
On the classification of complex 

Lindenstrauss-spaces 

by 

Gunnar Hans Olsen 

Abstract 

We prove the Lindenstrauss-Wulbert classification scheme for com

plEx Banach spaces whose duals are 11-spaces, and give some 

characterizations of the different classes by means of the unit 

ball in dual space. The work leans heavily on [8] and the real 

theory I am indebted to B. Hirsberg and A. Lazar for a preprint 

of [12] • Finally I would like to thank E. Alfsen and A. Lima 

for making litorature available and for helpful comments. 

1. Preliminaries and notations. 

Any unexplained notation in this paper will be standard or that 

of Alfsen's book [1]. Otherwise we will use the following notations: 

T: unit circle in CC 

V: a complex Banach-space 

K: the unit ball in V* with w*-topology 

M(K): The Banach space of complex regular Borel measure on K 

with total-variation as norm 

M1 (K): those measures in M(K) with norm < 1 
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M~(K): probability measures on K • When F is a convex set then oeF 

'lfdll denote the extrempoints in ·F • If ll is a measure then Ill I 
is the total variation of ll • A measure ll is said to be maximal 

or a boundary measure if llll is maximal in Choquet's ordering. 

The set of maximal (Probability-) measures on K is denoted by 

(M~(o eK)) M (a eK) • 

We shall now repeat some results and definitions from [8] • 

A function f E Ca(K) is said to be T-homog'.meous if 

f(~k) = ~f(k) for all ~ E T , k E K • The class of T-homogenous 

fUnctions in C~(K) is denoted by ~om(K) • If f E C~(K) , 

then the fUnction 

(homTf] (k) = Ja.-1 f(~k) da. , k E K 

where d~ is the unit Haar-measure on T , is continuous and 

T-homogeneous. It is now verified that homT is ~ norm-decreasing 

projection of C(K) onto ~om(K) • 

Taking the adjoint of this projection on M(K) 

ho~ ll = IJ.O ho~ , 

we get a norm-decreasing w*-continuos projection of M(K) onto 

a linear subspace denoted by Mhom(K) • 

A measure ll E Mhom(K) is called T-homogeneous and satisfies 

a ~IJ. = all where a~: K -+ K is the homoeomorphism k ~a. k 

~ET,kEK. 

Each v E V can in a canonical way be regarded as an affine 

T-homogeneous w*-countinious function on K • Conversely by a 

result of Banach-Dieudonne ([1] corollary I.1.13), each affine 

T-homogeneous function can be extended to a w*-continious complex

linear functional on V* , . ie. to an element of V • We may 

therefore identify V with the affine functions in Chom(K) • 

If ll E M(K) then the resultant of ll is defined to be the 
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unique point r(~ ) E V* satisfying 

r(~ )(v) = ~ (v) for all v E V • 

If ~ E M~(K) then it can be proved that ·r(~) coincides with 

the barycenter of ~ • (See [8] for a proof) • Moreover it is 

readily verified that r: M(K) ~ V* is a w*-continious norm-

decreasing linear surjection. 

Let X be a topological space and ~ E M+(K) # A fUnction 

f: K ~ X is measurable if for every e > 0 there is a compakt 

set D ~ K such that ~(K-J)) < e and fl D is continious.. If 

X =R or t then this definition coincides with the customa~ 

one by virtue of Lusin's theorem. 

Let ~ E M(K) • Then there is a compleks l~l~measurable 

function ~ on K with 1~1= 1 a.e. ~ such that ~ = ~~~~ . 
This representation is called the polardokomposition for ~ and 

is unique up to zero sets. 

Since ~: K ~ ~ is 1~1-measurable it follows that w:K ~ K 

defined by 

w(p) = ~(p).p 
also is measurable. Hence by Lusin's theorem w(l~l) , defined 

by w(j~j )(f) = J fowdl~l f E C~(K) , 

is a regular Borel-measure. (This definition is due to Phelps). 

Clearly 11 w (I~ I )\\ ::: 11~\1 and the other statements in the following 

lemmf:l are proved in [ 8] 

Lemma 1 

Let ~ E M(K) , then 

a) r (holllr~ ) = r (!-1 ) 

b) r ( w (I ~ I ) ) = r (~ ) 
c) \\w(l~l) \I = 11~11 

d) ho!I\r'JJ (I~ I ) = homt-L 

e) If 1-l is maximal, then so are w ( I I-ll ) and ho~ ~ • 
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Lemma 2 

Let IJ. 1, IJ. 2 E M(K) and put 1J. = IJ. 1 + IJ. 2 • If 11~-J.II = 
IIIJ. 111 + ll~-t 2 11 then 1-1 1 and 1-1 2 admit the same polardecomposition, 

i.e. there is a complex measureable function ~ on K with 

I cp I = 1 a. e IIJ.I such that ~ 1 = t+> •!~-t 1 1 1-1 2 = ~ • I ~-t 2 1 • 

Proof 

Since 11~-tll = ll~-t 1 11 + ll~-t 2 11 we easily get IIJ.I = !~-t 1 1 + l~-t 2 1 • 

In particular l~-t 1 1 , IIJ. 21 << IIJ.I , so by the Rador-Nikodyn theoren 

there is non-negative measurable functions f 1 , f 2 such that 

l~-t 1 1 = f11~-tl , l~-t 2 1 = f2 ·1~-tl • Let 1-l = cpJ~-tl , IJ. 1 = cp1 J~-tl , 

ll 2 = cp2 ·IIJ.I be the polardecompoi tions. rr·:~1en 

~·!Ill = cp1•1~-t11 + cp2•1~-t21 

~(f1 +f2 )·1~-tl = <~1 ·f1 )·11J.I + (cp2 •f2 )·1~-tl 

~(f1 +f2 ) = ~1 ·f1 + ~2 ·f2 a.e. I!J.I 

cp = ~1 = cp2 a.e. IIJ.I 

The above lemma immediately gives 

C'dt"tn1.:a.EY 3 

Let 1J. 1 , IJ. 2 E M(K) and put 1J. = IJ. 1+!J. 2 • 

If 11~--LII = IIIJ. 111 + l!IJ. 211 , then 

w(l!--tl) = w(IIJ. 1 1) + w(IIJ. 2 1) 

2 Complex Lindenstrauss-spaces and complex affine selections. 
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Theorem 4 

If' W is an L-space and TT: W -+ W a projection with norm 

one, then TT (~T) is an L-space 

Proof' 

see [8] 

Corollary 5 

If' V is a Lindenstrauss-space rr: V-+ V a projection 

with norm one, then rr(V) is a Lindenstrauss-space. 

Proof 

Let TT* be the adjoint projection. Then the restriction 

map y: V*-+ (rrV)* takes rr*(V*) isometrically onto (rrV)* 

and TT* is a projection with norm one. 

In [8] Ef'fros proved that complex Lindenstrauss space may be 

characterized by: 

If' 1-1 , v E M~ b eK) and r(l-1 ) = r('v ) , then : homrr 1-1 = ho~Dtr v 

This theorem will be fundamental in the following, and we shall 

refer to it as Effros'characterization. 

A map ~= K ~ M1(K) is said to be a complex affine selection if 

~ is affine, ~(a. k) = a. cp(k) and r(cp(k)) = k·; k E K,a. E T • 

cp is called T-homogenous if cp(k) = homT cp(k) , k E K • 

Theorem 6 

V is a Lindenstrauss space if and only if' there is a complex 

affine selection on K • Moreover if a complex affine selection 

exist, then there is a unique T-homogenous complex affine selection 

~ on K and cp(k) is maximal for all k E K • 

Proof 

Necessity 
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Put ~(x) ~ ho~~x where vx is a maximal measure in Mt(K) 

with r(~x) = x • ~ is well-defined by Effros' characterisation, 

and from the proof of that it also follows that ~ is a complex 

affine selection. 

Sufficiency 

~ssume ~: K ~ M1(K) is a complex affine selection. Let 

~= V* ~ M(K) be defined by cp(k) = II kll ~(~ )_ • Then ~ is 

complex linear and extends cp so II qill < 1 • Since r is a 

norm-decreassing projection, we get 

II kll = l!r(Ci'(k) )1\ :S llcp(k)ll :S !I kll , k E K • 

Hence cp is a isometry. 

Let now n: M(K) ~ ~(V*) be defined by n(~) = cp(r(~)) • Then 

n is a projection with norm one onto ~(V*) , and since M(K) 

is an L-space it follows from theorem 4 that cp(V*) is an L-space. 

Hence V* is an L-space, which implies V is a Lindenstrauss 

space. 

Uniqueness 

Let x E K with llxll = 1 • From Lemma 1 it follows: 

1 = II xll = II r ( w ( I ~ ( x) I)) II :S II w ( I cp ( x) I ) I I :S. II <:D ( x) II :S 1 , 

so wj~(x)l E Mt(K). 

Let v E Mt(K) with r(~) = x, f: K ~R continous and convex, 
n 

and € > 0 • Choose simple probability measure ~ a. ey. 
i=1 J. J. 

such that ([1] proposition I.2.3) 
n 

(2.1) v (f) < ( ~ a. e )(f) + e 
X - • 1 J. y. l.= J. 

n 
, Ea.. y. =X 

. 1 J. J. 
l..= 

n 
Since cp is affine, we get ~(x) = i~1 a.i <:p(yi) • Moreover 

n n 
1 = !I<:D(x)ll < ~ a.. llcp(y. )I! < L: a. 1. = 1, so by corollary 3 

-.1 ]_ J. -.1 l.= l.= 
n 

w(J <:p(x)J) = L: a.i w (lcp(y. )I) 
. 1 ]_ l.= 

Now by lemma 1 
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n n 
£ ai c < E ai w(j~(yi)!) 

i=1 yi i=1 
Since f is convex, we get from (2.1): 

n 
'Vx(f') ~ [_E q.1w(jcp(yi)l )](f)+ e = [w(!cp(x)l )](f) + e 

~=1 
Hence w(j~(x)l) is maximal and is the onlx maximal probability 

measure with barycenter x • 

By lemma 1 homT w(jcp(x)l) is maximal • But if ~ is 

,T-homogenous, we get .from lemma 1 

homT w(j~(x)l) = homT cp(x) = cp(x) 

Theorem .follows now from the relation cp(x) = llxllcp (11~!1) , x E K • 

The proof above also shows 

Corollary 7 

If V is a Lindenstrauss-space then every k E K with 

norm one can be represented by a unique maximal probability 

measure 

Now by [1] theorem II.3.6 

Cor llary 8 

If V is a Lindenstrauss-space and F is a w*-closed 

face in K , then F is a compakt simplex. 

Remark 

The above corollary may of course be proved by a direct 

argument, since a .face-cone in an L-space must be a lattice-cone. 

Theorem 9 

The following statements are equivalent 

i) V Lindenstrauss-space with 0 eK u { 0} w*-closed. 

ii) There is a continous complex affine selection cp: K-+ M1(K) 

iii) For each .f E Chom (K) there exists v E V such that 

flbeK = vlbeK .. 



~ 8 -

Proof 

Put ~(x) = hom~x , where ~x is a maximal probability 

measure with r (IJ.x) = x • Then, as in the proof of theorem 6, 

~ is a complex affine T-homogeneous selection. We first prove 

~(K) is compact. 

Let {~y} c ~(K) be a net which converges to ~ E M1 (K) • Let 

f E C~(K) • Then , since each ~ is T-homogeneous: 

IJ.(f) =lim ~y(f) =lim [homT IJ.Y] (f) 

=lim 1-ly(homT f) = !J.(homT f) = homT 1J. (f) , 

which proves 1J. is T-homogeneous. By lemma 1 each ~y is 

maximal, and since beK u {o} is closed it follows from [1] 

that supp (IJ.) ~ beK u {o} • 

But since IJ. is T-homogeneous, IJ.({o}) = 0, hence ~ is maximal 

([1] proposition 1.4.5) 

Let k E beK. Then by lemma 1: 'V = w(IIJ.I) + t(1- llw(l~l) II )(e:k-re-k) 

is a maximal probability measure. By lemma 1 and 

since ~ is T-homogenous we get 

~(r(~)) = homT 'V = homrr (w(l~n = homT ~ = ~ 

Thus ~ E ~(K) , which implies ~(K) is compact. 

The map ~ -7 r(IJ.) is 1-1 from ~(K) onto the compact cp(K) , 

thus the inverse map is continious, i.e. cp is continious. 

ii) ~ iii) 

If cp is a complex affine continious selection on K , then 

so is homT ocp • Hence we may assume that cp is T-homogeneous. 

By ii) the map x~ [cp(x)] (f) x E K ~ is continious, affine and 

T-homogeneous for all f E Ct(K) • But if f is T-homogenous 

it follows from theorem 6 , Effros' characterization and [1] corollary 

1 .. 2.4: 

f(x) = [cp(x)](f) for all x E beK. 
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iii) 9 i) 

When f E C:b.om (K) then by iii) and Bauer's Maximum Principle 

([1] theorem I.5.3) there is a unique function v! in V such that 

(2.2) • floeK = vf'loe K and \\f\1 :': llvfl\. 

Assume ~. ~ E M~ (oeK) with r(~) = r(v) = k 

Let f E Chom(K) • Then by (2.2): 

~(f)= ~(vf) = vf(k) = ~(vf) = v(f). Hence 

ho~v= homT ~ , so by Effros' characterization is V a Linden

strauss-space. 

It remains to prove that o eK u { ol is closed. 

suffices to prove :ay (2.2) it 

(2.3) o K u tol = (l 
e f'E Chom (K) 

{x E Kl f(x) = vf(x) l . 

a) Assume x E K and !lxll < 1 

Let g: u{ax] a E Tl ~ ~ be defined by g(ax) =a • Then g 

"' is continious. Extend g by Tietze to g: K ~ C with 

"' Put f' = homT g • Then f(x) = 1 and \1 :rl\ = 1 • 

Hence 

f(x) = 1 = 11£11 > 1\vfll ~ I vf(ll~ll )\1 

= 1!~11 lvf(x)l > lvf(x)l • 

b) Assume x E K with llxl1 = 1 and there is no v E V such 

that 11~1 = 1 and v(x) = 1 • 

Construct f as above. Then f(x) = 1 ~ vf(x) 

c) Assume x E K ; !\xll = 1 , x (/ b eK and there is v E V such 

that v(x) = 1 = \lvH • 
Then F = {y E K I v(y) = 1} is a w*-closed face in K. Since 

x f/_ o eK there is y, z E F such that 

x = ty + tz y, Z f; X • 

By the Hahn-Banach teorem there is a real convex continious function 

gF on F such that 
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gF(y) = gF(z) = 1 , gF(x) = 0 ~ 

Define g on u~F by g(~k) = ~gF(k) a E T 
a.ET 

g is well defined since F is a face. Extend 

by Tietze With · \1~1 = llgll and .put , f = hom;g . 

, k E F • 
..... 

g to g E Cc(K) 

Then fiF = gF 

Let 1.1 be a maximal probability measare on K with r(ll ) = x • 
X 

Since F is a face , supp (!-lx ) c F and 1.1 x is seen to be 

maximal on F • Hence 

v:f(x) = ~ v:f d!Jx = r v:f ~ = r gF~ 
By corollary 8 F is a simplex so [1] theorem II.3.7 gives 

vf(x) = J gF ~ = gF{x) = i(gF{y) + gF{~)) 
F 

~ 1 > 0 = f(x) • 

{gF denotes the upper envelope o~ gF , see [1] p. 4) 

(2.3) now follo"t~rs from a) , b) and c) and the proof is complete. 

Notes 

Theorem 6 was proved for simplexes by Namcoka and Phelps, 

and for real Lindenstrauss-spaces by Ka-Sing Lau [18] , and 

Fakhoury in a weaker form [24]. However, as pointed to us by 

Hirsberg, there exist a very simple proof in the simplex-case, 

and it is this idea we have used in the uniqueness-part. Ka

Sing Lau [18] also proved theorem 9 in the real case. We have 

proceeded in the same way, but the proof is somewhat simplified. 

3 Complex Ccr-spaces 

A compact Hansdorf space X is called a Tcr-space if there 

exists a map cr: TxX ~ X such that 

i) cr is continious 

ii) cr (a, 0'(13 ,x)) = cr (a~ , x) 

iii) cr ( 1, x) = x 
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Let X be a T0 -.space • Then each a E T defines a homeomorphism 

a a : X ~ X by a a. ( x) = cr (a. , x) , x E X (a a. and cr a. _1 are 

continious by i), ii) and iii) imply that cra. o cra._1 is the 

identity on X) 

A function f E Cc(x) is said to be cr-homogenious if f(cr a.x) 

= a.f(x) for all a. E T , x E X • The class of a-homogeneous 

fUnctions in Cc(X) is denoted by C0 (X) 

A complex C0 -space is a complex Banach-space which is 

isometric to C0 (X) for some T0 -space X • 

(3.1) 

If f E Cc(Xl then the :rt:nction 

( TT0 f] (p) = a. - 1 f(o a.P )da. , p E X 

where da. is the unit Haar-measure is seen to be continious and 

cr-homogeneous4 TT0 is easily shown to be a normdecreasing pro

jection of Cc(x) onto C0 (X) • 

Hence by corollary 5 is complex C0 -spaces Lindenstrauss-spaces. 

If Y is locally-compact Hansdorf space then C0 (Y) will denote 

the continious functions on Y vanishing at infinit. 

Proposition 10 

If Y is locally-compact Hausdorf space then C0 (Y) is a 

C0 -space. 

Proof. 

Let X = (T x Y) u {w} be the one point compactifisation, 

and define 

o: Txx~ X by 

r y) if (a.o , y) E T x X cr(a., x) = c a.:, X = 
if X=W 

i) o is easly seen to be continious 

ii) Let X = (a. , y) E T X Y , ~ E T • Then 
0 

o(a. , o (~ , x)) = o(a. , o(~ 
' 

(a. , 
0 

y)) ~(j (a., (~ 0.0 , y)) 
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= cr(a. 13 a0 , y) =a (a~ , (a0, y)) = cr(cx. ~ , x) • 

Moreover: 

a (a, a (f3 , w)) = a (a. , w) = w = a (a. f3 , w). 

iii) is verified in a similar way as II) • 

Hence X is a T0 -space • Each f E C0 (Y) can in a canonical 

way be regared as a continious function on ({1} x Y) u \wl 

vanishing at w • Extend f to f on X by f(~, y) = a.f(y) , 

"' (a., y) E T X Y • Then f is continious and a-homogenous. The 

"' map f ~f defined above is seen to be an isometry of C0 (Y) 

into CCJ(X) • Since each g E CCJ(X) satisfies g(w) = o , the 

above map is surJective , i.e. C0 (Y) is a CCJ-space. 

Let now X be a TCJ-space and v = ca (x) • A subset Z c X 

is called a-symmetric if X E z implies cra(x) E z for all 

a E T • Observ that if z is cr-syFmetric then x ..... z is 

a-symmetric as well. 

Let p embed X into K in the canonical way. Then p is 

continious 

Lemma 11 

beK= !p(x)l era (x) l=x for all a. E T'\1l x ·X} 

and p (x) ~ b eK u \ o} 

Proof 

First we observ that a.p(x) = p(aax) when a E T , x E X 

and p(x) = 0 if cra.(x) = x for some a E T'l1} • Hence by 

[5] p 441 lemma 6 

b eK ~ { p (x) I a a (x) I= x for all a E T !1} , x E X} • 

Let x E X and assume era (x) I= x for all a E T-...! 1} • We 

shall prove that p(x) E oeK • We use a a-symmetric modification 

of the argument given for that lemma of [5] • 
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Assume 

(3.2) p(x) = f k1 + f k2 , k1, k2 E K • 

Let fo E Ca (X) with II fl\ :S 1 and assume f' vanish on a open 

neigbourhood N(x) of x • Since fd is a-homogenous we 

may assume N(x) is a-symmetric. Let h: loa (x) I a E T} u 

!x N(x)} ~ ¢ be defined by h(aax) =a , a E T , h(y) = 0 if 

y E X'N(x) • 

Extend h by Tietze to h on X with \l'hll = llhl\ and put 

g = ITa (h) • Then 

g(x) = 1 
' g(y)=O if y f/ N(x) and llg\\ :S 1 

Thus by (3.2) 

1 = g(x) = p(x)(q) = 

= t(k1(g) + k2(g)) :s t (\k2(g)j + lk2(g)j) :s 1 

Hence k1 (g) = k2(g) = 1 • 

Similarly we get k1 (g+£0 ) = k2 (g+f0 .) = 1 

Hence 

( 3 • 3 ) k 1 ( f 0 ) = k2 ( f 0 ) = 0 

Let f 1 E Ca (X) with II f\1 :S 1 and f(x) = 0 

For each integer n ~ 2 there is an open a-symmetric neigh

bourhood Nn(x) such that 

!t1 (y)j :S 1/n if y E Nn(x) 

Let Mn(x) be an open set containing x such that 

~(x) ~ Mri(x) ~ Nn(x) • 

Since Nn(x) is a-symmetric: 

u cra(M (x)) ~ u aa Mn(x) ~ Nn(x) 
aET n aET 

and u aa Mn(x) = a(T x Mh(x)) is closed. 
a.E T 

As above we may constntct ~ E Ca (X) such that 

\lgnll :S 1/n , gn(y) = 0 if y f/ Nn(x) 



and ~(y) = ~1 (y) 

We get 

Now since ~ . 
1 - ~ 

0 = lim k1 (~1 

0 = lim k2 (~1 

Hence p(x) (~) = 0 

~ 14-

/ \~ . 
if' y E cr (T x ~(x·) ) 

vanishes on cr (T x Mn(x)) , we get by (3 .3): 

- ~) = k1(~1) 

- g ) = . •k2(~1) n 

implies k1(~) = k2(~) = o1 f E C0 (X) • 

By [5] lemma 3.10 there are a 1 , a 2 E C such that k1 = a 1 p(x) , 

k2 = a2 p(x) • But llk1 11 , llk211 <1 so ln11 , la.2 l < 1 and by 

(3.2) we get a1 = a.2 = 1 i.e. p(x) = k1 = k2 and the proof 

o~ lemma is comple"!'.e .. 

Theorem 12 

V is a C0 -space if and only if V is Lindenstrauss-space 

and b eK u { 0} is closed. 

Proof 

b K u e 

I~ V is a C0 -space, then V is a Lindenstrauss-space and 

{o! is closed by virtue of lemma 11. Conversely assume 

V is a Lindenstrauss-space with X = beK u !ol closed. X may 

be organized to a T0 -space by scalarmultiplication. Then theorem 

9 iii) completes the proof. 

A complex C~-space is a Banachspace which is isometric to a 

C0 (X) ~or some Tcr-space X , where cra has no fixed points 

if a. E T' I 1 I . 
Now as in the proof ~or Proposition 10 we get 

Proposition 13 If X is a compact Hausdorf-space, then Cc(X) 

is a CI:-space • 
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The next theorem may be proved by a method similar to that used 

in proving theorem 12. 

Theorem 14 

V is a C~ space if and only if V 

space and beK is closed 

is a Lindenstrauss-
r-· 

Remark 

Theorem 14 also proved proposition 13, JUSt as theorem 12 

proves proposition 10, by virtue of [5] p. 441 lemma 6. 

Notes 

The real C0 -spaces were intnoduced and studied by Jerison 

[16]. His results are presented in Day's book [4] p. 87 - 93. 

The real version of theorem 12 was suggested by Effros [7], and 

proved by Ka-Sing Lau [18]. Theorem 14 is due to Lindenstrauss

Walbert. We have proceeded as in [18] • 

4 Compleoc simplex spaces 

Let (Q, B, m) be a measure space and assume V* = L6(Q, B,m) 
co m) I cpj Let cp E Lc(a, B, with = 1 a.e. m 

Then 

(4.1) S = { cp • pI p E K, p > 0 a. e m , \I PII = 1 } • 

is seen to be a maximal (with respect to inclusion) face in K • 

Conversly since the norm must be additive on a face-cone [2] , 

we get that all maximal faces in K are on the form given in 

(4~1). 

If p E beK , then it is not hard to see that p = a XA , 

where a E C and 'XA is the characteristic function of an atom 

A E B • Thus if S is a maximal face in K and p E beK , 

then a.p E S for some a. E T • Hence 

(4.2) v ~VIS • 



... 16 -

A complex Lindenstrauss-space V is called a complex simplex

space if there is a maximal face S c K such that 

conv (S u to}) is w*-closed. 

(Observ that this definition coincides with Effros' in the real 

case [6]) 

Lemma 15 

S is a split-face (See [1] p, 133) in conv (S u -iS). 
Proof 
Assume i..1x1 + (1- A.1)(-ix2) = i..2y1 + (1 - A2)(-iy2) , 

where xi, yi E S , 0 < ~ < 1 , i = 1, 2. 

Since S is a maximal face in K , there is ~ E V** such that 

~Is= 1 • Thus i..1 = i.. 2 = i.. • 

Let f.li , '(Ji E M~(beK) i = 1, 2, with 

.r-C~-t1) = x1 ' r(~-t2) = -ix2 ' ~r('J1) = Y1 ' r('J2) =-iy2 

Since S is a face and S0 = (S u {o}) is w*-compact, we get 

(4.3) supp C~-t 1 ) , supp (-v1 ) = S0 

supp (~-t 2 ) , supp ('V2 ) ~ -iS0 

Since the barycenter-map is normdecreasing, we also get 

(4.4) ~-tj_ClO}) = vi(to}) = o, i = 1,2. 

Let now f E Cm ( S0 ) with f( 0) = 0 • Extend f to a T-homogenous 
,...., 

function f on K • By Effros' characterization we get 

)+L 1 (f) + (1 - A.) 1-1 2 (1) = kv1 (f) + (1 - 2) 'V2 {1) 

But f is real on 80 J imaginary on -iS0 , so by (4.3): 

fl1 (f) = \)1 (f) 

But by (4.4) this holds for any f E CR(S0 ) • Hence v_1 = f.l 1 , 

which gives x1 = y1 and the proof is complete. 

Corollary 16 

Any z E Z0 = conv (S u -i S u io}) may be written Uniquely 

in the form: 



where a. > 0 , i = 1, 2, 3 
~-

Lemma 17 

- 17 -

Let a be a real, affine w*-continious on S0 = cow (S u {O}) 

with a ( 0) = 1 • Then a amy be extended to a real affine w*

continious c on 20 such that cj-iS0 = 0 • 

Proof 

Let c: Z0 ~ R be defined by 

c ( z ) = a.1 ( x1 ) , z E Z 0 , 

where z = a 1x1 + a 2 (-ix2 ) + a3 ·o is the unique decomposition 

from corollary 16. 

c is easily verified to be affine. To see that c is continious~ 

let { zY } c Z be a net converging to Z E 20 • 
- 0 

zY- a1Y x1Y + a2Y (-ix2Y) + a3Yo 

Z = a1x1 + a2 (-ix2) + a3 0 

Decompose 

by corollary 16. By compactness we may assume {x1Y} , lx2Y} , 

{a1YJ , {a2YJ all converge. Let y1 , y2 , ~ 1 , ~ 2 be the 

limit-points. 

Then 

where 

(The case \\y1 \l = 0 or lly2\l = 0 goes similar) 

Now since the decomposition in corollary 16 is unique, we get 
y1 

a.1 = ~ 11\ y 111 , x1 = 1TY;1T 
Hence 

c(zY) =a.~ a(x~) ~ ~ 1 a(y1 ) = 

!3 11\y1\\ a{~)= a1 a{x1) = c(z) , 
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which proves c is con.tinious. Clearly c extends a and 

cj-iS0 = 0 , so the proof is complete. 

When H is compact convex, then A(H) (A0 (H) ) will denote the 

space of complex a~fine continious functions on H (vanishing 

in a fixed extrempoint x0 in H). 

Theorem 18 

The following statements are equivalent 

i) V is a simplex-space 

ii) V ~ A0 (S0 ) for some simplex S0 

iii) V~ A, where A is closed linear subspace of Cc(X), 

X compact Hausdorf, such that A is self-adJoint and ReA is a 

real simplex space. 

Proof 

i) => ii) 

Assume V is a Lindenstrauss space with a maximal face S c K 

such that 

S0 = conv (S u {o}) is w*-compact. 

We have by (4.2) 

(4.5) 

Then 

with 

are real affine w*-continious functions on S0 

= b2 (o) = 0 , and may therefor by corollary 17 be 

extended to affine w*-continious functions on 

such that 

(4.6) 

By [ 1 J corollary I. 1 • 5 there are sequJ!nces \ b~} , I b~} of 

w*-continious real linear functionals on v~ such that 

b1° ~ b1 , b2n ~ b2 uniformly on Z0 

Let a1° , b1° E V n = 1, 2, ••• , be defined by 
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a1n(x) = b1n(x) -i b1 n(ix), X E V* 

a2n(x) = b2n(x) -i b2n(ix), XE V* 

Then by (4.2) and (4.6) a n + i a .... n converges to an element 1 L 

c E V satisfying cl S0 = a • 

By [1] theorem !!.3.6 and corollary 7 is S0 a simplex, so the 

proof of ii) is complete. 

ii) => iii) trivial. 

iii) => ii) 

Then 

Let p E (ReA)* and put 

p(a) = p(Rea) + i p(Ima) 
,.... 
p E A* with \l'P\1 = \I Pll and p has only this extension 

in A* , so we may regard (ReA)* as a subset of A* • 

Let S0 = {p E A*\p(a) > 0 all a E [ReA]+} and v: A~ A0 (S0 ) 

be defined by [v(a)](p) = p(a) , p E S0 • a E A • 

Then v is an isometry since S0 contains the evaluations. 

Theorem 2.2 in [6] implies that * is onto and S0 is a simplex. 

ii) => i) 

By the Hustad-Hirsberg theorem ([11] and [13]) each 

p E A(S0 )* may be represented by a measure ll E M(b eS0 ) such 

that \IIlii = IIPII • Moreover, since S0 is a simplex this represen

tation is unique. Hence 

(4. 7) 

and the latter is proved to be an L-space in [8] (See proof of 

theorem 4.3) 

Let S = u {F\F face in S0 , Fn lx0 } = ¢ } 

Then S is a G0 ([1] proposition !!.6.5) • Let e: M (b 9 S0 ) ~ 

M(beS0 ) be defined by 

e(I.J.)(c) = l.l(C n S) , C Borel in S0 • 

Then e is seen to be an L-proJection in the sense of [2] • 

We shall prove 
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(4.8) e(M(beS0 )] ~ A0 (S0 )* , 

which implies A0 (S0 ) is a Lindenstrauss-space. Let p E A0 (S0 )* 

and extend to p on A(S0 ) 

with 1\Pll = IIPII by Hahn-Banach. Then by (4.7) there is a 

unique measure 1-.1 E M(beS0 ) which represent "' p and satisfies 

111-.111 = II'PII 

Let e > 0 • Choose a E A0 (S) with \Ia\\ ~ 1 such that 

I p(a) I > II Pll -e • Then 

111-.111 -e = II'PII -e = IIPII -e < \p(a)l 

= I J aC4-L I = I J a d 1-.1\ :: l1-.1l < s > 
s 

< l1-.1l (S) + 11-.11 <lx0 t) = l1-.1l (S0 ) = 111-.111 

Hence 1-.1 E e[M(beS0 )] • 

Assume 1-.1 E e[M(beS0 )] annihilates A0 (S) • Let laai be a net 

of real affine w*-continious fUnctions on S0 such that 

aa /71 - ~x 
0 

(See [1] corollary 1.1.4 , theorem 11.6.18 and theorem 11.6.22) 

Let e > 0 • Choose a. st· ch that 
A 

!1-.1 ( ( 1 - Xx ) - ~ ) I < e. I 2 
0 

I Ba.(O)I < €/2•11!-111 

(See [1] (2.3)) • Then 

11-1(1)1 = ls 1•d I-ll = lJ 1·d I-ll = 1J(1-~ ) dI-ll 

I ss s 0 
< I Ba, dj.J.\ + e./ 2 ~ ( aa. - aa. ( 0) ) d 1-1 

+I J ~(0) dj.J.I + e/2 ~ e/2 + e/2 = e • 

Hence 1-.1 annihilates A(S0 ) , so by (4.7) is 1-.1 = 0 • (4.8) 

follows. 

Let p: S0 ~ e(M(beS0 )) be the canonical map. Then by [1] 

lemma 1!.6.10 

p (S) = \1-1 E M~(b eS0 ) I 1-.l(S) = 11 , 

which is easly seen to be a maximal .face in the unitball of 
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e (M(b eS0 )) • Clh . .1 + 1~--Llll = 11~--LII + 111-lll => +-t ?: 0 which .follows from 

polaPdecomposition) 

Since p(S0 , = canv (p(S) u {oJ) is compact, the proof is complete. 

Let V be a Lindenstrauss-space and assume e is an extrempoint 

in the unit ball in V • Put 

S = {p E V*l p(e) = 1 = IIPIIl • 
Then S is w*-compact and let w : V ~ Cc(S) be the canonical 

embedding. Then it is proved in [12] 

Theorem 19 (Lazar-Hirsberg) 

* is an isometry such that w(e) = 1s ---
As in the proof of i) => ii) in theorem 18 we now get 

Corollarx 20 

If V is Lindenstrauss-space and the unit ball of V 

contains an extrempoint, then V ~ A ( S) where S is a compact 

simplex. 

Remark 

Now as in the last part of the proof ii) => i) of theorem 

18, we see that a Lindenstrausspace V has an extrempoint if and 

t;:mly_ if t~~!:~ is __ J~-~;JmaJ.:_ -~-X--clos_.~_d face in __ .1:\. For more infor

mation about such Lindenstrauss-spaces see [12] • 

A complex Banach space V is called a ~omElex M-spa~e if it 

can be represented as follows: 

There is a compact Hausdorf space X and a set of triples 

(xa, Ya' Aa) E X x X x [o, 1] such that V is the subspace of 

Cc(X) satisfying 

f(xa) = Aa f( Ya) , a E · rA, f E V 

Clearly V is self-adjoint, and by [17] Re V is a Kakutanl 
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M-space, moreover each selfadjoint linear subspace of Cc(X) 

whose real component is a Kakutani M-space arises in this way. 

Now, by theorem 18, a complex M-space is a complex simplex-space· • 

Notes 

'!'he real simplex-spaces were introduced and studied by 

Effros in [6] • Our results are based on the ideas of [12] , 

and lemma 17 is closely related to proposition II.6.19 in [1]. 

5. Complex G-spaces. 

Let X be a compact Hausdorf space. A linear subspace 

V c CC(x) is called a complex G-space, if V consists of those 

f E Cc(X) satisfying a family v4 of relations: 

f(xa) = A.a. a.a f(ya) ; xa, Ya E X , a.a E T 
• 1 

f..a E [ O, 1] , a E ~~ • 

Complex G-spaces are complex Lindenstrauss-spaces by corollary 5 

and the following. 

Proposition 21 

If V is a G-space, then there is an M-space A such that 

V ~ P(A) where P: A ~ A is a projection with IIPII < 1 

Proof 

life adopt the notation in the definition. 

Let Y = T x X be organized to a T0 -space in the canonical way 

(See proof of Proposition 10). 

Let A ~ Cc(Y) be the closed subspace satisfying 

a E , ~ E T 

Then A is a complex M-space. The map T: V --+ A defined by 

[ Tf] (a. , x) = a.f(x) , (a., x) E T x X 

is seen to be an isometry of V onto a linear subspace of A , 

since 

~ E T 
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If F E A is cr -homogeneous, then 

F(1, xa) = Aa F(aa, Ya) =/..a aa F(1, Ya) , a E oA 
Hence T takes V onto the a-homogeneous functions in A • 

Now the projection p = ncr I A will do. In fact, let F E A, 

then 

P (F) (~, xa) = Ja-1 F(a~ , xa) ~ 
= J a-1 Aa F((aa~) ~ , ya) da =)..a P(F) (aa~ , ya):,a E u4, ~ E T 

Lemma 22 

Assume V is a Lindenstrauss-space and , let E ~ ~eK 

be compact with En a E = 0 when a E T'{1J • Then 

F = conv (E) is a w* -closed face in K • 

Proof 

By Milmans theorem ([1] p. 50) is 

F = {r(!J.)II-l E M~ (E)! . 

and observ that a measure 1-l E M~(E) is maximal on K • 

Assume k1, k2 E K , A E [o, 1] such that 

k = A k1 + (1 - /..) k2 E F 

Let 1J. E M~(E) with r(~-t) = k , 1-1 1 , IJ- 2 E M~(beK) with 

r (1J.1 ) = k1 ' r(IJ. 2 ) = k2 • 

Let e > 0 , and choose compact C such that 

en u a.E=0 
aET 

1-1 1 ( U a E U C) ~ 1 - e , 1-1 2 ( U a. E U C) ~ 1 - e 
~T · ~T 

Let f be a T-homogeneous function on K such that 

f] E = 1 , fl , fl u a. C = 0 , ll fll :S 1 • By Effros' characteri
aET 

zation we get: 

1 = !J.(f) = 4J,1(f) + (1- /..)IJ.2(f) 

< >.. J f d!-J. 1 + ( 1 - /.. ) J f d!-J. 2 + 2e < 1 + .2 e 
UaE Ua.E 

• 

a.ET a.ET 
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Hence IJ. 1 ( u a E) = IJ. 2 ( u a. E) = 1 • 
aET aET 

Assume now IJ. 1 (E) ~ 1 • 

Let f beaT-homogeneous function on K with flE = 1 and 

ll til::: 1 • 

Put E!, = u a I£ • By Effros t characterization we get' 
aE T,{ 1l 

1 = p (Ref) = A !J. 1 (Ref) + (1 - A.)!J. 2 (Ref) 

= A l Ref <'4.L1 + ).. r' Ref <'4.L1 + (1 - A M2 (Ref) 

<A r 1 <'4.L1 +A r. 1 i4.L1 + (1- A)J..L2(1) = 1, 

which is a contradiction. Hence IJ. 1 (E) = 1 which implies 

k 1 E F and the proof is complete. 

Let V~ Cc(x) be a G-space. 

Put 

z = {x E XI (y, ).., a) E X x [o, 1 > x T such that 

f(x) = )..af(y) for all f E V} • 

Let o : X -+ K be the canonical map. Then we have 

Lemma 23 

Proof 

b eK = u a 6 (X-....2) 
aET 

We use the same notations as in the proof of proposition 21, 

and when W is a Banach-space, then B(W) will denote the unit 

ball. 

Clearly no point in o(Z) is extrem so by [5] p 441 lemma 

6 is b eK c u a. o (X z) 
- a.ET 

To prove the converse inclusion let x0 E x,z , g E A • Then 

P*(o (1, x 0 )) (g) = o (1, x 0 )(P(g)) = Ja.-1g(a.,x0 )da. 

= Ja-1 o(a, x0 )(g) do. 

Hence 
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(5.1) P*(6(1, x0 )) =Ja.-1o(cx., x0 )( ) dcx. 

Let S0 = ConV (lt>(cx.,x)l a. E T, x EX} U {OJ) 

Then S0 is a simplex and A~ A0 (S0 ) (See section 4). By the 

real theory u o(a., x 0 ) u {o} ([7] Remark 8.2) is a w*-closed 
cx.E T 

subset of beSo • Let f 0 u 6(a., x 0 ) u {o} ~ C be defined by 
a.ET 

f 0 (o (a., x)) =a. , a. E T , f 0 (0) = o • 

By [3] corollary 4.6 f 0 can be extended to an element of 

A0 (S0 ) with norm one. Thus there is f E A such that 

f'(a., x 0 ) = a. a. E T and II fll = 1 .. 

-1 ( ) ( ) Let E1 = u a. 6 a., ~0 , E2 = u ~ 6 a.,x0 
a.ET o.,I3ET 

Then E1 , E2 ~ beB(A*) by the real theory. Put F = conv (E1 ) , 

H = C'OiiV (E2 ) 

bY Milmans theorem: b eF = E1 

Moreover f-1 (1) 0 E2 = E1 • 

and beH = E2 

Hence f-1 (1) n H = F 

Assume P*(6(1, x )) ~F. Then P*(6(1,x )) ~ H and since H 
0 0 

is cirled et follows from the Hahn-Banach theorem that there is 

g E A such that 

IP* 6(1, x0 ) (g)j > 1 , !o(a., x0 ) (g)j < 1 .. c. E T 

which by 5.2 gives a comtradiction. 

Thus P* (6 ( 1 , x0 ) E F • 

Assume 6 (x0 ) = ). k 1 + (1-A.)k2 , k1, k2 E K 

Since B(P*(A*)) and K are affinely homeomorfic there corre

sponds unique k1 = P* T*-1 (k1 ) , k2 = P* T*~1 {k2 ) such that 

P*(6 (1, x0 )) = A.k:1 + (1-A.)li2 

But by lemma 23 F is a face in B( A*) .. Hence 

But each g E P(A) is constant on F , so we get 

'k1 (g) = 'k2(g) = P*(6 {1, xb) )(g) for ell g E P(A) 

Thus 6 (~) = k1 := k2 , i.e o (x0 ) is extrem. 
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Theorem 24 

Let V-~ Cc(x) be a Lindenstrauss-space. Then the .following 

statements are equivalent 

i) V is a G-space 

ii) ~ ~ [o, 1] oeK 

Proof 

Let x E Z. Put 

A- 0 = in.f {). E [o, 1) I - Y;.. E X , a.,_ E T , .f(x) = X a.;.. .f(y~) all 

f E V}. 

By compactness we may without loss of generality assume 

(A., y~_, a.,_) .converges to (A.o, Yo• a.o) E [ 0, 1) X X X T • By 

continuity f(x) = ).o a.o f(yo) for all f E V 

If ). = 
0 

0 , then o (x) = 0 E [ o, 1] o eK 

If ). -F 
0 

0 , -then o (y0 ) E oeK , which gives 

o (x) = A. 0 (a. 0 o (y0 )) E [0, 1] o eK • 

In fact, if o(y0 ) ~ oeK, then by lemma 23 there is (A., y, a) E 

[o, 1) x X x T such that 

f(yo) = ). a. f(y) 

which implies 

all f E V , 

f(x) = "-o a.o f(yo) = (A.o ;..) (a.o a.)f(y) all f E V ' 

condradicting the definition of A0 • 

ii) follows now easly from lemma 23. 

ii) => i) 

Let A ~ Cc(~) be the space of T-homogeneous functions f 

satisfying 

(5.2) f(k) = II kll f( k ) ro k E oeK 

Then A is a G-space. We shall prove A ~ V • It is then 

enough to prove 



Let f E A • Then Ref satisfies (5. 2), and since V is a 

Lindestrauss-space and f is T-momogeneous, we have 

(5.3) v1 (Ref) = v2(Ref)\rhenever v1 , v2 E M~(beK) with 

r(-v1 ) = r(\12). Assume k E beK. Then 

"' = ( 1 +ll kll ) e: + ( 1-11 k! I ) c -· z--- k ~ -k 
N nmr 

is a maximal pro ba bili ty-measure with r ( \1) = k by ii), and 

v(Ref) = Ref(k) 

By (5.3) this holds tor any maximal probability measure with 

barycenter k • Hence by [8] theorem 2.3 , Ref may be extended 

to an affine real w*-continious function g on K with 

g(O) = 0 • Let F:K ~ C be defined by 

F(x) = g(x) + ig(-ix) x E K 

Then F E V and Fj ~ = f • 

Remark 

The G-spaces include the M-spaces and it is readily veri

fied that a C0 -space is a G-space. 

Notes 

The real G-spaces were introduced by Grothendieck in 

[10] • Proposition 21 was announced in [22] in the real case, 

but, as pointed to us by Jan Raeburn, the proof is wrong, how

ever the same idea can be used to give a correct proof. 

Theorem 24 was proved by Effros in the separable, real case [7] 

and in general by Fakhoury [9] • It is on his idas we have based 

the proof of lemma 23, and the other part of theorem 24 is proved 

as in [7]. Lemma 22 was proved by Lazar for real Lindenstrauss

space [19] • 
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6. The classification scheme. 

Summarizing the foregoing we get 

A 

where A(S) denotes the class of Linqenstrauss-spaces with 
... 

extrempoints, A0 ( S) the simplex-spaces, and so on , A ~ B 

means that the class A is included in B • 

It is also possible to read the intersections between the classes. 

In fact: 
A ... ... .... A 

(6 .1) G n A(S) = CL: n A0 (S) = C(K) 
A A A 

(6.2) Gn A0 (S) = M 
.... A 

(6.3) Ccr n A0 (S) = C0 (K) 

Proof 

If V is a G-space with extreme-points, then there is a 

maximal w*-closed face S in K with closed extrem-boundary. 

Hence S is a Bauer-simplex and the first equality in (6.1) 

follows from [1] theorem II.4.3 

If S is a maximal face in K such that conv(S u {o}) is 

compact and beK is closed, then beS is closed, Hence S 

is closed and [1] theorem II.4.3 will do. 

If V is a simplex-space with o K c [o, 1] beK , then there is 
e -

a maximal face S in K such that conv(S u {o}) is w*-com-

pact and ~ ~ [o, 1] beS • Now [8] theorem 2.3 gives (6.2) 

as in the proof of theorem 24. 

If V is a simplex-space with closed, then there is 

a maximal face S in K such that beS u {o} is compact. Hence 

80 = conv (S u {o}) is a Bauersimplex and by [1] theorem II.4.3 

we get 
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Notes 

The classification scheme is essentially due to Lindenstrauss

Walbert [22] , but was later on modified in [20]. For more in

formation about complex Lindenstrauss-spaces, see Hustads works 

[14] and [15], where he studies intersection properties o£ balls 

and extensions of compact operators. These topics are related to 

Lindenstrauss results [21] in the real case. 
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