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Abstract

We prove the Lindenstrauss-~-Wulbert classification scheme for com-
plex Banach spaces whose duals are L1-spaces, and give some
characterizations of the different classes by means of the unit
ball in dual space. The work leans heavily on [8] and the real
theory I am indebted to B. Hirsberg and A.-Lazar for a preprint
of [12] . Finally I would like to thank E. Alfsen and A, Lima

for making literature available and for helpful comments.

1. Preliminaries and notations.

Any unexplained notation in this paper will be standard or that
of Alfsen's book [1]. Otherwise we will use the following notations:
T: unit circle in C
V: a complex Banach-space
K: the unit ball in V* with w*-topology
M(K): The Banach space of complex regular Borel measure on K
with total-variation as norm

Mi(K): those measures in M(K) with norm < 1
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M:(K): probability measures on K . When F is a convex set then beF

will denote the éxtrempoints in.;F‘. If u is a measure then |u|
is the total variation of u . A measure pu 1is said to be maximal
or a boundary measure if |u| is maximal in Choquet's ordering.
The set of maximal (Probability-) measures on K is denoted by
(M2 K)) M (d.K) .

We shall now repeat some results and definitions from [8] .

A function f € C¢(K) is said to be T-homog:neous if

f(ak) = af(k) for all a € T, k€ K. The class of T-homogenous
functions in C¢(K) is denoted by Chom(K) . If fe¢€ CG(K) ’
then the function

[homTf](k) = Ja'1f(ak) de, k€K
where da is the unit Haar-measure on T , is continuous and
T-homogeneous. It is now verified that homT is a norm-decreasing
projection of C(K) onto Chom(K) .
Taking the adjoint of this projection on M(K)

homT L = o homT ’
we get a norm-decreasing w¥-continuos projection of M(K) onto
a linear subspace denoted by Mhom(K) .
A measure u € Mhom(K) is called T-homogeneous and satisfies
o, =au where 0 : K~ K is the homoeomorphism k~a k
a €T, ke K.
Each v € V can in a canonical way be regarded as an affine
T—homogeneous w¥-countinious function on K ., Conversely by a
result of Banach-Dieudonne ([1] corollary I.1.13), each affine
T-homogeneous function can be extended to a w¥*-continious complex-
linear functional on V* , .ie. to an element of V , We may
hom(K) *
If p € M(K) then the resultant of u is defined to be the

therefore identify V with the affine functions in C
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unique point r({u) € V¥ satisfying
r(u)(v) =p(v) forallvev.

If u € M'.;'(K) then it can be proved that -r(u) coincides with
the barycenter of u . (See [8] for a proof) « Moreover it is
readily verified that r: M(K) » V* is a w¥*-continious norm-
decreasing linear surjection.

Let X be a topological space and p € MT(K) . A function
f: K= X is measurable if for every € > O there is a compakt
set Dc K such that p(K\D) <€ and f|D is continious, If
X=RR or C then this definition coincides with the customary
one by virtue of Lusin's theoremn.

Let u € M(K) . Then there is a compleks |u|-measurable
function ® on K with |o|= 1 a.e. u such that u = @lu]| .

This representation is called the polardokomposition for u and

is unique up to zero sets.
Since ®: K= € is |u|-measurable it follows that w:K - K

defined by

w(p) = o(p)-p
also is measurable. Hence by Lusin's theorem w(lpl) , defined
by w(lul)(e) = [raalul fe o),
is a regular Borel-measure. (This definition is due to Phelps).
Clearly |lw(|pl)ll < llull and the other statements in the following

lemmn are proved in [8]

Lemma 1
Let u € M(X) , then
a)  r(hogu) =r()
b) rl(ul)) =r@)
c) lwlul) I = llul
d) homrw(lp]) = homgu
e) If u is maximal, then so are w(|u|) and homp, 1 .



Lemma 2

Let w,, u, € M(K) and put u = My +H, - If Hull =
Hu1H + Hugn then p, and p, admit the same polardecomposition,
i.e. there is a complex measureable function ® on K with
lo] =1 a.e [ul such that py = oluyl wy = oeluyl o
Proof

since |lull = lluyl + llu,ll we easily get [ul = u,l + luyl
In particular |u,| , luyl << |ul , so by the Rador-Nikodyn theoren

there is non-negative measurable functions f1 ’ f2 such that

I“1I = f{]ul 9 l“zl = f2'|“l . Let u = mIUI ’ u1 = ¢1IUI ’

W, = ©,elu] Dbe the polardecompoitions. Taien

w.IUl = @ '1911 + wz'lpzl

(¢1'f1)'lul + (@2'f2)"ul

-

Q(£4+5,)ul
® =09, =9, a.e. [l

The above lemma immediately gives

Cotrotliary 3

Let w4y , My, € M(K) and put p = HqHio o
Ir lull
w(lul)

luqll + ol 5 then
w(lp ) + w(lu,l)

2 Complex Lindenstrauss-spaces and complex affine selections.

A complex Banach-space W is called an L-space if W 7 L&(QJ% m)
for some measure-space (Q,B,m). '

A complex Lindenstrauss-space is a complex Banach-space

whose dual is an lL~space.



Theorem 4

If W is an L-space and m: W > W a projection with norm
one, then m(W) is an L-space
Proof

see [8]

Corollary 5

If V is a Lindenstrauss-space T: V= V a projection
with norm one, then m(V) is a Lindenstrauss-space.
Proof

Let m¥* ©be the adjoint projection. Then the restriction
map y: V¥~ (mV)* +takes m*(V*) isometrically onto (nV)*

and T¥ is a projection with norm one.

In [8] Effros proved that complex Lindenstrauss space may be

characterized by:

If uw, v € M: beK) and r{u) = r(v) , then: homp p = homg v

This theorem will be fundamental in the following, ‘and we shall

refer to it as Effros'characterization.

A map ®: K= M1(K) is said to be a complex affine selection if
¢ is affine, ©(a k) =a (k) and r(o(k)) =k ; k€ K,a € T .
© is called T-homogenous if ®(k) = homq, o(k) , k€ K,

Theorem 6

V is a Lindenstrauss space if and only if there is a complex
affine selection on K . Moreover if a complex affine selection
exist, then there is a unique T-homogenous complex affine selection
® on K and ®(k) is maximal for all k € K.
Proof

Necessity
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Put o(x) = homT\!x where Vi is a maximal measure in M:(K)
with r(vx) =X . ¢% is well-defined by Effros' characterisation,
and from the proof of that it also follows that ® is a complex
affine selection.
Sufficiency

Assume ¢: K - M1(K) is a complex affine selection, Let
$: V¢ » M(X) be defined by &(k) = ||K| wqrgﬁ{ . Then & is
complex linear and extends ¢ so ||@] <1 . Since r is a
norm-decreassing projection, we get
Il = I=@a)I < 150 < Ikl , ke K .
Hence ® is a isometry.
Let now m: M(K) » $(V*) be defined by m(u) = ®(r(u)) . Then
T is a projection with norm one onto ®(V*) , and since M(K)
is an L-space it follows from theorem 4 that ®(V*) is an L~space.
Hence V¥* 1is an L-space, which implies V is a Lindenstrauss
space.
Uniqueness

Let x€ K with ||xll =1 . From Lemma 1 it follows:

1= [l"l = [lp(oEINI < lle(eIDI <o)l <1,
so wlo(x)| € MI(K) .
Let v ¢ Mil"(K) with pu) =x, £f: KR continogs and convex,
and € > o . Choose simple probability measure z oy eyi
such that ([1] prgposition I.2.3) =
(2.1) vx(f) < (i§1ai eyi)(f) + € .z

n
;29 o; o(y;) . Moreover

n

Zqiyi=x

-

Since ¢ is affine, we get ®(x)
n n

1= lle@ll < T a; llo(y;)ll < 21 a; =1, so by corollary 3

i=1 i:

w([o@)]) =.§1 a; w (Joly;)])
1=
Now by lemma 1



-7 =

M8

a, e <3 a; w(lo(y;)])
T R £ R 1
Since f 1s convex, we get from (2.1):

00 = [ amllol) DI + ¢ = [w(lotDIE) + ¢

Hence w(lw(x)l) is maximal and is the only maximal probability

measure with barycenter x .

By lemma 1 homy w(|o(x)]) is maximal . But if © is
;T—homggenous, we get from lemma 1
homp, w(|®(x)]) = homy ©(x) = o(x)
Theorem follows now from the relation o(x) = ||xlleo (Wéw) , X€ K.,

The proof above also shows

Corollary 7

If V is a Lindenstrauss-space then every k € K with
norm one can be represented by a unique maximal probability
measure
Now by [1] theorem II.3.6
Cor llary 8

If V is a Lindenstrauss-space and F 1is a w¥-closed
face in K , then F 1is a compakt simplex.
Remark

The above corollary may of course be proved by a direct

argument, since a face-cone in an L-space must be a lattice-cone.

Theorem 9

"The following statements are equivalent
i) V Lindenstrauss-space with beK u {0} w¥-closed.
ii) There is a continous complex affine selection o: K = M1(K)

iii) For each f e C__(K) +there exists v € V such that

hom
f]beK = vlbeK -



Proof
Put o(x) = hompi , where u_  is a maximal probability

measure with 1’(px) = X . Then, as in the proof of theorem 6,

® 1is a complex affine T-homogeneous selection. We first prove

©(K) is compact.

Let {uY} c 9(K) be a net which converges to u € M1(K) . Let

f € Cp(K) . Then , since each 4, is T-homogeneous:

u(f)

1lim uY(f) = 1lim [homT uy] (£)

lim u.Y(homT f) = u(homT f) = homq, 1 (£) ,

which proves p 1is T-homogeneous. By lemma 1 each “Y is

maximal, and since d_KU {o} is closed it follows from [1]

that supp (u) € d KU {o} .

But since p is T-homogeneous, u({0}) = 0 , hence u is maximal

([1] proposition I.4.5)

Let k€ d K. Then by lemma 1:v =w(|u]) + #(1 - o (lul) 1) (ep+e_y)
is a meximal probability measure. By lemma 1 and

since p is T-homogenous we get

o(r(s)) = homy v = homy (w(|u)) = homy u =n

Thus p € ®©(K) , which implies ¢(K) is compact.

The map p— r(u) is 1-1 from ©(K) onto the compact o(K) ,
thus the inverse map is continious, i.e. ® 1is continious.

ii) = iii)

If ¢ 1is a complex affine continious selection on K , then
so is homT o9 . Hence we may assume that ¢ is T-homogeneous.
By ii) the map =x=[e¢(x)](f) x € K, is continious, affine and
T-homogeneous for all f € Cm(K) . But if f is T-homogenous
it follows from theorem 6 , Effros' characterization and [1] corollary
I.2.4:

f(x) = [o(x)](f) for all x ¢ > K -



iii) 2 1)

When f € Chom(K) then by 1ii) and Bauer's Maximum Principle
([1] theorem I.5.3) there is a unique function Ve in V such that
(2.2) . flo K = velo, K and [l > |lvgl.

Assume up, V € M: (beK) with K r(u) = r(v) = k
Let fé€ Cy_ (K) . Then by (2.2):
R(£) = plve) = ve(k) = v(ve) = v(£). Hence

homTv= homT M o 80 by Effros' characterization is V a Linden-
strauss-space.

It remains to prove that d KU {0} is closed.

By (2.2) it suffices to prove

(2.3) > KU {o} = {x € K| f(x) = vf(x)} .

feC (R)

hom
a) Assume x € K and x| < 1

Let g: Ulox| « € T} » € be defined by g(ax) =a . Then g
is continious. Extend g by Tietze to E: K= C with

gl =llgll. Put £ = homyg . Then f£(x) =1 and lfl =1 .
Hence

f(x)

1=l > vl 2 [veGeil
i [veG > IveGal
b) Assume x € K with ||x||

1 and there is no v € V such

that [|vll =1 and v(x) =1 .
Construct f as above. Then f(x) =1 & vf(x)
c) hAssume x€ K, lldl =1, x¢ d K and there is v € V such
that v(x) =1 = ||l .
Then F = {y € K | v(y) = 1} is a w*-closed face in K . Since
x ¢ > K there is y, z € F such that
X =3y + 3z V, 2 #£ X .
By the Hahn-Banach teorem there is a2 real convex continious function

gp on F such that
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gp(y) =gp(z) =1 , gp(x) =0.
Define g on UaF by g(ak) = ogp(k) a €T , k€F.
g is well de?é.rTled since F is a face. Extend g to g€ Cy(K)
by Tietze with :|g| = llgl and put £ = hom;g . Then f£|F = g
Let u be a maximal probability measare on K with r(ux) =X .
Since F is a face , supp (Hx) € F and p_ is seen to be

maximal on F . Hence .
ve(x) = L Ve duy = ‘Lde“x = g, 8pdy
By corollary 8 F is a simplex so [1] theorem II.3.7 gives
ve(x) = 2 B Gy = gp(x) = 2(8p(y) + &p(2))
>1>0=f(x) .

(& denotes the upper envelope of gp , see [1] p. &)

(2.3) now follows from a) , b) and c) and the proof is complete.

Notes

Theorem 6 was proved for simplexes by Namcoka and Phelps,
and for real Lindenstrauss-spaces by Ka-Sing Lau [18] , and
Fakhoury in a weaker form [24]. However, as pointed to us by
Hirsberg, there exist a very simple proof in the simplex-case,
and it is this idea we have used in the uniqueness-part. Ka-
Sing Lau [18] also proved theorem 9 in the real case. We have

proceeded in the same way, but the proof is somewhat simplified.

3 Complex C;-spaces

A compact Hansdorf space X 1is called a Tb-space if there
exists a map g: TxX » X such that
i) o 1is continious
ii) of(a, g(B,x)) =oc(ag ,x) o ,BET,x€eX

iii) o(1, x) = x
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Let X be a Ib~space . Then each a € T defines a homeomorphism

o,: X» X by oa(x) =o(a, x) , X€ X (Ua and o© are

a=-1

continious by i), ii) and iii) imply that o, oo is the

a-1
identity on X)

A function f € CC(x) is said to be o-homogenious if f(cax)

=af(x) forall o« € T, x€ X . The class of o-homogeneous
functions in CC(X) is denoted by qU(X)

A complex qg—space is a complex Banach-space which is
isometric to qc(x) for some T -space X .

If fe¢ CC(X} then the function
(3.1) [mg£l(p) = Jo~" £(o p)da , p € X
where do is the unit Haar-measure is seen to be continious and
o-~-homogeneous. T is easily shown to be a normdecreasing pro-
jection of CC(x) onto CG(X) .
Hence by corollary 5 is complex qc—spaces Lindenstrauss-spaces.

If Y is locally-compact Hansdorf space then CO(Y) wiil denote

the continious functions on Y vanishing at infinit.

Proposition 10

If Y is locally-compact Hausdorf space then CO(Y) is a
qU-space.
Proof.

Let X = (T xY)U {w} Dbe the one point compactifisation,
and define
c: TxX=>X by

o(a, x) = (ka co, y) if x=(ao, y) € TxX
i. w if X =W
i) o 1is easly seen to be continious
ii) Let x=(ao,y)€TxY,BET.Then
o(@ ,0( ,x))=0(,d0, (e ,, y)) @ Ba,, y))
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=o@Bae,,y)=0 (@B, (6, y)) =d(@B , x).

Moreover:

o(ae, o(B , w)) =0(a , w) =w=0c(ap , w).

1ii) is verified in a similar way as II) .

Hence X is a T -space . Each f € Cj (Y) can in a canonical
way be regared as a continious function on ({1} x Y) u {w}
vanishing at w . Extend £ to T on X by f(a, y) = af(y) ,
(@0, y)€ TxY. Then T is continious and o-homogencus. The
map f n_a? defined above is seen to be an isometry .of CO(Y)

into CG(X) . Since each g€ C (X) satisfies g(w) = o , the

above map is surjective , i.e. C,(Y) is a C,~space.

Let now X be a T ~space and V = C; (X) . A subset Zc X

is called o-symmetric if x € Z implies ca(x) € Z for all

o € T, Observ that if Z is 0o-symmetric then X~Z is
o-symmetric as well.
Ilet p embed X into K in the canonical way. Then p 1is

continious

Lemma 11
> K = {p(x)] Oy (x) £ x for all a € T~{1} x - X}
and p(x) > kv {0}
Proof
First we observ that oap(x) = p(cax) when a0 € T, x€ X
and p(x) =0 if o (x) = x for some o € T~{1} . Hence by
[5] p 441 lemma 6
> K< {p(x) | o (x) #x for all a€ T {11 , x € x} .
Let x € X and assume o (x) # x for all a € T~{1} . We
shall prove that p(x) € » K - We use a o-symmetric modification

of the argument given for that lemma of (5] .
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Assume
(3.2) p(x) =%k +%+k,, ky, k, € K,
Let fo € C (X) with Ifll <1 and assume f vanish on a open
neigbourhood N(x) of =x . Since q; is o-homogenous we
may assume N(x) 1is o-symmetric. Let h: {oa(x) | o€ T} u
{X N(x)} » ¢ be defined by h(o,x) =a , a € T, h(y) =0 if
y € X\N(x) .
Extend h by Tietze to h on X with || = ||lhl] and put
g = Io(h) . Then

g(x) =1 , g(y)=0 if y ¢ N(x) and llgll <1
Thus by (3.2)
1

g(x) = p(x)(a) =
3(ky () + ky(8)) < ¥ (Iky(8)] + [ky(g)]) <1

Hence k1(g) = kz(g) =1.

Similarly we get k1(g+i6) = k2(g+§j) = 1
Hence
(3.3) k (£) = ky(£) =0
Let £, € C;(X) with lfll <1 and f£(x) =0
For each integer n > 2 there is an open o-symmetric neigh-
bourhood Nn(x) such that
12,9 < /n if ye N (x)
Let Mh(x) be an open set containing x such that
M (x) € M (x) c N (x) .
Since Nn(x) is o-symmetric:
U o.M (x))c U o, M (x)c N_(x)
e & M = gr & M - 'n
and u o, Mh(x) =0 (T x Mh(x)) is closed.
aeT
As above we may construct g, € qJ(X) such that

lgl <'/n , g(v) =0 if yd N (x)
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and g (y) = £,(y) if y € o(T x M(x))
We get
f, - g, > £, uniformly and Hf1 - g1H <
Now since f, - g  vanishes on o(T x Mn(x)) , we get by (3.3):
lim k, (£, - g,) = k,(£,)
. .kz(f,l )

0
0

lim k2 (f1 - gn)
Hence op(x) (f) = 0 implies k1(f) = kz(f) = 0,f € QJ(X) .

By [5] lemma 3.10 there are @y , @, € C such that k, = a, p(x) ,
ky =y p(x) . But iyl , il <180 fogl o layl <1 and by
(3.2) we get a, =a, =1 1i.e. p(x) = k, = k, and the proof

of lemma is comple:.e.

Theorem 12

V is a Cc-space if and only if V is Lindenstrauss-space
and KU {0} is closed.

Proof

If V is a Cb-space, then V is a Lindenstrauss-space and
beK u {o} is cloged by virtue of lemma 11. Conversely assume
V 1is a Lindenstrauss-space with X = beK U {o} closed. X may
be organized to a Tb-space by scalarmultiplication. Then theorem

9 iii) completes the proof.

A complex szspace is a Banachspace which is isometric to a

qU(X) for some T -space X , where o, has no fixed points
if o e 71} .

Now as in the proof for Proposition 10 we get

Proposition 13 If X is a compact Hausdorf-space, then CC(X)

is a Cz-space .
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The next theorem may be proved by a method similar to that used
in proving theorem 12.

Theorem 14

V is a Cy space if and only if V is a Lindenstrauss-
space and beK is closed
Remark

Theorem 14 also proved proposition 13, just as theorem 12
proves proposition 10, by virtue of [5] p. 441 lemma 6.
Notes

The real Cb-epaces were intpvoduced and studied by Jerison
[16]. His results are presented in Day's book [4] p. 87 - 93.
The real version of theorem 12 was suggested by Effros [7], and
proved by Xa-Sing Lau [18]. Theorem 14 is due to Lindenstrauss-
Walbert. We have proceeded as in [18] .

4 Complex simplex spaces

Let (Q, B, m) be a measure space and assume V¥ = Lé(Q, B,m)
Let @€ Lg(Q, B, m) with |9 =1 a.e.m
Then

(4.1) S ={o-plpe Xk, p>0 a.e m, |pl =1} .
is seen to be a maximal (with respect to inclusion) face in K.
Conversly since the norm must be additive on a face-cone (2],
we get that all maximal faces in K are on the form given in
(4.1).

If pe¢ beK , then it is not hard to see that p = a Xp o
where a € C and Xa is the characteristic function of an atom
Ae B. Thus if S is a maximal face in K and p € beK ,
then ap € S for some o € T . Hence
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A complex Lindenstrauss-space V is called a complex simplex-

space if there is a maximal face S c K such that

conv (SuU {0}) is w*=closed.

(Observ that this definition coincides with Effros' in the real
case [6])

Lemma 15
Proof‘s is a split-face (See [1] p, 133) in conv (S U =-iS).
Assume Ax, + (1 - x1)(-ix2) = Ayq + (1 - AZ)(—iyz) ,
where X0 ¥y € S, o<A<1,1i=1,2,
Since S is a maximal face in K , there is ©® € V¥* such that
®[s=1. Thus Xy =%, =1,
Let u; , 9; € M(d K) i =1, 2, with
Plg) = x0, rluy) = -ix, , »(vy) =y, , vlv,) =-iy,
Since § is a face and S_ = (Su {0}) is w*-compact, we get
(4.3) supp (u4) , supp (vy) € 8,
supp (u,) , supp (v,) € -iS
Since the barycenter-map is normdecreasing, we also get
(4.4) wi(tol) =v;(lo}) =0, i=1,2.
Let now f € %R(So) with f(0) = 0 . Extend f to a T-homogenous
function ¥ on K . By Effros' characterization we get
Mg (E) + (1 =2 (@) = v (E) + (1 - 2) vy(B)
But * is real on S, » imaginary on -iS_ , so by (4.3):
by (£) = vy(2)
But by (4.4) this holds for any f € CR(So) . Hemce vy =y, ,
which gives X4 =Y and the proof is complete. w

Corocllary 16

Any z € Z  =conv (SU -1 SU {o}) may be written uniquely

in the form:



z=0a, %X +0a, (—ix2) +ax 0

where @ ;20,1=1,2,3 , a,+0a,+a =i9 s Xq9 X, € 8

3
Lemma 17

Let a be a real, affine w*-continious on S = cow (S U {ol)
with a(0) =1 . Then a amy be extended to a real affine w¥-
continious ¢ on Z_  such that cl-iSo =0,
Proof

Let c: Zo = R be defined by

c(z)

where z = 04X, + a2(-ix2) + a3'0 is the unique decomposition

a1(x1) , 2ZE€ Zo ,

from corollary 16.
¢ 1is easily verified to be affine. To see that ¢ 1is continious,
let {ZY] g_Zo be a net converging to Z € Z0 . Decompose

z¥ - a1Y x,'Y + QZY (-ixZY) + a3YO

Z = a Xy + Gy (—ixz) + Gz 0
by corollary 16. By compactness we may assume [x1Y} ’ {xZY} s
{a1Y} , {QZY} all converge. Let y,, y,, B, , B, be the
limit-points.

Then

y 4
2V > Byyy + By(-iy,) = B4lly,l (TB%TT) + szuyz-ues,m,gn) +B1.0

where Bl =1 - (“y']” 81 + ”YZHBZ)
(The case “Y1” =0 or ”YZH = 0 goes similar)

Now since the decomposition in corollary 16 is unique, we get
¥4
0-1 = BolHYo]“ ) X,] = ny—1n

Hence

c(zY) = ax a(x¥) - B, a(Y1) =

Bqlly,ll a(ﬂ%ﬂ') = a, a(x,) = c(z) ,
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which proves c¢ is continious. Clearly c¢ extends a and
c]-iSo = 0, so the proof is complete.

When H is compact convex, then A(H) (AO(H) ) will denote the
space of complex affine continious functions on H (vanishing

in a fixed extrempoint x_ in H).

o

Theorem 18

The following statements are equivalent
i) V is a simplex-space
ii) v AO(SO) for some simplex S
iii) V-~ A, where A 1is closed linear subspace of CC(X) ’
X compact Hausdorf, such that A is self-adjoint and ReA 1is a
real simplex space.
Proof
i) = ii)

Assume V is a Lindenstrauss space with a maximal face S c K

such that

S, = conv (su {0}) is w*-compact.
We have by (4.2)
(4.5) v V|So [= AO(SO) (xo = 0)

Let a ¢ AO(SO) and put b, = Rea , b, = Ima .
Then b1, b2 are real affine w¥-continious functions on So
with bﬂ(O) = bZ(O) = 0 , and may therefor by corollary 17 be
extended to affine w¥*-continious functions %1 ’ %2 on Zo
such that
(4.6) b1|-iSo = O,'bzl-iSO =0
By [1] corollary I.1.5 there are sequences ib?} , {bg} of
w¥*-continious real linear functionals on V¥ such that
n
b1 - b1 ’

b_,_n > b, uniformly on Z_
Dev n=1,

Let a,%, b 2, ... , be defined by

1 1
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a1n(‘x)

a, (x)

b1n(x) -i b1n(ix), X € V¥

b, (x) -1 by"(ix), x € V¥

Then by (4.2) and (4.6) a1n + i a2n converges to an element
c € V satisfying clso =a.

By [1] theorem II.3.6 and corollary 7 is So a simplex, so the
proof of ii) is complete.

ii) => iii) trivial.

iii) = ii)

Let p € (ReA)* and put

B(a) = p(Rea) + i p(Ima)

Then p € A*¥ with ||Dll = |lpll and p has only this extension
in A* , so we may regard (ReA)* as a subset of A¥* .

Let S, = {pe A¥|p(a) >0 all a€ [ReAl™} and y: A~ A (S)
be defined by [¥(a)](p) = p(a) , p€ S, , a€ A.

Then ¢ 1is an isometry since So contains the evaluations.
Theorem 2.2 in [6] implies that ¢ is onto and S, is a simplex,
ii) = i)

By the Hustad-Hirsberg theorem ([11] and [13]) each
;)EA(SO)* may be represented by a measure u € M(beso) such
that ||ull = llpll . Moreover, since S, 1is a simplex this represen-
tation is unique. Hence
(4.7) A(sy)* = M(d,S,)
and the latter is proved to be an I~space in [8] (See proof of
theorem 4.3)

Fnoix } = ¢ 1

o’ o]
Then S is a Gy ([1] proposition II.6.5) . Let e: M (3.S)) -

Let S =U {F|F face in S

M(beSo) be defined by
e(uw)(c) =u(CnsS), C Borel in Sy -
Then e is seen to be an L~projection in the sense of [2] .

We shall prove
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(4.8) e[M(d S,)] = A (S)* ,

which implies Ao(so) is a Lindenstrauss-space. lLet p € Ao(So)*
and extend to P on A(s,)

with Pl =Illpll by Hahn-Banach. Then by (4.7) there is a
unique measure pu € M(d eso) which represent '13 and satisfies

lull = 1Dl

Let € >0 . Choose a€ A (S) with |lall <1 such that

|p(a)] > |lpll =€ . Then

lull —e = Il = = lIpll - < |p(a)]

|[adul = 1]a aul < lul(s)
S

< lul(8) + lul Ux t) = lul(sy) = [lull
Hence yu € e[M(beSO)] .

Assume p € e[M(beSo)] annihilates AO(S) . Let {aai be a net

of real affine w¥-continious functions on S o Ssuch that
aa/r‘l - on

(see [1] corollary I.1.4 , theorem II.6.18 and theorem II.6.22)
Let € >0 . Choose o stch that

lu ((1 "Zxo’ - g, <¢/2

| g, (0)] < ®/2¢(lull
(See [1] (2.3)) . Then

lw()] = [ 1.dpul = i»ﬁ[ 1.4 | = Iiﬁ-&x ) d

< | By, du| + €2 < (aa - aa(O)) d uo

+ | jebL(O)tiul +%/2< €24+ %2=¢.
Hence u annihilates A(S.) , so by (4.7) is p =0 . (4.8)
follows.
Let p: S, = e(M(beSO)) be the canonical map. Then by [1]
lemma II.6.10
p(S) = lu € My(dS )| n(s) =1},

which is easly seen to be a maximal face in the unitball of
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eM@S,)) « (lu + |ulll = llull + llull = 4 > 0 which follows from

polardecomposition }

Since p(So' = conv (p(S) U {0}) is compact, the proof is complete.

Let V be a Lindenstrauss-space and assume e is an extrempoint

in the unit ball in V ., Put
S=1{p€ v¥ ple) =1 =l .
Then S is w¥*-compact and let ¢ : V = CC(S) be the canonical

embedding. Then it is proved in [12]

Theorem 19 (Lazar-Hirsberg)

Y is an isometry such that {(e) = 1q

A o

As in the proof of i) => ii) in theorem 18 we now get

Corollary 20

If V 1is Lindenstrauss-space and the unit ball of V
contains an extrempoint, then V = A(S) where S is a compact

simplex.

Remark
Now as in the last part of the proof ii) = i) of theorem

18, we see that a Lindenstrausspace V has an extrempoint if and

only if there is a maximal w¥-closed face in K. For more infor-

i

mation about such Lindenstrauss-spaces see [12] .

A complex Banach space V is called a complex M-space if it

can be represented as follows:
There is a compact Hausdorf space X and a set of triples

(x » A) € X xXx[o, 1] such that V is the subspace of

a? Ya
CC(X) satisfying
fx,) = A, 2(y,) ,ae A, fev

Clearly V is self-adjoint, and by [17] Re V is a Kakutani
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M-space, moreover each selfadjoint linear subspace of CC(X)
whose real component is a Kakutani M-space arises in this way.

Now, by theorem 18, a complex M-space is a complex simplex-space .

Notes
The real simplex-spaces were introduced and studied by
Effros in [6] . Our results are based on the ideas of [12] ,

and lemma 17 is closely related to proposition II.6.19 in [1].

5. Complex G-spaces.

Let X be a compact Hausdorf space. A linear subspace
Vc CC(x) is called a complex G-space, if V consists of those
fe CC(X) satisfying a family ./ of relations:
f(xa) = Ay Oy f(ya) P X, V€ X, 0 € ?
rg€ [0, 1], ael

T

Complex G-spaces are complex Lindenstrauss-spaces by corollary 5

and the following.

Proposition 21

If V is a G-space, then there is an M-space A such that
V= P(A) where P: A= A is a projection with [p/ < 1
Proof

We adopt the notation in the definition.
Let Y=T2xX be organized to a T,—space in the canonical way
(See proof of Proposition 10).
Let Ac CC(Y) be the closed subspace satisfying

F(B, x,) = M,F(@B ,y,), a€ , BET
Then A is a complex M-space., The map T: V = A defined by
[Tf]l(a , x) =af(x) , (a, x) € TxX
is seen to be an isometry of V onto a linear subspace of A ,
since
[T£1(8, x,) =B £(x,) = A, B-a, £(y,) = 2 [T£] (Ba, , y,) a € 4,

BerT
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If Fe A is o-homogeneous, then

F(1, xa) = Ay F(aa, yé) =%, Oy F(1, Vo) » 2 € A

Hence T +takes V onto the o-homogeneous functions in A .
Now the projection P =1_ | A will do. In fact, let F € A,
then

P (F) (B, x,) = ja-1 F(a , x,) du

-1
=l oA, F(eB) 8, y)da=2A P(F) (68 ,y)acd, perT

Lemma 22
Assume V 1is a Lindenstrauss-space and , let Ec d K
be compact with ENa E=¢@ when a € T1} . Then
F =conv (E) is a w* =closed face in K .
Proof
By Milmans theorem ([1] p. 50) is
F={r@)ue M}L (E)} .
~and observ that a measure u € M:(E) is maximal on K .
Assume k,, k, € K, A € [0, 1] such that
k=2ky+(1=-2%)k, €F
Let u € MI(E) with r(u) =k, u,,u,€ Mj(oeK) with
rlug) = kg, Tly) =k, ©
Let € > 0 , and choose compact C such that

CnNn U aE=go
a€T

u1(u aEUC)Z1-e,u2(U a EUC)>1-c¢
aeT 0eT

Let f be a T-homogeneous function on K such that

flE=1, f|] , f] U aC=0, |[fll <1 . By Effros' characteri-
aeT

zation we get:
1= () = My (£) + (1 = Auy(8)
<A fdu, + (1-2) fdu, +26 <1 +2¢€

UaE UcE
aeT a€eT
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Hence u, (U aE) = Mo (U aE)=1.
o€eT aeT
Assume now ., (E) #1 .

Let f be a T-homogeneous function on K with f|E = 1 and

€< 1 .

Put E! = U o E . By Effros' characterization we get
aeT~{1}

iw(Ref) = A Mg (Ref) + (1 - k)uz (Ref)
A J Ref duy + A Ref du, + (1 - k)uZ(Ref)
E E'

-
I}

<}\J.1 du1+l'~[1 d+11+(1"'>\)}-|-2(1)=1,
E E'

which is a contradiction. Hence u1(E) = 1 which implies

k1 € F and the proof is complete.

Let V’g_Cc(x) be a G-space.
Put

z=1{x€ Xl (y, A, a)e Xx[0, 1>x T such that
f(x) = aaf(y) for all fe V} .,

Let 86: X2 K be the canonical map. Then we have

Lemma 23
beK = U ad (Xn2)
a€T
Proof
We use the same notations as in the proof of proposition 21,

and when W is a Banach-space, then B(W) will denote the unit
ball.

Clearly no point in &(Z) is extrem so by [5] p 441 lemma
6is 2. Ke U ad(X 2)

& = T
To prove the converse inclusion let x € X~2 , g€ A . Then
P*(5 (1, x,)) (&) = 6(1, x,)(P(g)) = Jo g%, )a
= Jo™t 5 (a, xo)(g) da

Hence
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(5.1) P (1, %)) = Ia"% (@, x)( ) da
Let S = conv (6 (a,x)] a€e T, xe X}t u {o})
Then S is a simplex and A~ AO(SO) (See section 4). By the

real theory U 6(a, x ) U {o} ([7] Remark 8.2) is a w*-closed
aET

subset of 5 S . Let f_ U
e~o 0 e

8(a, x,) U {fo} = ¢ be defined by

By [3] corollary 4.6 fo can be extended to an element of
AO(SO) with norm one, Thus there is f € A such that
fle, x)) =¢ o€ T and Hell =1 .

Let E, =U a"6(a, x,) , B, = U B 6(a,x,)
aeT O,BET
Then E,, E, €0 eB(A*)' by the real theory. Put F = conv (E,) ,

H = conv (E2)

by Milmans theorem: beF = E1 5

. Hence f (1) nH=F

and beH = E

Moreover f'1(1) NE, =E

2 = *1
Assume P*(5 (1, Xb)) ¢ F . Then P*(6(1,x6)) gd H and since H
is cirled et follows from the Hahn-Banach theorem that there is
g € A such that
|P*x6(1, x,) (&) >1, |6(a, x)) (g)] <1.a€T
which by 5.2 gives a comtradiction.
Thus P*(5 (1, xo) € F .
Assume 6(xb) =Mk, + (1-xﬂ£2 » kg, Ky, € K
Since B(P*(A*)) and K are affinely homeomorfic there corre-
sponds unique K, = Px ™7 '(k,) , &, = P* T (k,) such that
P*(5 (1, %)) = N, + (1-0)k,
But by lemma 23 F is a face in B( A¥*) . Hence 'fé1 , k, € F.
But each g € P(A) is constant on F , so we get
k (g) = k,(g) = P*(5(1, ®))(g) for 211 g€ P(A)
Thus 6(xb) = k, = k, , i.e é(xb) is extrem.
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Theorem 24

Let Vc Cc(x) be a Lindenstrauss-space. Then the following
statements are equivalent
i) V is a G-space
ii) 3K ¢ [o, 1] o K
Proof

Let x€ Z. Put
A, = inf {x € [0, 1] - v, € X, 0y € T, £(x) = : oy f(y,) all
fe vl
By compactness we may without loss of generality assume
(2, Yy a,) converges to (A, y_, .)€ [0, 1) xXxT. By
continuity f(x) = Ao %o f(yo) for all f€V
If A, =0, then 8(x) = 0¢€ [o, 1] > K
If A, # 0 , then é(yo) € 2 K, which gives
8 (x) =, (@, 8(y)) € [0, 1] d K .
In fact, if 6(yo) 4 > K , then by lemma 23 there is (A, y, @) €
[0, 1) x X x T such that

f(yo) =Aa f(y) all fe€ VvV,
which implies

f(x) = Ay &g £(y,) = (A M) (ao a)f(y) all fe€ v,
condradicting the definition of Xo .
ii) follows now easly from lemma 23,
ii) = i)

Let Ac CC(SEK) be the space of T-homogeneous functions f
satisfying
(5.2) £(k) = Ikl £(pgr) ke TR
Then A is a G-space. We shall prove A~ V . It is then
enough to prove

Ac vl oK
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let £f€ A . Then Ref satisfies (5.2), and since V is a
Lindestrauss-space and f is T-momogeneous, we have
(5.3) v1(Ref) = vz(Ref)rhenever Vys V5 € Mj(beK) with

r(v1) = I(VZ) . Assume k€ d K . Then

v = () . - 1-kl),,:k

2zl TRl

is a maximal probability-measure with r (v) = k by ii), and

v(Ref) = Ref(k)
By (5.3) this holds for any maximal probability measure with
barycenter k . Hence by [8] theorem 2.3 , Ref may be extended
to an affine real w¥*-continious function g on K with
g(0) =0 . Let F:K-> C be defined by

F(x) = g(x) + ig(-ix) x€ K
Then F € V and F]SEK =f.

Remark

The G-spaces include the M-spaces and it is readily veri-
fied that a qj—space is a G-space. |
Notes

The real G-spaces were introduced by Grothendieck in
[10] . Proposition 21 was announced in [22] in the real case,
but, as pointed to us by Jan Raeburn, the proof is wrong, how-
ever the same idea can be used to give a correct proof.
Theorem 24 was proved by Effros in the separable, real case [7]
and in general by Fakhoury [9] . It is on his idas we have based
the proof of lemma 23, and the other part of theorem 24 is.proved
as in [7]. Lemma 22 was proved by Lazar for real Lindenstrauss-

space [19] .



- 28 -

6. The classification scheme,

Summarizing the foregoing we get

A(S) = _A(S) |
SR> (AIO(K)——%I\?I\ S L!(q, B, m)
. . -
>y >C =

where A(S) denotes the class of Lindenstrauss-spaces with
extrempoints, AO(S) the simplex-spaces, and so on., A = B
means that the class A is included in B .

It is also possible to read the intersections between the classes.

In fact:

(6.1) G n A(S) = Cy 0 Z\o(s) = C(K)
(6.2) Gn A(S) = M

(6.3) Cb N AO(S) = CO(K)

Proof

If V is a G-space with extreme-points, then there is a
maximal w¥*-closed face S in K with closed extrem-boundary.
Hence S is a Bauer-simplex and the first equality in (6.1)
follows from [1] theorem 1II.4.3
If S is a maximal face in K such that conv(Su {0}) is
compact and 'beK is closed, then beS is closed, Hence S
is closed and [1] theorem II.4.3 will do.

If V is a simplex-space with ?» K¢ [o, 1] > K , then there is

a maximal face S in K such that conv(Su {0}) is w*-com-
pact and 3 _Sc [0, 1] 0, S . Now [8] theorem 2.3 gives (6.2)

as in the proof of theorem 24,

If V i§ a simplex-space with beK u {o} closed, then there is

a maximai face S in K such that beS U {o} 4is compact. Hence
S. =conv (SU {0}) is a Bauersimplex and by [1] theorem II.4.3

(o]
we get c, (0.8) = A, (5,) =V,




Notes

The classification scheme is essentially due to Lindenstrauss-
Walbert [22] , but was later on modified in [20]. For more in-
formation about complex Lindenstrauss-spaces, see Hustads works
[14] and [15], where he studies intersection properties of balls
and extensions of compact operators. These topics are related to

Lindenstrauss results [21] in the real case.
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