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1, Introduction, In an earlier paper [3] we introduced the

concept of product factors and showed that a factor CQ is *¥-iso-
morphic to an ITPFI-factor if and only if 6@ is a hyperfinite
product factor. Subsequently we showed [4] that the countably
generated semi-finite product factors are all hyperfinite, and

in particular ITPFT—factdrs. In the present paper we shall
improve the above results by showing that a factor AR is *-iso-
morphic to an ITPFI-factor if and only if 6@ is a countably
generated product factor., This is then a characterization of

ITPFI-factors in terms of their normal states.

We say a normal state ® on a factor & is asymptotically

a product state if given o finite type I subfactor M of ®,

and € > O there is a finite type I subfactor N of OQ, con-

taining M such that |lw-w|N® o|N°| < ¢ , where we identify &

and N@UN®, N® =N'n ®R. (R is said to be a product factor if

every normal state on (4. is asymptotically a product state.

& is said to be an ITPFI-factor if R =1 ()" where
o

*
w = @fwi is a product state on an infinite C -algebra tensor
i=1 o
product L= ® . o Wwhere (7. 1is a type I_ -factor,
i=1 1 ny

2 Xn; <o, and m, 1s the cyclic representation of (7. defined

by w.
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2. The cone J ", TLet (& be a von Neumann algebra with a

separating and cyclic vector Eo acting on a Hilbert space S? .
Let A ©be the modular operator defined by go relative to 0@
(5, §71. 1In the notation of [5] &a’% is the domain of A% y
and J°F is the set of all vectors £ € $HT such that og, g

defined by wE,go(S) = (sg,go) is a positive linear functional

on R'. 1In the proof of [5, Lemma 15.2] it is shown that if

e € P% then € = lim Bg  with H € R*. Conversely, it is
clear that §&+§o c GD%. We shall in the present section show
that if {gn} is a sequence in @ *  such that wg, ~ Wg in iﬁb*
with € ¢ (P *  then g, & in ¥ . Tor this we need a probably
well known lemma on the absolute value of an element in db* .
Recall that if f € UL*‘ then f has a polar decomposition

f = |f|.U, where |f| 4is the unique positive normal linear func-
tional o on 6Q, and U the unique partial isometry in &
such that f = .U and ¢ = f- U* , where (p«U) (A) = o(UA),
see [2. Ch.I, § 4, Thm.4].

TLemma 2,1. Let A be a von Neumann algebra and {fn} a sequence
in DQ* converging uniformly to f in (&,. Then {lfn!} con-

verges uniformly to |f].

Proof. We may assume |f}| = We s where £ dis a unit vector in

the Hilbert space H. upon which & acts. Tet f, = ]fnl-'Un

and f = |f}-U Ybe the polar decompositions of fn and f
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* *
respectively. Since f(Un ) |f\(UUn*)= (g, U.U E) , we have

|(g, v,u"8) - [el®] = l£(w,) - fel]
< 12y = el + Higgl = Nzl
= 120, = 2,0 O+ gl - 2l

< -2l + Vgl - el
which converges to 0O as n - oo, In particular, since
ﬂUnU*g\\ <1 ', UnU*g = & in norm. Let ¢ > O , and choose n
so large that \\UnU*g— ell < e/2 and |f-1£ Il < ¢/2 for n 2>n_.
Then if A € (R we have
1ll@) = e L@ = | el () - £, (0 "8 |

| '£](a) - £(UA)] + |£(U, ") -2 (6 "))
< lag,8) - (ag, U U E)| + [E- £ ] [l

IA

< Jall fe-vutell + e-£ 0l llal
< e |l
Thus |||~ |f |l < e for n2mn_ . The proof is complete.

Proposition 2.,2. Let (R be a von Neumann algebra acting on a

Hilbert space 3‘6 and having a separating and cyclic vector 50.

Let § € 03# and {En} be a sequence in 00# such that mgn_.wE
uniformly in [@,* . Then 1!§n—§]! - 0 as n - ©,

Lem,3.5.5])
Proof. By a result of Connes [1,/there are vectors v, € 'X such

that o, =w, on K and ¥ -& . Let U ' be a partial
n En n - n

. . 1 ' _ . 1
isometry in (' such that U, &, =1V, (define U, by

' _ v U L . .
U, AE = Ay and U, =0 on (X En] ). Then in particular

' 4
- i e o1 € " we have >0
wgo"l’n w§o9§ in CR* ince &, » wgo,gn
L _ "% _ 1¥ =
on R' . Now !wEoHI'nl = wgo,gn . Indeed, Un q;n_Un Un gn_gn,

Thus if A' € R' we have (A'E ,¢,) = (Un'*A'go’gn) =

(wEO?gn.Un'*)(A')’ and (wgo,‘l‘n.Un')(A')z (Ul’l'A'go’Un'gn)z (A'Eoign)‘
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Thus by [2, Ch.I, § 4, Thm.4] the assertion follows. By Lemma 2.1

= - = . . #
wgoygn - lwaoﬂbnl lw%g,@‘ We,,e uniformly, since § € #7,

ép‘ wio,g >0 on &', 7

Since wg " wg Ve have in particular that Ugnn -llell ,
hence the vectors {gn-g} form a uniformly bounded set. Since
the unit ball in J{»is weakly compact there is a subnet {EnU—E}
which converges weakly to a vector { €Jf. Let nE€ 6&‘%0;
then there is a subsequence {§n.-§} of {&_ - E} such that

J T
- - . 2 1 ’
(gn.—g’ ﬂ) (‘b" T]) - But wgo'gnj wgo,g in \RJ* ? hence

(gnJ.'E ’ w

J
Thus (¥, m) = 0. Since Ol'go is dense in F%,, ¥ = 0 . There-
fore O 1is the only weak 1limit point of the sequence {gn-g} ’
hence & . = € weakly. Th@s, together with the fact that

n
g I = lgll , shows that g, ~ & is norm. The proof is complete.

3, Product factors.

We prove a slight improvement over [4, Lem.3.1].

Lemma %,1. Let Gl be a factor acting on a Hilbert space 2?5.
Then (K is hyperfinite if and only if R is countably generated
and given a finite type I subfactor M of vOZ, T € @K+ , € >0,
and 51""’§r e{?ﬂ, there is a finite type I factor N with
McNc Gb, and S € N'  such that u(s-T)gj\\ < e for j=1,eee,T.

Proof. The only difference between this lemma and (4, Tem.3.1]
is that in [4] we require ||S|| £ |IT|l. Thus in order to show the
lemma it suffices by [4] to reduce it to the case when S can
be chosen with |[8|l < [IT|l. TLet M,T,e,§,,...,8, be as in the
lemma, We may assume O < T < I . We employ the argument used

in [2] +to pfove the Kaplansky Density Theorem, Choose A € Rs
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with O <4 <I such that T = 24(I+4°%)7

. By assumption we
can find a finite type I factor N with M c N < R and B e N'
such that H(B-A)(I+A2)'1§jﬂ <e/t and [(B-A)TEll < e . Tet

S = 2B(I+B°)”' . Then S € N" and O < S < I. From the identity

S-1 = 2(14B%)" 1 (B-4)(1+4%)~" 4+ 1s(a-B)T

we have
l(s=2)8, 1 < 201(z+35) 7" IB-a) (@+a®) "2 ]l + sl (a-B)re )

<2¢/t +3e=c¢ .

The proof is complete.

Lemma 3.2, TLet 0& be a product factor. Let p and w be
normal states of A, Let M be a finite type I subfactor of
(R, and let e > 0 . Then there exist two finite'type I sub-
factors N and P of (R both containing M such that

i) l(p-0) |N®|| < €

i) flo-p|Poo|PC| < ¢ , [lw~w|Pew|P®| < ¢ .

Proof. We first prove i), If (p-w)lMc = O the assertion is
trivial, Otherwise choose a self-adjoint operator A € M®  such
that p(LA) # w(A) . An easy approximation argument shows that
we may assume A Tbelongs to a finite type I subfactor No of
M® . Let N, =0M® N, . Then N, is a finite type I subfactor
of ﬁL containing M , and there is a self-adjoint operator A
in N, of norm 1 such that c = |p(A)-w(a)|] #0 . Since &
is a product factor there is a finite type I subfactor N2 of R,
containing N, such that Hp-p|N2&~p\N20H < %(:. Then choose
a finite type I subfactor Nj of (R containing N, such that
Hw-wlN3®w!N3CH < %c:. Since $(p+w) is a normal state there is

a finite type I subfactor N = N4 of (R containing 1\T3 such



that

[E(p+w) = 3(p+w) ¥ ® 3(p+w) |N°[ < FH ¢

Let B € N° . Then we have the identity

2(o+ w)(A)+ 3(p+ 0)(B) - 2(p+ w)(AB) =
2(p(A)p(B) - p(4B)) + 3(u(A)u(B) - w(4B))
- 2(p(8) = w(8)(p(B) - w(B)).

Since A € N, which is contained in l\T'j y J =2,3,4, and

B € N° which is contained in Njc sy J=1,2,3, we have when
I3l <1,

1 € 1 €

%IQ(B)-W(B)! <T€'2'C +‘§EC +'§'€C =%C.
Thus |(p - w)|¥°|| < ¢ , and i) is proved.

We next show ii). By i) there is a finite type I subfactor
P, of (R, containing M such that \!(m—p)|P1Cn < e¢/6 . Since
(R, is a product factor there are finite type I factors P2 énd
c
P; such that Py c Py C Py C R and lw-w|P,2wlP,"|| < /6
and |p - p[P3®p|P3°]| <e/6 . TLet P =P; . Then the three

inqualities above imply

lo-w|Pew!2C

< Hw-—wlP'Qp‘PCH + ¢/6
<llo-wl|Py® wIPQCﬂP R o |P°ll + 2 ¢/6
< Hw-—w|P2&\9|P20rﬁP 2 o |P°% + 3 ¢/6

< Hw-w|P2f%p|P20H + 4 ¢/6
lo=w|Po® wlPyCll + 5 ¢/6
<6¢/6=c¢c.

A

The proof is complete.
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Theorem 3.3, Let 'G{ be a factor which is not finite of typé I.

Then (R is *-isomorphic to an ITPFI-factor if and only if 6%

is a countably generated product factor.

Proof. The necessity follows from [3]. In order to show the
converse it suffices by [3] to show that a countably generated
product factor is hyperfinite. In order to do this it suffices
by Lemma 3,1 to prove that if M dis a finite type I subfactor
of R HeR™ y € >0, and E4,...,5, EB%, the underlying
Hilbert space, then there is a finite type I subfactor N of GL
containing M and S € N' such that I(8-H)E < e .

Since L is countably generated we may assume (R has a
separating and cyclic vector £ and that HHEOH =1. By [5,
Thm,10.1) +there is a Tomita algebra (called modular Hilbert
algebra in [5]) OQO which is strongly dénse in K. (more
correctly we should consider @QOEO). Thus there is K € {Ro+
such that U(K—H)Ejll <e/2 for j=0,1,...,r and [KE_| = 1.
By [5, §3) it follows that (Rye < (R'E . Hence there is
K' € X' such that K'e, =KE .. Let k = IK'||° . Then

Wre = Wy < kw on GL.
K’o K §o EO

We assert that given 6 > 0 there is a finite type I sub-
factor N of (R containing M and T € N' such that |7 < k
and ﬂngo-ngoﬂ < 8 , Indeed, by Lemma 3.2 there is a finite
type I subfactor N, of (R containing M such that

R ”(ngo"wgo)!N1CH£k_5/4 .

Again by Lemma 3.2 there is a finite type I subfactor N of dz

containing N, such that

2) I!ngo- ngoll\T ) ngo|1\TC|| < §/4



and

c 2
3) ngo— wgo!N ® mgolN Il < 8/2x° .

Since in particular Wy e v < kw, I[N it follows from Sakai's
A 0 "0
Radon Nikodym Theorem [2, Ch.I, § 4. Thm.5] applied to N that
there is T € N* such that wy, | N = wqe |N , and |7 < k .
KE, 7€,

By 1) and 2) we have

c ' o
”ngo"ngo’N @ WEoiN ” ”wKEO_ U.)Kgo'N ® wgolN “

A

4) loge, - wie, I¥ @ wge [Nl + 8/4

5/4 + 8/4 = 8/2 .

A

et Se R =N&®0N® ., Then by 3), identifying T and T & I ,
H(wge I @ug 18°)(5) - wpe (5)]
= 'I(wgoll\l ® wEOlNC)(T@* DS(Te1)) - vy ((T@I)S( 1a1))!
< (8/2x%) [[(181)S(To 1)

(8/2x%) [IT2|sll < (8/2) sl

IA

Thus HngolN ® wEo!NC - UJTEO” < 8/2 , Hencg by 4)

) c c
”ngo—wTEO“ = ”(”Kgo" ‘”TgolN@LUgolN I+ |!ngolN®wEolN - wTEO]l

<8/2 +68/2 =58,

and our assertion is proved.

We can therefore find a sequence {Nj} of finite type I

subfactors of (R and T € Nj+ with [|25]l < k such that
”wKEo_ wT'go” - 0, ©Since K and Tj are all positive, it follows

from Proposition 2,2 that HT g, -Kg, |l = 0 . Since the Tj are

uniformly bounded and § is separating for CQ, Tj - K strongly

o)
[2, Ch,I. § 4, Prop.4]. We can thus find n such that

IK%f-K)gjn <ef2 for j=1,.0.,r. Let N = N, and S =T .
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1l

Then [[(S-H)E |l < [I(5-K)g4ll + (K-H)8,ll < /2 + e/2 = ¢ .

This completes the proof of the theorem.,

Remark. It was shown in [4] that if (R is a countably generated
product factor acting on a Hilbert space G?B then EXRE is a
countably generated product factor for each non-zero projection

E in (ﬁ,, and if & is separable then A is a countably gene-
rated product factor. Since by the above theorem it is immediate
that the tensor product of two countably generated product factors
is itself a countably generated product factor, it follows that -
on separable Hilbert spaces the product factors are closed under

the so-called elementary operations,
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