Spectra of ergodic transformations

Erling Størmer

1. Introduction. In ergodic theory there are several results on the spectrum of the unitary operator on L^2 defined by an ergodic transformation. In the present paper we shall prove similar results for ergodic groups of *-automorphisms of a von Neumann algebra. Our setting is mostly the following: $\mathcal R$ is a von Neumann algebra, G a group, and $\boldsymbol \alpha$ representation of G as an ergodic group of *-automorphisms on \mathcal{R} . We assume is implemented by a unitary representation U of G. After α a discussion of the eigenvectors and eigenvalues for U in the first part, we specialize to the situation when G is locally compact and abelian, and U is strongly continuous in the second. Then the work of Arveson [2] and Connes [3] on the spectrum for α is available. If by Stone's theorem $U_g = \int_{\hat{G}} (\overline{Y,g}) dP_{\gamma}$, the spectrum of U is the same as the support of the projection valued measure dP. We show that if ker $U = \ker \alpha$ then SpU equals the dual group of G/ker U, and that this result is applicable to the GNS representation of an invariant state (e.g. to asymptotically abelian C*-algebras). If we specialize to the case when G is the integers Z or the reals \mathbb{R} then usually SpU = \hat{G}_{\bullet} If they are different then there exists a faithful normal G-invariant state, and $\,\mathscr{R}\,$ is abelian. As a consequence it follows that in ergodic theory, when ${\mathcal R}$ is abelian, and W is the unitary operator defined by an ergodic transformation, then the spectrum of W is the whole unit circle, unless ${\mathcal R}$ is finite dimensional as a complex vector space.

The author is indebted to A. Connes for some valuable comments.

2. Eigenvalues. If \mathcal{R} is a von Neumann algebra we denote by Aut \mathcal{R} the group of *-automorphisms of \mathcal{R} . If G is a group and α a representation of G in Aut \mathcal{R} we say an operator V in \mathcal{R} is an <u>eigenoperator</u> for α if $V \neq 0$ and for each $g \in G$ there is a complex number (γ, g) such that $\alpha_g(V) = (\gamma, g)V$. We say α represents G as an <u>ergodic group</u> of automorphisms (or just that G is ergodic) if for $A \in \mathcal{R}$, $\alpha_g(A) = A$ for all $g \in G$, implies $A = \lambda I$ for some scalar λ , where I is the identity operator.

Lemma 2.1. Let \mathscr{R} be a von Neumann algebra, G a group and α a representation of G as an ergodic group of *-automorphisms of \mathscr{R} . Then we have

- 1) If V is an eigenoperator for α , and $\alpha_g(V) = (\gamma,g)V$ then γ is a character on G, called the <u>eigenvalue</u> for V.
- 2) The eigenvalues form a subgroup of the character group on G.
- Two eigenoperators with the same eigenvalue are scalar multip les of the same unitary operator.
- 4) Let \mathcal{M} be the weak closure of the vector space spanned by the eigenoperators. Then \mathcal{M} is a von Neumann subalgebra of \mathcal{R} , called the <u>eigenalgebra</u> for G in \mathcal{R} .

<u>Proof</u>. With V as in 1) we have for $g,h \in G$, $(\gamma,gh)V = \alpha_{gh}(V) = \alpha_g(\alpha_h(V)) = \alpha_g((\gamma,h)V) = (\gamma,h)(\gamma,g)V$, so γ is a character, and 1) follows. Furthermore, we have $\alpha_g(V^*) = \alpha_g(V)^* = ((\gamma,g)V)^* = (\gamma^{-1},g)V$, so that V* is an eigenoperator with eigenvalue γ^{-1} . Let U be an eigenoperator with eigenvalue μ . Then $\alpha_g(UV) = (\gamma\mu,g)UV$, so $\gamma\mu$ is an eigenvalue if $UV \neq 0$. Thus 2) follows as soon as we have shown 3). But V*V $\neq 0$ and VV* $\neq 0$, so the

- 2 -

above shows that V*V and VV* are eigenoperators with eigenvalue 1, the identity character. Thus $\alpha_g(V*V) = V*V$, so V*V is a scalar operator, since G is ergodic. Similarly VV* is a scalar operator. Since ||V*V|| = ||VV*||, VV* = V*V, hence V is a scalar multiple of a unitary operator. Similarly, if U is an eigenoperator with eigenvalue γ , we see that U*V is a scalar, so 3) follows.

For each eigenvalue γ choose a unitary eigenoperator ∇_{γ} with eigenvalue γ . By 3) $\nabla_{\gamma}\nabla_{\mu} = r(\gamma,\mu)\nabla_{\gamma\mu}$ where $r(\gamma,\mu)$ is a complex number of modulus one. Thus $\nabla_{\gamma}\nabla_{\mu} \in \mathcal{M}$. Since $\nabla_{\gamma}^{*} = c \nabla_{\gamma}^{-1}$ by the above proof, $\nabla_{\gamma}^{*} \in \mathcal{M}$. Thus 4) follows.

<u>Theorem 2.2</u>. Let \mathcal{R} be a von Neumann algebra, G a group and α a representation of G as an ergodic group of *-automorphisms of \mathcal{R} . Suppose $\omega_{\mathbf{x}_0}$ is a G-invariant vector state on \mathcal{R} with \mathbf{x}_0 a vector which is cyclic for the eigenalgebra \mathcal{M} for G in \mathcal{R} . Then $\mathcal{R} = \mathcal{M}$, and $\omega_{\mathbf{x}_0}$ is a faithful normal trace on \mathcal{R} .

<u>Proof</u>. Let $w = w_{X_0}$. Since G is ergodic w is the unique normal G-invariant state on \mathcal{R} , see e.g. [8], and also w is faithful. Let V be a unitary eigenoperator with eigenvalue γ . Let $A \in \mathcal{R}$. Then for $g \in G$,

$$\omega(\mathbb{V} * \alpha_g(\mathbb{A})\mathbb{V}) = \omega(\alpha_{g^{-1}}(\mathbb{V}^*)\mathbb{A} \alpha_{g^{-1}}(\mathbb{V}))$$
$$= \omega((\gamma^{-1}, g^{-1})\mathbb{V}^* \mathbb{A} (\gamma, g^{-1})\mathbb{V})$$
$$= \omega(\mathbb{V}^* \mathbb{A} \mathbb{V}),$$

Thus the state $A \rightarrow \omega(V^*AV)$ is G-invariant, so by the uniqueness of ω , $\omega(V^*AV) = \omega(A)$ for all $A \in \mathcal{R}$. In particular $\omega(AV) = \omega(VA)$, and ω is in the centralizer \mathcal{R}_{ω} for ω .

- 3 -

Since w is faithful, x_0 is separating for \mathcal{R} , hence by our assumption, x_0 is separating and cyclic for both \mathcal{R} and \mathcal{M} . From Tomita theory, see [17], there is a conjugation J and a positive self-adjoint operator Δ - the modular operator for x_0 such that $J\Delta^{\frac{1}{2}}Ax_0 = A*x_0$ for all $A \in \mathcal{R}$, and $J\mathcal{R}J = \mathcal{R}'$. Now $\mathcal{M} \subset \mathcal{R}_w$, hence $\Delta V = V\Delta$ for all $V \in \mathcal{M}$ [17, Lemma 15.8]. Since x_0 is a trace vector for \mathcal{M} , we have that the conjugation defined by x_0 relative to \mathcal{M} is given by $Vx_0 \to V*x_0$, and the modular operator is the identity operator. But if $V \in \mathcal{M}$ then $J Vx_0 = J V \Delta^{\frac{1}{2}} x_0 = J \Delta^{\frac{1}{2}} V x_0 = V*x_0$, so J and Δ extend the corresponding operators for \mathcal{M} . Thus by [17, Theorem 12.1] $\mathfrak{R}' \subset \mathcal{M} =$ $J\mathcal{M} J \subset J\mathcal{R} J = \mathfrak{R}'$, and $\mathcal{M} = \mathcal{R}$. The proof is complete.

<u>Remark 2.3</u>. The above theorem is trivial if \mathcal{R} is abelian. Indeed, then $\mathcal{M}_{\mathcal{U}}$ is abelian and has a cyclic vector. Thus \mathcal{M} is maximal abelian, so $\mathcal{M} = \mathcal{R}$.

<u>Corollary 2.4</u>. If in Theorem 2.2 the group of eigenvalues is cyclic, then \mathscr{R} is abelian.

<u>Proof</u>. Let γ be a generator for the group of eigenvalues, and let V_{γ} be a unitary eigenoperator with eigenvalue γ . Let $V_{\gamma^n} = V_{\gamma}^n$. Then V_{γ}^n is an eigenoperator with eigenvalue γ^n , so \mathcal{M} is abelian, hence so is \mathcal{R} .

It might be expected that we always have \mathcal{H} and hence \mathcal{R} abelian when G is abelian. In order to explain the difficulty we give an example.

Let G be the four group, $G = \{1, a, b, c\}$, where $a^2 = b^2 = c^2 = 1$, ab = c, ac = b, bc = a. Let U be the unitary representation

- 4 -

of G on \mathfrak{C}^4 defined by

$$\mathbf{U}_{\mathbf{a}} = \begin{pmatrix} -1 & & \\ & 1 & \\ & -1 & \\ & & 1 \end{pmatrix}, \quad \mathbf{U}_{\mathbf{b}} = \begin{pmatrix} 1 & & \\ & -1 & \\ & & 1 \end{pmatrix}.$$

Let

$$\mathbb{V} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \quad \mathbb{U} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Then UV = -VU. Let \mathcal{A} the vector space spanned by I,U,V,UV. Then \mathcal{R} is a non abelian von Neumann algebra. Furthermore,

$$U_a V U_a^* = -V, U_b V U_b^* = -V, U_a U U_a^* = U, U_b U U_b^* = -U.$$

Thus U_{G} defines a group of *-automorphisms of \mathcal{R} . Since the only diagonal operators in \mathcal{R} are the scalars, the group is ergodic on \mathcal{R} . Note that I,V,U,UV are all eigenoperators for U_{G} , so $\mathcal{R} = \mathcal{M}$. If x_{O} is the vector

$$\mathbf{x}_{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

then $U_a x_o = U_b x_o = U_c x_o = x_o$, and x_o is cyclic for \mathcal{R} . We thus have the situation in Theorem 2.2 with \mathcal{R} non abelian.

The assumption in Theorem 2.2 says in a general way that α has pure point spectrum. The next result explains this in more detail.

<u>Theorem 2.5</u>. Let \mathcal{R} be a von Neumann algebra, G a group and a a representation of G as an ergodic group of *-automorphisms of \mathcal{R} . Assume a is implemented by a unitary representation U

- 5 -

of G, and that there is a unit vector x_0 cyclic for \mathcal{R} such that $U_g x_0 = x_0$ for all $g \in G$. Then there is a bijection between eigenoperators V for α and eigenvectors for U given by $V \rightarrow V x_0$. V and $V x_0$ have the same eigenvalue, hence the eigenvalues for U form a group.

<u>Proof</u>. For $A' \in \mathcal{R}'$ let $\beta_g(A') = U_g A' U_g^{-1}$, $g \in G$. Then $\beta_g \in Aut \mathcal{R}'$. If $\beta_g(A') = A'$ for all g then $A'x_0 = U_g A' U_g^{-1} x_0 =$ $U_{g}A'x_{o}$. But α is ergodic on \mathcal{R} , so x_{o} is the unique eigenvector with eigenvalue 1. Thus $A'x_0 = \lambda x_0$ for some complex number λ . Since \mathbf{x}_{0} is cyclic for $\mathcal R$ it is separating for $\mathcal R'$. Thus A' = λ I, and β is ergodic on \mathcal{R} '. Let x be an eigenvector for U, say $U_g x = (\gamma, g) x$ for all $g \in G$. Then ω_x is G-invariant on \mathcal{R}' , hence by uniqueness of ω_{x_0} , $\omega_x = \omega_{x_0}$ on \mathcal{R}' . Thus there is an operator V in \mathscr{R} such that $x = Vx_0$ (define V by VA'x_o = A'x). But if $g \in G$ then $\alpha_g(V)x_o = U_gVx_o = U_gx =$ $(\gamma,g)x = (\gamma,g)Vx_{0}$. Since x_{0} is separating for \mathcal{R} , since α is ergodic, V is an eigenoperator with eigenvalue γ_{\star} Conversely, if V is an eigenoperator for $\,\alpha\,$ with eigenvalue $\,\gamma\,$ and $\mathbf{x} = \nabla \mathbf{x}_{o}$, then $U_{g}\mathbf{x} = U_{g}\nabla U_{g}^{-1}\mathbf{x}_{o} = \boldsymbol{\alpha}_{g}(\nabla)\mathbf{x}_{o} = (\gamma,g)\nabla \mathbf{x}_{o} = (\gamma,g)\mathbf{x}$, so x is an eigenvector with eigenvalue γ . An application of Lemma 2.1 completes the proof.

The above theorem is a generalization of the so-called proper value theorem in ergodic theory [6, p.34]. We shall now digress somewhat and give a quick proof of the so-called discrete spectrum theorem in ergodic theory [6, p.46], generalized to arbitrary groups. If G is a group and U a unitary representation of G on a Hilbert space \mathcal{H} , we say U has <u>pure point spectrum</u> if \mathcal{H} has an orthonormal basis of eigenvectors for U. Let for i = 1,2 \mathcal{R}_i be a von Neumann algebra, G a group, and α_i a representa-

- 6 -

tion of G in Aut \mathcal{R}_i such that α_i is implemented by a unitary representation U^i on the underlying Hilbert space \mathcal{H}_i . We say (\mathcal{R}_1, U^1) is isomorphic to (\mathcal{R}_2, U^2) if there is a unitary operator W of \mathcal{H}_1 onto \mathcal{H}_2 such that $W \mathcal{R}_1 W^* = \mathcal{R}_2$, and $WU_g^1 W^* = U_g^2$ for all g.

<u>Theorem 2.6</u>. Let G be a group. Let for i = 1,2, \mathcal{R}_i be an abelian von Neumann algebra, α_i be a representation of G as an ergodic group of *-automorphisms of \mathcal{R}_i implemented by a unitary group U^i . Assume U^1 and U^2 both have pure point spectra and invariant vectors cyclic for \mathcal{R}_1 and \mathcal{R}_2 respectively. Then (\mathcal{R}_1, U^1) is isomorphic to (\mathcal{R}_2, U^2) if and only if U^1 and U^2 have the same groups of eigenvalues.

<u>Proof</u>. The necessity is trivial. Assume U^1 and U^2 have the same group H of eigenvalues. Since \mathcal{R}_1 is abelian we can choose a *-representation π of \mathcal{R}_1 onto the complex numbers. Let by Theorem 2.5 V be a unitary eigenoperator for α_1 in \mathcal{R}_1 for each $Y \in H$. Let $\widetilde{V}_{Y} = \pi(\overline{V_{Y}})V_{Y}$. Then \widetilde{V}_{Y} is also an eigenoperator with eigenvalue Y. Since by Lemma 2.1 $V_{\gamma}V_{\mu} = r(\gamma,\mu)V_{\gamma\mu}$ with $r(\gamma,\mu)$ a complex number of modulus 1, an easy computation shows that $Y \rightarrow \widetilde{V}_{\gamma}$ is a representation of H into \mathcal{R}_1 . Replacing V_{γ} by \tilde{V}_{γ} and similarly for \mathcal{R}_2 , we may assume V^1 and V^2 are unitary representions of H into ${\mathfrak R}_1$ and ${\mathfrak R}_2$ respectively such that V_{γ}^{i} is an eigenoperator with eigenvalue γ . Let x_{0}^{i} be the cyclic invariant vector for U^{i} and let $x_{\gamma}^{i} = V_{\gamma}^{i} x_{0}^{i}$, i = 1, 2. By Theorem 2.5 $\{x_{\gamma}^{i}\}$ is a complete set of eigenvectors for U^{i} , and by hypothesis $\{x_{\gamma}^{i}\}$ is an orthonormal basis for \mathcal{X}_{i} . Let P_{γ}^{i} be the one dimensional projection onto x_{γ}^{i} . Then by spectral theory $U_g^{i} = \sum_{Y \in H} (Y,g) P_Y^{i}$ Define a unitary operator W of \mathcal{H}_1

- 7 -

onto \mathcal{H}_2 by $Wx_{\gamma}^1 = x_{\gamma}^2$. Then an easy computation shows $WP_{\gamma}^1 W_{\gamma}^* = P_{\gamma}^2$, and $WV_{\gamma}^1 W^* x_{\mu}^2 = WV_{\gamma}^1 x_{\mu}^1 = WV_{\gamma}^1 V_{\mu}^1 x_0^1 = WV_{\gamma\mu}^1 x_0 = Wx_{\gamma\mu}^1 = x_{\gamma\mu}^2 = V_{\gamma}^2 x_{\mu}^2$. Thus $WV_{\gamma}^1 W^* = V_{\gamma}^2$, so by Theorem 2.2 (cf. Remark 2.3) $W \mathcal{W}_1 W^* = \mathcal{R}_2$. The proof is complete.

<u>Remark 2.7</u>. The assumption that \mathcal{R}_1 and \mathcal{R}_2 are abelian is necessary in the above theorem. Indeed, if we in the example after Corollary 2.4 replace \mathcal{R} by the linear span of

$$\mathbb{V}^{1} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

I, U, and UV¹, then we have an abelian von Neumann algebra $\tilde{\mathcal{R}}$, where U is as in the example. Let U_a, U_b, U_c be as in the example. Then it is easy to see that we have a representation of the four group as an ergodic group of *-automorphisms of $\tilde{\mathcal{R}}$. x_o is cyclic for $\tilde{\mathcal{R}}$ as well as for \mathcal{R} and the eigenvalues are the same. Since \mathcal{R} and $\tilde{\mathcal{R}}$ are not *-isomorphic the conclusion of the theorem does not hold.

3. Spectra. In this section we shall study the situation when $\frac{3}{\alpha}$ is a von Neumann algebra. G a locally compact/group, α a representation of G as an ergodic group of *-automorphisms of α , and U a strongly continuous unitary representation implementing α . By Stone's theorem there is a projection valued measure P on the dual \hat{G} of G such that

$$U_g = \int_{\hat{G}} \overline{(\Upsilon,g)} dP_{\gamma}$$
.

Our main interest will be the support of the measure P. This

set will be the same as the spectrum of U as defined below. In the case G is cyclic generated by g, then the support of P equals the spectrum of the unitary operator U_g .

Following Arveson [2] and Forelli [5] we define two representations π_U and π_{α} of $L^1(G)$ into the bounded operators on the underlying Hilbert space \mathcal{H} and \mathcal{R} respectively by

$$\pi_{U}(f)x = \int_{G} f(t)U_{t}x dt$$

and

$$\pi_{\alpha}(f)A = \int_{G} f(t)\alpha_{t}(A)dt ,$$

where $f \in L^{1}(G)$ and dt is the Haar measure on G. If $f \in L^{1}(G)$ we let $Z(f) = \{\gamma \in \hat{G} : \hat{f}(\gamma) = 0\}$. We let $Sp \alpha$ (resp. Sp U) be $\cap Z(f)$, where f runs through the set of functions in $L^{1}(G)$ such that $\pi_{\alpha}(f) = 0$ (resp. $\pi_{U}(f) = 0$). Note that if $x, y \in \mathcal{H}$ then

$$(\pi_{U}(f)x,y) = \int_{\hat{G}} \hat{f}(\gamma)d(P_{\gamma}x,y) ,$$

so Sp U = supp P.

If $x \in \mathcal{H}$ and $A \in \mathcal{R}$ we let $\operatorname{Sp}_{U} x = \cap Z(f)$, where $\pi_{U}(f)x = 0$, and $\operatorname{Sp}_{\alpha} A = \cap Z(f)$, where $\pi_{\alpha}(f)A = 0$. If E is a closed set in \widehat{G} we denote by $M^{\alpha}(E)$ (resp. $M^{U}(E)$) the set of $A \in \mathcal{R}$ (resp. $x \in \mathcal{H}$) such that $\operatorname{Sp}_{\alpha} A \subset E$ (resp. $\operatorname{Sp}_{U} x \subset E$). As remarked in [2] it is easy to see that $M^{U}(E) = P(E)$. Note that if γ is an isolated point in $\operatorname{Sp}_{\alpha}$ then γ is an eigenvalue, and every operator in $M^{\alpha}(\{\gamma\})$ is an eigenoperator with eigenvalue γ^{-1} . The proof of the next lemma is almost a direct copy of a similar proof in [9] based on one in [2]. Lemma 3.1. Let \mathscr{R} be a von Neumann algebra, G a locally compact abelian group and α a representation of G into Aut \mathscr{R} implemented by a strongly continuous unitary representation U. Let E and F be closed subsets of \hat{G} , $A \in M^{\alpha}(E)$, $x \in M^{U}(F)$. Then $Ax \in M^{U}(E+F)$.

<u>Proof</u>. If D is a closed subset of \hat{G} let $\mathbb{R}^{U}(D)$ (resp. $\mathbb{R}^{\alpha}(D)$) denote the closed subspace of \mathscr{K} (resp. $\widehat{\mathcal{R}}$) generated by the ranges of all operators $\pi_{U}(f)$ (resp. $\pi_{\alpha}(f)$) with $f \in L^{1}(G)$ and supp $\hat{f} \subset D$. By [2, Proposition 2.2], $\mathbb{M}^{U}(D) = \bigcap_{N} \mathbb{R}^{U}(D+N)$ (resp. $\mathbb{M}^{\alpha}(D) = \bigcap_{N} \mathbb{R}^{\alpha}(D+N)$) where N runs through the compact neighborhoods of the identity in \hat{G} . (We denote multiplication in G and \hat{G} additively in what follows). In order to prove the lemma let N be a compact neighborhood of O in \hat{G} . It suffices to show $Ax \in \mathbb{R}^{U}(E+F+N)$. For this let M be a compact neighborhood of O in \hat{G} such that $M+M \subset N$. It suffices by density arguments to consider the case when $A = \pi_{\alpha}(g)B$ with $B \in \mathscr{R}$ and supp $\hat{g} \subset E+M$, and $x = \pi_{U}(f)y$ with supp $\hat{f} \subset F+M$, $y \in \mathscr{K}$. We must show $\pi_{\alpha}(g)B \pi_{U}(f)y \in \mathbb{R}^{U}(E+F+M)$. Computing we see

$$\begin{aligned} \pi_{\alpha}(g) B \pi_{U}(f) y &= \int \int g(t) f(u) \alpha_{t} (B U_{u} y) du dt \\ &= \int \int g(t) f(u) U_{t} B U_{u-t} y du dt \\ &= \int \int g(t) f(w+t) U_{t} B U_{w} y dw dt \\ &= \int (\int g(t) f_{w}(t) U_{t} dt) B U_{w} y dw \\ &= \int \pi_{U}(g f_{w}) B U_{w} y dw \\ &= \int z_{w} dw , \end{aligned}$$

where $f_w(t) = f(w+t)$ and $z_w = \pi_U(gf_w)BU_w y$. Since supp $gf_w \subset E + F + M + M$, $z_w \in R^U(E + F + N)$. Therefore

- 10 -

 $\int z_w dw \in R^U(E + F + N)$, and the lemma follows.

<u>Theorem 3.2</u>. Let \mathscr{R} be a von Neumann algebra, G a locally compact abelian group and α a representation of G as an ergodic group of *-automorphisms of \mathscr{R} . Suppose α is implemented by a strongly continuous unitary representation U of G, and let N be the kernel of α in G. Then we have

- 1) Spa is canonically isomorphic to $\widehat{G/N}$.
- 2) $\operatorname{Sp}\alpha \subset \gamma + \operatorname{Sp} U$ for some $\gamma \in \widehat{G}$.
- 3) If $U_g = I$ for each $g \in \mathbb{N}$ then $SpU = Sp\alpha$.

<u>Proof</u>. By a result of Connes [3, Theorème 2.2.2] Sp α is a closed subgroup of \hat{G} . By [3, Lemme 2.3.8] if $g \in G$ then Sp α_g as an operator on \mathcal{R} equals the closure of the set $\{\overline{(\gamma,g)}: \gamma \in \text{Sp}\alpha\}$. Thus $g \in \mathbb{N}$ if and only if g belongs to the annihilator of Sp α . By [11, Lemma 2.1.3] Sp α is the annihilator of \mathbb{N} in \hat{G} , hence by [11, Theorem 2.1.2] Sp α is canonically isomorphic to $\widehat{G/\mathbb{N}}$, proving 1).

In order to show 2) we first remark that if E is a closed set in \hat{G} and $P(E) \neq 0$, then P(E) is separating for \mathcal{R} . Indeed, let AP(E) = 0. Then $P(E)A^* = 0$, hence P(E) annihilates the range projection to A^* . Since $P(E)U_gA^*U_g^* = U_gP(E)A^*U_g^* = 0$, P(E) annihilates the range projection to $U_gA^*U_g^*$, hence the union Q of all these range projections. But $Q \in \mathcal{R}$ and Q is invariant under α . Since α is ergodic Q = 0, so $A = A^{**} = 0$.

If $\gamma \in \text{SpU}$ then 0 belongs to the spectrum of the representation $g \rightarrow (\gamma, g)U_g$. Thus in order to show 2) we may assume $0 \in \text{SpU}$, and will show $\text{Spa} \subset \text{SpU}$. By [3, Lemme 2.1.3] $P(N) = M^U(N) \neq 0$ for each compact neighborhood N of 0. Let $\gamma \in \text{Spa}$. Then by [3, Lemme 2.1.3] $M^{\alpha}(E) \neq 0$ for each compact neighborhood

E of Y. Let $0 \neq A \in M^{\alpha}(E)$ and choose by the above paragraph $x \in M^{U}(N)$ such that $Ax \neq 0$. By Lemma 3.1 $Ax \in M^{U}(E+N)$. Since the neighborhoods E+N form a fundamental system of neighborhoods for Y, $Y \in SpU$ by [3, Lemme 2.1.3]. Thus 2) follows.

Assume $U_g = I$ for each $g \in N$. Then the kernel of U is N, so U defines a strongly continuous unitary representation \widetilde{U} of G/N by $\widetilde{U}_{g+N} = U_g$. By definition $\operatorname{Sp}\widetilde{U} \subset \widehat{G/N}$. But we may identify $\widehat{G/N}$ with the annihilator of N in \widehat{G} [11, Theorem 2.1.2]. Thus the uniqueness of the measure P in Stone's theorem shows $\operatorname{Sp}\widetilde{U} = \operatorname{Sp}U$. Also α defines a representation \widetilde{a} of G/N into Aut \mathscr{C} in a similar manner. By 1) $\operatorname{Sp}\widetilde{\alpha} = \operatorname{Sp}\alpha = \widehat{G/N}$. We thus have by 2) that $\widehat{G/N} = \operatorname{Sp}\widetilde{\alpha} \subset \gamma + \operatorname{Sp}\widetilde{U} \subset \widehat{G/N}$ for some $\gamma \in \widehat{G/N}$, so $\operatorname{Sp}U = \operatorname{Sp}\widetilde{U} = \widehat{G/N}$. The proof is complete.

<u>Corollary 3.3.</u> In addition to the assumptions in Theorem 3.2 assume there is a cyclic vector x_0 for \mathcal{R} such that $U_g x_0 = x_0$ for all $g \in G$. Then SpU is canonically isomorphic to $\widehat{G/N}$.

<u>Proof.</u> If $g \in N$ and $A \in \mathcal{R}$ then $U_g A x_o = \alpha_g(A) x_o = A x_o$. Since x_o is cyclic for \mathcal{R} , $U_g = I$. Now apply Theorem 3.2.

We next want to know what happens when $\text{Sp}\alpha$ is a discrete subgroup of \hat{G} . By Theorem 3.2 this is equivalent to analyzing the situation when G/N is compact.

<u>Theorem 3.4.</u> Let \mathscr{R} be a von Neumann algebra, G a locally compact abelian group and α a strongly continuous representation of G as an ergodic group of *-automorphisms of \mathscr{R} . Let N be the kernel of α and assume G/N is compact. Then \mathscr{R} is equal to the eigenalgebra for G in \mathscr{R} , and there is a unique faithful normal finite G-invariant trace on \mathscr{R} .

<u>Proof</u>. Recall that α strongly continuous means that for each in \mathscr{Q} the map $g \rightarrow \alpha_{g}(\mathbb{A})$ is continuous when \mathscr{Q} is given the A norm topology. α induces a strongly continuous representation $\widetilde{\mathfrak{a}}$ of G/N as an ergodic group of *-automorphisms of \mathscr{R} . Since G/N is compact so is the image of $\widetilde{\alpha}$, hence so is $\alpha_g.$ It is then immediate from the theorem in [16] that there is a normal G-invariant state ω on \mathcal{R} . Since G is ergodic ω is unique and faithful. Let π be the GNS-representation of $\partial \!\!\!\!/$ defined Then π is a normal *-isomorphism of \mathscr{Q} onto a von by w. Neumann algebra. Replacing \mathcal{R} by $\pi(\mathcal{R})$ we may assume there is a cyclic vector $\mathbf{x}_{\mathbf{a}}$ for \mathcal{R} and a strongly continuous unitary representation U of G implementing α such that $U_{gx_{o}} = x_{o}$ for all $g \in G$. By Theorem 3.2 Spa is canonically isomorphic to $\hat{G/N}$, which is a closed discrete subgroup of \hat{G} [11,1.7.3]. By Theorem 2.5 the eigenvectors for U are given by $V_{\gamma x_0}$ where V_v is a unitary eigenoperator for α with eigenvalue γ . Since Spa is a discrete group the eigenvalues are exactly the elements in Spa. By Corollary 3.3 SpU is also a discrete group, hence $\{V_{\gamma}x_{\alpha}: \gamma \in Sp\alpha\}$ is a complete set of eigenvectors for U. Thus ${\tt x}_{\sf o}$ is cyclic for the eigenalgebra ${}^{{\sf M}}$ for G in ${\cal R}$. An application of Theorem 2.2 now completes the proof.

In ergodic theory the group G is usually the integers Z or the real numbers IR. This case has the technical advantage that every closed proper subgroup of the dual group is cyclic.

<u>Theorem 3.5</u>. Let \mathcal{R} be a von Neumann algebra and G a locally compact group isomorphic to either Z or R. Let α be a representation of G as an ergodic group of *-automorphisms of \mathcal{R} . Assume α is implemented by a strongly continuous unitary representation of G. Suppose SpU \neq Ĝ. Then ${\mathcal R}$ is abelian, and there is a unique faithful normal G-invariant state on ${\mathcal R}$.

<u>Proof</u>. Since $\operatorname{SpU} \neq \hat{G}$, Theorem 3.2 shows $\operatorname{Spa} \neq \hat{G}$, so is a cyclic subgroup of \hat{G} . Let N denote the kernel of α . Then $\operatorname{Spa} = \widehat{G/N}$ by Theorem 3.2, so G/N is isomorphic to the circle group. By Theorem 3.4 \mathcal{R} is equal to the eigenalgebra for G in \mathcal{R} , and there is a faithful normal G-invariant trace on \mathcal{R} . Since the eigenvalues for α form a cyclic group the argument in Corollary 2.4 shows \mathcal{R} is abelian. The proof is complete.

If N is a positive integer let l_N^{∞} denote the abelian von Neumann algebra consisting of the N×N diagonal matrices. We say a single automorphism of a von Neumann algebra \mathcal{R} is ergodic if its fixed points are the scalars. The following corollary is known in many special cases in ergodic theory, but to the best of my knowledge not in general.

<u>Corollary 3.6</u>. Let \mathscr{R} be a von Neumann algebra not isomorphic to l_{N}^{∞} for any positive integer. Suppose W is a unitary operator implementing an ergodic *-automorphism of \mathscr{R} . Then the spectrum of W is the unit circle.

<u>Proof</u>. Let $\alpha_n(A) = W^n A W^{-n}$. Then α is a representation of Z as an ergodic group of *-automorphisms of \mathcal{R} . If the spectrum of W is not the unit circle then by Theorem 3.5 \mathcal{R} is abelian and there is a faithful normal G-invariant state on \mathcal{R} . Furthermore Spa is a proper closed subgroup of the circle group, hence is finite. But then the eigenalgebra for G in \mathcal{R} is finite dimensional as a complex vector space, so by Theorem 3.4 \mathcal{R} is *-isomorphic to some l_N^{∞} contrary to assumption.

4. Applications. We indicate some applications of the preceding theory to some aspects of the C*-algebra formalism of quantum physics. Let OL be a C*-algebra and G a group of *-automorphisms of \mathcal{O} . Assume \mathcal{O} is G-abelian, see[12] or [4]. This is the most general definition of asymptotically abelian. Let ρ be an ergodic G-invariant state. Then by the GNS construction there is a Hilbert space \mathcal{H}_{ρ} a representation π_{ρ} of \mathcal{O} on \mathcal{H}_{ρ} , a unitary representation U of G on \mathcal{H}_{ρ} , and a unit vector x_{ρ} cyclic for $\pi_{\rho}(\mathcal{X})$ such that $\rho(A) = (\pi_{\rho}(A)x_{\rho}, x_{\rho})$, $\pi_{\rho}(g(A)) =$ $U_{g}\pi_{\rho}(A)U_{g}^{-1}$ for $A \in \mathcal{O}$, and $U_{g}x_{\rho} = x_{\rho}$. Let $\mathcal{R} = \pi_{\rho}(\mathcal{O})$ " and E the projection [$\mathscr{R}'x_{\rho}$], which is the support of the state $\omega_{x_{\rho}}$ on \mathscr{R} . By [4, Theorem 3] or [12, Theorem 6.3.3], x_{ρ} is the unique invariant vector for U, hence the proof of [14, Theorem 5.1] shows that the automorphisms α_g : EAE $\rightarrow E U_g A U_g^{-1} E$ act ergodically on E $\hat{\alpha}$ E. Let $V_g = U_g E$. Then the preceding theory is applicable to α , V and ERE. In particular we obtain that the eigenvalues for V form a group (Theorem 2.5), hence we have obtained generalizations of results of Kastler, Robinson and Ruelle [7], [11], and [12, p. 166].

If G is locally compact abelian and the representation of G as *-automorphisms of \mathcal{OC} is strongly continuous, then so is U and hence V. Thus Corollary 3.3 shows that SpV is a closed subgroup of \hat{G} .

Assume \mathcal{O}_{L} is asymptotically abelian with respect to G, i.e. there is a sequence $\{g_n\}$ in G such that $\|[g_n(A),B]\| \to 0$ as $n \to \infty$ for all A,B in \mathcal{O}_{L} . Suppose the state ρ is strongly clustering, i.e. $\rho(g_n(A)B) \to \rho(A)\rho(B)$ for all A,B in \mathcal{O}_{L} as $n \to \infty$. Then x_{ρ} is the unique eigenvector for U and hence for V [14, Corollary 4.6]. Thus SpV cannot be a discrete subgroup of \hat{G} in this case, unless ρ is a pure state so V is the trivial representation. In particular, if G is either \boldsymbol{Z} or \mathbb{R} it follows that $SpV = \hat{G}$ or {1}.

We next show an analogous result of this last one in the C*-algebra formulation of quantum field theory. We assume there is assigned to every bounded region \mathfrak{S} in the four dimensional Minkowski space M a C*-algebra $\mathcal{A}(\mathfrak{S})$ of operators on an infinite dimensional Hilbert space \mathfrak{K} . Let $\mathcal{R}(\mathfrak{S}) = \mathcal{A}(\mathfrak{S})^-$, and assume $I \in \mathcal{R}(\mathfrak{S})$. We assume there is a strongly continuous unitary representation $a \to U(a)$ of the four dimensional translation group, identified with M, such that the following properties are satisfied.

- 1. The spectrum of U is contained in the closed forward lightcone.
- 2. If \mathcal{O} is a bounded region then $\mathcal{A}(\mathcal{O}+a) = U(a)\mathcal{A}(\mathcal{O})U(a)^*$.
- 3. If two regions \mathfrak{S} and \mathfrak{S}' are space-like to one another then $\mathcal{A}(\mathfrak{S}) \subset \mathcal{A}(\mathfrak{S}')'$.
- 4. If $\mathcal{O} \subset \mathcal{O}'$ then $\mathcal{A}(\mathcal{O}) \subset \mathcal{A}(\mathcal{O}')$.
- 5. If $\{\mathcal{O}_n\}$ is any covering of the unbounded region $\mathcal{O} \subseteq \mathbb{M}$ of bounded regions, then the von Neumann algebra generated by the family $\{\mathcal{A}(\mathcal{O}_n)\}$ is independent of the covering, and is denoted by $\mathcal{R}(\mathcal{O})$.
- 6. There is up to a scalar multiple a unique vacuum vector x_0 cyclic for $\mathcal{R}(M)$.

Quite often one assumes the representation U is a representation of the Lorentz group as well. In that case the following result is well known.

- 16 -

<u>Corollary 4.1</u>. Suppose we have a local field theory satisfying axioms 1) - 6). Let a be a space-like vector in M, and denote by U_a the unitary representation $t \rightarrow U(ta)$ of R. Then $SpU_a = \mathbb{R}$.

<u>Proof</u>. As shown by Araki [1] there is a region \mathcal{O} in M with non void space-like complement such that $\mathcal{O} = \mathcal{O} + \operatorname{Ra}_{O}$ for some space-like vector a_{O} . Multiplying a_{O} by a scalar we may map a_{O} onto a by a Lorentz transformation, hence we may assume \mathcal{O} is a region in M such that $\mathcal{O} = \mathcal{O} + \operatorname{Ra}$, and such that there is a bounded non void region \mathcal{O} ' space-like to \mathcal{O} . From the proof of [13, Theorem 4.1] x_{O} is separating and cyclic for $\mathcal{R}(\mathcal{O})$, and $\alpha_{t}(A) = U_{a}(t)A U_{a}(-t)$, $t \in \operatorname{R}$, is an ergodic group of *-automorphisms of $\mathcal{R}(\mathcal{O})$. If $\operatorname{SpU}_{a} \neq \operatorname{R}$ then by Theorem 3.5 $\mathcal{R}(\mathcal{O})$ is abelian, hence $\mathcal{R}(\mathcal{O}')$ is abelian. But it is well known that this is impossible, see e.g. the proof of [13, Theorem 4.1].

<u>Remark 4.2</u>. In [13, Theorem 4.1] it was claimed that the von Neumann algebra $\mathcal{R}(\mathcal{O})$ above is a factor of type III. S. Doplicher pointed out to the author that the use of the edgeof-the-wedge theorem in the proof of the factor part was incorrect. Using [16, Corollary 3] instead of [13, Theorem 2.2] we can still conclude that $\mathcal{R}(\mathcal{O})$ is a von Neumann algebra of type III.

References

- <u>H. Araki</u>, A lattice of von Neumann algebras associated with the quantum theory of a free Bose field, J. Math. Phys. 4 (1963), 1343-1362.
- <u>W. Arveson</u>, On groups of automorphisms of operator algebras, J. Functional Anal. (To appear).
- 3. A. Connes, Thèse (To appear).
- 4. <u>S. Doplicher, D. Kastler, and E. Størmer</u>, Invariant states and asymptotic abelianness, J. Functional Anal. 3 (1969), 419-434.
- 5. <u>F. Forelli</u>, Analytic and quasi-invariant measures, Acta Math. 118 (1967), 33-59.
- 6. <u>P.R. Halmos</u>, Lectures in ergodic theory, Tokyo; The Mathematical Society of Japan (1956).
- 7. <u>D. Kastler and D.W. Robinson</u>, Invariant states in statistical mechanics, Commun. math. Phys. 3 (1966) 151-180.
- 8. <u>I. Kovács and J. Szücs</u>, Ergodic type theorems in von Neumann algebras, Acta Sc. Math. 27 (1966), 233-246.
- 9. D. Olesen, Derivations of AW*-algebras are inner, (To appear).
- 10. <u>D.W. Robinson and D. Ruelle</u>, Extremal invariant states, Ann. Inst. Henri Poincaré, 6 (1967), 299-310.
- 11. <u>W. Rudin</u>, Fourier analysis on groups, Interscience Publishers, New York - London (1962).
- 12. <u>D. Ruelle</u>, Statistical mechanics, W.A. Benjamin inc. New York (1969).
- 13. <u>E. Størmer</u>, Types of von Neumann algebras associated with extremal invariant states, Commun. math. Phys. 6 (1967), 194-204.
- <u>E. Størmer</u>, Asymptotically abelian systems, Cargèse lectures in physics, Vol. 4, Gordon and Breach, New York - London -Paris (1970), 195-213.

- 15. <u>E. Størmer</u>, Automorphisms and invariant states of operator algebras, Acta math. 127 (1971), 1-9.
- 16. <u>E. Størmer</u>, Invariant states of von Neumann algebras, Math. Scand. 30 (1972), 253-256.
- 17. <u>M. Takesaki</u>, Tomita's theory of modular Hilbert algebras and its applications, Springer-Verlag, Lecture notes in mathematics, 128 (1970).