Relativistic Quantum Statistical Mechanics

in two-dimensional Space-Time
by

Raphael. Høegh-Krohn
Institute of Mathematics
University of Oslo
Blindern, Oslo 3, Norway

Abstract

We construct for a boson field in two-dimensional space-time with polynomial or exponential interactions and without cut-offs, the positive temperature state or the Gibbs state at temperature $1 / B$. We prove that at positive temperatures i.e. $B<\infty$, there is now phase transitions and the thermodynamic limit exists and is unique for all interactions. It turns out that the Schwinger functions for the Gibbs state at temperature $1 / \beta$ is after interchange of space and time equal to the Schwinger functions for the vacuum or temperature zero state for the field in a periodic box of length β, and the lowest eigenvalue for the energy of the field in a peroidic box is simply related to the pressure in the Gibbs state at temperature $1 / \beta$.

1. Introduction.

Although the study of the statistical mechanics for quantum systems has made good progress the last ten years [1], the progress has been best for the descrete systems or the lattice systems. The main dificulty in connections with the continuous systems has been that the group of time automorphisms α_{t} for the Schrödinger particles is non local. The consequence of this non locallity is that the infinite system of interacting Schrödinger particles do not agree well with the generally accepted picture of a quantum statistical mechanics described in terms of a local C*-algebra or a C*-algebra of local operators, on which the time acts as a group α_{t} of C^{*}-automorphisms. Hence we get a somewhat discouraging situation, that the only known realistic model of a statistical quentum mechanics, namely the system of interacting Schrödinger particles, does not conform to the highly developed abstract theory of quantum statistical mechanics.

For this very reason the question of studying relativistic particles in stead of Schrödinger particles comes up quite natural, since in any relativistic theory there should be an upper bound for the propagation speed and this would force the group of time automorphisms α_{t} to be local. And this is the motivation for this paper.

Interacting relativistic particles or interacting quantum fields is by now resonably well understood in the case of two space time dimensions. In the case of weak polynomial interaction and strong exponential interactions in two space time dimensions one also has a very clear picture of what happens with the vacuum in the infinite volume limit, or as we would like to say it here,
one has a very clear picture of the theromodynamic limit in the case of temperature zero. For the weak polynomial interactions this was done by Glimm and Spencer [2], and in the case of exponential interactions by Albeverio and Høegh-Krohn [3]. Hence good candidates for a quantum statistical mechanics of interacting relativistic particles are the polynomial and exponential interactions in two space-time dimensions.

In this paper I study the thermodynaimc limit of the positive temperature Gibbs state for the polynomial and exponential interactions in two space time dimensions.

The methode I use is strongly influenced by recent works by Nelson [4], and may be denoted as Markoff field approach. The Markoff field approach was also a main ingredience in [3] and played also a certain role in [2]. One of the advantages of the Markoff field approach is to make available for quantum fields the menthods of classical statistical mechanics, and this is the way it is used in [3], lending havily on the work of Guerra, Rosen and Simon 「5] ; that introduces a framework which describes the Markoff fields as Ising ferromagnetic systems.

The way the Markoff field approach is used here is somewhat different. In this paper we use the Markoff field to transform the problem about the thermodynamic limit for the Gibbs state at temperature $1 / 3$ for the relativistic quantum statistical system into the problem of the uniqueness of the vaccum for the system in a periodic box of length B.

In fact it turns out that for any of the interactions we consider, namely the polynomial and the exponential interaction, the Markoff fields for the Gibbs state at temperature $1 / \beta$ is the Markoff field on the cylinder $S_{\beta} \times R$, where S_{Q} is a circle
of length β, that correspond to the Markoff field for the vacuum in the plane $R \times R$, and this last Markoff field is the limit of the first one as the temperature $1 / \beta$ goes to zero.

Using this methods it is proved that the termodynamic limit for the Gibbs state exists for all positive temperatures $1 / \beta$ and all interactions i.e. for strong exponential interactions as well as strong polynorial interactions.

We see that this is in strong contrast to the vacuum or temperature zero case for the polynomial interactions, where Glimm and Spencer were only able to prove the existence of the infinite volume limit for weak interactions, and from Dobrushin and Minlos [6] we know by now that this is best possible, in fact for any polynomial interaction in two space-time dimensions they get that the thermodynamic limit is not unique in the temperature zero case for strong enough interactions. The reason for this difference is the above mentioned fact that while for the temperature zero case we have a Markoff field in plane $R \times R$ so that the problem is two dimensional, we have for positive temperature a Markoff field on the cylinder $S_{\beta} \times R$ so that the problem is essentially one dimensional, and therefore in a sence much simpler.

The Gibbs state at positive temperature $1 / B$ is of course not invariant under the Lorentz group since it is given in terms of the energy operator. There is however, a Lorentz invariant analogy of the Gibbs state at positive temperature 1/B. But this Lorentz invariant Gibbs state is only to be found in a closed universe, the so called De Sitter universe, and it will lead too far to give the construction of the positive temperature state in the De Sitter universe in this paper. This will be delt with separately in a forthcomming paper.

2. The Gibbs-state for the harmonic oscillator.

Consider the self adjoint operator

$$
\begin{equation*}
H_{0}=-\frac{1}{2} \Delta+\frac{1}{2}\left(x, A^{2} x\right)-\frac{1}{2} \operatorname{tr} A \tag{2.1}
\end{equation*}
$$

on the \because Hilbert space $\mathcal{P}=I_{2}\left(R^{\mathbb{N}}\right)$, where $\Delta=\sum_{i=1}^{N} \frac{\partial^{2}}{\partial x_{i}^{2}}$ and A is a real symmetric $N \times \mathbb{N}$ matrix bounded below by a positive constant, $A \geq c I, C>0, X \in M^{M V}$ and (,) is the natural inner product in $R^{\text {IT }}$.

Let $\lambda_{1}, \ldots, \lambda_{N}$ be the eigenvalues of A. It is well known that H_{o} has descrete spectrum consisting of the points of the form

$$
\begin{equation*}
\sum_{k=1}^{n} \lambda_{i_{k}} \tag{2.2}
\end{equation*}
$$

and zero. Hence for a positive $B, e^{-\mathrm{CH}} \mathrm{O}$ is of trace class and we get

$$
\operatorname{tr} e^{-B H_{0}}=\sum_{n_{1} \geq 0, \ldots, n_{N} \div 0} e^{-\beta \sum_{i=1}^{N} n_{i} \lambda_{i}}
$$

hence

$$
\begin{equation*}
\operatorname{tr} e^{-\beta H_{0}}=\prod_{i=1}^{N}\left(1-e^{-\beta \lambda_{i}}\right)^{-1} \tag{2.3}
\end{equation*}
$$

Let $V(x) \geq-b$ be a real measurable function bounded below such that

$$
\begin{equation*}
H=H_{o}+V(x) \tag{2.4}
\end{equation*}
$$

is essentially self adjoint. We say that H is the Hamiltonian for the anharmonic oscillator. From $V \geq-b$ we get $H \geq H_{o}-b$, which gives us that H has descrete spectrum and together with (2.2) it gives a lower bound for the eigenvalues of H, which is transformed into an upper bound for the eigenvalues of $e^{-3 H}$.

Hence $e^{-9 H}$ is of trace class. Therefore we may form the normal state ω_{3} on the von Neumann algebra $B(\phi)$ of all bounded operators on \dot{f}, given by

$$
\begin{equation*}
\omega_{B}(A)=\left(\operatorname{tr} e^{-8 H}\right)^{-1} \operatorname{tr}\left(A e^{-B H}\right) \tag{2.5}
\end{equation*}
$$

for $A \in B(\mathbb{P}) . \omega_{B}$ is called the Gibbs-state for the anharmonic oscillator.

By the Feynmann-Kac formula we know that the kernel $e^{-8 H}(x, y)$ of the operator $e^{-9 H}$ is given by

$$
\begin{equation*}
e^{-\beta H}(x, y)=E_{(x, y)}^{\beta}\left[e^{-\int_{0}^{B} U(x(\tau)) d \tau}\right] \tag{2.6}
\end{equation*}
$$

with $U(x)=\frac{1}{2}\left(x, A^{2} x\right)+V(x)$ and
$\mathbb{E}_{(x, y)}^{B}$ is the conditional expectation with respect to the Brownian motion in R_{N} given that $x(0)=x$ and $x(3)=y$. So that $E_{(0,0)}^{3}$ is the expectation with respect to the normal distribution indexed by the real Hilbert space h of continuous functions $x(\tau)$ from $[0, B]$ into $R^{\mathbb{N}}$, such that $x(0)=x(B)=0$ and the norm square

$$
\begin{equation*}
\int_{0}^{3}\left(\frac{d x(\tau)}{d \tau}, \frac{d x(\tau)}{d \tau}\right) d \tau \tag{2.7}
\end{equation*}
$$

is finite.
Consider the Hilbertspace $I_{2}\left([0,3] j_{2}^{N}\right)$ of L_{2}-integrable functions from $[0, \beta]$ into $N_{i}^{\mathbb{N}}$, and let $k_{i, j}(s, t)$ be the kernel of the inverse operator of the self adjoint operator $-\frac{d^{2}}{d \tau^{2}}$ with boundary conditions $x(0)=x(\beta)=0$ on $L_{2}\left([0, \beta] ; R^{N}\right)$. Then

$$
k_{i j}(s, t)=k(s, t) \delta_{i j}
$$

and

$$
k(s, t)= \begin{cases}\frac{1}{3} s(\beta-t) & s \leq t \tag{2.8}\\ \frac{1}{\beta}(\beta-s) t & s \geq t\end{cases}
$$

The normal distribution indexed by h is the same as the Gaussian prosses with mean zero and covariance function $k_{i j}(s, t)$.

It is well known that the Brownian motion hence also the prosses above has support on the continuous functions from [0, 3$]$ into $R^{\text {IN }}$.

In terms of the measures introdused above $E_{(x, y)}^{3}$ is the expectation with respect to the measure obtained from the normal distribution endexed by h by a transformation on the continuous functions from $[0,8]$ into $R^{\mathbb{N}}$ given by

$$
\begin{equation*}
x(\tau) \rightarrow x+\frac{\tau}{\beta}(y-x)+x(\tau) \tag{2.9}
\end{equation*}
$$

From (2.6) we now get that the kernel $e^{-\beta H}(x, y)$ is a continuous function of x and y. It is well known in that case that $\operatorname{tr} e^{-\beta H}=\int e^{-\beta H}(x, x) d x$, which together with (2.6) gives

$$
\begin{equation*}
\left.e^{-\int_{0}^{\beta} U(x(\tau)) d \tau}\right] d x \tag{2.10}
\end{equation*}
$$

By (2.9) $\mathbb{E}_{(x, x)}^{9}$ is the expectation with respect to the measure on the continuous periodic functions from $[0, \beta]$ into R^{N} obtained from the normal distribution indexed by h by the transformation $\mathrm{X}(\tau) \rightarrow \mathrm{x}(\tau)+\mathrm{X}$.

$$
\begin{align*}
& \text { Since } U(x)=\frac{1}{2}\left(x, A^{2} x\right)+V(x) \text { we have that } \tag{2.11}\\
& \int_{R^{\mathbb{N}}} E^{?}(x, x)\left[e^{-\int_{0}^{\beta} U(x(\tau)) d \tau}\right] d x \\
& =\int_{R^{\mathbb{N}}} E^{\beta}(x, x)\left[e^{\left.-\frac{1}{2} \int_{0}^{3}\left(x(\tau), A^{2} x(\tau)\right) \cdot e^{-\int_{0}^{\beta} V(x(\tau)) d \tau}\right] d x .}\right.
\end{align*}
$$

On the other hand we easily verify that for any real continuous function F defined on the space of continuous periodic functions from $[0,3]$ into $R^{\mathbb{N}}$

$$
\begin{equation*}
\left.\int_{R^{\mathbb{N}}} \mathbb{B}_{(x, x)}^{\left[e^{-\frac{1}{2} \int_{0}^{B}\left(x(\tau), A^{2} X(\tau)\right.}\right.} \mathbb{F}\right] d x=C \mathbb{E}^{\beta}[F] \tag{2.12}
\end{equation*}
$$

where E^{β} is the expectation with respect to the normal distribution indexed by the real Hilbert space g of continuous periodic functions from $[0, B]$ into $R^{\mathbb{N}}, x(0)=x(B)$, such that the norm square

$$
\begin{equation*}
\int_{0}^{\beta}\left[\left(\frac{d x(\tau)}{d \tau}, \frac{d x(\tau)}{d \tau}\right)+\left(x(\tau), A^{2} x(\tau)\right)\right] d \tau \tag{2.13}
\end{equation*}
$$

is finite. C is some positive constant independent of F. By setting $V=0$ in (2.11) we get that $C=\operatorname{tr} e^{-B H_{0}}$. We have thus proved the following formula

$$
\begin{equation*}
\operatorname{tr} e^{-\beta H}=\operatorname{tr} e^{-\beta H_{0}} E^{\beta}\left[e^{-\int_{0}^{\beta} V(x(\tau)) d \tau}\right] \tag{2.14}
\end{equation*}
$$

where E^{β} is the expectation with respect to the normal distribution indexed by the real Hilbertspace g of periodic functions from $[0,8]$ into $R^{\mathbb{N}}$ with norm square given by (2.13). Now $\operatorname{tr} e^{-\beta H_{0}}$ is given by (2.3), and since $1-e^{-3 \lambda_{i}}$ are the eigenvalues of the real symmetric matrix $1-e^{-0 A}$ we get from (2.3) that

$$
\begin{equation*}
\operatorname{tr} e^{-\beta H_{0}}=\left|1-e^{-\beta A_{1}}\right|-1 \tag{2.15}
\end{equation*}
$$

where $\left|1-e^{-3 A}\right|$ is the determinant of the matrix $1-e^{-B A}$. Hence (2.14) may be written

$$
\begin{equation*}
\operatorname{tr} e^{-8 H}=\mid 1-e^{-B A_{1}-1} E^{\beta}\left[e^{-\int_{0}^{0} V(x(\tau)) d \tau}\right] . \tag{2.16}
\end{equation*}
$$

Let now $F_{i} \in B(\nmid) \quad i=0, \ldots, n$ be multiplication operators by bounded continuous functions $F_{i}(x), " i=0, \ldots, n$, and let $0=s_{o} \leq s_{1} \ldots \leq s_{n-1} \leq s_{n}=\beta$.
Consider the operator

$$
\begin{equation*}
F_{0} e^{-s_{1} H} F_{1} e^{-\left(s_{2}-s_{1}\right) H} \cdots F_{n} e^{-\left(s_{n}-s_{n-1}\right) H} \tag{2.17}
\end{equation*}
$$

From (2.6) we have that the kernel of $F_{i} e^{-\left(s_{i+1}-s_{i}\right) H}$ is given by

$$
\begin{equation*}
F_{i}(x) e^{-\left(s_{i+1}-s_{i}\right)} \underset{(x, y)}{ }=E_{(x, y)}^{s_{i+1}^{-s_{i}} \sum_{i}} F_{i}(x(0)) e^{-\int_{0}^{I+1} U(x(\tau)) d \tau} \tag{2.18}
\end{equation*}
$$

Since the Brownian motion is a homogeneous prosess, (1.18) may be written in the form

$$
\begin{equation*}
\left.\mathbb{E}_{(x, y)}^{\left[s_{i}, s_{i+1}\right]} \Gamma_{F_{i}}\left(x\left(s_{i}\right)\right) e^{-\int_{s_{i}}^{s_{i+1}} U(x(\tau)) d \tau}\right] \tag{2.19}
\end{equation*}
$$

where ${ }^{E}(x, y)$ (s, $\left.s_{i+1}\right]$ is the conditional expectation with respect to the Brownian motion given that $x\left(s_{i}\right)=x$ and $x\left(s_{i+1}\right)=y$. Utilizing now the Markovian properties of the Brownian motion we get that the kernel of the operator $F_{0} e^{-s_{1} H_{F_{1}} e^{-\left(s_{2}-s_{1}\right) H}}$ is given by

$$
\begin{equation*}
=\mathbb{F}_{(x, y)}^{\left[0, s_{2}\right]}\left[F_{0}(x(0)) F_{1}\left(x\left(s_{1}\right)\right) e^{-\int_{0}^{2} U(x(\tau)) d \tau}\right] \tag{2.20}
\end{equation*}
$$

By induction we get the kernel of the operator (2.17) is given by

$$
\begin{equation*}
\left.E_{(x, y)}^{\beta} \prod_{i=0}^{n-1} F_{i}\left(x\left(s_{i}\right)\right) e^{-\int_{0}^{\beta} U(x(\tau)) d \tau}\right] \tag{2.21}
\end{equation*}
$$

By computing the trace of this kernel in the same way as we computed the trace (2.16) of the kernel (2.6), we prove the following theorem.

Theorem 2.1:

Let $F_{i} \in B(\not \subset) \quad i=0, \ldots, n$ be multiplication operators by bounded continuous functions $F_{i}(x), i=0, \ldots, n$, let $0=$ $s_{o} \leq s_{1} \ldots \leq s_{n}=\beta$, and let H be the Hamiltonian for the anharmonic oscillator (2.4) then

$$
\begin{align*}
& \operatorname{tr}\left(F_{0} e^{-s_{1} H} F_{1} e^{-\left(s_{2}-s_{1}\right) H} \ldots F_{n-1} e^{-\left(\beta-s_{n-1}\right) H}\right) \\
= & \left|1-e^{-\beta A}\right|-1_{E^{\beta} r} e^{-\int_{0}^{\beta} V(x(\tau)) d \tau_{n-1}} \underset{\left.M_{i=0} F_{i}\left(x\left(s_{i}\right)\right)\right]}{ } \tag{2.22}
\end{align*}
$$

where $\left|1-e^{-3 A}\right|$ is the determinant of the matrix $1-e^{-3 A}$ and E^{3} is the expectation with respect to the normal distrubution indexed by the real Hilbert space g of continuous periodic functions from $[0,3]$ into $R_{\mathbb{N}}, x(0)=x(0)$, with norm square equal to

$$
\int_{0}^{\beta}\left[\left(\frac{d x(\tau)}{d \tau}, \frac{d x(\tau)}{d \tau}\right)+\left(x(\tau), A^{2} x(\tau)\right)\right] d \tau .
$$

By a direct calculation one easily verifies the following remark.

Remark: The expectation E^{β} in the theorem above is the expectation with respect to the homogeneous Gaussian prosess on a circle of length β with values in $R^{\mathbb{N}}$ given by the covariance matrix $E^{3}\left(x_{i}(s) x_{j}(t)\right)$ equal to the matrix

$$
\begin{equation*}
\frac{1}{3} A^{2}+\frac{2}{3} \sum_{n=1}^{\infty}\left(\frac{4 \pi^{2}}{3^{2}} n^{2}+A^{2}\right)^{-1} \cos \frac{2 \pi}{8} n(s-t) \tag{2.23}
\end{equation*}
$$

Summing up this series we get a more explicit expression for the
covariance matrix

$$
\begin{equation*}
E^{3}\left(x_{i}(0) x_{j}(t)\right)=\left(2 A\left(e^{B A}-1\right)\right)^{-1}\left[e^{(B-t) A}+e^{t A}\right] \tag{2.24}
\end{equation*}
$$

for $0 \leq t \leq 3$.
Let α_{t} be the C^{*}-automorphism of $B(i f)$ defined by

$$
\begin{equation*}
\sigma_{t}(B)=e^{-i t H} B e^{i t H} \tag{2.25}
\end{equation*}
$$

then

$$
\begin{align*}
& \operatorname{tr}\left(B \alpha_{t}(C) e^{-B H}\right) \\
= & \operatorname{tr}\left(B e^{-i t H} C e^{-(0-i t) H}\right) \tag{2.26}\\
= & \operatorname{tr}\left(C e^{-(B-i t) H} B e^{-i t H}\right)
\end{align*}
$$

is analytic in t in the strip $\beta<\operatorname{Im} t<0$, with boundary values at real t equal to $\operatorname{tr}\left(B \alpha_{t}(C) e^{-\beta H}\right)$ and at t-i β equal to $\operatorname{tr}\left(\mathrm{C}_{-}(B) e^{-3 H}\right)$.

Consider now an operator of the form (2.17).

$$
\begin{equation*}
\operatorname{tr}\left(F_{0} e^{-s_{1} H} F_{1} e^{-\left(s_{2}-s_{1}\right) H} \ldots F_{n-1} e^{-\left(3-s_{n-1}\right) H}\right) \tag{2.27}
\end{equation*}
$$

is obviously analytic in the domain $0<\operatorname{Res}_{1}<\operatorname{Res}_{2} \ldots<\operatorname{Res}_{n-1}<\beta$ with boundary values at $\operatorname{Res}_{i}=0, i=0, \ldots, n$ which are continuous and uniformly bounded and given by

$$
\begin{equation*}
\operatorname{tr}\left(F_{0} \alpha_{t_{1}}\left(F_{1}\right) \alpha_{t_{2}}\left(F_{2}\right) \cdots \alpha_{t_{n-1}}\left(F_{n-1}\right) e^{-\beta H}\right) \tag{2.28}
\end{equation*}
$$

for $s_{k}=i t_{k}, k=1, \ldots, n-1$.
The continuity of (2.28) follows from the strong continuity of $e^{i t i l}$

Lemma 2.1: Let $t_{i} \in R$ and F_{i} be bounded continuous functions on $R^{\mathbb{N}}$, then $B(\nmid Y)$ is the smallest strongly closed linear space of operators that contains all operators of the form

$$
\alpha_{t_{1}}\left(F_{1}\right) \cdot \alpha_{t_{2}}\left(F_{2}\right) \cdots \alpha_{t_{n}}\left(F_{n}\right)
$$

Proof: Since the smallast strongly closed linear space containing the operators above is obviously a strongly closed $C \%$-algebra of operators, it is enough to prove that if $B \in B(O f)$ commute with $\alpha_{t}(F)$ for all t and all continuous functions F then $B=\lambda I$. Therefore assume $\left[B, \alpha_{t}(F)\right]=0$ for all t and F. Then $\left[\alpha_{t}(B), F\right]=0$ for $a l l \mathrm{~F}$ and t, hence $\alpha_{t}(B)$ is a multiplication operator by an I_{∞}-function for all t. Hence for any real I_{x}-function W

$$
\begin{equation*}
e^{i s W} \alpha_{t}(B) e^{-i s W}=\alpha_{t}(B) \tag{2.29}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left(e^{i \frac{t_{W}}{n}} e^{-i \frac{t_{n}}{n}}\right)^{n} B\left(e^{i \frac{t_{H}}{n}} e^{-i \frac{t_{W}}{n}}\right)^{n}=\alpha_{t}(B) \tag{2.30}
\end{equation*}
$$

By the Trotter-Kato product formula

$$
\begin{equation*}
\text { strong } \lim _{n \rightarrow \infty}\left(e^{i \frac{t_{H}}{n}} e^{-i \frac{t_{W}}{n}}\right)^{n}=e^{i t(H-W)} \tag{2.31}
\end{equation*}
$$

and therefore by (2.30)

$$
\begin{equation*}
\alpha_{t}(B)=e^{-i t(H-W)} B e^{i t(H-W)} \tag{2.32}
\end{equation*}
$$

By letting $W(x)$ increase to $U(x)$, we get that $(1+H-W)^{-1}$ increase to $\left(1-\frac{1}{2} \Delta\right)^{-1}$ so that $(1+H-W)^{-1}$ converge strongly to $\left(1-\frac{1}{2} \Delta\right)^{-1}$ and so by the semigroup theorem $e^{i t(H-W)}$ converge strongly to $e^{-i \frac{t}{2} \Delta}$. Hence by (2.32) we get that

$$
\alpha_{t}(B)=e^{i \frac{t}{2} \Delta} B e^{-i \frac{t}{2} \Delta}
$$

Since $\alpha_{t}(B)$ is a multiplication operator for all t we have that B is a multiplication operator. But it is easy to see that if B is not equal to λI, then $e^{i \frac{t}{2} \Delta} B e^{-i \frac{t}{2} \Delta}$ is not a
multiplication operator. This proves the lemma.

Using that ${ }^{w_{3}}$ is a normal state we get the following theorem

Theorem 2.2 Let B and C be in $B(d f)$, then

$$
\omega_{\rho}\left(B \alpha_{t}(C)\right)=\omega_{B}\left(\alpha_{-t}(B) \cdot C\right)
$$

is analytic in the strip $-\beta<\operatorname{Im} t<0$, and continuous and uniformly bounded in $\beta \leq \operatorname{Im} t \leq 0$. The boundary values satisfy the KMS condition

$$
w_{8}\left(B \alpha_{t-i \beta}(C)\right)=\omega_{\beta}\left(C \alpha_{-t}(B)\right)
$$

for real t.
Moreover, any operator B in $B(f)$ may be approximated strongly by linear combinations of operators of the form $\alpha_{t_{1}}\left(F_{1}\right) \alpha_{t_{2}}\left(F_{2}\right) \ldots$.. $\alpha_{t_{n}}\left(F_{n}\right)$, where F_{1}, \ldots, F_{n} are multiplication operators by continuous functions $F_{1}(x), \ldots, F_{n}(x)$, hence ${ }_{\beta}(B)$ will also be approximated by the same linear combinations of ${ }_{\beta}\left(\alpha_{t_{1}}\left(F_{1}\right) \alpha_{t_{2}}\left(F_{2}\right) \ldots \alpha_{t_{n}}\left(F_{n}\right)\right)$. Furthermore $\omega_{\beta}\left(F_{0} \alpha_{t_{1}}\left(F_{1}\right) \ldots\right.$ $\left.\ldots \alpha_{t_{n}}\left(F_{n}\right)\right)$ is analytic in $0>\operatorname{Im}_{1}>\ldots>\operatorname{Im} t_{n}>-\beta$ and its value for $t_{k}=-i s_{k} k=1, \ldots, n$ with $0=s_{o} \leq s_{1} \leq \ldots \leq s_{n} \leq \rho$ is given by

$$
\begin{aligned}
& 0_{\beta}\left(F_{0}^{\alpha} \alpha_{-i s_{1}}\left(F_{1}\right) \cdots \alpha_{-i s_{n}}\left(F_{n}\right)\right) \\
= & \left(E^{\beta}\left[e^{-\int_{0}^{\beta} V(x(\tau)) d \tau}\right]\right)^{-1} E^{\beta} \prod_{i=0}^{n} F_{i}\left(x\left(s_{i}\right)\right) e^{-\int_{0}^{\beta} V(x(\tau)) d \tau}
\end{aligned}
$$

where E^{ρ} is the expectation given in theorem 2.1.

Let $\Lambda \subset R^{n}$ be a bounded domain in R^{n} with a regular boundary $\partial \Lambda$. Let $A_{\Lambda}^{2}=-\Delta+m^{2}$ where Δ is the Laplace operator in Λ with some self adjoint boundary conditions on $\partial \Lambda$. If the constant functions satisfies the boundary conditions we shall assume that $m>0$ if not only that $m \geq 0$, so that in any case, A_{Λ}^{2} is a self adjoint operator on the real Hilbert space $\mathrm{I}_{2}^{\mathrm{R}}(\Lambda)$ and

$$
\begin{equation*}
A_{\Lambda} \geq c I, \quad c>0 \tag{3.1}
\end{equation*}
$$

It is well known that A_{Λ} has descrete spectrum and that $e^{-B A_{\Lambda}}$ is of trace class for all $\beta>0$, so that the Fredholm determinant $\left|1-e^{-\beta A} \Lambda\right|$ exists, and by (3.1) it is different from zero.

Let h_{Λ} be the real Hilbert space $D\left(A_{\Lambda}\right) \subset L_{2}^{R}(\Lambda)$ with norm square equal to

$$
\begin{equation*}
2\left(x, A_{\Lambda} x\right) \tag{3.2}
\end{equation*}
$$

for $x \in D\left(A_{\Lambda}\right)$ where (,) is the inner product in $I_{2}^{R}(\Lambda)$. h_{Λ} depends of course also on the boundary conditions on $\partial \Lambda$. Let now $I_{2}\left(h_{\Lambda}\right)$ be the complex Hilbert space of I_{2} integrable functions with respect to the normal distribution indexed by the real Hilbert space h_{Λ}.

The Ifamiltonian $H_{o}(\Lambda)$ for the free scalar field in Λ with mass m and the given boundary conditions is a self adjoint operator on $I_{2}\left(h_{\Lambda}\right)$ which is denoted by

$$
\begin{equation*}
H_{0}(\Lambda)=-\frac{1}{2} \Delta_{\Lambda}+\frac{1}{2}\left(x, A_{\Lambda}^{2} x\right)-\frac{1}{2} \operatorname{tr} A_{\Lambda} \tag{3.3}
\end{equation*}
$$

Where Δ_{Λ} denotes the Laplace operator on $I_{2}^{R}(\Lambda)$ and (,) is the inner product on $I_{2}^{R}(\Lambda)$. (3.3) is not a definition of $H_{0}(\Lambda)$
but just a convenient notation. We shall now give the proper definition of $H_{0}(\Lambda)$.
Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be the complete orthonormal base in $L_{2}^{R}(\Lambda)$ of eigenfunctions for A_{Λ}

$$
\begin{equation*}
A_{\Lambda} e_{k}=\lambda_{k} e_{k} \tag{3.4}
\end{equation*}
$$

The probability space for the normal distribution $d n_{h}$ indexed by the real Hilbert space h_{Λ} is then in a natural way identified with infinite product of the probability spaces for the one dimensional normal distributions

$$
\begin{equation*}
d n_{\lambda_{k}}=\left(\frac{\lambda_{k}}{\pi}\right)^{\frac{1}{2}} e^{-\lambda_{k} x_{k_{k x}}^{2}}{ }_{d x_{k}}, \tag{3.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
d n_{h_{\lambda}}={\underset{k=1}{X} d n_{\lambda_{k}} ~ . ~}_{\infty} \tag{3.6}
\end{equation*}
$$

Hence $I_{2}\left(h_{\Lambda}\right)$ may be identified with the infinite tensor product

$$
\begin{equation*}
L_{2}\left(h_{\Lambda}\right)=\bigotimes_{k=1}^{\infty} L_{2}\left(d n_{\lambda_{k}}\right) \tag{3.7}
\end{equation*}
$$

relative to the vectors $f_{k} \in L_{2}\left(d n_{\lambda_{k}}\right)$ given by $f_{k}\left(x_{k}\right)=1$. Now $I_{2}\left(d n_{\lambda_{k}}\right)$ may be identified with $I_{2}(R)$ by the identification

$$
\begin{equation*}
g\left(x_{k}\right) \longleftrightarrow\left(\frac{\lambda_{k}}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \lambda_{k} x_{k_{k}}^{2}}{ }_{g}\left(x_{k}\right) \tag{3.8}
\end{equation*}
$$

for $g \in I_{2}\left(d n_{\lambda_{k}}\right)$. Therefore $I_{2}\left(h_{\Lambda}\right)$ may be identified with the infinite tensor product

$$
\begin{equation*}
I_{2}\left(h_{\Lambda}\right)={\underset{K}{X}}_{\infty}^{\infty} I_{2}(R) \tag{3.9}
\end{equation*}
$$

relative to the vectors $g_{k} \in I_{2}(R)$ given by

$$
\begin{equation*}
g_{k}\left(x_{k}\right)=\left(\frac{\lambda_{k}}{\pi}\right)^{1 / 4} e^{-\frac{1}{2} \lambda_{k} x_{k}^{2}} . \tag{3.10}
\end{equation*}
$$

Let now $H_{\lambda_{i}}$ be the Hamiltonian for a one dimensional harmonic oscillator given by

$$
\begin{equation*}
H_{\lambda_{k}}=-\frac{1}{2} \frac{d^{2}}{d x_{i}^{2}}+\frac{\lambda_{k}^{2}}{2} x_{k}^{2}-\frac{\lambda_{k}}{2} \tag{3.11}
\end{equation*}
$$

as a self adjoint operator on the k-th component in the tensor product (3.9). $e^{i t H_{k}}$ is then a strongly continuous unitary group on the k-th component which leaves the vector g_{k} invariant. It is then well known that the infinite tensor product $\bigotimes_{k=1}^{\infty} e^{i t H_{k}}$ exists and forms a strongly continuous unitary group on the infinite tensor product (3.9). We now define $H_{o}(\Lambda)$ as the self adjoint infinitesimal generator of this unitary group on $I_{2}\left(h_{\Lambda}\right)$.

Definition:

$$
\begin{equation*}
e^{i t H_{0}(\Lambda)}=\bigotimes_{k=1}^{\infty} e^{i t H_{k}} \tag{3.12}
\end{equation*}
$$

relative to the tensor decomposition (3.9).
From this definition we get immediately that $e^{-\mathrm{BH}_{0}(\Lambda)}$ is of trace class for $3>0$ and that

$$
\begin{equation*}
\operatorname{tr} e^{-\beta H_{0}(\Lambda)}=\mid 1-e^{-R A_{1}-1} . \tag{3.13}
\end{equation*}
$$

We now define the Gibbs-state for the free scalar field of mass m in Λ with the given boundary conditions by

$$
\begin{equation*}
\omega_{\beta}^{0}(\Lambda)(B)=\left(\operatorname{tr} e^{-\beta H_{0}(\Lambda)}\right)^{-1} \operatorname{tr}\left(B e^{-\beta H_{0}(\Lambda)}\right) \tag{3.14}
\end{equation*}
$$

for any B in the $C^{*}-a l g e b r a \quad B\left(I_{2}\left(h_{\Lambda}\right)\right)$.
Let F be a bounded continuous function on R^{N}. From (3.9) we get the following tensor decomposition

$$
\begin{equation*}
\left.I_{2}\left(h_{\Lambda}\right)=I_{2}\left(R^{N}\right) \otimes \Gamma_{k=N+1}^{\infty} I_{2}(R)\right] \tag{3.15}
\end{equation*}
$$

where the infinite tensor product here is also relative to the vektors (3.10). F may then be identified with an element $F \otimes 1$ of $B\left(L_{2}\left(h_{\Lambda}\right)\right)$ in accordance with the tensor decomposition (3.15). We shall denote this element in $B\left(I_{2}\left(h_{\Lambda}\right)\right)$ also by F. By $I_{x}\left(h_{\Lambda}\right)$ we shall understand the maximal abelian algebra in $B\left(I_{2}(h)\right)$ containing all bounded continuous functions F on $R^{\mathbb{N}}$ for all values of N. It is obvious that $I_{\infty}\left(h_{\Lambda}\right)$ is the space of I_{∞}-functions on the probability space assosiated with the normal distribution indexed by h_{Λ}.
Let $H_{o}^{N N}(\Lambda)$ be the infinitesimal generator of the unitary group on $L_{2}\left(R^{\mathbb{N}}\right)$ given by

$$
\begin{equation*}
e^{i t H_{o}^{\mathbb{N}}(\Lambda)}=\underset{k=1}{\mathbb{N}} e^{i t H_{k}}, \tag{3.16}
\end{equation*}
$$

and let $F_{0, \ldots,}{ }_{n-1}$ be bounded continuous functions on $R^{\mathbb{N}}$ and $0=s_{o} \leq \ldots \leq s_{n}=3$. It follows then immediately from the definition (3.12) of $H_{o}(\Lambda)$ that if we consider $F_{o, \ldots,} F_{n-1}$ as elements in $I_{\infty}\left(h_{\Lambda}\right)$ then

$$
\begin{align*}
& \operatorname{tr}\left(F_{0} e^{-s_{1} H_{o}(\Lambda)} F_{1} e^{-\left(s_{2}-s_{1}\right) H_{0}(\Lambda)} \ldots F_{n-1} e^{-\left(\beta-s_{n-1}\right) H_{0}(\Lambda)}\right) \\
= & \prod_{k=\mathbb{N}+1}^{\infty}\left(1-e^{-3 \lambda_{k}}\right)^{-1} \operatorname{tr}_{N N}\left(F_{0} e^{-s_{1} H_{o}^{N}(\Lambda)} \ldots F_{n-1} e^{-\left(\beta-s_{n-1}\right) H_{o}^{N N}(\Lambda)}\right) \tag{3.17}
\end{align*}
$$

where $\operatorname{tr}_{\mathbb{N}}$ is the trace in $\mathrm{L}_{2}\left(\mathrm{R}^{\mathbb{N}}\right)$. By theorem 2.1

$$
\begin{align*}
& \operatorname{tr}_{N}\left(F_{o} e^{-s_{1} H_{o}^{N}(\Lambda)} \ldots F_{n-1} e^{-\left(\beta-s_{n-1}\right) H_{o}^{N}(\Lambda)}\right) \tag{3.18}\\
= & \left.\prod_{k=1}^{N}\left(1-e^{-\beta \lambda_{k}}\right)^{-1} E_{N}^{\beta} \Gamma \prod_{i=0}^{n-1} F\left(x\left(s_{i}\right)\right)\right]
\end{align*}
$$

where $\mathbb{E}_{\bar{N}}^{3}$ is the expectation with respect to the normal distribution indexed by the real Hilbert space $g_{\mathbb{N}}$ of continuous func-
tions from the circle S_{3} of length B into $R^{\mathbb{N}}$ with norm square equal to

$$
\begin{equation*}
\left.\sum_{k=1}^{N} \int_{0}^{B} \Gamma\left(\frac{d x_{k}}{d \tau}\right)^{2}+\lambda_{k}^{2}\left(x_{k}(\tau)\right)^{2}\right\rfloor d \tau \tag{3.19}
\end{equation*}
$$

Let $g_{B}(\Lambda)$ be the real Hilbert space of functions from $S_{\beta} \times \Lambda$ into R such that the norm square

$$
\begin{equation*}
\int_{0}^{3} \int_{\Lambda}\left[\left(\frac{\partial \xi}{\partial t}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial \xi}{\partial x_{i}}\right)^{2}+m^{2} \xi^{2}\right] d x d t \tag{3.20}
\end{equation*}
$$

is finite
and such that for all $t, 0 \leq t \leq B, \quad \zeta(x, t)$ satisfies the self adjouint boundary conditions given by A^{2}. If we consider $\xi(x, t)$ as a function $\eta(t)$ from S_{β} into $L_{2}^{R}(\Lambda)$, then (3.20) takes the form

$$
\begin{equation*}
\left.\int_{0}^{B} r\left(\frac{d \eta}{d \tau}, \frac{d \eta}{d \tau}\right)+\left(\eta(\tau), A_{\Lambda}^{2} \eta(\tau)\right)\right] d \tau \tag{3.21}
\end{equation*}
$$

From (3.19) it then follows that $g_{\mathbb{N}}$ is a closed subspace of $g_{8}(\Lambda)$ generated by all functions $\eta(t)$ such that $\eta(t)$ is in the subspace of $I_{2}^{R}(\Lambda)$ generated by the \mathbb{N} first eigenvectors e_{1}, \ldots, e_{N} of A, for all $t, 0 \leq t \leq B$. This together with (3.17) and (3.18) gives then that

$$
\begin{align*}
& \operatorname{tr}\left(F_{0} e^{-s_{1} H_{o}(\Lambda)} F_{1} e^{-\left(s_{2}-s_{1}\right) H_{0}(\Lambda)} \ldots F_{n-1} e^{-\left(\beta-s_{n-1}\right) H_{o}(\Lambda)}\right) \\
= & \left|1-e^{-\beta A^{\prime}}\right|^{-1} E_{\Lambda}^{\beta}\left[\prod_{i=0}^{n-1} F_{i}\left(\eta\left(s_{i}\right)\right)\right], \tag{3.22}
\end{align*}
$$

where E_{Λ}^{8} is the expectation with respect to the normal distribution indexed by the real Hilbert space $g_{p}(\Lambda)$. Since the bounded continuous functions on R^{N} are obviously weakly dense in $I_{\infty}\left(h_{\Lambda}\right)$, we may extend (3.22) to arbitrary
$\mathrm{F}_{0}, \ldots, \mathrm{~F}_{\mathrm{n}-1}$ in $\mathrm{I}_{\infty}\left(\mathrm{h}_{\Lambda}\right)$. Utilizing the remark following theorem 2.1 we may also compute the covariance for E_{Λ}^{β}. We have thus the following theorem.

Theorem 3.1: Let F_{0}, \ldots, F_{m-1} be in $I_{\infty}\left(h_{\Lambda}\right)$, and $0=s_{0} \leq s_{1} \leq$ $\ldots \leq s_{m}=\beta$, then

$$
\begin{aligned}
& \operatorname{tr}\left(F_{0} e^{-s_{1} H_{0}(\Lambda)} F_{1} e^{-\left(s_{2}-s_{1}\right) H_{0}(\Lambda)} \ldots F_{m-1} e^{-\left(8-s_{m-1}\right) H_{0}(\Lambda)}\right) \\
= & \left.\mid 1-e^{-\beta A_{1}-1} E_{\Lambda}^{\beta} \prod_{i=0}^{m-1} F_{i}\left(\eta\left(s_{i}\right)\right)\right]
\end{aligned}
$$

where \mathbb{E}^{β} is the expectation with respect to the normal distribution indexed by the real Hilbert space $g_{\beta}(\Lambda)$, of functions from the circle S_{β} of length ρ into $D\left(A_{\Lambda}\right)$ with norm square equal to

$$
\int_{0}^{e}\left[\left(\frac{d \eta}{d \tau}, \frac{d \eta}{d \tau}\right)+\left(\eta(\tau), A_{\Lambda}^{2} \eta(\tau)\right)\right] d \tau,
$$

where (,) is the inner product in $I_{2}^{R}(\Lambda) \cdot E^{3}$ may also be characterized as the Gaussian distribution with mean zero and covariance which is invariant on S_{β} and given by

$$
\left.E_{\Lambda}^{B} \Gamma(\varphi, \eta(0))(\psi, \eta(t))\right]=\left(\varphi,\left(2 A\left(1-e^{-\beta A} \Lambda\right)^{-1}\left(e^{-t A} \Lambda+e^{-(\beta-t) A} \Lambda\right) \psi\right)\right.
$$

for $0 \leq t \leq \beta$,
where φ and ψ are in $I_{2}(\Lambda)$ and (,) is the inner product in $I_{2}(\Lambda)$.
If we consider the elements in $g_{\beta}(\Lambda)$ as functions $\xi(x, t)$ from $S_{\beta} \times \Lambda$ into R satisfying the proper boundary conditions on $\partial \Lambda$, then $\mathbb{E}_{\Lambda}^{\beta}$ may be characterized as the expectation with respect to the generalized Gaussian prosess on $S_{3} \because \Lambda$ with covariance function given by

$$
E_{\Lambda}^{B}(\xi(x, s) \xi(y, t))=G_{\Lambda}^{3}(x, y, s-t)
$$

where $G_{\Lambda}^{3}(x, y, s-t)$ is the Greensfunction for the self adjoint operator $-\frac{\partial^{2}}{\partial t^{2}}-\Delta+m^{2}$ on $S_{B} \times \Lambda$ with the corresponding self adjoint boundary conditions on $\partial \Lambda$.

We define now the C^{*}-automorphism $\alpha_{t}^{0}(\Lambda)$ on $B\left(I_{2}\left(h_{\Lambda}\right)\right)$ by

$$
\begin{equation*}
\sigma_{t}^{o}(\Lambda)(B)=e^{-i t H_{0}(\Lambda)} B e^{i t H_{0}(\Lambda)} \tag{3.23}
\end{equation*}
$$

Then for B and C in $B\left(I_{2}\left(h_{\Lambda}\right)\right)$ we have that

$$
\begin{equation*}
\omega_{\beta}^{0}(\Lambda)\left(B \cdot \alpha_{t}^{\circ}(\Lambda)(C)\right)=\omega_{\beta}^{0}(\Lambda)\left(\alpha_{-t}^{\circ}(\Lambda)(B) \cdot C\right) . \tag{3.24}
\end{equation*}
$$

Moreover (3.24) is an analytic function of t in the strip $-\beta<\operatorname{Im} t<0$, which is continuous and uniformly bounded in $-\beta \leq \operatorname{Im} t \leq 0$, and the boundary values satisfies the KMS condition

$$
\begin{equation*}
W_{\beta}^{0}(\Lambda)\left(B \cdot \alpha_{t-i \beta}^{0}(\Lambda)(C)\right)=\omega_{\beta}^{0}(\Lambda)\left(C \alpha_{-t}^{0}(\Lambda)(B)\right) . \tag{3.25}
\end{equation*}
$$

Futher more, if $F_{o, \ldots,} F_{n}$ are in $I_{\infty}\left(h_{\Lambda}\right)$ then

$$
\omega_{R}^{\circ}(\Lambda)\left(F_{0} \alpha_{t_{1}}^{o}(\Lambda)\left(F_{1}\right) \ldots \alpha_{t_{m}}^{o}(\Lambda)\left(F_{m}\right)\right)
$$

is analytic in $0>\operatorname{Im}_{1}>\ldots>\operatorname{Im}_{m}>-8$ and continuous and uniformly bounded in $0 \geq \operatorname{Im} t_{1} \geq \ldots \geq \operatorname{Imt}_{\text {In }} \geq-\beta$, and its value for $t_{k}=-i s_{k}, k=1, \ldots, m$ with $0=s_{o} \leq s_{1} \ldots \leq s_{m}=3$ is given by

$$
\begin{equation*}
\left.{ }_{3}^{0}(\Lambda)\left(F_{o} \alpha_{-i s_{1}}^{o}(\Lambda)\left(F_{1}\right) \ldots \alpha_{-i s_{m}}^{o}(\Lambda)\left(F_{m}\right)\right)=E_{\Lambda}^{\beta}{\underset{K}{k=0}}_{m}^{M} F_{k}\left(\eta\left(s_{k}\right)\right)\right] \tag{3.26}
\end{equation*}
$$

Let $\Theta \subset R^{n}$ be a bounded open set in R^{n} and let $\varphi \in C_{0}^{\infty}(\theta)$ and real. It is easily seen that the normal distribution indexed by h_{Λ} is quasi-invariant under the transformation $\eta \rightarrow \eta+\varphi$, if $\theta \subset \Lambda$. Hence this transformation induces a unitary transformation $U(\varphi)$ on $I_{2}\left(h_{\Lambda}\right)$. Let $V(\varphi)$ be the unitary transformation of multiplication by the $I_{\infty}\left(h_{\Lambda}\right)$ function $e^{i(\varphi, \eta)}$
where (,) is the inner product in $I_{2}(\Lambda)$. $\mathcal{A}_{0}(O)$ is then the smallest norm closed algebra in $B\left(I_{2}\left(h_{\Lambda}\right)\right)$ containing $U(c)$ and $V(\varphi)$ for all real $\varphi \in C_{0}^{\infty}(\theta)$. Since $\mathcal{A}_{0}(\theta)$ is a $C H-$ algebra which is fatefully represented in each $B\left(I_{2}\left(h_{\Lambda}\right)\right)$ for all $\Lambda=\theta, \mathscr{H}_{0}(\mathscr{\varphi}$ will not depend on the particular Λ as soon as $\Lambda \supset \mathscr{G}$.

By (3.2) the normal distribution indexed by h_{Λ}, may be characterized as the generalized Gaussian prosess with mean zero and covarians function $G_{\Lambda}(x, y)$, where $G_{\Lambda}(x, y)$ is the Greens function for the selfadjoint operator A_{Λ}. Let now θ be contained in the interior of Λ_{1} and Λ_{2}. Since ${ }^{G} \Lambda_{1}(x, y)-G_{\Lambda_{2}}(x, y)$ is a smooth function for x and y in $(y$, it follows that the conditional expectations of the normal distributions indexed by ${ }^{h_{\Lambda_{1}}}$ and $h_{\Lambda_{2}}$ with respect to the σ-algebra generated by functions of the form (φ, η) with $\varphi \in C_{0}^{\infty}(\theta)$ are equivalent measures. From this it immediately follows that $\theta_{0}(\theta)$ has equivalent representations in $B\left(I_{2}\left(h_{\Lambda_{1}}\right)\right)$ and $B\left(I_{2}\left(h_{\Lambda_{2}}\right)\right)$, so that the strong closure $\bar{\theta}(\theta)$ of $\sigma_{0}(\theta)$ in $B\left(L_{2}\left(h_{\Lambda}\right)\right)$ is independent of Λ as soon as θ is contained in the interior of Λ. We have obviously that $\bar{A}\left(\theta_{1}\right) \subseteq \bar{A}\left(\theta_{2}\right)$ if $\theta_{1} \subset \theta_{2}$. Let $\overline{\mathscr{A}}$ be the norm closure of $u\left\{\theta(\theta) \mid \theta \subset R^{n}\right\}$.

Let now $B \in \bar{\theta}(\gamma)$. It is then well known that $\alpha_{t}^{o}(\Lambda)(B) \in$ $\bar{A}\left(C_{t}\right)$, where \mathscr{C}_{t} is the open set of points with distance smal-
 as soon as θ_{t} is contained in the interior of Λ. We shall denote this independent value by $\alpha_{t}^{0}(B) \cdot \alpha_{t}^{0}$ is then a $C^{\%}$-isomorphism from $\bar{\theta}(\theta)$ into $\bar{\theta}\left(\theta_{t}\right)$ for any θ, hence it extends to a C^{*}-automorphism of $\overline{\mathcal{A}}$.

Now let $f(\circlearrowleft)$ be all functions in $I_{\infty}\left(h_{\Lambda}\right)$ of the form $f\left(\left(\eta, \varphi_{1}\right),\left(\eta, \varphi_{2}\right), \ldots,\left(\eta, \varphi_{N}\right)\right)$, where $f\left(x_{1}, \ldots, x_{N}\right)$ is bounded continuous function on $R^{\mathbb{T} T}$ and $\varphi_{1}, \ldots, \varphi_{\text {NJ }}$ is in $C_{o}^{\infty}(\vartheta)$. We denote by A_{0} the smallest norm closed $C^{*}-a l g e b r a$ in $\hat{A}_{\text {which }}$ contains all operators of the form $\alpha_{t}^{\circ}(F)$, for $F \in \hat{f}(\theta)$ for some θ. A. is then obviously invariant under α_{t}^{0}, and we shall say that \mathcal{A}_{0} is the local algebra for the free field. Let $F_{0, \ldots, F_{m}}$ be in $\mathscr{F}(\theta)$ for some θ. We shall then show that

$$
\begin{equation*}
\omega_{\beta}^{\circ}(\Lambda)\left(F_{o} \alpha_{t_{1}}^{\circ}\left(F_{1}\right) \ldots \alpha_{t_{m}}^{\circ}\left(F_{m}\right)\right) \tag{3.27}
\end{equation*}
$$

converge as Λ tends to R^{n} in such a way that it finally contains all bounded sets, independently of the boundary conditions on $\partial \Lambda$. To see this, choose any $T>0$. Then for $\left|t_{k}\right| \leq T$, $k=1, \ldots, m$, since Λ finally contains any bounded set, we have that from a certain point on \mathcal{V}_{T} is contained in the interior of Λ, but then (3.27) is equal to

$$
\begin{equation*}
\omega_{\beta}^{\circ}(\Lambda)\left(F_{o} \alpha_{t_{1}}^{\circ}(\Lambda)\left(F_{1}\right) \ldots \alpha_{t_{m}}^{\circ}\left(F_{m}\right)\right) \tag{3.28}
\end{equation*}
$$

Now (3.28) is analytic in $0>\operatorname{Im}_{1}>\ldots>\operatorname{Imt}_{m}>-\beta$ and uniformly bounded and continuous in $0 \geq \operatorname{Im}_{1} \geq \ldots \geq \operatorname{Im} t_{m} \geq-\beta$. The value of (3.28) at the imaginary points $t_{k}=-i s_{k}, k=1, \ldots, m$ and $0=s_{o} \leq s_{1} \ldots \leq s_{m}=0$ is by (3.26) given by

$$
\begin{equation*}
\left.\omega_{B}^{0}(\Lambda)\left(F_{0} \alpha_{-i s_{1}}^{0}(\Lambda)\right)\left(F_{1}\right) \ldots \alpha_{i s_{m}}^{0}(\Lambda)\left(F_{m}\right)\right)=E_{\Lambda}^{B}\left[\sum_{k=0}^{m} F_{k}^{s_{k}}\right] \tag{3.29}
\end{equation*}
$$

where $F_{k}{ }_{k}$ is the translated by an amount s^{k} around the circle S_{B} of the functions F_{k} in $\hat{f}(G)$. Since $F_{k}, k=0, \ldots, n$ are continuous bounded functions of the stochastic variables
$\left(\eta, \varphi_{1}\right), \ldots,\left(\eta, \varphi_{n}\right)$, we get that (3.29) converge if the corresponding correlation function converge since $\mathbb{E}_{\Lambda}^{\beta}$ is the expectation with respect to a Gaussian distribution. We shall now assume that the mass $m>0$. By theorem 3.1 the correlation function for E_{Λ}^{3} is given by $G_{\Lambda}^{\beta}(x, y, s-t)$. That $G_{\Lambda}^{\beta}(x, y, s-t)$ converges as Λ tends to R^{n} in such a way that it finally contains all bounded sets follows from the fact that G_{Λ}^{β} is the Greenfunction for the self adjoint operator

$$
\begin{equation*}
-\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}+m^{2} \tag{3.30}
\end{equation*}
$$

on $S_{B} \times \Lambda$, with some self dajoint boundary conditions on $\partial \Lambda$. So that as Λ tends to R^{n} in such a way as to finally containing any bounded set we get that $G_{\Lambda}^{\beta}(x, y, s-t)$ converge weakly to $G^{B}(x, y, s-t)$ which is the Greensfunction on $S_{B} \times R^{n}$ for the operator (3.30).
Since the local algebra for the free field \mathcal{C}_{0} is the smallest norm closed C^{*}-algebra containing $\alpha_{t}^{0}(F)$ for all t and $r \in \widetilde{F}(\theta)$ for some θ, we have that elements of the form $\mathbb{F}_{0} \alpha_{t_{1}}^{0}\left(F_{1}\right) \ldots \alpha_{t_{m}}^{0}\left(F_{m}\right)$ is norm dense in \mathcal{A}_{0}. Hence we have proved the following theorem.

Theorem 3.2 Let A_{0} be the local algebra for the free field, then α_{t}° defines a group of C^{*}-automorphism of \mathcal{A}_{c}. There is a state ω_{β}° on A_{o} which is invariant under α_{t}° i.e.

$$
\omega_{\beta}^{0}\left(B \cdot \alpha_{t}^{0}(C)\right)=\omega_{\beta}^{0}\left(\alpha_{-t}^{0}(B) \cdot C\right),
$$

such that $w_{\beta}^{O}\left(B \alpha_{t}^{O}(C)\right)$ is analytic in the strip $-3<\operatorname{Im} t<0$ and uniformly bounded and continuous in $-\beta \leq \operatorname{Im} t \leq 0$, and satisfies the KMS conditions on the boundary

$$
\omega_{\beta}^{0}\left(B \cdot \alpha_{t-i \beta}^{0}(C)\right)=\omega_{B}^{0}\left(C \cdot \alpha_{-t}^{0}(B)\right)
$$

for real t.
Moreover, if $F_{0, \ldots,} F_{m}$ is in the subalgebra of A_{0} generated by the fields at time zero then $\omega_{\beta}^{o}\left(F_{o} \alpha_{t_{1}}^{o}\left(F_{1}\right) \ldots \alpha_{t_{m}}^{o}\left(F_{m}\right)\right)$ is anaIytic in $0>\operatorname{Im}_{1}>\ldots>\operatorname{Im}_{m}>-\beta$ and continuous and uniformly bounded in $0 \geq \operatorname{Imt}_{1} \geq \ldots \geq-\beta$, and its value at the imaginary points $t_{k}=-i s_{k}, k=1, \ldots, m$ with $0=s_{o} \leq s_{1} \ldots \leq s_{m}=B$ is given by

$$
\omega_{3}^{0}\left(F_{o} \alpha_{-i s_{1}}^{o}\left(F_{1}\right) \ldots \alpha_{-i s_{m}}^{o}\left(F_{m}\right)\right)=E^{B}\left[\prod_{k=0}^{m} F_{k}^{S_{k}}\right],
$$

where E^{β} is the expectation with respect to the generaliized Gaussian process with mean zero and covariance function $G^{B}(x-y, s-t)$, which is the Greensfunction on $S_{B} \because R^{n}$ for the self adjoint operator

$$
-\frac{\partial^{2}}{\partial t^{2}}-\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}+m^{2}
$$

on $I_{2}\left(S_{B} \times R^{n}\right)$,
and $F_{k}^{S_{k}}$ is the translated by the action of the circle group S_{B} on $S_{B} \times R^{n}$ of the function F_{k} by the amount s_{k}. Further more, if $B \in A_{0}$ is in $\bar{A}(\theta)$ for some bounded θ then

$$
w_{B}^{O}(B)=\lim _{\Lambda} \omega_{\beta}^{O}(\Lambda)(B)
$$

as Λ tends to R^{n} in the sense that Λ finally contains any fixed bounded set.

Remark: Utilizing the formula (2.24) we get that $G^{3}(x, t)$ is given by

$$
\begin{equation*}
G^{B}(x, s)=\frac{1}{(2 \pi)^{n}} \int_{R^{n}} \hat{G}^{B}(p, s) e^{-i p x} d p \tag{3.31}
\end{equation*}
$$

where for $0 \leq s \leq 8$

$$
\begin{equation*}
\hat{G}^{?}(p, s)=\left(2 w\left(1-e^{-\beta w}\right)\right)^{-1}\left(e^{-s w}+e^{-(\beta-s) w}\right) \tag{3.32}
\end{equation*}
$$

with $0=\omega(p)=\sqrt{p^{2}+m^{2}}$.
If we introduce the annihilation creation operators and the free fields we have the relations

$$
\left.\varphi(x, t)=\frac{1}{\sqrt{2}}(2 \pi)^{-\frac{n}{2}} \int \Gamma e^{i(p x+\omega t)} a^{*}(p)+e^{-i(p x+\omega t)} a(p)\right] \frac{d p}{\omega(p)^{\frac{1}{2}}}(3.33)
$$

where $\varphi(x, t)$ is the free field at time t.
The operator that counts the number of particles with momentum $\mathrm{p} \in \Omega$ in a region $\Omega \subset \mathrm{R}^{\mathrm{n}}$ of momentumspace is given by

$$
\begin{equation*}
N(\Omega)=\int_{\Omega} a^{*}(p) a(p) d p \tag{3.34}
\end{equation*}
$$

Introducing now the function

$$
\begin{equation*}
\Delta^{0}(x, t)=G^{\beta}(x,-i t) \tag{3.35}
\end{equation*}
$$

so that

$$
\begin{equation*}
\hat{\Delta}^{3}(p, t)=\left(20\left(1-e^{-3 m}\right)\right)^{-1}\left(e^{i t w}+e^{-B \omega} e^{-i t o j}\right) \tag{3.36}
\end{equation*}
$$

we get the following formula for computing expectations of products of fields

$$
w_{B}^{0}\left(\varphi\left(x_{1}, t_{1}\right) \ldots o\left(x_{n}, t_{n}\right)\right)= \begin{cases}\Sigma \Delta^{3}\left(x_{i_{1}}-x_{i_{2}}, t_{i_{1}}-t_{i_{2}}\right) \ldots \Delta^{3}\left(x_{i_{n-1}}-x_{i_{n}}, t_{i_{n-1}}-t_{i_{n}}\right) \\ \text { for } n \text { even } \\ 0 & \text { for } n \text { odd }\end{cases}
$$

where the summation runs over all partitions of (1,..., 2k) with $2 k=n$ into disjoint pairs $\left(i_{1}, i_{2}\right)\left(i_{3}, i_{4}\right) \ldots\left(i_{n-1}, i_{n}\right)$. If we define the pressure for the free field at temperature $\frac{1}{3}$ in the usual way by

$$
\begin{equation*}
p_{Q}^{0}=B^{-1} \lim _{\Lambda \rightarrow R^{n}}|\Lambda|^{-1} \log \left(\operatorname{tr}\left(e^{-\beta H_{0}(\Lambda)}\right)\right) \tag{3.38}
\end{equation*}
$$

where $|\Lambda|$ is the volume of Λ,
we get by using the formla

$$
\begin{equation*}
\operatorname{tr}\left(e^{-3 H_{0}(\Lambda)}\right)=\mid 1-e^{-\beta A_{1}} \Lambda_{\mid}-1 \tag{3.39}
\end{equation*}
$$

together with well known asymptotic formulas for the eigenvalues of the Laplaeien Δ in Λ as Λ increase to R^{n}, we get that the limit (3.39) always exists and is given by

$$
\begin{equation*}
p_{\beta}^{0}=-(2 \pi)^{-n_{B}}-1 \int_{R^{n}} \log \left(1-e^{-\beta \omega(p)}\right) d p . \tag{3.40}
\end{equation*}
$$

If we take $\Lambda_{1}=\left[-\frac{1}{2}, \frac{1}{2}\right]^{n}$ with periodic boundary conditions we have that $A_{\Lambda_{I}}$ has the eigenvalues

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left(\frac{2 \pi n}{I}\right)^{2}+m^{2}\right)^{\frac{1}{2}} \tag{3.41}
\end{equation*}
$$

where $\left(n_{1}, \ldots, n_{n}\right) \in \mathbb{Z}^{n}$. In this case we have the annihilation creation operators $a_{1}^{*}(p)$ and $a_{1}(p)$ with $p \in \frac{2 \pi}{1} \cdot \mathbb{Z}^{n}$, for $H_{o}\left(\Lambda_{1}\right)$. The operator that counts the number of particles with momentum $p \in \Omega$ in a region $\Omega \subset \mathbb{R}^{n}$ is now given by

$$
\begin{equation*}
\mathbb{N}_{1}(\Omega)=\sum_{p \in \Omega} a_{1}^{*}(p) a_{1}(p) \tag{3.42}
\end{equation*}
$$

If we now compute the expected number of particles for the system in Λ_{1} we get

$$
\begin{equation*}
\omega_{\Omega}^{0}\left(\Lambda_{1}\right)\left(N_{1}(\Omega)\right)=\sum_{p \in \Omega} \frac{e^{-\beta \omega(p)}}{1-e^{-\beta \omega(p)}} \tag{3.43}
\end{equation*}
$$

We now define the density of particles with momentum in Ω by

$$
\begin{equation*}
\int_{\Omega} \rho_{\beta}^{o}(p) d p=\lim _{\Lambda_{I} \rightarrow R^{n}} \mid \Lambda_{I}:-1: 讠_{\beta}^{o}\left(\Lambda_{I}\right)\left(N_{I}(\Omega)\right) \tag{3.44}
\end{equation*}
$$

Then this limit exists and is given by

$$
\begin{equation*}
\int_{\Omega}^{0} O_{\beta}^{o}(p) d p=(2 \pi)^{-n} \int_{\Omega} \frac{e^{-\beta u(p)}}{1-e^{-\beta \omega(p)}} d p . \tag{3.45}
\end{equation*}
$$

So that then density of particles with momentum p exists and is given by

$$
\begin{equation*}
\rho_{B}^{o}(p)=(2 \pi)^{-n} \frac{e^{-\beta \omega(p)}}{1-e^{-\beta \omega(p)}} \tag{3.46}
\end{equation*}
$$

and the particle density is given by

$$
\begin{equation*}
\rho_{\beta}^{0}=(2 \pi)^{-n} \int_{R^{n}} \frac{e^{-\beta w(p)}}{1-e^{-\beta \omega(p)}} d p . \tag{3.47}
\end{equation*}
$$

In correspondence with (3.4) and (3.4) we may introduce the partial pressure due to particles with momentum p by

$$
\begin{equation*}
p_{\theta}^{o}(p)=-(2 \pi)^{-n} 0^{-1} \log \left(1-e^{-\beta \omega(p)}\right) \tag{3.48}
\end{equation*}
$$

If we want to express the state ${ }_{\omega}^{\omega}{ }_{\beta}^{0}$ in terms of annihilation creation operators

$$
\begin{equation*}
a^{\#}(h)=\int h(p) a^{\frac{\pi}{\hbar}}(p) d p \tag{3.49}
\end{equation*}
$$

where a^{*} stands for a or a^{*}, and $h \in L_{2}\left(R^{n}\right)$.

$$
\begin{align*}
& \text { Then we have the formula } \\
& \qquad w_{0}^{\circ}\left(e^{i(a *(\bar{h})+a(h))}\right)=e^{-\left.\frac{1}{2} \int \ln (p)\right|^{2} \frac{1+e^{-\log (p)}}{1-e^{-2 \omega(p)}} d p} . \tag{3.50}
\end{align*}
$$

As a comparison we have that the corresponding quantity for a system of free Schrödinger particles at temperature 3 and activity z is given by

$$
\begin{align*}
& \text { is given by } \\
& -\frac{1}{2} \int|h(p)|^{2} \frac{1+z e^{-\frac{B}{2 m} p^{2}}}{1-z e^{-\frac{\beta}{2 m} p^{2}}}{ }^{\alpha p} \tag{3.51}
\end{align*}
$$

To within the non relativistic approximation

$$
\omega(p) \sim m+\frac{1}{2 m} p^{2}
$$

we see that ω_{β}^{0} is the Gibbs state of free Schrödinger particles of mass m at temperature β and activity $z=e^{-m \beta}$.
4. The Gibbs-state for the interacting scalar quantum field in two space-time dimensions.

In the case of two space-time dimensions or equivalentely one space dimension, the interacting scalar field is relatively well understood in the case of polynomial interactions ([2],[7], [8], [9] and [10]) and exponential interactions ([3] and [11]). In the case of positive mass $m>0$, it was proved by GlimmSpencer [2] that the thermodynamic limit for the temperature zero $(3=-0)$ state existed and is unique for weak polynomial interactions. More recently Nelson [12] have established the existence of the thermodynamic limit for strong polynomial interactions with Dirichlet boundary conditions. Nelson's method which depends strongly on the Dirichlet boundary conditions leads to the question of whether this limit is unique, and in fact Dobrushin and Minlos [6] have announced the result that there is a certain critical value for the interaction strength for any polynomial interaction above which the limit is not unique. For the strong exponential interaction the existence and uniqueness of the termodynamic limit for the temperature zero state was recently proved by Albererio and Høegh-Krohn [3], in the case of even interactions. From what is said above we see that the thermodynamic behavior of the temperature zero state is quite complex and that by the result of Dobrushin and Mihlos there are phasetransitions of the temprature zero state for the polynomial interactions.

In contrast with this complex picture for the temperature zero state, we shall see that for the positive temperature ($0<\infty$)
state or the Gibbs state the thermodynamic limit always exists and is unique for the polynomial interactions as well as for the exponential interactions, without any restriction on the strength of the interaction, in the case of two space-time dimensions.

Now let

$$
\begin{equation*}
H_{1}=H_{0}+\int_{-1}^{1}: V(\varphi(x)): d x \tag{4.1}
\end{equation*}
$$

where $\varphi(x)$ is the time zero free field of positive mass $m>0$, in two space time dimensions, and $V(s)$ is either a polynomial which is bounded below

$$
\begin{equation*}
V(s)=P(s) \tag{4.2}
\end{equation*}
$$

or an exponential function i.e.

$$
\begin{equation*}
V(s)=\int e^{\alpha s} d u(\alpha) \tag{4.3}
\end{equation*}
$$

where $d \mu$ is a positive measure of compact support in the open intervall $(-\sqrt{2 \pi}, \sqrt{2 \pi})$.
H_{o} is the Hamiltonian for the free scalar field φ. H_{l} is then the Hamiltonian for the corresponding interacting field with a space cut off interaction. For details concerning the definition of H_{1} the reader should consult the references [7] and「10] for the case (4.2) and the references [11] for the case (4.3) .

It is known that H_{1} is essentially self adjoint on the intersection of the domains of H_{o} and V_{I}

$$
\begin{equation*}
V_{I}=\int_{-1}^{1}: V(\varphi(x): d x \tag{4.4}
\end{equation*}
$$

and that H_{1} is bounded below

$$
\begin{equation*}
\mathrm{H}_{1} \geq-\mathrm{b} \tag{4.5}
\end{equation*}
$$

where b is some real number depending on V_{1}, so that $e^{-\beta H_{1}}$ is a bounded operator.

We will now construct the Gibbs state for the space cut-off interaction (4.1).

Let Λ be an interval containing the interval [-1, 1$]$ in its interior, then we set

$$
\begin{equation*}
H_{I}(\Lambda)=H_{0}(\Lambda)+\int_{-1}^{I}: V(\varphi p(x)): d x . \tag{4.6}
\end{equation*}
$$

By the same methods that proves that H_{1} is essentially self adjoint and bounded below we get that $H_{l}(\Lambda)$ is essentially self adjoint and bounded below. Moreover, we also get that $\mathrm{H}_{\mathrm{I}}(\Lambda$) has descrete spectrum and that $e^{-\beta H_{1}(\Lambda)}$ is of trace class. We shall start by computing the trace of $e^{-\beta H_{1}(\Lambda)}$. By the method of hypercontractivity [13] in the same way as for H_{l}, we have that $H_{1}(\Lambda)$ may be approximated by operators H_{n} such that

$$
\begin{equation*}
\left\|e^{-\beta H_{l}(\Lambda)}-e^{-\beta H_{n}}\right\| \rightarrow 0 \tag{4.7}
\end{equation*}
$$

and H_{n} has the form

$$
\begin{equation*}
H_{1}(\Lambda)=H_{0}(\Lambda)+V_{1}^{(n)} \tag{4.8}
\end{equation*}
$$

where $V_{l}^{(n)}$ is in $F(\sigma)$ for some $\vartheta \subset \Lambda$. We shall prove below that

$$
\begin{equation*}
\operatorname{tr} e^{-\beta H_{n}} \rightarrow \operatorname{tr} e^{-\beta H_{1}(\Lambda)} \tag{4.9}
\end{equation*}
$$

Since $V_{l}^{(n)}$ is bounded we get by the Trotter-Kato product formula that

$$
\begin{equation*}
\underset{k \rightarrow \infty}{\operatorname{strong}} \lim \left[e^{-\frac{\beta}{k} H_{o}(\Lambda)} e^{-\frac{\beta}{k} V_{l}^{(n)}}\right]^{k}=e^{-\beta H_{n}}, \tag{4.10}
\end{equation*}
$$

but this may obviously also be written in the form

$$
\underset{k \rightarrow \infty}{\operatorname{strong}} \lim \left[e^{-\frac{3}{2 k} H_{0}(\Lambda)} e^{-\frac{\beta}{k} V_{1}(n)} e^{-\frac{8}{2 k} H_{0}(\Lambda)}\right]^{k}=e^{-3 H_{n}} . \quad \text { (4.11) }
$$

Now let $V_{1}^{(n)} \geq-c$, where c of course depends on n. Then

$$
\begin{equation*}
\left\|e^{-\frac{3}{k} V_{1}^{(n)}}\right\| \leq e^{\frac{3}{k} c} \tag{4.12}
\end{equation*}
$$

hence

$$
\begin{equation*}
e^{-\frac{\beta}{2 k} H_{0}(\Lambda)} e^{-\frac{\beta}{k} V_{l}(n)} e^{-\frac{B}{2 k} H_{0}(\Lambda)} \leq e^{\frac{\beta}{k} c} e^{-\frac{\beta}{k} H_{0}(\Lambda)}, \tag{4.13}
\end{equation*}
$$

so that the i-th eigenvalue of

$$
\begin{equation*}
\left[e^{-\frac{\beta}{2 k} H_{o}(\Lambda)} e^{-\frac{\beta}{k} V_{1}(n)} e^{-\frac{\beta}{2 k} H_{o}(\Lambda)}\right]^{k} \tag{4.14}
\end{equation*}
$$

is smaller or equal to $e^{3 C}$ times the $i-t h$ eigenvalue of $e^{-3 H_{0}(\Lambda)}$
$\mathrm{e}^{-\mathrm{NH}}$. On the other hand we have by (4.11) that the i-th eigenvalue of (4.14) converge to the i-th eigenvalue of $e^{-\beta H_{n}}$. Hence by dominated convergence we get that the trace of (4.14) converge to the trace of $e^{-\beta H_{n}}$, since $e^{-\beta H_{0}(\Lambda)}$ is of trace class.

However the trace of (4.14) is by theorem 3.1 given by

$$
\begin{equation*}
\left.\left|1-e^{-B A} \Lambda\right|^{-1} E_{\Lambda}^{3} \Gamma \exp \left\{-\frac{\beta}{K} \sum_{j=1} V_{1}^{(n)}\left(n\left(\frac{3}{k}\left(j-\frac{1}{2}\right)\right)\right)\right\}\right] \tag{4.15}
\end{equation*}
$$

Since the transformation $V_{1}^{(n)}(\eta(0)) \rightarrow V_{1}^{(n)}(\eta(s))$ is induced by the action of the circle group S_{β} on $S_{\beta} \times \Lambda$, and the generalized Gaussian process corresponding to $\mathbb{E}_{\Lambda}^{\beta}$ is homogeneous with respect to this action, we have that the transformation is given by a strongly continuous unitary group on I_{2} of the corresponding process, and therefore $V_{l}^{(n)}(\eta(s))$ is a strongly continuous function of s in the I_{2} space of the process. Hence we get the
strong I_{2}-convergence

$$
\begin{equation*}
\frac{\rho}{\mathrm{K}} \sum_{j=1}^{k} V_{l}^{(n)}\left(n\left(\frac{3}{\mathrm{~K}}\left(j-\frac{1}{2}\right)\right)\right) \rightarrow \int_{0}^{3} V_{l}^{(n)}(\eta(s)) d s \tag{4.16}
\end{equation*}
$$

as $k \rightarrow \infty$. By passing to an almost everywhere convergent subsequence, we get by dominated convergence the corresponding convergence of (4.15). Hence we have that

$$
\begin{equation*}
\operatorname{tr} e^{-3 H_{n}}=\left|1-e^{-3 A} \Lambda\right|^{-1} E_{\Lambda}^{\beta}\left[e^{-\int_{0}} V_{l}^{(n)}(\eta(s)) d s\right] \tag{4.17}
\end{equation*}
$$

Now the approximation of $V_{I}=\int_{-1}^{1}: V\left(\varphi(x): d x\right.$ by functions $V_{I}^{(n)}$ in $\mathscr{f}(\theta)$ may be carried out ${ }^{-1}$ in two steps. First we approximate $V_{1}^{[a, b]}$, where $V_{1}^{[a, b]}$ is equal to V_{1} in those points where V_{1} has values in the interval $[a, b]$ and $V_{1}^{[a, b]}$ is equal to zero elsewhere. Under this approximation we have that $V_{l}^{(n)}$ is uniformly bounded below so that $e^{-\beta H_{n}} \leq e^{c \beta} \cdot e^{-\beta H_{o}(\Lambda)}$ and by hypercontractivity $e^{-3 H_{n}}$ converge to $e^{-3\left(H_{0}(\Lambda)+V_{1}^{[a, b]}\right)^{9}}$ in norm, so that $\operatorname{tr} e^{-\beta H_{n}}$ converce by dominated convergence. On the other hand the right hand side of (4.17) will also converge by dominated convergence since under this approximation $\mathrm{V}_{\mathrm{l}}^{(\mathrm{n})}$ is uniformly bounded below.

Then we remove a and b by first letting $a \rightarrow-\infty$ and then $b \rightarrow \infty$. In both cases we have that both sides of the equation

$$
\operatorname{tr} e^{-3\left(H_{0}(\Lambda)+V_{1}[a, b]\right)}=\left|1-e^{-3 A} \Lambda\right|^{-1} \mathbb{E}_{\Lambda}^{3}\left[e^{-\int_{0}^{\beta} V_{1}[a, b]}(\eta(s)) d s\right](4.18)
$$

converges by monoton convergence. Hence we have proved the following formula

$$
\begin{equation*}
\operatorname{tr} e^{-\beta H_{l}(\Lambda)}=\mid 1-e^{-3 A} \Lambda_{1}-1_{A}\left[e^{-\int_{0}^{B} V_{l}(\eta(s)) d s}\right] \tag{4.19}
\end{equation*}
$$

Recalling the form of V_{I} this may also be written

In the same way as we proved the formula (4.20) we prove the following

Lemma 4.1

Let F_{0}, \ldots, F_{n-1} be in $I_{\infty}\left(h_{\Lambda}\right)$ and $0=s_{0} \leq s_{1} \leq \ldots \leq s_{n}=B$ then

$$
\left.\begin{array}{rl}
& \operatorname{tr}\left(F_{0} e^{-s_{1} H_{l}(\Lambda)} F_{1} e^{-\left(s_{2}-s_{1}\right) H_{l}(\Lambda)} \ldots F_{n-1} e^{-\left(B-s_{n}\right) H_{l}(\Lambda)}\right) \\
= & \mid 1-e^{-3 A_{1}} \Lambda_{1}-1 E_{\Lambda} S_{K=0}^{[n-1} F_{k} s_{k} e^{-j} \int_{-e}^{1}: V(\xi(x, s)): d x d s
\end{array}\right]
$$

where $F_{k}{ }_{k}$ is the translation of F_{k} by the amount S_{k} in the action induced by the circle group S_{B} on the generalized Gaussian process $\xi(x, s)$.

As in section 3 we now define for any $B \in B\left(L_{2}\left(h_{\Lambda}\right)\right)$

$$
\begin{equation*}
\alpha_{t}^{I}(\Lambda)(B)=e^{-i t H_{1}(\Lambda)} B e^{i t H_{1}(\Lambda)} \tag{4.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{B}^{I}(\Lambda)(B)=\left(\operatorname{tr} e^{-\Omega H_{1}(\Lambda)}\right)^{-1} \operatorname{tr}\left(B e^{-B H_{1}(\Lambda)}\right) \tag{4.22}
\end{equation*}
$$

We then have that if $B \in \mathcal{A}(\sigma)$ and $\zeta_{t} \subset \Lambda$, then $\alpha_{t}^{l}(\Lambda)$ is independent of Λ, and we denote this Λ independent value by $\alpha_{t}^{l}(B)$. This then gives us a group of α^{*}-automorphism α_{t}^{l} on $\sqrt{4}$. It is well known that if $\theta_{t} \subset[-1,1]$ then $\alpha_{t}^{1}(B)$ is independent of 1 , and we shall denote this l independent value by $\alpha_{t}(B)$, and again α_{t} gives us a group of C^{*}-automorphism on \vec{A}.

Let now \mathcal{A} be the smallest norm closed $C *-a l g e b r a$ in $\overline{\mathcal{A}}$ containing $\alpha_{t}(F)$ for all real t and all $F \in \mathcal{F}(\theta)$ for any bounded θ in R. Elements in \mathcal{A} of the form

$$
\begin{equation*}
F_{0} x_{t_{1}}\left(F_{1}\right) \ldots \alpha_{t_{n}}\left(F_{n}\right) \tag{4.23}
\end{equation*}
$$

with $F_{0}, F_{1}, \ldots, F_{n}$ in $\widehat{f}(\theta)$ then spends a dense linear set in θ. We shall see that

$$
\begin{equation*}
\omega_{\beta}^{I}(\Lambda)\left(F_{0} \alpha_{t_{1}}\left(F_{1}\right) \ldots \alpha_{t_{n}}\left(F_{n}\right)\right) \tag{4.24}
\end{equation*}
$$

converges as Λ tends to P and l tends to x.
If $\theta_{t_{i}} \subset[-1,1] \subset \Lambda \quad i=1, \ldots, n \quad \operatorname{then}(4.23)$ is equal to

$$
\begin{equation*}
\omega_{\beta}^{I}(\Lambda)\left(F_{o} \alpha_{t_{1}}^{I}(\Lambda)\left(F_{1}\right) \ldots \alpha_{t_{n}}^{I}(\Lambda)\left(F_{n}\right)\right) \tag{4.25}
\end{equation*}
$$

By the definition (4.22) of $\omega_{\beta}^{l}(\Lambda)$ we have that (4.25) is analytic in $0>\operatorname{Imt}_{1}>\ldots>\operatorname{Imt}_{n}>-\beta$ and uniformly bounded and continuous in $0 \geq \operatorname{Imt}_{1} \geq \ldots \geq \operatorname{Im}_{n} \geq-\beta$. Moreover, its values at the imaginary points $t_{k}=-i s_{k} k=1, \ldots, n$ with $0=s_{o} \leq s_{1} \ldots$.. $\leq s_{n}$ is by lemma 4.1 given by

$$
\begin{align*}
& \omega_{8}^{I}(\Lambda)\left(F_{0}^{\alpha} \alpha_{-i s_{1}}^{I}(\Lambda)\left(F_{1}\right) \ldots \alpha_{-i s_{n}}^{I}(\Lambda)\left(F_{n}\right)\right) \tag{4.26}\\
& \left.=\left(E_{\Lambda}^{3}\left[e^{-\int_{0}^{\beta} \int_{-}^{l}: V(\xi(x, s)): d x d s}\right]\right)^{-1} E_{\Lambda}^{\beta} \prod_{k=0}^{n} \prod_{k}^{s_{k}} e^{-\int_{0}^{\beta} \int_{e}^{l}: V(\xi(x, s)): d x d s}\right]
\end{align*}
$$

To prove that (4.24) converges as first Λ tends to R and then I tends to ∞, it is therefore enough to prove that the same limits exists for the right hand side of (4.26). Since $F_{k} \in \mathscr{F}(\theta)$ $k=0, \ldots, n$, it is therefore enough; if we want to prove that the limit exists as $\Lambda \rightarrow R$, to prove that E_{Λ}^{β} converge weakly as $\Lambda \rightarrow R$. But since E_{Λ}^{β} is the expectation with respect to the generalized Gaussian process with mean zero and covariance
function $G_{\Lambda}^{\beta}(x, y ; s-t)$, the weak convergence of E_{Λ}^{β} follows from that of the covariance function. Hence we find that the limit of (4.26) as $\Lambda \rightarrow R$ exists and is given by

$$
\left.\begin{array}{rl}
& E_{1}^{B}\left[\begin{array}{cc}
n & s_{k} k \\
k=0
\end{array}\right] \\
= & \left(\mathbb{E}^{\beta}\left[e^{-\int_{0}^{\beta} \int_{-1}^{1}: V(\xi(x, s)): d x d s}\right]\right)-\mathbb{E}^{\beta}\left[\prod_{k=0}^{n} F_{k} s_{k}-\int_{0}^{\beta} \int_{-1}^{1}: V(\xi(x, s)): d x d s\right.
\end{array}\right]
$$

where E^{ρ} is the expectation with respect to the generalized Gaussian process with mean zero and covariance given by the Greensfunction $G^{\beta}(x-y, s-t)$ for the self adjoint operator

$$
\begin{equation*}
-\frac{\partial^{2}}{\partial t^{2}}-\frac{\partial^{2}}{\partial x^{2}}+m^{2} \tag{4.28}
\end{equation*}
$$

on $S_{\beta} \times R$. For $0 \leq t \leq \beta$ we have that $G^{3}(x, t)$ is given by

$$
\begin{equation*}
G^{\beta}(x, t)=\frac{1}{2 \pi} \int_{R} e^{-i x p} \hat{G}^{\beta}(p, t) d p \tag{4.29}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{G}^{\beta}(p, t)=\left[2 \omega(p)\left(1-e^{-\beta \omega(p)}\right)\right]^{-1}\left[e^{-t \omega(p)}+e^{-(\beta-t) \omega(p)}\right] \tag{4.30}
\end{equation*}
$$

where $\omega(p)=\sqrt{p^{2}+m^{2}}$.

To prove that (4.27) converges as $1 \rightarrow \infty$ it is again enough, since $F_{k} \in \mathcal{F}(\vartheta)$ for $k=0, \ldots, n$, to prove that E_{1}^{β} converges weakly as $1 \rightarrow \infty$. I' do this we consider the Fourier transform of the generalized process given by E_{I}^{β}

$$
\begin{equation*}
E_{1}^{B\left[e^{i \iint \mu(x, s) \xi(x, s) d x d s}\right]} \tag{4.31}
\end{equation*}
$$

where ψ is a C^{∞}-function of compact support in $S_{B} \times R$. By (4.27) we have that (4.31) is given by

$$
\begin{align*}
& \left\{E^{\beta}\left[e^{-\int_{0}^{\beta} \int_{-1}^{1}: V(\xi(x, s)): d x d s}\right]\right\}^{-1} \\
\cdot & E^{\beta}\left[e^{i(\psi, \xi)} e^{-\int_{0}^{\beta} \int_{-1}^{1}: V(\xi(x, s)): d x d s}\right] \tag{4.32}
\end{align*}
$$

Let ψ have support in $S_{\beta} \times[-a, a]$.
Consider now the Hamiltonian H_{B} on $L_{2}\left(h_{\beta}\right)$ where $h_{\beta}=h_{\Lambda_{\beta}}$ with $\Lambda_{B}=[0, B]$ with periodic boundary conditions and H_{B} is the corresponding periodic Hamiltonian

$$
\begin{equation*}
H_{B}=H_{0}^{\beta}+\int_{0}^{B}: V(p(x)): d x \tag{4.33}
\end{equation*}
$$

where $H_{o}^{3}=H_{o}\left(\Lambda_{3}\right), \Lambda_{\beta}=[0, \beta]$ with periodic boundary conditions. It is well known both in the polynomial and exponential case that H_{B} has a simple lowest eigenvalue with a normalized eigenvector which we denote Ω_{β}.

By letting in lemma $4.1 \quad \beta$ tend to infinity and taking Λ in lemma 4.1 fixed equal to the Λ_{β} above, we obtain easily the formulas

$$
\begin{equation*}
E^{\beta}\left[e^{-\int_{0}^{\beta} \int_{-1}^{1}: V(\xi(x, s)): d x d s}\right]=\left(\Omega_{\beta}^{0}, e^{-21 H_{\beta}} \Omega_{\beta}^{0}\right) \tag{4.34}
\end{equation*}
$$

and

$$
\begin{align*}
& E^{0}\left[e^{i(\psi, \xi)} e^{-\int_{0}^{0} \int_{-}^{1}: V(\xi(x, s)): d x d s}\right] \tag{4.35}\\
= & \left(e^{-(1-a) H_{3}} \Omega_{\beta}^{0}, W_{[-a, a]}(i f) e^{-(1-a) H_{\beta}} \Omega_{\beta}^{0},\right.
\end{align*}
$$

where Ω_{β}^{0} is the normalized eigenvector of H_{o}^{β} corresponding to it simple lowest eigenvalue and $W_{[s, t]}(i f)$ is the unique bounded operator satisfying the strong differential equation

$$
\begin{equation*}
\frac{d}{d t} W_{[s, t]}(i f)=W_{[s, t]}(i f)\left[_{-H_{\beta}}+i \int_{0}^{B} f(x, t) \varphi_{\beta}(x) d x\right] \tag{4.36}
\end{equation*}
$$

where $\varphi_{B}(x)$ is the free field corresponding to H_{0}^{B}, with the initial condition that

$$
\begin{equation*}
W_{[s, s]}(i f)=1 \tag{4.37}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x, t)=\psi(t, x) . \tag{4.38}
\end{equation*}
$$

The analog of (4.34) and (4.35) in the temperature zero case is well known and used for instance in [14] where they are called the Nelson symmetries.

Now that the limit of (4.31) and hence of (4.27) exists as $1 \rightarrow \infty$ follows simply from the fact that H_{β} has a simple lowest eigenvalue. Hence we have

Lemma 4.2

Let $E_{1}^{3}\left(e^{i(\psi, \xi)}\right)=\left\{E^{\beta}\left[e^{-\int_{0}^{3} \int_{-1}^{1}: V(\xi(x, s)): d x d s}\right]^{-1}\right.$

$$
\cdot \mathbb{E}^{\beta\left[e^{i(\psi, \xi)} e^{-\int_{0}^{\beta} \int_{-1}^{\mathcal{L}}: V(\xi(x, s)): d x d s}\right]}
$$

Then the limit $E_{\infty}^{3}\left(e^{i(\psi, \xi)}\right)$ as $I \rightarrow \infty$ exists and is given by

$$
\left.E_{o d}^{\beta}\left(e^{i(t, \xi)}\right)=\left(\Omega_{B}, T_{\Gamma}-a, a\right](i f) \Omega_{B}\right)
$$

where $f(x, t)=\psi(t, x)$. Moreover, the measure induced by $\mathbb{E}_{\infty}^{\beta}$ is locally equivalent to the generalized Gaussian process given by E^{β}, i.e. restricted to the subalgebras generated by (${ }^{\boldsymbol{j}, \xi}, \xi$) for w with support in a fixed interval $S_{B} \times[-a, a]$ they are equivalent. The measure given by $\mathbb{E}_{\infty}^{\beta}$ is strongly mixing with respect to space translations i.e.
$\lim _{X \rightarrow \infty} E_{\infty}^{\beta}\left(e^{i\left(\psi_{1}, \tilde{\xi}\right)} e^{i\left(\psi_{2}^{X}, \xi\right)}\right)=E_{\infty}^{\beta}\left(e^{i\left(\psi_{1}, \xi\right)}\right) \cdot E_{\infty}^{\beta}\left(e^{i\left(\psi_{2}, \xi\right)}\right)$
where $\psi^{x}(t, y)=\psi(t, y-x)$.

Proof: We have already proved everything up to the moreover part. The moreover part follows immediately from the formula for E_{∞}^{3} and the strongly mixing follows from the same formula together with the fact that Ω_{β} belongs to a simple lowest eigenvalue of H_{B} 。

Theorem 4.1

Let A be the local algebra for the interacting field, i.e. the smallest norm closed C^{*}-algebra in \bar{A} containing $\alpha_{t}(F)$ for all real t and all $F \in \mathscr{F}(\theta)$ for any bounded θ in R. There exists then a state ω_{B} on \mathcal{Q} such that ω_{B} is invariant under α_{t} i.e.

$$
\omega_{\beta}\left(B \alpha_{t}(C)\right)=\omega_{B}\left(\alpha_{-t}(B) \cdot C\right),
$$

for any B and C in $A \omega_{B}\left(B \cdot \alpha_{t}(C)\right)$ is analytic in the strip $-3<\operatorname{Im} t<0$ and uniformly bounded and continuous in $-\beta \leq \operatorname{Im} t \leq 0$, and satisfies the KMS conditions on the boundary

$$
\omega_{\beta}\left(B \cdot \alpha_{t-i \beta}(C)\right)=\omega_{\beta}\left(C \cdot \alpha_{-t}(B)\right)
$$

for real t. 0_{B} is invariant under space translations

$$
y_{B}\left(B_{x}\right)=\omega_{\beta}(B)
$$

and have the cluster property

$$
\lim _{x \rightarrow \infty} \omega_{\beta}\left(B_{x} \cdot C\right)=\omega_{B}(B) \cdot \omega_{\beta}(C) .
$$

θ_{0} is locally Fock, i.e. if we restrict ω_{B} to the subalgebra
generated by $\alpha_{t}(F)$ for t in a fixed interval [-a,a] and $F \in F(\theta)$. for a fixed bounded θ, then on this subalgebra (j) induces the free Fock representation.

Moreover, if F_{0}, \ldots, F_{n} is in $\mathscr{F}(\theta)$ for some bounded θ then $\omega_{\beta}\left(F_{0} \alpha_{t_{1}}\left(F_{1}\right) \ldots \alpha_{t_{n}}\left(F_{n}\right)\right)$ is analytic in $0>\operatorname{Im} t_{1}>\ldots>\operatorname{Imt}_{n}>-\beta$ and continuous and uniformly bounded in $0 \geq \operatorname{Im} t_{1} \geq \ldots \geq \operatorname{Im} t_{n} \geq-\beta$, and its value at the imaginary points $t_{k}=-i s_{k}, k=1, \ldots, n$ with $0=s_{o} \leq s_{1} \leq \ldots \leq s_{n}=\beta$ is given by

$$
\omega_{\beta}\left(F_{o}^{\alpha_{-i s_{1}}}\left(F_{1}\right) \ldots \alpha_{-i s_{n}}\left(F_{n}\right)\right)=E_{\infty}^{\beta}\left[\prod_{k=0}^{n} F_{k}^{s_{k}}\right],
$$

where \mathbb{E}_{00}^{3} is the expectation with respect to the generalized homogeneous process on $S_{B} \times R$ given in lemma 4.2, and $F_{k}{ }_{k}$ is the translated of the function F_{k} by the amount S_{k} in the action of the circle group S_{β} on $S_{\beta} \times R$ 。

Furthermore, if B is in the subalgebra generated by $\alpha_{t}(F)$ for t in a fixed interval $[-a, a]$ and $p \in \mathscr{F}(\theta)$ for a fixed bounded θ then

$$
\omega_{B}(B)=\lim _{I \rightarrow \infty} \lim _{\Lambda \rightarrow R} \operatorname{\omega }_{B}^{l}(\Lambda)(B)
$$

Proof: Linear combinations of elements of the form $F_{o} \alpha_{t_{1}}\left(F_{1}\right) \ldots$.. $\alpha_{t_{n}}\left(F_{n}\right)$ are norm dense in A. We may show in the same way as for the temperature zero case that $\omega_{\beta}^{I}(\Lambda)$ is locally Fock uniformly in I and Λ. Since for I and Λ big enough $\alpha_{t_{k}}\left(F_{k}\right)$ $=\alpha_{t_{k}}^{l}(\Lambda)\left(F_{k}\right)$ and $\alpha_{t}^{l}(\Lambda)$ is strongly continuous in Fock space we therefore get that

$$
\begin{equation*}
\omega_{B}^{I}(\Lambda)\left(F_{o} \alpha_{t_{1}}\left(F_{1}\right) \ldots \alpha_{t_{n}}\left(F_{n}\right)\right) \tag{4.39}
\end{equation*}
$$

when we restrict $t_{k}, k=1, \ldots, n$ to a bounded interval is continuous in $t_{k}, k=1, \ldots, n$ uniformly with respect to l and Λ. By passing to subsequences we therefore get as first $\Lambda \rightarrow R$ and then $I \rightarrow \infty$ through subsequences that (4.39) has a limit

$$
\begin{equation*}
\omega_{8}\left(F_{o} \alpha_{t_{1}}\left(F_{1}\right) \ldots \alpha_{t_{n}}\left(F_{n}\right)\right) \tag{4.40}
\end{equation*}
$$

which is continuous in $t_{k}, k=1, \ldots, n$. On the other hand we have already proved that (4.39) is analytic in $0>\operatorname{Im}_{1}>\ldots$ - $>\operatorname{Imt}_{n}>-\beta$ and that at the imaginary points

$$
\begin{equation*}
{ }_{\beta}^{1}(\Lambda)\left(F_{0} \alpha_{-i s_{1}}\left(F_{1}\right) \ldots \alpha_{-i s_{n}}\left(F_{n}\right)\right) \tag{4.41}
\end{equation*}
$$

with $0 \leq s_{1} \leq \ldots \leq s_{n} \leq 0,(4.41)$ converges as first $\Lambda \rightarrow R$ and then $I \rightarrow \infty$.

If we denote the limit by $\omega_{\beta}\left(F_{0} \alpha_{-i s_{1}}\left(F_{1}\right) \ldots \alpha_{-i s_{n}}\left(F_{n}\right)\right)$ we get by lemma 4.2 that

$$
\begin{equation*}
0_{0}\left(F_{o \alpha_{-i s_{1}}}\left(F_{1}\right) \ldots \alpha_{-i s_{n}}(F)\right)=E_{o o}^{B}\left(\prod_{k=0}^{n} F_{k}^{s_{k}}\right) . \tag{4.42}
\end{equation*}
$$

(4.42) being a limit of functions which are uniformly bounded and analytic in $0>\operatorname{Imt}_{1}>\ldots>\operatorname{Im}_{n}>-3$ must itself be analytic and bounded in the same domain. Since (4.40) is the limit of boundary values of these functions, it must itself be the boundary value of (4.42). But this proves that (4.40) must be independent of the subsequences chosen, so that (4.39) converges as first $\Lambda \rightarrow R$ and then $I \rightarrow \infty$ to a limit (4.40) which is continuous in $t_{k}, k=1, \ldots, n$. Hence (4.40) is the boundary value of a function which is analytic in $0>\operatorname{Im}_{1}>\ldots>\operatorname{Im} t_{n}>-B$ and uniformly bounded and continuous in $0 \geq \operatorname{Im}_{1} \geq \ldots \geq \operatorname{Im} t_{n}>-3$ and its value at the imaginary points is given by (4.42).

Now 0_{B} as limit of states is again a state and extends by con-
tinuity to all of \mathcal{A}. The invariance under α_{t} follows from the corresponding invariance for $\omega_{\beta}^{\frac{1}{(}(\Lambda)}$ and similarily the KMS condition. The translation invariance under space translations follows from (4.42) and the homogenity of the generalized process given by E_{∞}^{β}. This homogenity follows from lemma 4.2. The cluster property follows from the fact that $\mathbb{F}_{\infty}^{\beta}$ is strongly mixing with respect to space translations. This proves the theorem.

Remark: If we now define the pressure $p_{\beta}(V)$ at the temperature $\frac{1}{3}$ for the interacting field by

$$
\begin{equation*}
p_{S}(V)=B^{-1} \lim _{1 \rightarrow \infty}\left|\Lambda_{1}\right|^{-1} \log \left(\operatorname{tr}\left(e^{-\beta H_{1}\left(\Lambda_{1}\right)}\right)\right) \tag{4.4.3}
\end{equation*}
$$

with $\Lambda_{1}=[-1,1]$, we get by lemma 4.1 and lemma 4.2 and its proof that

$$
\begin{equation*}
p_{\beta}(V)=p_{\beta}^{0}-\beta^{-1} e_{B}(V) \tag{4.44}
\end{equation*}
$$

where V describes the interaction so that

$$
H_{1}\left(\Lambda_{1}\right)=H_{0}\left(\Lambda_{1}\right)+\int_{-1}^{1}: V(\varphi(x)): d x
$$

and p_{β}^{0} is the pressure for the free field given by (3.38) and (3.41), and $e_{B}(V)$ is the lowest eigenvalue of the periodic Hamiltonian

$$
\begin{equation*}
H_{B}=H_{0}^{\beta}+\int_{0}^{\beta}: V(\varphi(x)): d x \tag{4.45}
\end{equation*}
$$

where $\left.H_{0}^{\beta}=H_{0}(\Gamma 0, B]\right)$ with periodic boundary conditions.

We see that theorem 4.1 gives a certain duality between the Gibbs state at temperature $1 / \beta$ for the infinite volume interaction and the corresponding vacuum or zero temperature state for the interaction in a periodic box of length β. We shall denote this duality by the duality principle for the relativistic Gibbs state. This duality principle may also be expressed in terms of the Wightman functions or if we want also in terms of the Schwinger functions for the interaction.

Let $\varphi(x, t)$ be the interacting field at time t, i.e.

$$
\begin{equation*}
\varphi(x, t)=\alpha_{t}(\varphi(x)) \tag{4.46}
\end{equation*}
$$

where $\varphi(x)$ is the field at time zero, and (4.46) is an equation between operator valued distributions in x for fixed t. The Wightman functions at temperature $1 / \beta$ for the infinite volume interaction is given by

$$
\begin{equation*}
W_{\infty}^{\beta}\left(x_{1}, t_{1}, \ldots, x_{n}, t_{n}\right)=\omega_{B}\left(c\left(x_{1}, t_{1}\right) \ldots \varphi\left(x_{n}, t_{n}\right)\right), \tag{4.47}
\end{equation*}
$$

and the Wightman functions for the field in a periodic box of length β, at temperature zero $(\beta=\infty)$ is given by

$$
\begin{equation*}
W_{\beta}\left(x_{1} t_{1}, \ldots, x_{n} t_{n}\right)=\left(\Omega_{\beta}, \varphi\left(x_{1}, t_{1}\right) \ldots \varphi\left(x_{n}, t_{n}\right) \Omega_{3}\right) \tag{4.48}
\end{equation*}
$$

where Ω_{β} is a normalized eigenvector belonging to the lowest eigenvalue $e_{\beta}(V)$ for the H_{β}, Hamiltonian in a periodix box of length β

$$
\begin{equation*}
H_{\beta}=H_{0}^{\beta}+\int_{0}^{\beta}: V(\varphi(x)): d x \tag{4.49}
\end{equation*}
$$

where V is either a polynomial which is bounded below or an exponential function of the type (4.3), and H_{0}^{B} is the free Hamiltonian in a periodic box of length β. We have then that (4.47)
is analytic in t_{1}, \ldots, t_{n} in the domain $0>\operatorname{Im}_{1}>\ldots>\operatorname{Im}_{n}>-\beta$ and that (4.48) is analytic in $\operatorname{Imt}_{1}>\ldots>\operatorname{Im}_{n}$. The values at the imaginary points $t_{k}=-i s_{k}$ for $0<s_{1}, \ldots<s_{n}<3$ for (4.47) and $s_{1}<\ldots<s_{n}$ for (4.48) is called the Schwinger functions

$$
\begin{equation*}
S_{\infty}^{B}\left(x_{1,} s_{1}, \ldots, x_{n} s_{n}\right)=W_{\infty}^{3}\left(x_{1},-i s_{1}, \ldots, x_{n},-i s_{n}\right) \tag{4.50}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\beta}^{\infty}\left(x_{1}, s_{1}, \ldots, x_{n} n_{n}\right)=p_{\beta}^{\infty}\left(x_{1},-i s_{1}, \ldots, x_{n},-i s_{n}\right) \tag{4.51}
\end{equation*}
$$

We may now express the duality principle from theorem 4.1 in terms of Wightman - and Schwinger functions, and this gives us the following duality theorem

Theorem 4.2 (The duality theorem)
Let $W_{00}^{B}\left(x_{1}, t_{1} \ldots x_{n}, t_{n}\right)$ be the Wightman functions at temperature $1 / \beta$ for the infinite volume interaction, and let W_{β}^{∞} be the usual Wightman functions at temperature zero ($\beta=\infty$) for the interacting field in a periodic box of length β. Let S_{∞}^{β} and S_{β}^{∞} be the corresponding Schwinger functions, i.e. the Wightman functions at imaginary time, so that $\mathbb{W}_{\beta}^{\infty}\left(x_{1} t_{1}, \ldots, x_{n} t_{n}\right)$ and $S_{e}^{\infty}\left(x_{1} s_{1}, \ldots, x_{n} s_{n}\right)$ is periodic with period β in x_{1}, \ldots, x_{n}. Then $V_{00}^{3}\left(x_{1}, t_{1}, \ldots x_{n}, t_{n}\right)$ is analytic in $0>\operatorname{Im} t_{1}>\ldots>\operatorname{Im} t_{n}>-3$, and $W_{0}^{0}\left(x_{1}, t_{1}, \ldots x_{n}, t_{n}\right)$ is analytic in $\operatorname{Int}_{1}>\ldots>\operatorname{Im}_{n}$, and for the corresponding Schwinger functions we have

$$
S_{0}^{0}\left(x_{1}, s_{1}, \ldots, x_{n}, s_{n}\right)=S_{\beta}^{\infty}\left(s_{1}, x_{1}, \ldots, s_{n}, x_{n}\right) .
$$

Moreover the difference between the pressure for the free and the interacting field at temperature $1 / B$ is equal to

$$
p_{\beta}(0)-p_{\beta}(V)=s^{-1} e_{\beta}(V)
$$

where $e_{\beta}(V)$ is the lowest eigenvalue for the interacting Hamiltonian in the periodjc box of length B.

References

[1] D. Ruelle, Statistical mechanics, Rigorous results, Benjamin, New York, 1969.
[2] J. Glimm - T. Spencer, The Wightman axioms and the mass gap for the $P(\varphi)_{2}$ quantum field theory, Preprint 1972, Courant Institute, NYU, Preprint.
[3] S. Albeverio - R. Høegh-Krohn, The Wightman axioms and the mass gap for strong interactions of exponential type in two-dimensional space time, Preprint, Math, Inst. University of Oslo, No 12, 1973.
[4] E. Nelson, The free Markoff field, J. Funct. Analys.

「5] F. Guerra, I. Rosen and B. Simon, The $P(\varphi)_{2}$ Euclidean Quantum Field theory as a Classical Statistical Mechanics, Preprint 1973, Princeton University.
[6] R.I. Dobrushin and R.A. Minlos, Construction of a one dimensional quantum field via a continuous Markov field, Submitted to: Functional analysis and its applications, Moscow.
[7] J. Glimm and A. Jaffe, A $\lambda \overline{3}^{4}$ quantum field theory without cutoffs, I., Phys.Rev. 176 (1968) 1945-1951.
[8] J. Glimm and A. Jaffe, The $\lambda\left({ }^{4}\right)_{2}$ quantum field theory without cutoffs, II., Ann.Math. 91 (1970) 362-401.
[9] J. Glimm and A. Jaffe, The $\lambda\left(\delta^{4}\right)_{2}$ quantum field theory without cutoffs, III., Acta.Math. 125 (1970) 203261.
[10] L. Rosen, A $\lambda \Phi^{2 n}$ field theory without cutoffs, Comm.Math. Phys. 16 (1970) 157-183.

「11] R. Høegh-Krohn, A general class of quantum fields without cut-offs in two space-time dimensions, Comm.Math. Phys. 21 (1972) 244-255.
[12] E. Nelson, Preprint in preparation.
[13] B. Simon and R. Høegh-Krohn, Hypercontractive semigroups and two-dimensional self-coupled Bose fields, J.Funct. Analys. 9 (1972)121-180.
[14]a) F. Guerra, Uniqueness of the vacuum energy density and Van Hove phenomenon in the infinite volume limit for two-dimensional self-coupled Bose fields, Phys.Rev.Lett. 28 (1972) 1213-1215.
b) F. Guerra - L. Rosen - B. Simon, Nelson's symmetry and the infinite volume bahavior of the vacuum in $P(\Phi)_{2}$, Comm.Math. Phys. 27 (1972) 10-22.
c) F. Guerra - L. Rosen - B. Simon, The vacuum energy for $P(\Phi)_{2}$: Infinite volume convergence and coupling constant dependence, Comm.Math.Phys.

