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1. Introduction. In an earlier paper [3] we introduced the 

concept of product factors and showed that a factor (}!_ is *-iso­

morphic to an ITPFI-factor if and only if & is a hyperfini te 

product factor. Subsequently we showed [4] that the countably 

generated semi-finite product factors are all hyperfinite, and 

in particular ITPFJ-factors. In the present paper we shall 

improve the above results by showing that a factor ~ is *-iso­

morphic to an ITPFI-factor if and only if UC is a countably 

generated product factor. This is then a characterization of 

ITPFI-factors in terms of their normal states. 

We say a normal state w on a factor <'R is asymptotically 

a product state if given a finite type I sub factor M of UP__.. 

and e > 0 there is a finite type I subfactor N of r:;.& con-

taining M such that 

and N®Nc, Nc = N' n 

\lw- wIN® w INc 1\ < e , where we identify 6t 
~. 00 is said to be a Lroduct factor if 

every normal state on 02- is asymptotically a product state. 

fk is said to be an ITPFI-factor if fR = TI ( fl+i) 11 where W Vt 
00 * 

w = @ w. is a product state on an infinite C -algebra tensor 
. 1 l l= 

product crL = 
co 
® ri1. , where CX. is a type I -factor 9 i=1 ~'J.. l ni 

2 < ni < oo , and Ilw is the cyclic representation of 0{, defined 

by w. 

(*) This work is partially supported by an N.S.F. grant. 
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The author is indebted to M. Takesaki for a remark which 

initiated this paper, and to all his colleagues at University of 

Pennsylvania, where this work was clone, for their warm hospitality 

while the author visited Philadelphia. 

2. 
() '~ /71 The cone .J '1 • Let (}U be a von Neumann algebra with a 

separating and cyclic vector s 0 
~-(f) acting on a Hilbert space df • 

Let 6 be the modular operator defined by so relative to ~ 
£)~ 

~ 

[ 5' §7]. In the notation of [5] is the domain of 62 
' 

and _p#= is the set of all vectors s E fiJ # such that tiJ 
s,so 

defined by w~ ~ (S) = (Ss,s 0 ) is a positive linear functional 
'"0 

on (J{.,' • 

1:: E (Jl# 

In the proof of [5, Lemma 15.2] it is shown that if 
/71+ then s = l~m Hn s 0 with Hn E V'(, • Conversely, it is 

/:·) + (P Jf, clear that iA. s0 c · . We shall in the present section show 

that if ( Sn} is a seq_uence in (}J # SUCh that WEn -+ tiJS in (j~ * 

with s E CP # then in -;:f_ • For this we need a probably 

well known lerruna on the absolute value of an element in /ll 
VCI * • 

Recall that if f E ~ * then f has a polar decomposition 

f=lfi·U where \fl is the uniq_ue positive normal linear func-

tional cp on fJ6 and U the uniq_ue partial isometry in ,_% 

such that f = cp .u and .Cfl = f • U*, where (cp• U) (A)= cp(U A), 

see [2. Ch.I, § 4, Thm.4]. 

IJemma 2.1 . Let (J0 be a von Neumann algebra and f fn} a seq_uence 

in (]6* converging uniformly to f in 0~* •· Then {I fn!} con­

verges uniformly to !fl. 

Proof. We may assume lfl = wr; , where s is a unit vector in 

the Hilbert space ~ upon which fit acts. Let fn = IfnI· U n 

and f = \f\·U be the polar decompositions of fn and f 
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* * * respectively. Since f(Un ) = If I (UUn) = ( s, UnU s) , we have 

I (s, unu*s) - \ls\\2 1 = \f(un*)- \\f\11 

* < lf(Un)- 11fn\11 + 1\\fnl\- l\f\\1 

= \f(un*)- fn(un*)\ + l\\fn11- 1\fl\\ 

< \lf-fn\1 + \\lfn11-l\'f\l\, 

which converges to 0 as n - oo. In particular, since 

* * 
nunu s 11 =:: 1 , unu s ... s in norm. Let € > 0 and choose no 

* so large that \IUnU s - s 1\ < e/2 and \lf-fn\1 < e/2 for n > n • 
- 0 

Then if A E a we have 

* ·- I !fl (A)- fn(Un A)\ 

* * . * <I lf!(A)- f(Un A) I+ \f(Un A) -fn(Un A)\ 

* < I (As ' s ) - (A s ' u n u s ) I + n f - f n !1 I \A II 

* 
:;; \\A \\ \\ s - U n U s \\ + 11 f - f n 11 \\A l \ 
< e \\A\\. 

Thus \\If I - I fn II\ < e for n ~ n 0 • The proof is complete. 

Proposition 2. 2. Let (;e be a von Neumann algebra acting on a 

Hilbert space ;ke and having a separating and cyclic vector So· 

Let s E (?#= and fsn} be a sequence in (JJ# such that wsn ..... wt: 

uniformlJll' in fPv* Then \!sn-sll-- o as n-cx:>. 

Lem.3.5.5] 
Proof. By a result of Connes [1,/there are vectors 1lr E ·~ such . n qr_ 

that w1lrn = wsn 

isometry in CJ.L' 

on f)( and w n ... s . 
such that 

I 

Let . un 

(define 

be a partial 

U I b n y 

Then in particular 

we have 

on 0\.' • Now Indeed, 

Thus if A' E (]6' we have (A's 0 ,'~n) = (un'*A's 0 ,sn) = 

(wE: ~ .u '*)(A'), and (w~ 1lr ·Un')(A')= (Un'A's 0 ,Un'sn)= (A'~,s.n). 
Ot'=>n n '=>O'·n 
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Thus by [2, Ch.I, § 4, Thm.4] the assertion follows. By Lemma 2.1 

w = lwj:' I - lw I = wE: uniformly, since s E (J #, 
So,Sn ~o,~n So,S o,s 

so on d-i) • 

Since wsn - W; we have in particular that 'lsnll -+\Is II , 
hence the vectors [ sn- s 1 form a uniformly bounded set. Since 

the unit ball in 1~ is weakly compact there is a subnet 

which converges weakly to a vector lJr E 3--r. Let 

then there is a subsequence f r;~-- E;} such that 
-- I in ~ , hence 

* 

(iL Is 
0 

is dense in Cf-(,, 1j.r = 0 . There-

fore 0 is the only weak limit point of the sequence [ r;n- s J 

hence sn ... ~ weakly. ~h$s, together with the fact that 

1\sn\\ _, \\sl\ , shows that sn ... s is norm. The proof is complete. 

3. Product factors. 

We prove a slight improvement over [4, Lem.3.1]. 

Lemma 3. 1 • Let (It, be a factor acting on a Hilbert space :P!-. 
Then (}(_ is hyperfinite if and only if rx is countably generated 

and given a finite type I subfactor M of (}(, T E (R+ 
' 

e: > 0 
' 

and s 1 , ••• , sr E 'J{, there is a finite type I factor l'J with 

M c N c (](;, and s EN+ such that 1\(S-T)sjl\ < e: for j = 1, ••• ,r. 

Proof. The only difference between this lemma and [4, tem.3.1] 

is that in [4] we require 1\S\1 < 1\T\\ o Thus in order to show the 

lemma it suffices by [ 4] to reduce it to the case when s can 

be chosen with \1S \\ < 1\T\\ o Let M,T,e:,s 1 9" •• ,sr be as in the 

lemma. We may assume 0 < T < I . We employ the argument used 

in [2] to prove the Kaplansky Density Theorem. Choose A E f.RJ 
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with 0.:::; A,:::; I such that T = 2A(I + A2 )-1 o By assumption we 

can find a finite type I factor N with McNc ()?_. and B E N+ 

such that \\(B-A)(I+A2)-1sj1\ < e/4 and \\(B-A)Ts -II< 
J 

€ . Let 

s = 2B(I+B2)-1 
• Then S E N+ and 0 < s < I. From the identity 

we have 

\\(S-T)sj\\ < 21\(I+B2 )-1 11 \\B-A)(I+A2 )-1sj\\ + t\\S\\ 1\(A-B)Tsj\\ 

< 2 e/ 4 + ~ € = e • 

The proof is complete. 

Lemma 3.2. Let ~be a product factor. Let p and w be 

normal states of (fl,. Let M be a finite type I subfactor of 

[JL and let € > 0 . Then there exist two finite type I sub-

factors N and p of (]{_ both containing JYI such that 

i) 

Proof. We first prove i). If (p-w)\M0 = 0 the assertion is 

trivial. Otherwise choose a self-adjoint operator A E M0 such 

that p(A) I w(A) • An easy approximation argument shows that 

we may assume A belongs to a finite type I subfactor N0 of 

M0 • Let N1 = M ® N0 • Then N1 is a finite type I subfactor 

of OL containing M , and there is a self-adjoint operator A 

in N1 of norm 1 such that c = lp(A)-w(A)I I 0 o Since ()._ 

is a product factor there is a finite type I subfactor N2 of OL 
containing N1 such that liP- PIN2 ~p!N2 °11 <~co Then choose 

a f.ini te type I subfactor N3 of (/{ containing N2 such that 

llw-w\N30w!N3°1\ <~c. Since ~(p+w) is a normal state there is 

a finite type I subfactor N = N4 of rA_. containing N3 such 
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that 

II~ ( P + w) - ~ ( P + m) IN ® ~ ( P + w) \Nc \1 < ~ c • 

Let B E Nc • Then we have the identity 

t(p+ cu)(A)· ~(p+ w)(B)- i(p+ w)(AB) = 

t(p(A)p(B) - p(AB)) + ~(w(A)w(B) - w(AB)) 

-l(p(A)- w(A))(p(B)- w(B)). 

Since A E N1 which is contained in 

BE Nc which is contained jn Njc , 

llB n :: 1 , 

N . , j = 2 , 3 , 4 , and 
J 

j = 1 ,2,3, we have when 

Thus 11 ( p - w) INc\\ < e , and i) is proved. 

We next show ii). By i) there is a finite type I subfactor 

P1 of {!6 containing M such that \l(w- p) !P1 c\1 < e/6 • Since 

(]0 is a product factor there are finite type I factors P2 and 

P3 such that P1 c P2 ,c P3 c (]Land Dm-wiP2 ~wiP2 cl\ < e/6 

and liP- pI p3 '9) pI p3 en < e/6 • Let p = p3 • Then the three 

inqualities above imply 

\\w- w\P~ w!Pc\1 

< \\w- m !P ~<?- p \Pc/1 + e/6 

< llw-w\P2 ,c;('lw\P2cnP ~ p\Pc/1 + 2 e/6 

< 1/w- w \P2 ,c;('l p \P2 c n P f9\ p \Pc!l + 3 e/6 

< l/w-w\P2 ~P\P2 cll + 4 e/6 

< 1/w- w \P 2 "KK w \P 2 ell + 5 e/6 

< 6 e/6 = e • 

The proof is complete. 
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Theorem 3.3. Let Gt be a factor which is not finite of type I. 

Then G( is *-isomorphic to an ITPFI-factor if and only if ot 
is a countably generated product factor. 

Proof. The necessity follows from [3]. In order to show the 

converse it suffices by [3] to show that a countably generated 

product factor is hyperfi~ite. In order to do this it suffices 

by Lemma 3.1 to prove that if M is a finite type I subfactor 

of {)._ H E {R + , e > 0 , and E; 1 , ••• , sr E ;:re , the underlying 

Hilbert space, then there is a finite type I subfactor N of rR_ 

containing M and SEN+ such that II(S-H)sj!l < e:. 

Since {/l is countably generated we may assume (/(. has a 

separating and cyclic vector f' and that 
0 

By [5, 

Thm.10.1J there is a Tomita algebra (called modular Hilbert 

algebra in [)]) {R 0 which is strongly dense in (}(_ • (more 

correctly we should consider oe ~ ). Thus there is K E ~ + 
0 0 0 

such that !l(K-H)E:j!l < e:/2 for j = 0,1, ••• ,r and 11Ks 0 ll = 1. 

By [5, §3] it follows that ~E0 c Ol'E. 0 • Hence there is 

K I E U{' such that K I e: = KE: .• 
-0 0 Let k = I!K' 11 2 • Then 

WKE: = WK' ~ .:::_ kwe; on (]t .• 
0 ~o 0 

We assert that given 5 > 0 there is a finite type I sub-

factor N of (Jt containing 1"1 and T E N+ such that IITII < k 

and n~so -wTsoll < 6 • Indeed, by Lemma 3.2 there is a finite 

type I subfactor N1 of ~ containing M such that 

Again by Lemma 3.2 there is a finite type I subfactor N of 0{ 
containing N 1 such that 
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and 

3) 1!wj:: - w~ IN ~ wj:: IN°ll < 5/2k2 • 
?o -o ?o 

Since in particular mKs 0 \N ~ kwF" 0 IN it follows from Sakai's 

Radon Nikodym Theorem [2, Ch.I, § 4. Thm.5] applied to N that 

there is T E N+ such that wKsol N = wTs 0 IN , and l\TI\,::: k • 

By 1) and 2) we have 

4) < llwKj:: - t~Kj:: IN ® wKE IN°II + 5/4 
'='0 ?0 -'0 

< o/4 + o/4 = o/2 • 

li'l 0 Let S E LK = N 0 N • Then by 3), identifying T and T 0 I , 

l ( w T j:: I N ®w j:: I N ° ) ( S ) - w T j:: ( S ) I 
?o ~0 ~0 

= lCws 0 IN ® we; 0 IN°)(T0I)S(T0I)) 

< ( 0 /2k2 ) II ( T ® I) s ( T 0 I) II 

< ( 0 /2k2 ) II T \I 2 11 s II ~ ( 0/2 ) II s II • 

< llwKj:: -wT~=" !N®w~ IN°l! + llwT~ !New~ IN°- wTE: II 
"o '='o o ~o o · o 

< o/2 + o/2 = 5 , 

and our assertion is proved. 

We can therefore find a sequence 

subfactors of (]{ and T j 

[Nj} of finite type I 

liT j II < k such that 

!1~~: 0 - wTjs 0 11 ... o. Since 

E Nj+ with 

K and Tj 

I!Tjs 0 -Ks 0 ll 
are all positive, it follows 

from Proposition 2.2 that -c 0 • 

uniformly bounded and is separating for 

Since the 

(}(, T .... K 
J 

[2, Ch.I. § 4, Prop.4]. We can thus find n such that 

T. 
J 

are 

strongly 

1\(Tn- K)sjll < e/2 for j = 1 , ••• ,r. Let N = Nn and S = Tn • 
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Then II(S-H)sjll < II(S-K)sj\1 + I!(K-H)sjll < e/2 + e/2 = e: • 

This completes the proof of the theorem. 

Remark. It was shown in (4] that if CR. is a countably generated 

product fact0r acting on a Hilbert space ~{ then E O{E is a 

countably generated product factor for each non-zero projection 

E in (k , and if {!i is separable then {A_' is a countably gene-

rated product factor. Since by the above theorem it is immediate 

that the tensor product of two countably generated product factors 

is itself a countably generated product factor, it follows that 

on separable Hilbert spaces the product factors are closed under 

the so-called elementary operations. 
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