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A B S T R A C T 

We continue the study of the infinite volume limit of 
quantum field theoretical models in n-dimensional space­
time with interaction densities which are bounded functions 
of an ultraviolet cut-off boson field. The truncated off­
shell scattering amplitudes are (in contrast to the on­
shell ones) the limits of the correspondent space cut-off 
quantities. They are analytic in the energy variables 
outside the union of certain real hyperplanes and have the 
crossing symmetry. Remarks are given on the restriction 
of the off-shell scattering amplitudes to the physical 
mass shall. 
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1. Introduction 

As in two preceding papers [1], [2], we study quentum field 

theoretical models in n 2: 4 - dimensional space-time 1) with non 

polynomial boson self-interaction. The infinite volume models 

are obtained as limits of the corresopndent ones with a space cut-

off in the interaction. The Hamiltonian of the space cut-off in-

teraction is 

H1 = H o + A. S v c q e c x) ) dx , 

lxl~l 

where H0 is the free energy of the free time zero boson field 
_. .-. r .... _.. _... -+ _, .,.,....n-1 

cp(x) of mass m > 0 9 and c;J 8 (x) = JX 8 (x-y)cp(y)dy , with x E lli , 

and X8 (x) E C~(llin- 1 ) 9 X8 (x) ~ 0 , x8 (x) = x8 (-x) • 

v(a) is a real valued function of the form v(a.) = Jeicx.sdv(s), 

where dv(s) is a bounded measure of bounded support on the real 

line. )~ is a coupling constant. For A. real, H1 is a self-

adjoint operator, bounded from below 9 with the same domain as H0 

in the Fock space ff'"" of the free boson field cp(x) 

In [2] we proved the existence and uniqueness of the infinite 

volume vacuum D for all !A.I < A. 0 ,A. 0 > 0 . Moreover we construc­

ted the imaginary and real time Wightman functions and proved the 

relative cluster properties. We obtained thus the physical Hilbert 

space with a strongly continuous unitary representation of the 

space and time translation group and hence 9 in particular, the 

Hamiltonian H > 0 of the infinite vollune models. We also proved 

analyticity in A. of the imaginary time Wightman functions and of 

the infinite volume limit of the energy density. 

1 ) The results of [2] are valid for all n > 1 • 
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In [1] we started the study of the scattering in these models. 

For the space cut-off interactions we constructed the S-matrix 

in terms of asymptotic fields and proved that it is analytic in 

the coupling constant A and equal to the sum of the linked clus-

ter expansion~ which in turns corresponds to the usual expression 

of the S-matrix in terms of Feynman graphs. This S-matrix for 

the space cut-off interaction was also given ([1]) in terms of so 

called scattering functions~ for which the existence of the infi­

nite volume limit was ppoved. 2 ) 

Vle remarked moreover that the limits for 1 ... =.o of the off-

shell scattering amplitudes exist. In this paper we continue the 

study of these infinite volume off-shell scattering amplitudes 

and prove results on their analytic dependence on the energy vari-

ables~ on the position of the corresponding cuts and on the cross-

ing symmetry. More specifically, in section 2 we introduce the 

Fourier transforms of the infinite volume scattering functions 

constructed in [1]. We prove that they have a simple expression 

in terms of Fourier-laplace transforms of the correlation func- · 

tions of [2], the so called spactral density functions, which are 

analytic in the coupling constant and exhibit explicitely a large 

analyticity domain in the complex energy variables, restricted on-

ly by the spectrum of the Hamiltonian H • 

2) The scattering functions are the analytic continuation of the 
correlation functions discussed in [2], which arise quite na­
turally in the Markovian euclidean version of the models and 
have the interpretation of classical correlation functions for 
a gas of variably charged particles in mn. Similar correla­
tion functions were introduced for related euclidean models 
in f3], where also a relation of these and euclidean Bogoliu­
bov off-shell scattering elements is given. Ideas on the re­
lation between the vacuum functional and the euclidean (space­
time cut-off) S-matrix are contained in several Kiev publica­
tions~ [4]. 
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In section 3 the analyticity results in the energy variables 

are applied to the infinite volume truncated off-shell scattering 

amplitudes 9 which are proven to be analytic outside the union of 

certain real hyperplanes. From this we have then the crossing­

symmetry of the off-shell scattering amplitudes. 3 ) 

In contrast to the off-shell scattering matrix the on-shell 

S-matrix is not the limit of the corresponding quantity for the 

space cut-off interaction 9 but will be obtained by restricting 

the off-shell scattering amplitude to the physical mass shell 9 

given by the eigenvalues m(p) of H in the subspace of fixed 
~ ~ 

momentum P = p • This is discussed in 3.3. 

Throughout this paper we shall always use the same notations 

and definitions as in [1]. 

3) This is the correspondent property of the one which is called 
crossing symmetry in relativistic covariant theories: see 
e.g. [5]. 
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2. The infinite volume scattering functions in momentum space. 

2.1. The scattering functions and correlation functions. 

In section 6 of C1] we introduced the infinite volume scat­

tering functions ak(x1s 1 , ••• ,xksk) 9 as limits of the correspon­

dent finite-volume scattering functions. By Theorem 6.1 of [1] 

the infinite volume scattering functions are given by 

where x. = (t. ,i.) (i = 1 9 ••• ,k) 9 t. being a time variable and 
l l l l 

xi a space variable9 running over llin- 1 9 where n-1 is the num-

ber of space dimensions. The s. run over the support of the 
l 

measure d\;(s) defined in section 1. H is the physical Hamil-

tonian for the infinite volume theory, and 0 is the unique ei-

genvector in the physical Hilbert space corresponding to the iso­

lated simple lowest eigenvalue zero of H. It follows from (2.1) 

that 9 for real coupling constant A 9 ak is uniformly bounded 

and analytic for Im(t. 1-t.) < 0 i = 1 9 ••• ,k-1 . By Theorem 6.2 
l+ l 

of [1] ak is related to the infinite volume correlation func-

tions by 

( 2. 2) 

where X= (ix 9x) 9 with X= (x 9x) • 
0 0 

From (2.1) we see that ak(t 1x 1s 19 ••• ,tkxksk) is a uniformly 

bounded continuous function of all its variables. As in (5.5) of 

[1] we define the infinite volume time ordered scattering func-

tions by 

( 2. 3) 

for t 1 _-:: •.• .:: tk 9 and the requirement that 
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is symmetric under permutations of its variables. vk 
o is then 

again a uniformly bounded function, which is continuous in 
... 

•• ,xk and s 1, .•• ,sk and piecewise continuous in t 1 , ••• ,tk. 

Like crk it is also translation invariant in space and time. 

We define the infinite volume scattering functions in momen-

where the Fourier transform (2.4) is understood in the sense of 

tempered distributions. 

Let n be any permutation of 1 9 ••• ,k. Then we define 

(2.5) 

It is obvious that 

where the summation runs over all the permutations. It follows 

from (2.5) and the symmetry of crk(x1s1, ••• ,xksk) with respect 

to permutations of the indicel3 that 

(2.7) 

where 

(2.8) 

and we have used that ~k and crk are equal for t 1 ,:::. ••. < tk • 

Introduce now the variables (T.,~.) = x. 1-x. 9 i = 1, ••• ,k-1 
l l l+ l 

and (a.1,81) = P1 9 (0'>2,82) = P1+p2, ••• ,(a.k-1,'8k-1) =p1+ ••• +pk-1 • 

Then we have 
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VIe now introduce the functions~ 

where ( T · 9 ~ • ) = X · 1 -X · 9 i = 
l l l+ l 

in terms of ~k 9 so that 

Since the integration over 

tive real axis, we see that 

T. > 0 
l-

1-9···9k-1. (2.9) then gives 

(2.9) 

(2.10) 

in (2.10) is only over the posi-

is analytic in Im a,. > 0 
J _, .... 

j = 1 9 ••• 9 k-1 

Since by (2.1) 

as a tempered distribution in s1 , ••• ,sk_ 1 • 

Jk(x1s 19 ••• 9 xksk) is analytic and uniformly boun-

ded for Im Ti > 0 9 we may continue the integration over Ti from 

the right hand real half line onto the imaginary upper half line 9 

and the integrals will be equal by the exponential decrease of the 

integrand. Performing this analytic continuation for all the T .---· 
l 

integrations i = 1 9 ••• 9 k-1 , we get by (2.2) that for 

j = 1 9 ••• 9 k-1 

a,. > 0 9 

J 

(2 .12) 
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where ( r . , %. ) = x. 1 -x. , i = 1 ~ ••• 9 k-1 • 
l l l+ l 

Since :/k by (2.6)~ (2.7) and (2.11) is given in terms 

of ~k , (2.12) gives the time ordered scattering function in 

k terms of the correlation function p (x1s 19 .,.,xksk) • The 
. k -+ .... n (a1B1 , ••• ,ak_ 1Bk_ 1;s1 ••• sk) will be called the spectral density 

functions. 

2.2. Analyticity in the coupling constant and the energy 

variables of the spectral density functions. 

In [2] we introduced the correlation functions pk(x1s 1 , •• 

• • ,xksk) • By Lemma 4.1 of [2] we have that the correlation func-

tions k 
p (x1s 1 , ••• ,xksk) are analytic in the coupling constant A ' 

for complex A such that l lei < A. where A > 0 4) 
0 9 0 • 

Moreover they satisfy, for complex A with !A! <A ~ the esti­o 

mates~ 

I k( ) I -k I I I A I -1 
1 0 x 1s 1 , ••• ,xksk 1 ~ C A (1-~) 

0 

(2.13) 

The pk(x1s 1 , ••• ,xksk) are continuous in all the variables and 

translation invariant in space and time. 

Using (2.13) and the exponential decrease, in the r-vari-

ables, of the integrand, we now get from (2.12) that 
_, 

k -+ -+ 
n (a 1 ~ 1 , ••• ,ak_ 1sk_ 1;s 1 , ••• ,sk) is, for 

analytic in A for !AI < A. 0 , as a tempered distribution in 
_, -+ k S1 , ••• ,8k_ 1 • Moreover we get, from (2.12) and (2.13), that n 

is analytic in the energy variables a 1 , .•• ,ak_ 1 for Re aj > 0 

and complex with < A • 
0 

By the same argument as above 

vve also obtain that it is analytic in )~. for I A.! < A. 0 and 

4) One has A. 0 
of [2] and 

C-1 -2B-1 = e , •.vhere C is defined in section 4 
B is defined by (4.10) of 020. 
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Re a j > 0 , j = 1 9 ••• , k-1 • 

Let now A be real and -A < A < A 
0 0 

By (2.10) we then 

have that k n is analytic in aj > 0 9 j = 1 9 ••• ,k-1 9 as a tem-

pered distribution in 

is a unii'ormly bounded continuous functions of all its variables, 

when )~. is real. 

From the linked cluster expansion for pk as given by Lemma 

3.1 of [1] and the fact that the measure dv(s) satisfies the 

relation dv(s) = dv(-s) , we have, for real \ : 

pk(x1s1, ••• ,xksk) = pk(x1,-s1, ••• ,xk'-sk) • 

This implies, by (2.12): 

(2.14) 

k _, _, k _, _, 
n ( 0',1 !31' 0 .. , a.k-1 8k-1 ; s 1 ••• sk) = -r) ( 0''1 9 - !31 9 ooo,a.k-1 9 - 8k-1 ; -s 1, ••• ,-sk) 9 

(2.15) 
where -k k 'rl is the complex conjugate of n 

By the analyticity of k in Im a.. > 0 j 1 9 ••• 9 k-1 ob-n 9 = ' 
we 

J 
tain from (2.15) that 

k _, _, 
n (a.161 9 •··,a.k-1Bk-1;s1 .•• sk) is also ana-

lytic for Im a. < 0 and by its 
J 

analyticity for Re a.. 
J 

> 0 we 

have that it is the continuation of the same function. 

Let us now define the integrated spectral density functions 

(2.16) 

The following theorem follows from what is said above 

Theorem 2.1 

grated spectral density functions 

be in lf(R3) 9 then the in te­
k 

11 (a.1f1, • • • ,a.k-1fk-1 ;s1' .•. ,sk) 

for /1. real and -A. < A < )~. , are analytic functions in the 
0 0 

energy variables CY, 1 , ••• , ak_ 1 in the product of the cut planes 
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C- [-~,0] , i.e. the complex planes cut along the negative 

real axis. 

Moreover for complex ~ , the integrated spectral density 

functions are analytic in the coupling constant A and the ener-

gyvariables ~ 1 , ••• ,~k- 1 in the product of the disk !AI <A 

and the right hand half planes Re a,. > 0 
l i = 1 ' ••• 'k-1 

0 

By formula (6.4) of [1] we have that for t 1 _::: ••• ::_tk and 

-A < ~ < ~ 
0 0 

(2.17) 

Introducing now P = [P 19 P29 ••• 9Pn_ 1} as the self adjoint infi­

nitesimal generator for the unitary group of space translations, 

we see that (2.17) may be written 

Inserting this expression for k p into (2.12) we get the following 

ezpression for the spectral density function for ~j > 0 9 

j = 1 9 ••• 9 k-1 • 

_, 
where we have used that H and P commute, and the identity 

(2.19) is in the seh~e of tempered distribution. 

Theorem 2.2 For -~ < A < ~ 
0 0 

and complex and 

outside the negative real half axis, the spectral density func-
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tions are given by 

The jumps of the spectral density functions across the cuts along 

the negative real axis for aj is 

above by substituting 2nio(H+aj) 

obtained from the formula 

1 for H+a. . The equality 
J 

above is to be understood in the sense of tempered distribu-

tions. Hence for the integrated spectral density functions we 

have 

Proof~ Integrating (2.19) with respect to f 1(s1 ) ••. fk_ 1 (sk_ 1 ) 

and utilizing that both sides are then analytic functions for 

Re cx.i > 0 9 i = 19•••9k-1 9 because of H > 0 9 we get the corres-

ponding identity for all a1 9 • • • 9 ak-1 in the cut planes, and from 

this formula it also follows that k is joint analytic for all n 

a. 1 9 ••• 9 cx.k_ 1 in the cut planes 9 since tr1e spe -Jtrum of H is con­

tained in the positive real axis. & 

Th?orem 2. 3 Consi.der now the scattering functions in momentum 

space 
k k 

<.P (p 1s 1 , ••• ,pksk) as functions on the hyperplane 2: p. = 0. 
cJ i=1 l . 

'.rhen for real is 

complex analytic in the energyvariables p~, ••• ,p~ in the complex 
k 0 

k-1 dimensional space r p. = 0 outside the union of the real 
. 1 l l= 
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hyperplanes of the form 

0 Im 2:: p. = 0 
.,..I l 1;::: 

where I is any subset of [1 9 ••• 9 k} • 

cpk The Theorem is proven by expressing v in terms of Proof~ 

k-1 
1l by the formulae (2.6) 9 (2.7) and (2.11) and using theorem 

2.1, which gives the analyticity of k-1 • 
1l in ry, 1 ' •. • ' G'"k- 1 • 



- 13 -

3. The ~nfinite volume off shell scattering matrix. 

3. 1 An_?.]:ytici ~ in. the energz variables for the off shell s::a t-

t erintL matrix. 

We now introduce the truncated spectral density functions 

( 3. 1 ) 

where F is the projection on the orthogonal complement of 0 

in the physical Hilbert space Jf. Let F be the projection 
0 

onto n 9 then by utilicing that F+F 
0 

= 1 ? we see that if we 

define the truncated time ordered scattering functions in momentum 

space ~~(p 1 s 19 ••• 9pksk) 

~~ instead of ~k then 

by the formulae (2.6) and (2.11) with 

~~(p 1 s 1 9···~pksk) is actually the 

Fourier transform of the time ordered truncated scattering func-
vk vk 

tions aT(x1s 1, ••• ,xksk) , where crT is the functions obtained 

by truncating the time ordered scattering functions (2.3) in the 

sense of (3.13) of [1]. 

vVe define the off shell finite volume truncated scattering ampli-

tudes S~'!(p 1 , ••• ,pn;q 1 ~ ••• ,qm) 
' 

by the formula in theorem 6.4 of 

[1], without the restrictions P~ = !..t(pi) 9 qj = u(qj). 

Introduce the notation 

(3.2) 

with A= [p 1 , ••• 9pn} and B = [q1 , ••• ,qm} • 

With this notation the formula in theorem 6.4 of [11 takes the 
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~ 

A=A1 U ••• UAr 
B=B 1 U ••• UBr 

(3.3) 

lx (A)! 2 !x (B)! 2 ~r1 T( r p.- ~ C1·~··•9 ~ p.- ~ q_.,s1 ~ ••• ,s ) ~ d\-l(s.) 
e: e: ' iEA 1 j EB1 J iEA. 1 iEA J r j= 1 J 

1 1 r 

where the sum runs over all disjoint partitions of A and B 

into r subsets, and !AI stands for the number of points in 

the set A • II Xe:(pJ.) 
jEA 

and if IAI = 1 

and zero if not. 

By theorem 6.1 of [1] we know that the finite volume scat­

tering functions cr~(x 1 s 1 , ••• ,xksk) converge poinwise as uniform­

ly bounded functions to the infinite volume scattering functions 
k cr1 (x1 s 1 , ••• ,xksk) for A. real and -/~. 0 < )l < A. 0 • Hence the cor-

responding time ordered scattering functions also converge point-

wise as uniformly bounded functions and of course also the corre­

sponding truncated functions converge pointwise as uniformly boun-

ded functions. Therefore their Fourier transforms converge as 

tempered distributions, and their limits are given by the trunca-

ted time ordered scattering functions in momentum space 

;,f~(p 1 s 1 , ••• ,pksk) • We formulate this result in the following 

theorem. 

Theorem 3.1 The finite volume truncated off shell scattering 

amplitudes s 1 ,T(A~B) given in (3.3) converge in the sense of 

tempered distribytions to the infinite volume truncated off shell 
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scattering amplitudes ST(A,B) given by the following formula 

for real and -A. < A. < A. 
0 0 

ST(A,B) !A!+!B!1 I r. !A1!+JB1! . !Arl+!Br! 
= 2: r! 2:' J•••J(ls1) ••• (lsr) 

r=1 A=A1 ,J ••• UAr 

B=B 1 U ••• UBr 
2 "'k r I x (A) x (B) I u T (~A 1 - r: B 1 , s 1 , ••• 9 z:: A - z:: B , s ) n d\.1 ( s . ) 

e: e: r r r j= 1 J 

0 lAI,1 °IB!,1 o(p1-<i1)' 

where A= [p 19 ••• ,pn} and B = {q1, ... ,~} and !A! is the 

number of points in the set A . The sum runs over all disjoint 

partitions A= A1u ••• UAr and B = B1U ••• UBr 9 

f. ¢ for i = 1 , ••• , r X e: (A) = J] x ( p) 9 and 
ptA E: 

of !Ai = 1 . ' 
and zero if not. 

such that 

rA. = L; p 
J pEA. 

J 

A. UB. 
l l 

and 

The truncated scattering function Jf~(p 1 s 1 , ••• ,pksk) is 

given in term of the truncated s~ectral density functions 
k .... .... 

"'lT(a.S1,. •• ,a.Bk-1 ;s1 ••• sk) by 

~~(p1s1, ••• ,pksk) = L n~(Pn(1)'Pn(1)+Pn(2) 9 ''" 
rr 

where the sum runs over all permutations n of [1, ••• ,k} , and 

n~ is given by (3.1). 

We remark that the truncated scattering amplitudes 

Theorem 3.2 For A. real and -A. < 1~ < )~. the truncated off 
0 0 

shell scattering amplitudes s~,m(p 1 , ••• ,pn;q1 , ••• ,qm) considered 
n m 

as f~mctions on the hyperplane L; p.- r q. = 0 , are analytic 
i= 1 l j = 1 J 
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functions in the complex energy variables 

in the n + m- 1 dimensional complex space which is the hyper-

1 ~ o m o 0 . d . p ane !_, pi- . ~~ 1 qi = 9 ln a omaln which is the complement to 
i=1 l= 

the union of the real hyperplanes of the form 

Im( 2: p~-
iEI l 

2: q~) 
j EJ J 

= 0 9 

where I is any non empty subset of [1 9 ••• ,n} and J is any 

non empty subset of [1, ... ,m} . 

Proof. This theorem follows from the analyticity of the scatter-

ing ftmctions in momentum space theorem 2.3, and the immediate 

observation that the truncated scattering functions in momentum 

space have the same domain of analyticity, as follows from the 

fast that nk and n~ have the same domain of analyticity in 

the energy variabeles, as seen from the definition (3.1) of the 

truncated spactral density functions n~ • 

Remark~ The structure of the regions where the truncated off­

shell scattering emplitudes are not analytic could be more close­

ly spacified if one would have more detailed information on the 

spactrum of H in a fixed total momenttun subspace~ This is 

clearly seen from the formula (3.1) for the truncated spactral 

density functions, which shows how the maximal domain of analyti-

city depends on the spactrlun of H . 
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3.2 The crossing symmetry for the off shell scattering 

amplitudes. 

The form of the off shell scattering matrix given in theorem 

3.1 together with the analyticity in the energy variables for the 

off shell scattering matrix as given in theorem 3.2 are sufficient 

to prove the correspondent in this model of what is usually known 

as the crossing symmetry for the off shell scattering amplitudes:) 

Namely the property that the scattering amplitudes for different 

scattering channels are related to one another in the sense that 

they are boundery values of one and the same analytic function 

taken at different branch cuts. 

Recalling that for any physical scattering process the ener­

gy variables are of course all positive, we shall see that the 

crossing symmetry actually follows from the fact that by theorem 

3.2 we may continue analytically the energy variables from the cut 

along the positive real axis to the cut along the negative real 

axis. In fact we have the following theorem: 

Theorem 3. 3 For A. real and -)_0 < )~ < A. 0 , the truncated off 

shell scattering amplitudes S~~m(p 1 , ••• ,pn;q1 , ••• ,~) are sym-

metric in and in I,,~oreover they are sym-

metric with respect to interchanges of p's with q's in the 

sense that 

5) ,See e.g. Ref. [5]. 
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T 
that Sn,m(p1 , ••• ,pn;q 1 ~···'~) may be analytically continued 

0 0 in the upper Pn half plane from the positive real pn axis to 

the negative real 0 Pn axis. Hence all the truncated off shell 

scattering amplitudes s~,m(p 1 , ••. ,pn;q1 , ••• ,~) with n+m = N 

are boundary values of one and the same analytic function taken 

at different branch cuts. 

Proof: The identity in the theorem follows immediately from the 

formula for the truncated off shell scattering amplitudes given 

in theorem 3.1. The analyticity in the energy· variables follows 

from the analyticity in the energy variables given in theorem 3.2. 

This proves the theorem. ~ 

3.3 Remarks on the scattering matrix. 

The scattering matrix would be obtained from the off shell 

scattering matrix by restricting the energy variables 

1, ••• ,n and 0 qj , j = 1, ••• ,m to the physical mass shell, in a 

similar way as for the space cut-off scattering matrix in theorem 

6.4 of [1]. Of course the physical mass shell in these models 

would not be a hyperboloid , since the models have a momentum 

cut-off in the interaction, but it should be given by the eigen-
~ ~ 

of H in the subspace of fixed momentum P = p • 

The corresponding eigenvectors would be the asymptotic or physical 

one particle states. By (3.1) we see that the eigenvalues m(p) 

of H , if they exist, would correspond to poles at the negative 

ai-axis at m(pi) for the truncated spectral density functions. 

From (2.12) and the fact that pk(x1s 1 , .•• ,xksk) is analytic in 

~ for !~i <~ and has a zero of order k at ~ = 0 , we find 
0 
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from (3.1) that 
-+ -+ 

isqJ 8 (o) 6(P-s 1 ) F eis 2cp 8 (o) 
( 0 9 e ••• 

H+a1 

is an analytic function in for !A.! < A. 0 9 and 

i = 1 9 ••• 9 k-1 • 

For A. = 0 we know that (3.4) has poles only at 

(3.4) 

Re a.. 
1 

> 0 

a. = -!l (8.) 
1 1 

and that the cuts along the negative real a-axis actually start 

only at -2!l(B.) , so that the poles are isolated from the cuts 
1 

for A. = 0 • This together with the analyticity in A. of (3.4) 

seems promising 9 but we have not yet been able to prove that the 

spectral density functions have isolated poles. 
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