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Abstract 

We construct for a boson field in two-dimensional 

space-time with polynomial or exponential interactions 

and without cut-offs, the positive temperature state or 

the Gibbs state at temperature 1js • V!e prove that at 

positive temperatures i.e. 8 < :o , there is now phase 

transitions and the thermodynamic limit exists and is 

unique for all interactions. It turns out that the 

Schwinger functions for the Gibbs state at temperature 

1js is after interchange of space and time equal to the 

Schwinger functions for the vacumn or temperature zero 

state for the field in a periodic box of length 8 , and 

the lowest eigenvalue for the energy of the field in a 

peroidic box is simply related to the pressure in the 

Gibbs state at temperature 1/8 • 
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1. Introduction. 

Although the study of the statistical mechanics for ~uantum 

systems has made good progress the last ten years ~1], the pro­

gress has been best for the descrete systems or the lattice sys­

tems. The main dificulty in connections with the continuous sys-

terns has been that the group of time automorphisms for the 

Schr5dinger particles is non local. The conse~uence of this non 

locallity is that the infinite system of interacting Schrodinger 

particles do not agree well with the generally accepted picture 

of a ~uantum statistical mechanics described in terms of a local 

c-;~-algebra or a C*-algebra of local operators 9 on which the time 

acts as a group ett of C*-automorphisms. Hence we get a some-

what discouraging situation 9 that the only known realistic model 

of a statistical quentum mechanics 9 namely the system of inter­

acting Schrodinger particles 9 does not conform to the highly de­

veloped abstract theory of ~uantum statistical mechanics. 

For this very reason the question of studying relativistic 

particles in stead of Schr5dinger particles comes up quite natural 9 

since in any relativistic theory there should be an upper bound 

for the propagation speed and this would force the group of time 

automorphisms ett to oo local. Lnd this is the motivation for 

this paper. 

Interacting relativistic particles or interacting quantum 

fields is by now resonably well understood in the case of two 

space time dimensions. In the case of weak polynomial interaction 

and strong exponential interactions in two space time dimensions 

one also has a very clear picture of what happens with the vacuum 

in the infinite volume limit 9 or as we would like to say it here 9 
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one has a very clear picture of the theromodynamic limit in the 

case of temperature zero. For the weak polynomial interactions 

this was done by Glimm and Spencer [2]~ and in the case of expo­

nential interactions by Albeverio and H0egh-Krohn r3]. Hence 

good candidates for a quantum statistical mechanics of interacting 

relativistic particles are the polynomial and exponential inter­

actions in two space-time dimensions. 

In this paper I study the thermodynaimc limit of the positive 

temperature Gibbs state for the polynomial and exponential inter­

actions in two space time dimensions. 

The methode I use is strongly influenced by recent works by 

Nelson [4], and may be denoted as Markoff field approach. The 

Markoff field approach was also a main ingredience in r3] and 

played also a certain role in [2]. One of the advantages of the 

J,~arkoff field approach is to make available for quantum fields 

the menthods of classicaLstatistical mechanics, and this is the 

wa"Jr it is used in r 3] ~ lending havily on the work of Guerra~ 

Rosen and Simon r5] ; that introduces a framework which describes 

the Markoff fields as Ising ferromagnetic systems. 

The way the Markoff field approach is used here is somewhat 

different. In this paper we use the Markoff field to transform 

the problem about the thermodynamic limit for the Gibbs state at 

temperature 1js for the relativistic quantum statistical system 

into the problem of the uniqueness of the vaccum for the system 

in a periodic box of length 8 • 

In fact it turns out that for any of the interactions we 

consider 9 namely the polynomial and the exponential interaction~ 

the Markoff fields for the Gibbs state at temperature 1/e is the 

Markoff field on the cylinder S8 >( R ~ where Sq is a circle 
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of length S , that correspond to the Markoff field for the va­

cuum in the plane R x R , and this last Markoff field is the 

limit of the first one as the temperature 1js goes to zero, 

Using this methods it is proved that the termodynamic limit 

for the Gibbs state exists for all positive temperatures 1/s 
and all interactions i.e. for strong exponential interactions 

as well as strong polynomial interactions. 

We see that this is in strong contrast to the vacuum or 

temperature zero case for the polynomial interactions, where 

Glimm and Spencer were only able to prove the existence of the 

infinite volume limit for weak interactions, and from Dobrushin 

and Minlos [6] we know by now that this is best possible, in fact 

for any polynomial interaction in two space-time dimensions they 

get that the thermodynamic limit is not unique in the temperature 

zero case for strong enough interactions. The reason for this 

difference is the above mentioned fact that while for the tempe­

rature zero case we have a Markoff field in plane R x R so that 

the problem is two dimensional, we have for positive temperature 

a Markoff field on the cylinder so that the problem is 

essentially one dimensional, and therefore in a sence much simpler. 

The Gibbs state at positive temperature 1je is of course 

not invariant under the Lorentz group since it is given in terms 

of the energy operator. There is however, a Lorentz invariant 

analogy of the Gibbs state at positive temperature 1/S • But 

this Lorentz invariant Gibbs state is only to be found in a closed 

universe, the so called De Sitter universe, and it will lead too 

far to give the construction of the positive temperature state 

in the De Sitter universe in this paper. This will be delt with 

separately in a forthcomming paper. 
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2. The Gibbs-state for the harmonic oscillator. 

Consider the self adjoint operator 

H = -!.6 + -~(x ~A 2x) - -~-trA 
0 

on the -. Hilbert space Jf = L2 (RN) ~ where .6 = 

A is a real symmetric N >~ N matrix bounded below 

( 2. 1 ) 

N 02 
L: :-7 and 

i=1 ox. 
l 

by a positive 

constant, A > ci ~ c > 0 9 x E 1\.N and ( 9 ) is the natural inner 

product in n 
R • 

Let A1 9 ••• ~AN be the eigenvalues of A • It is well knov•m 

that H has descrete spectrum consisting of the points of the 
0 

form 

(2.2) 

and zero. Hence for a positive 
-CH 

e 0 is of trace class 

and we get 

hence 

N 
-s rn.A. ' i= 1 l l 

e 

1 '3H N - 8 A . -1 
tr e 0 = rr ( 1-e ' l) 

i=1 
( 2. 3) 

Ijet V(x) > - b be a real measurable function bounded below such 

that 

H = H + V(x) 
0 

( 2. 4) 

is essentially self adjoint. We say that H is the Hamiltonian 

for the anharmonic oscillator. From V > -b we get H > H - b 
0 

which gives us that H has descrete spectrum and together with 

(2.2) it gives a lower bound for the eigenvalues of H , which is 

-sH tranoformed into an upper bound for the eigenvalues of e , • 
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Hence -'\H e - is of trace class. Therefore we may form the normal 

state w 3 on the von NeumarLn algebra B (,J-f) of all bounded ope­

ra tors on .-jf , given by 

(2.5) 

for A E B(Jf) . w is called the Gibbs-state. for the anhar­
S 

monic oscillator. 

By the Feynmann-Kac formula we know that the kernel eBH(x,y) 

of the operator -RH e - is given by 

8 
r· 

- \ U(x( '1") )dT 
- 8H ( ) E 8 r ;J o J e · x,y = (x,y)Le , (2.6) 

with U(x) = t(x,A2x) +V(x) and 

is the conditional expectation with respect to the 

Brownian motion in RN given that x(o) = x and x(s) = y • 

So that is the expectation with respect to the normal 

distribution indexed by the real Hilbert space h of continuous 

( N ( functions x T) from [O,S] into R, such that x(o) = x S) =0 

and the norm square 

3 
\ ( dd ( Tj dxJ..!l) d 

J '1" ' dT '1" 
0 

is finite. 

Consider the Hilbertspace L2 U0,8'JfN) 

£·unctions from ~O,S] into P..N and let 

kernel of the inverse operator of the self 

vrith boundary conditions x(O) = ::;:::(s) = 0 

Then 

and 

(2.7) 

of L2-integrable 

k. . ( s, t) be the 
l,J 2 

adjoint operator -~ 
N dT 

on L2([0,S];R ) . 
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1 -s(s-t) s < t 
J 8 -

k(s,t) = 1 l -(s-s)t s > t 
8 - • 

(2.8) 

The normal distribution indexed by h is the same as the 

Gaussian presses with mean zero and covariance function 

It is well known that the Brownian motion hence also the 

presses above has support on the continuous functions from ~O,i3] 

into RN . 

In terms of the measures introdused above is the 

expectation with respect to the measure obtained from the normal 

distribution endexed by h by a transformation on the continuous 

functions from ro RJ '·· 9 ~ into RN given by 

X(T) -+ X+~(y-x) +X(T) ( 2. 9) 

From (2.6) we now get that the kernel e-BH(x,y) is a continuous 

function of x and y • It is well known in that case that 

vn1ich together with (2.6) gives 

rs 
, -J U(x(T))dr 

= · J E S ! e 0 ] dx (x,x)- • (2.10) 

By (2.9) Eg 
(x,x) is the expectation with respect to the measure 

on the continuous periodic functions from [O,S] into RN ob-

tained from the normal distribution indexed by h by the trans­

formation x(r) .... x(r) +X • 

Since U(x) = t(x,A2x) +V(x) we have that 

r!3 
-j U(x(r))dr 

r ~ o 
1 E(· )re ]dx 

J N x,x -
R 

~ ~ 
r· -' 2 "i) 

-tj (x(r),A x(r)) -J V(x(r))dr 

= j N E ( x ' x ) [ e o • e o ] dx 

R 

(2.11) 
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On the other hand we easily verify that for any real continuous 

function F defined on the space of continuous periodic functions 

from C0 9 3] into RN 

rs 2 
-~J (x(rLA x(r) 

"I (') o (") E ) I e F ] dx = CE " C F ] 
:J N (x,x)-
R 

(2.12) 

p 

where E'-' is the expectation with respect to the normal distri-

bution indexed by the real Hilbert space g of continuous peri­

odic functions from [0~8] into RN 9 x(O) = x(B) 9 such that 

the norm square 

is finite. 

J3y setting 

(2.13) 

C is some positive constant independent of F • 
-BH0 V = 0 in (2.11) we get that C = tr e • 

We have thus proved the following formula 

(2.14) 

where E~ is the expectation with respect to the normal distri­

bution indexed by the real Hilbertspace g of periodic functions 

from [0 9 8] 

-nH 
into RN vvith norm square given by (2.13). Now 

-sA.. 
is given b;)r (2.3L and since 1-e 1. are the eigen-tr e ·- 0 

values of the real 

that 

tr e 
-8H 

0 

where 11 -'3Af . -e ' ' 
is 

Hence (2.14) may be 

-8H tr e = 

symmetric matrix 

= !1-e-BA! -1 

the determinant 

written 

1 -eA -e 

of the 

n ,-:.·...; 

we get from (2.3) 

(2.15) 

matrix 1 -BA -e • 

11 -OA,-1E8'" 
-jv(x(T))dr 

-e i ~' ~ e 0 J (2.16) 
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Let now FiE B(~;) i = 0 9 ••• 9 n be multiplication operators by 

bo1.,mded continuous functions F. (x) f •• i = 0 9 ••• 9 n 9 and let 
l 

0 = s < s 1 ••• < s 1 < s = 0 • o- - n- - n 

Consider the operator 

-s1H -(s2-s 1 )H 
F 0 e F1e ••• 

From (2.6) we have that the kernel of 

by 

-(s -s 1 )H 
F e n n-

n • 

-(s. 1-s.)H 
F.e l+ l 

l 

s. 1-s. 
l+ l 

(2.17) 

is given 

-(s. 1-s.)H s. -s. - J U(x( r) )d r 
1+1 l,... ( I. )) 0 F. (x) e l+ 1 (x 9 y) 

l = E (X 9 y ) '_FiX \0 e ] • 
(2.18) 

Since the Brownian motion is a homogeneous prosess, (1.18) may 

be written in the form 

(2.19) 

where is the conditional expectation with respect 

to the Brownian motion given that x(s.) = x 
l 

and x( s. 1 ) = y • 
l+ 

Utilizing now the Markovian properties of the Brownian motion we 
-s1H -(s2-s 1 )H 

get that the kernel of the operator F0 e F1e is 

given by 

s2 
-l U(x(r))dr 

"' 0 J 

:By induction we get the kernel of the operator (2.17) is given by 

rP 
n-1 -J U(x(r))dr 

E6 r IT F.(x(s.))e 0 ] 
(xsy)-i=o l l 

(2.21) 
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By computing the trace of this kernel in the same way as we com­

puted the trace (2.16) of the kernel (2.6) 9 we prove the following 

theorem. 

Theorem 2.1~ 

Let Fi E B(~)) i = o, ... ,n be multiplication operators 

by bounded continuous functions F. (x) 9 
J. 

0 = 
s < s 1 ••• < s = S , and let H be the Hamiltonian for the an-
o- - n 

harmonic oscillator (2.4) then 

where 
,., 

'1 -r;,Al I -e 

-(s-s 1 )H 
n e n- ) 
.J.!n-1 

is the determinant of the matrix 

(2.22) 

-"'A 1-e ~ and 

E:.J is the expectation with respect to the normal distrubution 

indexed by the real Hilbert space g of continuous periodic func­

tions from CO,S] into RN , x(O) = x(R) 9 with norm square 

equal to 

By a direct calculation one easily verifies the following remark. 

Remark: The expectation ES in the theorem above is the expec-

tation with respect to the homogeneous Gaussian prosess on a 

circle of length S with values in RN given by the covariance 

matrix E3(x.(s)x.(t)) equal to the matrix 
J. J 

~A2 + ~n~c 4:~n2 +A2 )- 1 cos2;n(s-t) (2.23) 

Summing up this series we get a more explicit expression for the 
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covariance matrix 

E '3 ( x. ( 0) x . ( t )) = ( 2A ( e SA -1 ) ) - 1 [ e ( 8- t) A +e tAJ 
J.. J 

(2.24) 

for 0 ~ t _:: 8 • 

Let be the C*-automorphism of B(.Jf') defined by 

(2.25) 

then 

tr(Ba.t(C)e-GH) 

= tr ( Be- i tH C e- ( !J-it ) H) (2.26) 

= tr( Ce-( 8-i t)H B 8 -i tH) 

is analytic in t in thE strip S < Imt < 0 9 with boundary 

values at real t 

( ( ) - SH) equal to tr Ca._t B e • 

Consider now an operator of the form (2.17). 

-(s-s 1 )H 
F 1 e n- ) 
n-

(2.27) 

is obviously analytic in the domain 0 <Res 1 < Res 2 ••• < Resn_ 1 < g 

with boundary values at Res. = 0 
J.. 

i = 0~ •.. ,n which are con-

tinuous and uniformly bounded and given by 

(2.28) 

for sk = itk, k = 1~ ••. 9 n-1 • 

The continuity of (2.28) follows from the strong continuity of 
itH 

e • 

Lemma 2.1~ Let 

on RN then 
9 

t. E R 
J.. 

and F. 
J.. 

be bounded continuous fU11ctions 

B(}f) is the smallest strongly closed linear space 

of operators that contains all operators of the form 
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Ct.+ (F1) • a,t ( F2) • • • a,t (F ) • 
v1 2 n n 

Proof: Since the smallest strongly closed linear space contain­

ing the operators above is obviously a strongly closed c-;c_algebra 

of operators, it is enough to prove that if B E B(Jf) commute 

with a,t(F) for all t and all continuous functions F then 

B = AI • Therefore assume ~B~a.t(F)] = 0 for all t and F • 

hence a,t(B) is a mul-

tiplication operator by an L:o-function for all t • Hence for 

any real Lx- function V! 

isW (B) -is\7 e at e = ett(B) 

so that 

. tw . tc:l . t-3 • t"{ 1-vv -1-!. n 1-;;-h -1--1 n 
(e n e n ) B(e n e n ) 

By the Trotter-Kato product formula 

. tH . t,o{ 
1- -1-1 n 

strong lim (e n e n ) 
n .... ::D 

and therefore by (2.30) 

= 

at(B) = e-it(H-W)Beit(H-W) 

(2.29) 

= (2.30) 

eit(H-W) (2.31) 

(2.32) 

By letting W(x) increase to U(x) ~ we get that (1+H-W)- 1 in-

crease to so that f1 IJ F")-1 \ + .!-'11 

(1-~6)- 1 and so by the semigroup theorem 

converge strongly to 

it(H-W) e converge 
.t 

-1-z.6 strongly to e Hence by (2.32) 
.t .tA 
1'2".6 -12u 

= e Be 

we get that 

Since C'Lt(B) is a multiplication operator for all 

that B is a multiplication operator. But it is 
. t . t6 

that if B is not equal to ; .. r then 
126 -12 

9 e Be 

t we have 

easy to see 

is not a 
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multiplication operator. This proves the lemma. 

Using that l'J 0 is a normal state we get the following theorem 
,.> 

Theorem 2.2 Let B and C be in B(df) 9 then 

w8 (Bat(C)) = ~ 0 (a_t(B)·C) 

is analytic in the strip - p < Imt < 0 , and continuous and uni-

formly bounded in B < Imt < 0 The boundary values satisfy 

the KMS condition 

ws(Bat-i 9 (c)) = ~S(Ca_t(B)) 

for real t . 

Moreover 9 any operator B in B(~) may be approximated strongly 

by linear combinations of operators of the form at (F1)at (F2 ) •. 
1 2 

•• a.t (Fn) 9 where F19 ••• ,Fn are multiplication operators by 
n 

continuous functions IP 1 (x) 9 ••• ,Fn (x) , hence cu 8 (B) will also 

be approximated by the same linear combinations of 

Purthermore w B ( F at ( F 1 ) ••• 
' 0 1 

•. at (Fn)) is analytic in 
n 

0 > Imt 1 > ••• > Imt >- B n . and its 

value for tk = - isk k = 1 9 ••• ~n with 0 = s <s 1 < ••• <s < ~ o- - - n-

is given by 

op(Foa-is1(F1) ••• a-isn(Fn)) 

-J8v(x(r))dr -J8v(x(r))dr 
= (Es~e o J)-1 Es~.~ Fi(x(si))e o J 

l=O 

where E0 is the expectation given in theorem 2.1. 
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3. The Gibbs-state for the free scalar quantlrn field. 

Let A c Rn be a bounded domain in with a regular 

botmdary c.A 0 Let where is the Laplace oper-

ator in }, with some self adjoint boundary conditions on oA • 

If the constant functions satisfies the boundary conditions we 

shall assume that m > 0 if not only that m > 0 ~ so that in 

any case 9 A~ is a self adjoint operator on the real Hilbert 

space L~(A) and 

c > 0 . 

It is well known that A, haEJ descrete spectrtrn and that 
1\. 

( 3. 1 ) 

-rA e - A 

is of 

nant 

trace class for all ~ > 0 9 so that the Fredholm determi­
-BA 

!1-e l\.1 exists 9 and by ( 3. 1) it is different from zero. 

Let hA be the real Hilbert space D(AA) c L~(A) with norm 

square equal to 

(3.2) 

where ( ) is the inner product in 

h 1\ depends of course also on the boundary conditions on "01\ • 

Let now L2 (hA) be the complex Hilbert space of 1 2 integrable 

functions with respect to the normal distribution indexed by the 

real Hilbert space hA • 

The Hamiltonian H (/\.) for the free scalar field in A with 
0 

mass m and the given boundary conditions is a self adjoint ope-

rator on L2 (hA) which is denoted by 

(3.3) 

wh3re t:.A denotes the Laplace operator on L~(A) and ( 9 ) is 

the inner product on L~(A) • (3.3) is not a definition of H0 (A) 
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but just a convenient notation. vVe shall now give the proper 

definition of H0 (A) • 

Let be the complete orthonormal base in of 

eigenfunctions for AA 

(3.4) 

'rhe probability space for the normal distribution dnh indexed 
I~ 

by the real Hilbert space hA is then in a natural way identi-

fied with infinite product of the probability spaces for the one 

dimensional normal distributions 

( 3. 5) 

so that 

(3.6) 

Hence L2 (hA) may be identified with the infinite tensor product 

(3.7) 

relative to the vectors 

Now may be identified with by the identifica-

tion 

(3.8) 

for g E L2 (dnA ) • Therefore L 2 (hA) may be identified with 
k 

the infinite tensor product 
:::0 

L2 (hA) = Q) L2 (R) 
k=1 

relative to the vectors gk E L2 (R) given by 

e 

1 2 
--:_5- ll.l x, • 
~ C K 

(3.9) 

(3.10) 
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Let now H~. be the Hamiltonian for a one dimensional harmonic 
l 

oscillator given by 

(3.11) 

as a self adjoint operator on the k-th component in the tensor 

Product (3.9). e itHk t' t t 't is nen a s rongly con inuous un1 ary 

group on the k-th component which leaves the vector gk invari­

ant. It is then well known that the infinite tensor product 
~::) i tH1 
(& e r exists and forms a strongly continuous unitary group 
k=1 
on the infinite tensor product (3.9). We now define H0 (A) as 

the self adjoint infinitesimal generator of this unitary group 

Definition~ 

i tH ( A ) ::=· i tHk 
e 0 = ® e 

k=1 
(3.12) 

relative to the tensor decomposition (3.9). 

From this definition we get immediately that is of 

trace class for 3 > 0 and that 

-9H (A) - 0 AA 1 o I ~~~-tr e = 11-e l • (3.13) 

We now define the Gibbs-state for the free scalar field of mass 

m in A with the given boundary conditions by 

-SH (A) 1 -OH (A) 
u ~ ( A ) ( B ) = ( tr e 0 ) - tr ( B e 0 ) (3.14) 

for any B in the C"'~-algebra B(L2 (hA)) • 

Let F be a bounded continuous function on RN . From (3.9) we 

get the following tensor decomposition 
........, 

L2(hA) = L2(RN) ® r ; L2(H)] 
k=N+1 

(3.15) 
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where the infinite tensor product here is also relative to the 

vektors ( 3. 1 0) • F may then be identified with an element 

J:1 ® 1 of B (L2 (hi\)) in accordance with the tensor decomposition 

(3.15). We shall denote this element in B(L2 (h/\)) also by F • 

By L,xJh/\) 

B(L2 (h)) 

we shall understand the maximal abelian algebra in 

containing all bounded continuous functions F on RN 

for all values of N It is obvious that ltc(h/\) is the space 

of L~-functions on the probability. space assosiated with the 
-'-' 

normal distribution indexed by hi\ • 

Let H~(/\) be the infinitesimal generator of the unitary group 

on L2 (RN) given by 

= 
N itHk 
® e -

k=1 
(3.16) 

and let be bounded continuous functions on RN and 

0 = s < ••• < s = S • It follows then immediately from the defi-o- - n 

nition (3.12) of H (/\) 
0 

that if we consider as ele-

-(s2-s 1 )H0 (/\) -(8-s 1)H (A) 
w e n- o ) e • • • -n-1 

q A. - s 1 HN ( A) - ( S- s 1 ) HN ( 1\ ) 
-::n ( - - ' k -1 rF o F e n- o ) n 1-e ) trlt- 'oe • • • n-1 

k=N+1 
= 

where trN is the trace in L2 (R1J) • By theorem 2.1 

• • • F 1 n-

N -(s-s 1 )H (/\) 
n- o ) e 

(3.17) 

(3.18) 

where is the expectation with respect to the normal distri-

bution indexed by the real Hilbert space gN of continuous func-
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tions from the circle Sq of length B into RN with norm 

square equal to 

g 
N r dxk 2 2 2 
I: j C ( ""d"T"') + A.k ( xk ( rr ) ) ] d rr 

k=1 0 
(3.19) 

Let g 9 (J\) be the real Hilbert space of functions from s6 >( 1\ 

into R such that the norm square 

g 

r Jr(as)2 ~ (as )2 2n2]d dt 1 _ ;;-r- + ~ ~x + m c._, _ x 
., jl:; • 1 0 . 
0 1\ 1= 1 

(3.20) 

is finite 

and such that for all t ~ 0 < t ~ ~ ' s(x,t) satisfies the 

self adjouint boundary conditions given by A2 • If we consider 

s(x,t) as a function n(t) from s8 into L~(J\) , then (3.20) 

takes the form 
g 

Jr(~, ~) + (r)(rr),A~n(rr))]drr (3.21) 
0 

From (3.19) it then follows that is a closed subspace of 

g 8 (A) generated by all fLUlctions n(t) such that n(t) is in 

the subspace of L~(A) generated by the N first eigenvectors 

e 1, ••• ,eN of A, for all t ~ 0 < t < ~ • This together with 

(3.17) and (3.18) gives then that 

-(s-s 1 )H (A) 
F e n- o ) 

n-1 
(3.22) 

-BAt-. 1 n-1 
= 11-e · ·!- E;r n F.(n(s.))J, 

n i=o 1 1 

where fl E···· ., .A. is the expectation with respect to the normal distri-

bution indexed by the real Hilbert space g~(A) • ,. 
Since the bounded continuous functions on RN are obviously 

weakly dense in L:o(hi\) , we may extend (3.22) to arbitrary 
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in L:o(hA) • Utilizing the remark following theorem 

we may also compute the covariance for 

the following theorem. 

Theorem 3.1g Let 

. . . <s - m = ~ , then 

F j ••• ,F 1 o m-
be in 

We have thus 

0 = s < s 1 < 
0- -

. . . -(8-s 1)H (A) 
F e m- o ) 

m-1 

-8A 1 m-1 
= !1-e . A!- E:[_TI Fi(~(si))J 

l=O 

where E~ is the expectation vvith respect to the normal distri-

bution indexed by the real Hilbert space g 8 (A) , of functions 

D(AA) with norm square from the circle s8 

equal to 
(.) 
'-· 

" .-' of length into 

Ju~, ~) + ('r](T),A~n(T))]d'J", 
0 

where ( , ) is the im1er product in L~(A) 
Q 

Eo may also be 

characteri£ed as the Gaussian distribution with mean zero and co-

variance which is invariant on 

for 0 < t _::: ~ , 

s s and given by 

where ~ and w are in L2 (A) and ( ,) is the inner product 

in L2 (A) 

If we consider the elements in g~(A)as functions s(x,t) from 

s8 >< A into R satisfying the proper boundary conditions on oA , 

then may be characterized as the expectation with respect to 

the generalized Gaussian prosess on S " A 8 ' with covariance func-

tion given by 
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where G~(x 9 y,s-t) is the Greensfunction for the self adjoint 
">2 2 

operator - Ci~t2 - 6 + m on s8 x II. with the corresponding self 

adjoint boundary conditions on o1\ • 

We define now the C*-automorphism ct~(ll.) on B(L2 (hll.)) by 

o:~ (II.) (B) 
-itH (11.) itH (11.) 

= e 0 Be 0 • 

'Jlhen for B and C in B(L2 (hA)) we have that 

uJ ~ (II.) ( B • <1~ (II.) (C) ) = w ~ (II.) (a:~ t (A) (B) • C) • (3.24-) 

IvToreover ( 3. 24) is an analytic function of t in the strip 

-s < Imt < o which is continuous and uniformly bounded in 

-13 _::: Imt.:::, 0 9 and the boundary values satisfies the KMS condition 

Futher more. if F F 
' o'""" 9 n then 

. w~(II.)(F ~~ (A)(F1 ) .•• a:~ (A)(F )) 
,. o 1 m m 

is analytic in 0 > Im t 1 > • • • > Im t > - B m . and continuous and uni-

formly bounded in 0 .:;: Imt1 ::::, ••. :::_ Imtm .:::, - S 9 and its value for 

0 = s < s1 ••. < s o- - m 
is given 

Let C( c Rn be a bounded open set in Rn and let ~ E C~(C7) 

and real. It is easily seen that the normal distribution indexed 

by hll. is quasi-invariant u...nder the transformation 'Yl -+ 'Yl + ~ , 

if (7' c 11. • Hence this transformation induces a unitary trans-

formation U(~) on L2 (hll.) • Let V(~) be the unitary trans­

formation of multiplication by the L0 ::JhA) function ei(cp, 'Yl) 
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where ( , ) is the inner product in L2 ( 1\) • u1c;'( C7) is then 

the smallest norm closed algebra in B(L2 (h/\)) containing U(cp) 

and V(cp) for all real cp E C~(ff) Since c//f 0 ( C-i-) is a C*­

algebra which is fatefully represented in each B(L2 (h/\)) for 

all 1\ ::l CY ~ tJ:t-0 ( (9-") vvill not depend on the particular A as 

1\ -- /()/ • soon as --- v 

By (3.2) the normal distribution indexed by hA , may be charac­

terized as the generalized Gaussian prosess with mean zero and 

covarians function GA(x,y) , where Gl\.(x,y) is the Greens fun­

ction for the self adjoint operator All. • Let now ~ be contained 

in the interior of A1 Since GA (x,y) - GA (x~y) is 
1 1 ~2 

a smooth function for x and y in (y/, it follows that the 

conditional expectations of the normal distributions indexed by 

hh and hA with respect to the 
''1 2 

tions of the form (c,o,~) with Q E 

a-algebra generated by func­

C::c( {:Y) are equivalent mea­
o 

sures. From this it immediately follows that 

equivalent representations in 13(L2 (hA )) and 
1 

that the strong closure c/o{( {9--) of cil-0 ( 0') 

independent of A as soon as (f is contained 

Li{ ( {7) has 
0 

B(L2 (hi\ )) 9 so 
2 

in B(L2 (h/\)) is 

in the interior 

of A • We have obviously that / Jl_ ( I <;;,) 
-~· '-'1 := eli (&2) if &· 

1 c if2 
Let Jl.- be the norm closure of u [J/( (J') ! uc Rn} • 

-Let now B E c/;; ( trr') 
v • It is then well knovm that a.~(A)(B) E 

• 

(j(j ((5'~) ~ where (Y / t is the open set of points with distance smal-

ler than t from fY 
i,./ 9 and that CL~(!\) (B) is independent of A 

as soon as U t is contained in the interior of l\. • Vie shall 

denote this independent value by a~(B) . a.0t is then a C*-iso-
- l; 

morphism from ciJ ( (t) in to {./f ( ()·~) for any U, hence it ex­
-;:-

tends to a C*-automorphism of (./1 . 
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G--' 
Now let J ( (:r) be all functions in L'Xl(hi\) of the form 

, where is bou..11.ded f( ('!l9cp1) 9 ('!l,cp2), • • •, ('!l9cpN)) 

continuous function on RN and 
(X) ,., 

cp rn is in c 0 '( l<:>n • we 19'"'''t'N I.VJ 

denote by elf 
0 

the smallest norm closed c->(--algebra in cJl which 

contains all operators of the form a~(F) 9 for 

some (}. c__li-0 is then obviously invariant under 

r-;:...-

F E (f ( tf) for 

0 a.t 9 and we 

shall say that t/tf0 is the local algebra for the free field. 

a__. 
Let F0 , ••• ,Fm be in cr((J) for some cY. We shall then show 

that 

(3.27) 

converge as i\ tends to Rn in such a way that it finally con-

-'cains all bounded sets, independently of the boundary conditions 

on oil. • To see this, choose any T > 0 • Then for ltk! < T , 

k = 1, ••• ,m 9 since i\ finally contains any bounded set, we have 

that from a certain point on (;; is contained in the interior 

of i\ 9 but then (3.27) is equal to 

(3.28) 

Now ( 3. 28) is analytic in 0 > Imt 1 > ••• > Irntm > -13 and uniformly 

bounded and continuous in 0 > Imt1 ::::_ ••• _:: Imtm > -S • The value 

of (3.28) at the imaginary points tk = -isk, k = 1, ••• ,m and 

0 = s <s1 ••• <s = 8 is by (3.26) given by 
o- - m 

(3.29) 

s 
where Fkk is the translated by an amount sk around the circle 

c·-· 
S l3 of the functions Fk in c../ ( [7') • Since :E'k J k = 0, ••• 9 n 

are continuous bounded functions of the stochastic variables 
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(·(]~cp 1 ) ~ ••• , (·n,cpn) , we get that (3.29) converge if the correspon­

ding correlation function converge since E~ is the expectation 

with respect to a Gaussian distribution. We shall now assume 

that the mass m > 0. "By theorem 3.1 the correlation function 

for '3 E· 
A is given by That G~(x,y,s-t) converges 

as A tends to Rn in such a way that it finally contains all 

bounded sets follows from the fact that G~ is the Greenfunction 

for the self adjoint operator 

(3.30) 

on SS x A , with some self dajoint boundary conditions on oA • 

So that as A tends to Rn in such a way as to finally contai-
o 

ning any bounded set we get that GA(x,y,s-t) converge weakly 

to G 8 (x~y,s-t) which is the Greensfunction on s8 x Rn for the 

operator (3.30). 

Since the local algebra for the free field c../1 
0 

is the smallest 

norm closed C*-algebra containing a~(P) for all t and 

for some 

r0 a~ (F1) ..• a~ (Fm) 
1 m 

(~~ we have that elements of the form 
/1 

is norm dense in v~----; 0 • Hence we have 

proved the following theorem. 

Theore!E_.2_d Let (// be the local algebra for the free field~ 
0 

then defines a group of 
/I 

c><--automorphism of t/=1 • 
c 

There is a 

state 0 
l!J 

8 
on (/;; 0 which is invariant under i.e. 

such the.t ~u~ (Ba~ (C)) is analytic in the strip - S < Imt < 0 and 

uniformly bounded and continuous in - S,:::: Imt.::;: 0 , and satisfies 

the IU~S conditions on the boundary 
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for real t • 

Moreover~ if F0 ~ ••• 9 Fm is in the subalgebra of 

by the fields at time zero then w~(F0 ~~ 1 (F 1 ) ••• 

(/b/o genera ted 

~~ (Fm)) is ana­
m 

lytic in 0 > Imt 1 > ••• > Imtm > - 8 and continuous and uniformly 

bounded in 0 ~ Imt 1 2: ••• ;:, - ~ 9 and its value at the imaginary 

points tk = - isk 9 k = 1 9 .... 9 m with 0 = s < s1 •.• < s = 8 o- - m 
is 

given by 

where ES is the expectation with respect to the generaliized 

Gaussian process with mean zero and covariance function G8(x-y9s-t) 9 

which is the Greensfunction on s8 >' Rn for the self adjoint 

operator 

and 

on 

is the translated by the action of the circle group 

of the function I' 
k 

by the amount 

Further more, if B E (Jf 0 is in &4 ( (3 ..... ) for some bounded C,o/ then 

=lim w~(A)(B) 
f.. u 

as tends to Rn · tb t,, t 1n .Le sense ,11.a finally contains any 

fixed bounded set. 

Remark~ Utilizing the formula (2.24) we get that G8 (x 9 t) is 

given by 

(3.31) 
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where for 0 < s < 8 

G~q( ) (2 (1 -8w))-1( -sw -(B-s)w) p,s = w -e e +e · (3.32) 

with 
-~ j 2 2 

rJJ ( p ) :r p +m • 

If we introduce the annihilation creation operators and the free 

fields we have the relations 

n 
cp(x~t) = ~~(2TI)-'2"J~ei(pX+lPJt)a-l~(p) +e-i(px+wt)a(p)] dp :c 

1/2 w(p)2(3.33) 

where cp(x 9 t) is the free field at time t • 

The operator that counts the ntunber of particles with momentum 

p E 0 in a region 0 c Rn of momentumspace is given by 

N(\2) = ta 1~(p)a(p)dp .., (3.34) 

Introducing now the function 

(3.35) 

so that 

(3.36) 

we get the following formula for computing expectations of pro-

ducts of fields 

for n even (3.37) 

0 for n odd 

vn1ere the summation runs over all partitions of (1, ••• ,2k) with 

2k = n into disjoint pairs (i1 ,i2 )(i3 ,i4 ) ••• (in_ 1 ,in) • 

If we define the pressure for the free field at temperature 

in the usual way by 

1 
G 
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1 1 -SH (A) 
P~ = s- lim !A!- log(tr(e 0 )) 

~, A .... Rn 

where !A! is the volume of A , 
we get by using the formla 

(3.38) 

-8H (A) -8A 
tr ( e 0 ) = ! 1-e ,_. A I - 1 ( 3 • 3 9) 

together with well known asymptotic formulas for the eigenvalues 

of the Laplaeien 6 in A as A increase to Rn , we get that 

the limit (3.39) always exists and is given by 

p~ = -(2n)-ns- 1J log(1-e-aw(p))dp 
Rn 

(3.40) 

If we take h ... 1 l]n 
Hl = L-~'2 with periodic boundary conditions we 

have that AA has the eigenvalues 
1 

n 2nn. 2 2 ~ 
( "'"'. . ( l) ) <j-~ -- +m ." 

. 1 1 l= 
(3.41) 

vrhere In this case vve have the annihilation 

creation opera tors al ( p) and a1 ( p) with p E 2
1"· ~n , for 

H0 (A1 ) • The operator that counts the number of particles with 

momentum p E 0 in a region Q c Rn is now given by 

(3.42) 

If we now compute the expected number of particles for the system 

in i\1 we get 

(3.43) 

We now define the density of particles with momentum in 0 by 

Jp~(p)dp = (3.44) 
Q 
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Then this limit exists and is given by 

" e-!)n(p) 
= (2n)-ni 

"1-e-Sr:J(p) dp • 
Q 

Jp~(p)dp 
0 

(3.45) 

So that then density of particles with momentum p exists and 

is given by 

(3.46) 

and the particle density is given by 

(3.47) 

In correspondence with (3.4 ) and (3.4 ) we may introduce the 

partial pressure due to particles with momentum p by 

0( ) _ ( 2 )-nn-1 1 ( 1 -Gw(p)) Pg p - - n ~ og -e • (3.48) 

If we want to express the state 0 
(.') ~ in terms of annihilation 

creation operators 

a,'f(h) = 
(" f' 

jh(p)a~{(p)dp 

.!l 

where ai.- stands for a or a-x- 9 and h E L2 (Rn) 

Then we have the formula 

(3.49) 

(3.50) 

As a comparison we have that the corresponding quantity for a 

system of free Schrodinger particles at temperature B and acti-

vity z is given by 

e (3.51) 
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To within the non relativistic approximation 

we see that 0 
Ill B 

1 2 w(p) ,.., m+~ p .-:m 

is the Gibbs state of free Schrodinger particles 

of mass m at temperature S and activity z = e-mB • 
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4. The Gibbs-state for the interacting scalar quantum field 

in two space-time dimensions. 

In the case of two space-time dimensions or equivalentely 

one space dimension 7 the interacting scalar field is relatively 

well understood in the case of polynomial interactions ([2] 9 [7] 9 

~8] 9 C9] and !10]) and exponential interactions ([3] and [11]). 

In the case of positive mass m > 0 , it was proved by Glimm­

Spencer [2] that the thermodynamic limit for the temperature zero 

state existed and is m1ique for weak polynomial inter-

actions. More recently Nelson :121 have established the existenoe 

of the thermodynamic limit for strong polynomial interactions 

'Ni th Dirichlet boundary conditions. Nelson's method which depends 

strongly on the Dirichlet bo~mdary conditions leads to the ques-

tion of whether this limit is unique 9 and in fact Dobrushin and 

Minlos [6] have announced the result that there is a certain cri-

tical value for the interaction strength for any polynomial inter-

action above which the limit is not unique. For the strong expo-

nential interaction the existence and uniqueness of the termody-

namic limit for the temperature zero state was recently proved by 

Albe~erio and H0egh-KrolU1 [3] 7 in the case of even interactions. 

From what is said above we see that the thermodynamic behavior 

of the temperature zero state is quite complex and that by the 

result of Dobrushin and r.1ihlos there are phasetransi tions of 

the temprature zero state for the polynomial interactions. 

In contrast with this complex picture for the temperature zero 

state 7 we shall see that for the positive temperature (8 < :::o) 
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state or the Gibbs state the thermodynamic limit always exists 

and is unique for the polynomial interactions as well as for the 

exponential interactions 9 without any restriction on the strength 

of the interaction 9 in the case of two space-time dimensions. 

Now let 
l 

H1 = H0 + J : V(cp(x)) dx 
-1 

( 4. 1 ) 

where cp(x) is the time zero free field of positive mass m > 0 9 

in two space time dimensions 9 and V(s) is either a polynomial 

which is bounded below 

V(s) = P(s) (4.2) 

or an exponential function i.e. 

V ( s ) = I e as du ( a) 
;,) 

(4.3) 

where d~ is a positive measure of compact support in the open 

in tervall (-.fin: p ) . 
H0 is the Hamiltonian for the free scalar field ~ • H1 is 

then the Hamiltonian for the corresponding interacting field with 

a space cut off interaction. For details concerning the defini­

tion of H1 the reader should consult the references ~7] and 

r10] for the case (4.2) and the references ~11] for the case 

(4.3) . 

It is known that H1 is essentially self adjoint on the inter­

section of the domains of H0 and v1 
l 
r 

V 1 = J : V ( cp ( x ) : dx (4.4) 
-1 

and that H1 is bounded below 

(4.5) 
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where b is some real number depending on v1 ~ so that e-~Hl 

is a bounded operator. 

We will now construct the Gibbs state for the space cut-off inter­

action (4.1). 

Let A be an interval containing the interval 1-l,l] in its 

interior~ then we set 
l 

H1 ( A ) = H 0 ( A ) + J ~ V ( cp ( x) ) dx • 

-1 

(4.6) 

By the same methods that proves that n1 is essentially self 

adjoint and bounded below we get that H1 (A) is essentially self 

adjoint and bounded below. riioreover 9 vve also get that n1 (A) has 
-pH1 (A) 

des crete spectrum and that e is of trace class. vre shall 
-SH1 (A) 

start by computing the trace of e • By the method of hy-

percontractivity r13] in the same way as for H1 9 we have that 

and 

may be approximated by operators 

H has the form n 

H n 
such that 

(4.7) 

(4.8) 

where 
('('·· 

is in d- ( (Y) for some tr'c A • We shall prove 

below that 

-BH -8H1 (A) 
tr e n ~ tr e • (4.9) 

Since vCn) 
l 

is bounded we get by the 'J:lrotter-Kato product for-

mula that 

i - .§.H ( A ) - Q. V ( n) l k 
strong lim Le k 0 e k 1 ~ = 

-PH ,~- n 
e (~-.10) 

k ~·X 
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but this may obviously also be written in the form 

Now let 

hence 

vCn) 
1 2:, - c 9 where 

_.Q.y(n) 
!!e k 1 !I 

c 

so that the i-th eigenvalue of 

= e 
-SH . n 

of course depends on n • 

Qc 
is smaller or equal to e~ times the i-th eigenvalue of 

(4.11) 

Then 

(4.12) 

(4.13) 

(4.14) 

-OH0 (!1) 
e • On the other hand vve have by ( 4. 11 ) that the i-th 

eigenvalue of (4.14) converge to the i-th eigenvalue of 

Hence by dominated convergence we get that the trace of (4.14) 
-GHn -8H (11.) converge to the trace of e 9 since e o is of trace 

class. 

However the trace of (4.14) is by theorem 3.1 given by 

Since the transformation vin)(n(O)) ~ vin)(n(s)) is induced 

by the action of the circle group s s on 

ralized Gaussian process corresponding to 

So x fl. 9 and the gene­
t=.l 
P, EA is homogeneous with 

respect to this action 9 we have that the transformation is given 

by a strongly continuous unitary group on 1 2 of the correspon­

ding process 9 and therefore vin)(n(s)) is a strongly continuous 

function of s in the 1 2 space of the process. Hence we get the 
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strong L2-convergence 

3 

~ s vfn)(~(s))ds (4.16) 
0 

as k ~ m • By passing to an almost everyvrhere convergent sub-

sequence~ we get by dominated convergence the corresponding con-

vergence of (4.15). Hence we have that 

8 

-8H q :- - ._: , V l n) ( 1l ( s ) ) d s l 
E ,~. e o 

A'- _J • 
tr e n (4.17) 

Now the approximation of 
1 
r 

V 1 = J : V ( cp ( x ) : dx 
-l 

by functions 

in crce-) may be carried out 

where v~a,b] 

in two steps. First we approxi-

mate 
r,. b1 v·_a, J 

1 1 is equal to in those points 

where vl has values in the interval [a,b] and is 

equal to zero elsewhere. Under this approximation we have that 
-~H 8 -8H (A) vCn) 

1 
is uniformly bounded below so that e n < ec ·e 0 

9 

-8H =8(H (A)+Via,b]) 
e · n converge to e 0 and by hypercontractivity 

-SH 
in norm, so that tr e n converce by dominated convergence. 

On the other hand the right hand side of (4.17) will also con-

verge by dominated convergence since under this approximation 

vfn) is uniformly bounded below. 

':Chen we remove a and b by first letting a ~ - Xl and then 

b -+ ro • In both cases we have that both sides of the equation 

converges by monoton convergence. Hence we have proved the 

following formula 

-BH1 (A) 
tr e = 

rB.,T ( ( ) ) d . -.1 v1 n s sl -BAA -1 q! ~ 
11-e I F'- i e 0 · 
~ • ..:.Jl\-- -' (4.19) 
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Recalling the form of v1 this may also be written 

tr .-"Hl(A) ~ !1-e-SA~I-1E;:.-J: J_~v(s(x,S)):dxds;. 
" 

(4.20) 

In the same way as we proved the formula (4.20) we prove the 

following 

Lemma 4.1 

Let F 9 ••• ,F 1 o n- and 0 = s < s1 < ••• < s = s o- - - n 

then 

where 
sk 

Fk is the translation of Fk by the amount in the 

action induced by the circle group s8 on the generalized Gauss­

ian process s(x9s) • 

As in section 3 we now define for any B E B(L2 (hA)) 

(4.21) 

and 

(4.22) 

E rJf((.Y) and (Yt then 1 We then have that if B c A 9 at(A) is 

independent of A 
' 

and we denote this A independent value by 

a~(:B) 
lJ_ 

. This then gives us a group of c~.t--automorphism 
1 

at on 

LA- that if ()-: c [-191] 1 is • It is well known then at(B) 

independent of 1 9 and we shall denote this 1 independent 

value by ::t(B) 

ph ism 
f) 

on V--f • 

and again at gives us a group of 0*-automor-
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Let now v4 be the smallest norm closed c~r-algebra in "-// con-

taining a.t(F) for all real t and all F E ~6) for any 

bounded tr'"in R • Elements in Jl- of the form 

(4.23) 

~_, 

with F 0 ~ F 1 j ••• 9 F n in ':j (OJ then spends a dense linear set 

in c_/J. • We shall see that 

(4.24) 

converges as A tends to R and l tends to ·~ • 

tJ c If t. r-ljl] c A i = 1 9 ••• ,n then (4.23) is equal to 
l 

(4.25) 

By the definition (4.22) of we have that (4.25) is analy-

tic in 0 > Imt1 > ••• > Imtn > -8 and uniformly bounded and con­

tinuous in 0 ,;: Imt 1 ,;: ••• 2:. Imtn > - S • Moreover 9 its values at 

the imaginary points tk = -isk k = 1 9 ••• ,n with 0 = s 0 _:: s 1 •• 

• • < s is by lemma 4.1 given by - n 

(4.26) 

To prove that (4.24) converges as first A tends to R and then 

1 tends to :c, it is therefore enough to prove that the same 

limits exists for the right hand side of (4.26). Since FkE ~($1 
k = Os ••• ,n, it is therefore enough; if we want to prove that 

the limit exists as A - R 9 to prove that converge weakly 

as A -+ R But since is the expectation with respect to 

the generalized Gaussian process with mean zero and covariance 
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function G~(x,y;s-t) , the weak convergence of follows 

from that of the covariance function, Hence we find that the 

limit of (4.26) as A ~ R exists and is given by 

0 

where E! is the expectation with respect to the generalized 

Gaussian process with mean zero and covariance given by the 

Greensfunction G8 (x-y,s-t) for the self adjoint operator 

(4.28) 

on SS x R • For 0 < t < 8 we have that G8 (x,t) is given by 

where 

where 

G8(x,t) = Jrr J e-ixpGS(p,t)dp 

R 

G~~(p.t) _ r. 2· ( )( 1 -OeJ(p))]-1r -tt:J(p) -(s-t)w(p)] , - ,_ ~..u p -e :.. e + e 

I 2 2 I 
L'J ( p) = 'V p +m 

(4.29) 

(4.30) 

To prove that (4.27) 

since F E a-'(/~) 

converge,s as 1 ~ w it is again enough, 

k J 1_../ 
for k = o, ... ,n 9 to prove that con-

verges weakly as 1 ~ co • 11o do this we consider the Fourier 

transform of the generalized process given by E() 
1 

where is a 
X) 

C -function of compact support in 

(4.27) we have that (4.31) is given by 

( 4. 31 ) 

By 
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8 .1 
( I - s J : V ( S (X 9 S ) ) : dxd S l'l- 1 
~LEs! o -1 , ,-

Le ~J 

Let ¢ have support in s8 >< [-a,a] • 

Consider now the Hamiltonian H on 
8 

(4.32) 

where 

with fl. 3 = ~ 0, B] with periodic l)olmdary conditions and HS is 

the corresponding periodic Hamiltonian 
p 

A r 
H 8 = H ~ + j : V ( :p ( x ) ) : dx (4.33) 

0 

INhere I-Tis = H (fl. ) fl. r 0 8 J . tl . d. b d d. 
0 ~ 0 8 S = _ , . Wl J. perlo lC oun ary con l-

tions. It is well known both in the polynomial and exponential 

case that H8 has a simple lowest eigenvalue with a normalized 

eigenvector which we denote Q~ • 

By letting in lemma 4.1 S tend to infinity and taking fl. in 

lemma 4.1 fixed equal to the fi.S above, we obtain easily the 

formulas 

and 

where 

-(1-a)HCl 
WC-a,a](if)e Pn~l 

is the normalized eigenvector of HB 
0 

(4.34) 

(4.35) 

corresponding 

to it simple lowest eigenvalue and Wr 8 t](if) is the unique 
L 9 

bounded operator satisfying the strong differential equation 
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B 

it W:s~tJ(if) = W[s 9 t](if)[-Hp+iJf(x~t)cpS(x)dx] 
0 

0 

(4.36) 

where is the free field corresponding to H:~ , with the 
0 

initial condition that 

(4.37) 

and 

f(x,t) = ~(t,x) • (4.38) 

The analog of (4.34) and (4.35) in the temperature zero case is 

well knovvn and used for instance in ~ 14] where they are called 

the Nelson symmetries. 

Now that the limit of (4. 31) and hence of (4. 27) exists as 1-+ C::() 

follows simply from the fact that H~ has a simple lowest eigen­

value. Hence we have 

Lemma 4.2 
rs -1 -

. f r-j J :V(<;(x,s)):dxdsl_,_1 
Let Ei(e 1 (,!1,s))= LEB~ o -l JJ 

rB rl 
_ - J \ : V ( s ( x, s ) ) : dxd s 

Sl '(1 ») . ... l 
• E : e l t' ' :, e o -1 ! 

~ ~ 

Then the limit E~( ei ( ~' s)) as 1 .... ·2() exists and is given by 
-''"-

where f(x,t) = ~(t,x) • Moreover~ the measure induced by 

is locally equivalent to the generalized Gaussian process given 

by P. E,J , i.e. restricted to the subalgebras generated by 

for ~ with support in a fixed interval s8 x r-a,a] they are 

equivalent. The measure given by 

respect to space translations i.e. 

E~ is strongly mixing with w 
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where 

Proof~ We have already proved everything up to the moreover 

part. The moreover part follows immediately from the formula for 
Q 

E~ and the strongly mixing follows from the same formula together 

with the fact that n . Q belongs to a simple lowest eigenvalue of 
;:_! 

Theorem 4.1 

Let c.lt be the local algebra for the interacting field 9 i.e. the 

smallest norm closed C 1~-algebra in <.if containing for 
~ 

all real t and all F E '::_{- ( (<J') for any bounded if in R • 

There exists then a state on Dfl- such that IJJ is invariant 
8 

under i.e. 

w 6 (B~t(C)) = w8(a_t(B)·C) 9 

for any B and C in c)/. ~S(B•at(C)) is analytic in the strip 

-8 < Imt < 0 and uniformly bounded and continuous in -B _::: Imt _::: 0, 

and satisfies the KMS conditions on the boundary 

for real t • w8 is invariant tmder space translations 

II) (B)= ''l (B) , g X '·· 0 

and have the cluster property 

lim w8(Bx•C) = w8(B)·ws.· (C) 
X ....., ·:x; , 

is locally Fock, i.e. if we restrict LU () to the subalgebra 
u 
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generated by ~t(F) for t in a fixed interval [-a 9 a] and 

F E 9-'-'( CJ) . for a fixed bounded U ~ then on this subalgebra 

w induces the free Fock representation. 
0 

for some bounded V then 

rn 8 (F o~t (F 1 ) ••• at (Fn)) is analytic in 0 > Imt 1 > ••• > Imtn >-3 
· 1 n 

and continuous and uniformly bounded in 0 =? Imt 1 .:::, ••• .::, Imtn,;:: -$ 9 

and its value at the imaginary points tk = -isk ~ k = 1 9 ••• ,n 

with 0 = s < s1 < ••• < s = ~ o- - - n 
is given by 

where is the expectation with respect to the generalized 

homogeneous process on S 8 ~< R given in lemma 4. 2 ~ and 
s, 

F K 
k 

the translated of the function Fk by the amount 

action of the circle group S~ 

s, in the 
K 

is 

Furthermore 9 if B is in the subalgebra generated by ~t(F) for 

t in a fixed interval ~-a 9 a] and F E :fc6}) for a fixed boun­

ded U then 

t'JB (B) = lim lim 
i\->R 

1 t:.J~"'(A) (B) • 
1-> CXJ 

u 

Proof~ Linear combinations of elements of the form 

• • a.t ( I!,n) are norm dense in 1./t . \f e 
n 

as for the temperature zero case that 

and i\ • Since for 1 

may show in the same way 
1 w0(A) is locally Fock uni-

and A big enough at (Fk) 
k 

formly in 1 

= ~i ( i\) ( F k) 
k 

and 1 
at(A) is strongly continuous in Fock space 

we therefore get that 

(4.39) 
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when we restrict tk , k == 1~ ••• ,n to a bounded interval is con­

tinuous in tk, k = 1 9 ••• ~n uniformly with respect to l and 

A • By passing to subsequences we therefore get as first A ~ R 

and then 1 ... CD tbro'Ugll:l subsequences that (4.39) has a limit 

(4.40) 

wl1ich is continuous in tk ~ k == 1 ~ ••• ~n On the other hand vve 

have already proved that (4.39) is analytic in 0 > Imt1 > ••• 

• >Imtn > -8 and that at the imaginary points 

(4.41) 

VIi th 0 < s 1 < ••• < s < ~ ~ (4.41) converges as first 
- - - n 

A ~ R and 

then 1 .... co • 

I f we denote the ll.ml·t by "·' (P 1"1 (F ) ,., (F )) we 0.'!et l"S ""o'-'~-is 1 1 • • • ""-isn n 

by lemma 4.2 that 

(4.42) 

(4.42) being a limit of functions which are uniformly bounded and 

analytic in 0 > Imt 1 > ••• > Imtn > -3 must itself be analytic 

and bounded in the same domain. Since (4.40) is the limit of 

boundary values of these functions~ it must itself be the boun­

dary value of (4.42). But this proves that (4.40) must be inde­

pendent of the subsequences chosen 9 so that (4.39) converges as 

first A .... R and then 1 .... ·~~ to a limit (4.40) which is contin-

uous in tk 9 k == 1, ••• ,n Hence (4.40) is the boundary value 

of a function which is analytic in 0 > Imt 1 > ••• > Imtn > -8 and 

uniformly bounded and continuous in 0 > Imt 1 _:::: ••• ~ Imtn > -S and 

its value at the imaginary points is given by (4.42). 

Now (·Jn as limit of states is again a state and extends by con-
,_, 
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tinuity to all of c/~. The invariance under ~t follows from 

the corresponding invariance for and similarily the KMS 

condition. The translation invariance under space translations 

follows from (4.42) and the homogenity of the generalized process 

given by E! • This homogeni ty follovvs from lemma 4. 2. The 

cluster property follows from the fact that E~ is strongly mix­

ing with respect to space translations. This proves the theorem. 

Remark~ If we now define the pressure pB(V) at the temperature 
1 for the interacting field by 

1 1 -SHl(Al) 
P0 (V) = 8- lim !A1 )- log(tr(e )) 

,J 1 -+::):) 
(4.43) 

with A1 = [-1 9 1] ~we get by lemma 4.1 and lemma 4.2 and its 

proof that 

(4.44) 

where V describes the interaction so that 

1 
H1 ( A l) = H 0 (l~_ 1 ) + s : V ( r1; ( x) ) ~ dx 

-l 

and p~ is the pressure for the free field given by (3.38) and 

(3.41), and e 9 (V) is the lowest eigenvalue of the periodic 

Hamiltonian 

~ 

HS = H~ + J ~ V(cp(x)) ~dx 
0 

where H~ = H0 (r 0 9 S]) with periodic boundary conditions. 

(4.45) 
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We see that theorem 4.1 gives a certain duality between the Gibbs 

state at temperature 1j8 for the infinite volume interaction 

and the corresponding vacuum or zero temperature state for the 

interaction in a periodic box of length ~ • We shall denote this 

duality by the duality principle for the relativistic Gibbs state. 

This duality principle may also be expressed in terms of the 

Wightman functions or if we want also in terms of the Schwinger 

functions for the interaction. 

Let ~(x 9 t) be the interacting field at time t 9 i.e. 

(4.46) 

where cp(x) is the field at time zero 9 and (4.46) is an equation 

betvreen operator valued distributions in x for fixed t • The 

Vvightman functions at temperature 1 /e for the infinite volume 

interaction is given by 

(4.47) 

and the Wightman functions for the field in a periodic box of 

length 8 9 at temperature zero (p = .~) is given by 

(4.48) 

where o0 is a normalized eigenvector belonging to the lowest 

eigenvalue 

length S 

for the 

B 

H 9 Hamiltonian in a periodix box of 
!3 

H - H 8 + f · V ( en ( x ) ) dx s - 0 J Q t' 
(4.49) 

0 

where V is either a polynomial vrhich is bounded below or an ex-

ponential function of the type (4.3) 9 and is the free Hamil-

tonian in a periodic box of length $ • We have then that (4.47) 
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is analytic in t 1 9 ••• 9 tn in the domain 0 > Imt 1 > ••• > Imtn >- $ 

and that (4.48) is analytic in Im t 1 > • • • . > Im t • n The values at 

the imaginary points tk = -isk for 0 < s 19 ••• < sn < S for 

(4.47) and s 1 < ••• < sn for (4.48) is called the Schwinger flmc­

tions 
'1 

w--.--.··' ,Cx1 ,-is 1 , ••• ,x 9 -is ) 
-- n n 

(4.50) 

and 

~( x 1 9 s 1 , ••• , x .p ) = v:f-""D8- ( x 1 ;-is 1 9 • • • 9 xn , - i sn ) :·" n n (4.51) 

We may now express the duality principle from theorem 4.1 in terms 

of Wightman - and Schwinger functions 9 and this gives us the fol­

lo·wing duality theorem 

Theorem 4.2 (The duality theorem) 

Let Yil:J X 1 , t 1 • • • X 9 t ) ._;_, n n be the '\iTigh tman functions at temperature 

1js for the infinite volume interaction 9 and let v~ be the usu­

al Wightman functions at temperature zero ( S = m ) for the inter-

acting field in a periodic box of length s . Let s8 and 
'XJ 

be the corresponding Schwinger flmctions~ i.e. the Wightman func­

tions at imaginary time, so that V~(x 1 t 1 , ••• ,xntn) and 

S:,ix1 s 1 9 ••• 9 X s ) is periodic YTi th period $ in x 1 9 ••• 9 Xn • ::; n n 

Then W~jx 1 ,t 1 ,. •• x ,t) 
-~ n n 

and V~i X 1 9 t 1 9 • • • X 9 t ) _, n n 

is analytic in 

is analytic in 

0 > Imt 1 > ••• > Imtn >-G, 

Imt1 > ••• > Imtn , and 

for the corresponding Schwinger functions we have 

T.:Ioreover tl1e difference between the pressure for the free and the 
interacting field at temperature 1/S is equal to 

ps(o) - p6 (v) = s- 1e 8 (v) 

where eS(V) is the lowest eigenvalue for the interacting Hamil­
tonian in the periodj_c box of length B • 
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