On Bad Reduction of Elliptic Curves

by

Loren D. Olson

The purpose of this note is to show how the coefficients of the canonical invariant differential on an elliptic curve C defined over the field \mathbb{Q} of rational numbers may be used to determine the type of reduction at a prime p where C has bad reduction. Simple and explicit formulas for these coefficients are obtained. This also yields an easy method for calculating the local L-functions at these primes. To do this we use a theorem of Honda [2,3] which says that the formal group F of the curve C is strongly isomorphic over \mathbb{Q} to the formal group G associated to the global L-series of C. We then proceed to analyse the singularity of the reduced curve and obtain the desired formulas.

§ 1. Introduction.

All curves, points, etc. in this paper will be assumed to be defined over \mathbb{Q}. Let C be an elliptic curve. Then C has an affine Weierstrass minimal model of the form

$$Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$$ (1.1)

with $a_i \in \mathbb{Z}$, and a corresponding projective model.
The \(\mathbb{Q} \)-rational point \(e = (0,1,0) \) is the identity element for the group law on \(C \). If \(C \) has good reduction at a prime \(p \) and \(f_p \) denotes the trace of Frobenius \(F_p \) at \(p \), then the characteristic polynomial of \(F_p \) is \(1 - f_p t + pt^2 \). If \(C \) has bad reduction at \(p \) and the singularity is a cusp, let \(f_p = 0 \). In this case the non-singular part of \(C \) is isomorphic over \(\mathbb{Z}/p\mathbb{Z} \) to the additive group \(\mathbb{G}_a \) and we have additive reduction. If \(C \) has bad reduction at \(p \) and the singularity is a node with the two tangents rational over \(\mathbb{Z}/p\mathbb{Z} \), let \(f_p = 1 \). Then the non-singular part of \(C \) is isomorphic over \(\mathbb{Z}/p\mathbb{Z} \) to the multiplicative group \(\mathbb{G}_m \) and we have split multiplicative reduction. If \(C \) has bad reduction at \(p \) and the singularity is a node with the two tangents not rational over \(\mathbb{Z}/p\mathbb{Z} \), let \(f_p = -1 \). In this case the non-singular part of \(C \) is isomorphic over a quadratic extension of \(\mathbb{Z}/p\mathbb{Z} \) to the multiplicative group \(\mathbb{G}_m \) and we have non-split multiplicative reduction. We wish to derive some simple arithmetical criteria for determining which of these three types of reduction occurs at a given prime \(p \) where \(C \) has bad reduction.

The **local L-function** \(L_p(s) \) of \(C \) at \(p \) is defined as

\[
L_p(s) = \frac{1}{(1-f_p^p s + p^{-1} s^2)^{-1}} \quad \text{if } C \text{ has good reduction at } p , \quad \text{and}
\]

\[
L_p(s) = (1-f_p^p s)^{-1} \quad \text{if } C \text{ has bad reduction at } p .
\]

The **global L-function** of \(C \) is \(L(s) = \prod_p L_p(s) \). We want to use the following result of Honda [2,3] in our investigations.

Theorem 1.1 (Honda). The formal group \(F \) of \(C \) is strongly isomorphic over \(\mathbb{Z} \) to the formal group \(G \) associated to the global

\[
y^2Z + a_1XYZ + a_3YZ^2 = x^3 + a_2x^2Z + a_4xZ^2 + a_6Z^3
\]
L-function of C.

Let w be the canonical invariant differential on C and $C_{p^{-1}}$ the coefficient of z^{p-1} in the expansion of w/dz. An immediate consequence of Honda's theorem is that f_p is congruent to $C_{p^{-1}}$ modulo p.

Corollary 1.2. Let C be an elliptic curve, and assume that C has bad reduction at a prime p. Then

1. $C_{p^{-1}} = 0, 1, -1$ (mod p)
2. C has additive reduction at p \iff $C_{p^{-1}} = 0$ (mod p)
3. C has split multiplicative reduction at p \iff $C_{p^{-1}} = 1$ (mod p)
4. C has non-split multiplicative reduction at p \iff $C_{p^{-1}} = -1$ (mod p) and $p > 2$.

Proof: Since $C_{p^{-1}} = f_p$ (mod p) and $f_p = 0, 1,$ or -1, the congruence class of $C_{p^{-1}}$ modulo p determines the reduction type uniquely as indicated except for $p = 2$. But since all polynomials of degree 2 are reducible over $\mathbb{Z}/2\mathbb{Z}$ (and, in particular, the one giving the tangents at the singular point), the only possible type of multiplicative reduction is split multiplicative reduction.

Thus we see that the residue class of $C_{p^{-1}}$ modulo p determines the type of reduction modulo p. We would like to have more information concerning $C_{p^{-1}}$ and f_p.

Define the following invariants of a model for C of the form (1.1): $b_2 = a_1^2 + 4a_2$, $b_4 = a_1a_3 + 2a_4$, and $c_4 = b_2^2 - 24b_4$. b_2 and b_4 correspond to Neron's α and β [4,p.450]. As we
shall see, c_4 is a sufficiently good invariant to distinguish between additive and multiplicative reduction, but it is not fine enough to separate split and non-split multiplicative reduction, i.e. to distinguish between $f_p = 1$ and $f_p = -1$ and thus to determine the local L-function completely.

From now on we shall assume that C has bad reduction at the prime p under discussion.

§ 2. The case $p = 2$

Since C_{p-1} modulo p determines the type of reduction at p, we want to compute C_{p-1}, in this case C_1. For a curve given in the form (1.1) or, equivalently, (1.2), we have

$$w = dX/(2Y+a_1X+a_3)$$

(2.1)

Expressing X and Y in terms of Z and computing (cf. Tate [5] for the details), one obtains

$$C_1 = a_1$$

(2.2)

Theorem 2.1. (1) C has additive reduction at $2 \iff a_1 \equiv 0 \pmod{2} \iff c_4 \equiv 0 \pmod{2}$

(2) C has split multiplicative reduction at $2 \iff a_4 \neq 0 \pmod{2} \iff c_4 \neq 0 \pmod{2}$

Proof: $c_4 = b_2^2 - 24b_4 = b_2^2 - b_2 = a_1^2 + 4a_2 = a_1^2 + a_1 = a_1 \equiv C_1 \pmod{2}$.

Applying Corollary 1.2 completes the proof.
§ 3. The case $p = 3$

As in § 2, a short computation (again see Tate [5] for the details) yields

$$c_2 = a_1^2 + a_2$$ \hfill (3.1)

Theorem 2.2. (1) C has additive reduction at 3 \iff $a_1^2 + a_2 = 0 \pmod{3}$ \iff $c_4 = 0 \pmod{3}$.

(2) C has multiplicative reduction at 3 \iff $a_1^2 + a_2 \neq 0 \pmod{3}$ \iff $c_4 \neq 0 \pmod{3}$.

(3) C has split multiplicative reduction at 3 \iff $a_1^2 + a_2 = 1 \pmod{3}$.

(4) C has non-split multiplicative reduction at 3 \iff $a_1^2 + a_2 = -1 \pmod{3}$.

Proof: $c_4 = b_2^2 - 24b_4 = b_2^2 = (a_1^2 + 4a_2)^2 = (a_1^2 + a_2)^2 \pmod{3}$.

The theorem then follows immediately from formula (3.1) and Corollary 1.2.

Remark. $C_2^2 = c_4 \pmod{3}$. Note that $C_2 = a_1^2 + a_2$ is a more sensitive invariant than c_4 in that the residue class of C_2 modulo 3 allows us to distinguish between split and non-split multiplicative reduction, while c_4 does not allow us to separate these two possibilities.
§ 4. The case $p \geq 5$

Assume $p \geq 5$. Then there exists an affine minimal model for C at p of the form

$$Y^2 = X^3 + AX + B$$

(4.1)

with $A, B \in \mathbb{Z}$. The coefficient C_{p-1} modulo p is given by Deuring's classical formula [1]

$$C_{p-1} \equiv \sum_{2h+3i=p} \frac{P!}{i!h!(P-h-i)!} A^h B^i \quad (\text{mod } p)$$

(4.2)

where $P = (1/2)(p-1)$.

Let $S = (x, y)$ be the singular point on the reduced curve with $x, y \in \mathbb{Z}/p\mathbb{Z}$. The tangents at S are given by a quadratic polynomial $R(T)$ as follows: Transform the curve by $X \rightarrow (X+x), Y \rightarrow (Y+y)$ so that the singularity is now at $(0,0)$. The tangents are given by a homogeneous form of degree 2 in X and Y which we can consider as a quadratic polynomial $R(T)$ with $T = Y/X$. Let D be the discriminant of $R(T)$, and let $\left(\frac{p}{D} \right)$ denote the Legendre symbol with respect to p.

Proposition 4.1. (1) C has additive reduction at $p \iff f_p = 0 \iff S$ is a cusp $\iff R(T)$ has two identical roots over $\mathbb{Z}/p\mathbb{Z} \iff D = 0 \iff \left(\frac{D}{p} \right) = 0$.

(2) C has split multiplicative reduction at $p \iff f_p = 1 \iff S$ is a node with rational tangents $\iff R(T)$ has two distinct roots rational over $\mathbb{Z}/p\mathbb{Z} \iff \left(\frac{D}{p} \right) = 1$.

(3) C has non-split multiplicative reduction at $p \iff f_p = -1 \iff S$ is a node with irrational tangents $\iff R(T)$ has two distinct roots not rational over $\mathbb{Z}/p\mathbb{Z} \iff \left(\frac{D}{p} \right) = -1$.

Corollary 4.2. \(f_p = \left(\frac{D}{p} \right) \).

Let
\[
H = Y^2 - X^3 - AX - B
\]
(4.3)

Then we have
\[
\frac{\partial H}{\partial X} = -3X^2 - A
\]
(4.4)
\[
\frac{\partial H}{\partial Y} = 2Y
\]
(4.5)

From (4.5) we must have \(y = 0 \). From (4.4) we must have \(x^2 = -A/3 \) in \(\mathbb{Z}/p\mathbb{Z} \), so that \(-A/3\) is either a quadratic residue modulo \(p \) or \(0 \) modulo \(p \). Note that \(x = 0 \iff A \equiv 0 \pmod{p} \).

Let \(X^3 - AX - B = (X - \alpha_1)(X - \alpha_2)(X - \alpha_3) \) be a factorization over \(\mathbb{Z}/p\mathbb{Z} \).

At least two of \(\alpha_1, \alpha_2, \alpha_3 \) must coincide with \(x \), let us say \(x = \alpha_2 = \alpha_3 \). Then
\[
X^3 + AX + B = X^3 + (-\alpha_1 - 2\alpha_2)X^2 + (2\alpha_1\alpha_2 + \alpha_2^2)X - \alpha_1\alpha_2^2
\]
(4.6)

Thus comparing coefficients, we have
\[
0 = -\alpha_1 - 2\alpha_2
\]
(4.7)
\[
A = 2\alpha_1\alpha_2 + \alpha_2^2
\]
(4.8)
\[
B = -\alpha_1\alpha_2^2
\]
(4.9)

Hence
\[
\alpha_1 = -2\alpha_2
\]
(4.10)
\[
A = 2\alpha_1\alpha_2 + \alpha_2^2 = -3\alpha_2^2 = -3x^2
\]
(4.11)
\[
B = -\alpha_1\alpha_2^2 = 2\alpha_2^3 = 2x^3
\]
(4.12)

From (4.12) we see that \(B/2 \) is either a cubic residue modulo \(p \) or \(0 \) modulo \(p \). Note that \(x = 0 \iff B \equiv 0 \pmod{p} \) from (4.12).
Transform the curve by \(X \mapsto (X+\alpha_2) \), \(Y \mapsto Y \) so that the singular point \(S = (x,y) = (x,0) = (\alpha_2,0) \) goes to \((0,0)\). We obtain

\[
Y^2 - (X+\alpha_2)^3 - A(X+\alpha_2) - B = Y^2 - X^3 - 3\alpha_2 X^2
\]

(4.13)

The tangents to \((0,0)\) on the transformed curve are given by

\[
Y^2 - 3\alpha_2 X^2 = 0
\]

(4.14)

so that the polynomial \(R(T) \) is \(R(T) = T^2 - 3\alpha_2 \). \(D = 12\alpha_2 = 12x \).

\[
c_4 = b_2^2 - 24b_4 = (a_1^2 + 4a_2)^2 - 24(a_1a_2 + 2a_4) = -48A
\]

Since \(x = 0 \iff A \equiv 0 \pmod{p} \), \(D = 0 \iff A \equiv 0 \pmod{p} \) and so the invariant \(c_4 \) is enough to distinguish between additive and multiplicative reduction. However, as we shall see below it does not separate split and non-split multiplicative reduction.

Theorem 4.3.

1. \(C \) has additive reduction at \(p \) \iff \(A \equiv 0 \pmod{p} \) \iff \(B \equiv 0 \pmod{p} \) \iff \(\left(\frac{-2AB}{p} \right) = 0 \).

2. \(C \) has split multiplicative reduction at \(p \) \iff \(\left(\frac{-2AB}{p} \right) = 1 \).

3. \(C \) has non-split multiplicative reduction at \(p \) \iff \(\left(\frac{-2AB}{p} \right) = -1 \).

Proof:

1. We have seen that \(A \equiv 0 \pmod{p} \) \iff \(x = 0 \iff B \equiv 0 \pmod{p} \). \(C \) has additive reduction at \(p \) \iff \(D = 12x = 0 \iff x = 0 \iff A \equiv B \equiv 0 \pmod{p} \iff \left(\frac{-2AB}{p} \right) = 0 \).

2. and (3) From (4.14) we see that \(C \) has split multiplicative reduction at \(p \) \iff \(3\alpha_2 \) is a non-zero square in \(\mathbb{Z}/p\mathbb{Z} \) and that \(C \) has non-split multiplicative reduction at \(p \) \iff \(3\alpha_2 \) is not a square in \(\mathbb{Z}/p\mathbb{Z} \). From formulas (4.11) and (4.12) we have that

\[
3\alpha_2 = (-9/2)B/A
\]

Thus \(3\alpha_2 \) is a square \iff \((-9/2)B/A \) is a square modulo \(p \) \iff \(-2AB \) is a square modulo \(p \) \iff \(\left(\frac{-2AB}{p} \right) = 1 \).
Corollary 4.4. \(f_p = \left(\frac{-2AB}{p} \right) \).

§ 5. Examples

Given an elliptic curve \(C \) in the form of a minimal model (1.1) or (1.2), one computes the bad primes by finding the divisors of the discriminant \(\Delta = -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6 \) where \(b_6 = a_3^2 + 4a_6 \) and \(b_8 = b_2 a_6 - a_1 a_2 a_4 + a_2 a_2^2 - a_4 \). We can then apply the methods of the preceding sections to determine \(f_p \) and hence the type of reduction.

Example 5.1. Let \(C \) be given by \(Y^2 = x^3 + x + 1 \). This equation is minimal. The discriminant is \(\Delta = -16(31) \), so \(C \) has bad reduction at \(p = 2 \) and \(p = 31 \). For \(p = 2 \), \(C_{p-1} = C_1 = a_1 = 0 \), so we have additive reduction at \(p = 2 \). For \(p = 31 \), we can apply Theorem 4.3 and Corollary 4.4. \(f_p = \left(\frac{-2AB}{p} \right) = \left(\frac{2}{31} \right) = -1 \), so that \(C \) has non-split multiplicative reduction at \(p = 31 \).

Alternatively, one may use Deuring's formula to compute \(C_{p-1} \). A third possibility, of course, is to factor \(X^3 + X + 1 \) over \(\mathbb{Z}/31\mathbb{Z} \) and then analyze (4.14). \(c_4 = -48 \).

Example 5.2. Let \(C \) be given by \(Y^2 = x^3 + x - 1 \). The equation is minimal and \(\Delta = -16(31) \). We have additive reduction at \(p = 2 \) since \(C_{p-1} = C_1 = a_1 = 0 \). For \(p = 31 \), \(f_p = \left(\frac{-2AB}{p} \right) = \left(\frac{2}{31} \right) = 1 \), so that \(C \) has split multiplicative reduction at \(p = 31 \). \(c_4 = -48 \).

Remark. Comparing examples 5.1 and 5.2, one sees that \(c_4 \) is the same in both cases. However, 5.1 exhibits non-split multiplicative
reduction at \(p = 31 \), while 5.2 exhibits split multiplicative reduction at the same prime.

Example 5.2. Let \(C \) be given by \(Y^2 = X^3 + 7X + 5 \). The equation is minimal and \(\Delta = -16(23)(89) \). \(C \) has bad reduction at \(p = 2, 23 \), and 89. For \(p = 2 \), \(C_{p-1} = C_1 = a_1 = 0 \), so we have additive reduction at \(p = 2 \). For \(p = 23 \), we have \(f_p = \left(-\frac{2AB}{p} \right) = \left(\frac{-70}{23} \right) = \left(\frac{-1}{23} \right) = -1 \), so that \(C \) has non-split multiplicative reduction at \(p = 23 \). For \(p = 89 \), we have \(f_p = \left(-\frac{2AB}{p} \right) = \left(\frac{-70}{89} \right) = \left(\frac{10}{89} \right) = -1 \), so that \(C \) has non-split multiplicative reduction at \(p = 89 \) as well.

Remark. The computation of the Legendre symbol is much easier to carry out in practice than either the computation of \(C_{p-1} \) via Deuring's formula or by searching for roots of the polynomial \(X^3 + AX + B \).
Bibliography

2) Honda, T., Formal groups and zeta functions, Osaka J. Math. 5 (1968), 199-213.

5) Tate, J., The arithmetic of elliptic curves, Colloquium Lectures, Dartmouth College, Hanover, New Hampshire, August 29 - September 1, 1972.