,...,nn
Ho(Al) . The operator that counts the number of particles with

. . n . .
momentum p € 0 1in a region 0O C R is now given by

N,(2) = T al(p): (3.42)
1(2) pEQal(p)&l(p)

If we now compute the expected number of particles for the system
in Al we get

-8u(p)
o) _ e
wa (A1) (N7 (0)) = ng P16 (5.43)

We now define the density of particles with momentum in O by

Jogman = 1im a1~ N2 ay) oy () (3.44)

Q 1
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Then this limit exists and is given by

ot o=50(p)
[o%(p)ap = (2m)7"] T % - (3.45)

9) 0

So that then density of particles with momentum p exists and

is given by

-3m(p)
o N -n e '
o,(p) = (2m) o=ee(e) (3.46)
and the particle density is given by
-8w(p)
o _ -n e” .
02 = (2m) jn ST O - (3.47)
R

In correspondence with (3.4 ) and (3.4 ) we may introduce the

partial pressure due to particles with momentum p by

pd(p) = -(2m) 57 10g(1-e720(P)y (3.48)

If we want to express the state wg in terms of annihilation

creation operators

a¥(n) = |n(p)a’(p)ap (3.49)

1

where a" stands for a or a% , and h € L2(Rn) .

Then we have the formula s (p)
2 14~ “\P

) 21 n(p) P
oei(ar®ratm))) _ O (3.50)

o
U

As a comparison we have that the corresponding quantity for a
system of free Schrddinger particles at temperature 8 and acti-

vity z is given by 3 2
2 1+z

-%jlh(p)l ‘“’ii—g*jﬂp

,mp

e 1-ze (3.51)
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To within the non relativistic approximation

1 2
w(p) ~ m'Fgﬁ p

we see that is the Gibbs state of free Schrdinger particles

0
B
of mass m at temperature 8 and activity 2z = e8|
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4, The Gibbs-state for the interacting scalar quantum field

in two space-time dimensions.

In the case of two space-time dimensions or equivalentely
one space dimension, the interacting scalar field is relatively
well understood in the case of polynomial interactions (F2],[77,
[8],{9] and [107) and exponential interactions ([3] and f117).
In the case of positive mass m > 0 , it was proved by Glimm-
Spencer 2] that the thermodynamic limit for the temperature zero
(3 = 0) state existed and is unique for weak polynomial inter-
actions, More recently Nelson (127 have established the existence
of the thermodynamic limit for strong polynomial interactions
with Dirichlet boundary conditions, Nelson's method which depends
strongly on the Dirichlet boundary conditions leads to the ques-
tion of whether this 1limit is unidue, and in fact Dobrushin and
Minlos 6] have announced the result that there is a certain cri-
tical value for the interaction strength for any polynomial inter-
action above which the limit is not unique. For the strong expo-
nential interaction the existence and uniqueness of the termody-
namic limit for the temperature zero state was recently proved by

Albeverio and Hgegh-Krohn 3], in the case of even interactions.

From what is said above we see that the thermodynamic behavior
of the temperature zero state is quite complex and that by the
result of Dobrushin and Mihlos there are phasetransitions of

the temprature zero state for the polynomial interactions.

In contrast with this complex picture for the temperature zero

state , we shall see that for the positive temperature (8 < =)
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state or the Gibbs state the thermodynamic limit always exists
and is unique for the polynomial interactions as well as for the
exponential interactions, without any restriction on the strength

of the interaction, in the case of two space-time dimensions.

Now let

1
Hy = H + ) ¢ V(o(x)) : dx (4.1)
-1

where ©(x) is the time zero free field of positive mass m > O,
in two space time dimensions, and V(s) is either a polynomial

which is bounded below |
V(s) = P(s) (4.2)
or an exponential function i.e.

V(s) = Ieas du(a) (4.3)

where du 1is a positive measure of compact support in the open
intervall (7j2n: 21 ).

HO is the Hamiltonian for the free scalar field o , Hl is

then the Hamiltonian for the corresponding interacting field with

a space cut off interaction., For details concerning the defini-

H Z -b (4’05)

1

tion of Hl the reader should consult the references 71 and
r10] for the case (4.2) and the references "11] for the case
(4.3) . ‘ A
It is known that Hl is essentially self adjoint on the inter-
section of the domains of HO and Vl
1
"
Vyo= s V(e(x) s dx (4.4) ‘
-1 |
and that H1 is bounded below !
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where b is some real number depending on Vl , So that e'BHl

is a bounded operator.

We will now construct the Gibbs state for the space cut-off inter-
action (4.1).
Let A be an interval containing the interval 7-=1,17 in its

interior, then we set

1
Hy(A) = H (M) + ] s V(p(x)) : ax . (4.6)
-1

By the same methods that proves that Hl is essentially self
adjoint and bounded below we get that Hl(A) is essentially self

adjoint and bounded below, Illoreover, we also get that Hl(A) has
e is of trace class., Ve shall

~8H-, (A
start by computing the trace of e ] 1( ) . By the method of hy-

descrete spectrum and that

percontractivity "13] in the same way as for Hl , we have that

Hl(A) may be approximated by operators H =~ such that

-B8H- (A -8H
e 1 )- e -0 (4.7)

and Hn has the form

Hy(A) = H (1) +V:|(_n> (4.8)

where Vin) is in S;M(CT) for some ("c A . We shall prove

below that

-B8H -sHl(A)

tre Mo tre . (4.9)

Since Vin) is bounded we get by the Trotter-Kato product for-
mula that
o8 () <&My om

strong lim Le k

k =»

2, (4.10)
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but this may obviously also be written in the form

M-l (A) -{%VF) -Z%HO(A)'Ik -8H,
strong lim |e e e °° 4 =e . (4.11)

k = =

Now let V(n) > ~c , where c¢ of course depends cn n . Then

1
8 (n) 3
- =V C
e Ly <o (4.12)
hence
8 B (1) B 8 3

—-==H (A) ==V -1 (A) 2c —-+£H (A)
o ok o} e k'1 o Pko < ek o o , (4.13)

so that the i-th eigenvalue of

8 8. (n)

M =we=H (A) =5V -==1 (A)7k

Le %Ko e £ 1 ¢ %% ° ] (4.14)
is smaller or equal to e"C times the i-th eigenvalue of
-8H (A)
e ° . On the other hand we have by (4.11) that the i-th

~-BH

eigenvalue of (4.14) converge to the i-th eigenvalue of e Pln .

Hence by dominated convergence we get that the trace of (4.14)

-3 —BHO(A)

converge to the trace of e " B  since e is of trace

class,

However the trace of (4.14) is by theorem 3,1 given by

-8A ' .
1ee M7 ESrexpt-£ = v{®) (n(E(5-2)0)17 (4.15)
Since the transformation V§n)(n(0)) - Vén)(n(s)) is induced

by the action of the circle group SB on S, x A , and the gene-
9]
ralized Gaussian process corresponding to Ei

is homogeneous with
respect to this action, we have that the transformation is given
by a strongly continuous unitary group on L2 of the correspon-
ding process, and therefore Vin)(n(s)) is a strongly continuous

function of s in the L2 space of the process. Hence we get the



strong L2—convergenoe

[UISES )

7{8) (n(s))as (4.16)

c.
@]

as k - oo, By passing to an almost everywhere convergent sub-
sequence, we get by dominated convergence the corresponding con-

vergence of (4.15). Hence we have that
R

: - T y(n) .
-8H 'BAA?~1 3! —ﬂovl (q(s))ds] .

tre = l1-e . Ejle (4.17)

1
r
Now the approximation of v, = 4t V(p(x): dx by functions Vin)
: -1
in (3T(C7) may be carried out in two steps. First we approxi-
- _

b] Ta,b] . ‘ - . .
4, where V-%"- 4ig equal to V in those points
1 1 p

where Vl has values in the interval [a,b] and Vga’b] is

=
mate Vl

equal to zero elsewhere, Under this approximation we have that
(n) -BHy, c8 -BHO(A)
Vl is uniformly bounded below so that e < e . 5
-
_3H —3(H, (1)+v5*P)
and by hypercontractivity e converge to e

-BH
in norm, so that tr e n converge by dominated convergence.

e

n

On the other hand the right hand side of (4.17) will also con-
verge by dominated convergence since under this approximation

Vin) is uniformly bounded below.

Then we remove a and b by first letting a - -20 and then

b o0, In both cases we have that both sides of the equation

‘ 8 ra.v]
—8(H_(A)+V, -2sP] Y - V77 (n(s))a
e o . e A é](4.18)

AL.
converges by monoton convergence, Hence we have proved the

following formula
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Recalling the form of Vl this may also be written

® -
_oHl(A) —aA o : V(E(x,8)):dxds_

e  M=1gf e 0 € L. (4.20)

i3

tr e

In the same way as we proved the formula (4.20) we prove the

following

Lemma 4,1

Let F_,...,F be in LI§hA) and 0 = s <8;<...<8 =5

n-1 0 - n

then
-s,H,(0) ~(s5=-8,)H,(A) ~(8=-s_)H, (7)
tr(F e 1 F.e 2 "1 oo B e nl )
0 1 n-1
rA (1
ST 8rn_1 S - e:V(@(X,s)):dde
= [1-e ITE\L DR e © T ]
" k=0
S

where Fk is the translation of Fk by the amount sk in the

action induced by the circle group S on the generalized Gauss-

8
ian process §&(x,s) .

As in section 3 we now define for any B € B(LZ(hA))

-it A itH, (A
a%(A)(B) = e * Hl( )Bel ]1( ) (4.21)
and
-2H_ (A ~B8H- (A
m%(A)(B) = (tr e 1! ))"1tr(Be oy )) ) (4.22)

We then have that if B € (4((") and (¥, © A, then oy(A) is
independent of A , and we denote this A 1independent value by
a%(?) . This then gives us a group of C¥-automorphism a% on
A, It is well known that if (gy; < [-1,1] then oi(B) 1is
independent of 1 , and we shall denote this 1 independent

value by Ei(B) , and again o, gives us a group of C¥*-automor-

) N
phism on (% .



- 34 -
Let now 047 be the smallest norm closed C¥*-algebra in LJ? con-
taining at(F) for all real t and all F ¢ (&) for any
bounded C?’in R . Elements in Lfg’of the form

E|Omt1(F1) s o0 (X.-tn(Fn) (4023)

‘\/’\J
with P _,Fq,...,F, in 4 (&) then spends a dense linear set

in 019. We shall see that

wi(A)(Foat1(F1) e oy (B)) (4.24)
. n

converges as A tends to R and 1 tends to =x.

&
If éj;_ c f=1,1] € A i=1,...,n then (4.23) is equal to
i

w;(A)(Foa%1(A)(F1) e a%n(A)(Fn)) : (4.25)

By the definition (4.22) of w%(A) we have that (4.25) is analy-
tic in 0 > Imt1>... >Imtn > -3 and uniformly bounded and con-

tinuous in 0 > Imt1ZJ..;:Imtn > -8 . Moreover, its values at

the imaginary points tk = --isk k=1,000,n with O = 8,581 .
ee 289 is by lemma 4.1 given by
1 1 1
wa (M) (F aso (M) (Fq)eee aly, (A)(T,))
g 0 -is, 1 -is n (4.26)
3 8
-J [l:V(i(x,s)):dxds -I fiv(é(x,s)):dxds
_ (Esfe o} ie })-1E8f.% ;ke o e 1
R S Aok .

To prove that (4.24) converges as first A +tends to R and then
1 tends to =c, it is therefore enough to prove that the same
limits exists for the right hand side of (4.26). Since F ¢ EZ?G»
k = 05000on , it is therefore enough; if we want to prove that

the limit exists as A - R , to prove that Ei converge weakly

as A - R, But since Ei is the expectation with respect to

the generalized Gaussian process with mean zero and covariance
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function Gi(x,y;s-t) , the weak convergence of Ei follows

from that of the covariance function. Hence we find that the

limit of (4.26) as A - R exists and is given by

n s
22" 1 r k]
k=0 - (4.27)

B"‘l fB[l
-J e V(g(x,8)) :dxds - e V(E(x,s)):dxds
o 21 21 1

.
)'1E3L r ¥e ©

r S
o k

= (EBLe

¢

L

o

k

1]

where B is the expectation with respect to the generalized
Gaussian process with mean zero and covariance given by the
Greensfunction Ge(x-y,s—t) for the self adjoint operator

L2 2

__%? - fi? + m2 (4.28)
3 53X

on S, xR ., For 0 <1t <8 we have that Gs(x,t) is given by

e PGB (p, t)dp (4.29)

where
éB(p,t) _ [2m(p)(1-e"8w(p))]-1[e—tw(p)4—e'<8_t)w<p)] (4.%0)

—
. 2 2
where w(p) = vp~+m~ .

To prove that (4.27) converges as 1 - co it is again enough,

since F, ¢ (N?Cj) for k= 0,...,n , to prove that Eg con-
verges weakly as 1 -2, To do this we consider the Fourier
transform of the generalized process given by Ei
gl ifjw(x,s)é(x,s)ddej
EjLe ! (4.31)
where ¢ 1is a ¢~ function of compact support in SB x R . By

(4.27) we have that (4.31) is given by
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I T -iflizv(i(x,s)):dxds

.
i

E"Le
4,32
P v(st, o)) o
- s V(E(x,s)):dxds
cr e J_ o ’
. Es[el(W9g) e 0~1 —'
Let ¢ have support in SB s [=a,a] .
Consider now the Hamiltonian H_, on I,(h_,) where h_, =h
8 278 B Aq
with A, = "0,8] with periodic boundary conditions and H8 is
the corresponding periodic Hamiltonian
B
T 3 'r \
Hy = H_+ s V(n(x)):dx (4.33)
' 0
where Hg = Ho(As) . AB = "0,8] with periodic boundary condi-

tions, It is well known both in the polynomial and exponential
case that HB has a simple lowest eigenvalue with a normalized

eigenvector which we denote QB .

By letting in lemma 4.1 B tend to infinity and taking A in

lemma 4,1 fixed equal to the A above, we obtain easily the

B
formulas
FBJI
_ J :V(g(x,s)):dxdsj —01H
gfle ©-1 2= (0g,e Bog) (4.34)
and 5 1
- -7 J s V(§(x,8)):dxds
of i(v,5). “oZe ]
Ele"*"?%e¢ B
4 (4.35)
-(1-a)H, -(1-a)H
= (e %02, Wp_, aq(if)e "ag)

where Q? is the normalized eigenvector of Hg corresponding

to it simple lowest eigenvalue and W t](if) is the unigque
o 9

bounded operator satisfying the strong differential equation
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3
Fr Wrg yp(if) = W, o1 (1) ~Ho+1 [£0x, t) g (x)ax | (4.36)
- 9 L 9 = - > o

where @G(X) is the free field corresponding to Hg , With the

initial condition that

Wrsgsj(if) = 1 (4.37)
and

f(x,t) = 4(t,x) . (4.38)

The analog of (4.34) and (4.35) in the temperature zero case is
well known and used for instance in 7147 where they are called

the Nelson symmetries.

Now that the limit of (4.31) and hence of (4,27) exists as 1- <©

follows simply from the fact that H has a simple lowest eigen-

8
value. Hence we have

Lemma 4,2

& -1

= J :V(E(x,s)):dxds -
B

= ‘ 'J‘!lgv(g(xss)):dxds

g3 e1(H,8)g o1 1

Then the limit E3461(¢,€)> as 1 = oo exists and is given by

I G T ’

B

where f(x,t) = #(t,x) . lMoreover, the measure induced by BT
is locally equivalent to the generalized Gaussian process given
by EB , 1.e, restricted to the subalgebras generated by (¥,%)
for ¢ with support in a fixed interval SB x T-a,a] they are
equivalent, The measure given by Eﬁ: is strongly mixing with

respect to space translations i.e,




i (b, ,8 i XSFD" i(‘l’gsg)
i(w, S)el(tlfg )) - 5¥

(-

lim Efo(e ei(ﬂ”’g))'Eﬁ’o(e )

X = OO

where ¢X(t,y) = ¢ (t,y-x) .

Proof: We have already proved everything up to the moreover

part., The moreover part follows immediately from the formula for
Eﬁ: and the strongly mixing follows from the same formula together
with the fact that 08 belongs to a simple lowest eigenvalue of

HB .

Theorem 4,1

Let L%Q be the local algebra for the interacting field, i.e. the

smallest norm closed C*-algebra in S containing “t(F) for

S
N

all real + and all F € & (&) for eny bounded (7 in R .
There exists then a state g on Lﬁg such that w, 1is invariant

under Ot i.e.
GJF}(BQt(C)) = ﬂ)B(a_t(B)‘C) 9

for any B and C in C/Q. we(B-@t(C)) is analytic in the strip
-3 < Imt < 0 and uniformly bounded and continuous in -8<Imt <O,

and satisfies the KMS conditions on the boundary
U)Q(B'at_lg(c)) = wB(C'a_t(B))

for real t ., o is invariant under space translations

8
%B(BX) = wB(B>
and have the cluster property

lim w,(B.*C) = w,(B)w,(C) .
x »x 0 X 3 8

is locally Fock, i.e., if we restrict w, to the subalgebra

'
]
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generated by at(F) for t in a fixed interval [-a,a] and
I
T e cf(C?) . for a fixed bounded (J , then on this subalgebra

induces the free Fock representation.

[t
F () for some bounded (J then

UJB

Moreover, if FO,...,Fn is in

mB(Foat1(F1)... atn(Fn)) is analytic in 0 > Imty >...>Imt >-3

and continuous and uniformly bounded in 0 > Imty >... > Imt > -8,
and its value at the imaginary points tk = -isk s k=1,0..40n
with O = so_<_s1§...5_sn = B 1s given by
- 5.8 Sy
5a(Foigs (F) e oLy (1) = BALT 25T,

where E3> is the expectation with respect to the generalized

Sy
homogeneous process on SB %« R given in lemma 4.2, and Fkﬁ is

the translated of the function TF by the amount Sy in the

k
action of the circle group SB on SB v R,

Purthermore, if B is in the subalgebra generated by at(F) for
—

t in a fixed interval f-a,a] and T ¢ tf(é}) for a fixed boun-

ded (7 then

©g(B) = lim  lim w%(A)(B) )
T~ A-R

Proof: ILinear combinations of elements of the form Foat1(F1)..
.o atn(Fn) are norm dense in Lﬂ}. We may show in the same way

as for the temperature zero case that w%(A) is locally Fock uni-
formly in 1 and A . Since for 1 ana A big enough aﬁéFk)

- a%k(A)(Fk) and «t(A) 1is strongly combinuous in Fock space

we therefore get that

w%(A)(Foat1(F1) oo oy (F)) (4.39)
n
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when we restrict tk 9 k=1,...,n to a bounded interval is con-

tinuous in t k=1,,..,n uniformly with respect to 1 and

k 9
A . By passing to subsequences we therefore get as first A - R

and then 1 - <o through subsequences that (4.3%9) has a limit

mB(Foat1(F1) cee atn(Fn)) (4.40)

which is continuous in . , k = 1,000, « On the other hand we
have already proved that (4.39) is analytic in 0 > Imt1 >0

. >Imtn > -8B and that at the imaginary points

o (M (B o gy (Fy) wun o gg (F)) (4.47)
n

—is1
with 0 < s, SeenSs, 20, (4.41) converges as first A - R and
then 1 = oo,

If we denote the limit by uw,(T (Fy) vev @ is (Fn)) we gedt
> = n

by lemma 4.2 that

na (P oo (F)eee oy (B)) = EE( I Fkk) . (4.42)

0 —is1
(4.42) being a limit of functions which are uniformly bounded and
analytic in 0 > Imt1:>...:>Imtn > -3 must itself be analytic
and bounded in the same domain., Since (4,40) is the limit of
boundary values of these functions, it must itself be the boun-
dary value of (4.42). But this proves that (4.40) must be inde-
pendent of the subsequences chosen, so that (4.3S) converges as
first A - R and then 1 =<t to a limit (4.40) which is contin-
uwous in %, , k = 1,e00,0 » Hence (4.40) is the boundary value
of a function which is analytic in O > Imt1 >...:>Imtn > -3 and
uniformly bounded and continuous in O > Imt15;...z]mmn > -3 and
its value at the imaginary points is given by (4.42).

Now w5, as limit of states is again a state and extends by con-
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tinuity to all ofi/g . The invariance under oy follows from
the corresponding invariance for w%(A) and similarily the KMS
condition. The translation invariance under space translations
follows from (4.42) and the homogenity of the generalized process
given by Ei). This homogenity follows from lemma 4.2, The
cluster property follows from the fact that Qi) is strongly mix-

ing with respect to space translations. This proves the theorem.

Remark: If we now define the pressure pB(V) at the temperature

% for the interacting field by
pa(V) = s~ 1im !A1§-1log(tr(e—BHl(Al))) (4.43)
. 1 2
with Ay = -1,1] , we get by lemma 4.1 and lemma 4.2 and its
proof that
0g(V) = p3 =87 e (V) (4.44)

. where V describes the interaction so that

1
Hy(Ap) = H_(A))+ [+ v(o(x))sax

and pg is the pressure for the free field given by (3.38) and
(3.41), and eg(V) is the lowest eigenvalue of the periodic

Hamiltonian
8
H = Hﬂ-+f= V(o(x)):dx (4.45)
o = H ]V :

where Hg = HO(FO,B]) with periodic boundary conditions.
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le see that theorem 4.1 gives a certain duality between the Gibbs
state at temperature 1/8 for the infinite volume interaction

and the corresponding vacuum or zero temperature state for the
interaction in a periodic box of length 8 . We shall denote this
duality by the duality principle for the relativistic Gibbs state.
This duality principle may also be expressed in terms of the
Wightman functions or if we want also in terms of the Schwinger

functions for the interaction.
Let o(x,t) be the interacting field at time t , i.e.

o(x,t) = ap(e(x)) (4.46)

where o(x) dis the field at time zero, and (4.46) is an equation
between operator valued distributions in =x for fixed t . The
Wightman functions at temperature 1/2 for the infinite volume

interaction is given by

wﬁ4X19t19---9ant = wB(m(X1¢1)"' Q'D(Xn’tn)) ’ (4.47)

n)

and the Wightman functions for the field in a periodic box of

length 2 , at temperature zero (38 = =0 ) is given by

t ) = (QB9QP(X1’t1)”. QO(Xn9tn)08) (4.48)

WB(X1t1""’Xn n

where QB is a normalized eigenvector belonging to the lowest
eigenvalue eS(V) for the H, , Hamiltonian in a periodix box of

length B8

: V(o(x)) s dx (4.49)

w
[ R

where V is either a polynomial which is bounded below or an ex-

B

ponential function of the type (4.3), and H, 1is the free Hamil-

tonian in a periodic box of length 8 . We have then that (4.47)




is analytic in t1,...,tn in the domain O > Imt1>... >Imtn > -1
and that (4.48) is analytic in Imty>...> Imt, . The values at

for 0O < Sqse0e <8, <3 for

the imaginary points tk = -is, n

FANS

(4,47) and sy <...<s,  for (4.48) is called the Schwinger func-

tions
S (x19 WRTIE SF ) = W (x1;is1,...,xn,-isn) (4.50)
and
V(X1,S1,.¢ag n’v‘n) = ‘Vr:éo(x»]rlSr]gnoc,X 9 ls ) (4‘)51)

We may now express the duvality principle from theorem 4.1 in terms
of Wightman - and Schwinger functions, and this gives us the fol-

lowing duality theorem

Theorem 4,2 (The duality theorem)

Let W§£X1,t1 co Xn,tn) be the Wightmen functions at temperature
1/8  for the infinite volume interaction, and let ng be the usu-
al Wightman functions at temperature zero (g = oo ) for the inter-
acting field in a periodic box of length g8 . Let 823 and §§
be the corresponding Schwinger functions, i.e. the Wightman func-
tions at imaginary time, so that W§1X1t19..,,xntn) and

e . . . . . .
SQ(X1S19...,XnSn) is periodic with period 8 1in Xg,...,X .

n’tn) is enalytic in 0 > Imt,> ... >Imtn:>-8,

and W§1x1,t1,... Xn,u ) dis analytic in Imt1 >...>Imtn , and

for the corresponding Schwinger functions we have

Then W§4X1,t1,... X

X, )

0,
’Sl’l) = SB(S1sx19--vssn9 n

Sg(x s X
fom 19 19."9 n

Moreover the difference between the pressure for the free and the
interacting field at temperature 1/8 is equal to

p(0) = pg(V) = 87 'ey(V)

where e_.(V) is the lowest eigenvalue for the interacting Hamil-
tonian in the periodic box of length 8 .
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